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Abstract We consider a class of smoothing methods for minimization prob-
lems where the feasible set is convex but the objective function is not convex,
not differentiable and perhaps not even locally Lipschitz at the solutions. Such
optimization problems arise from wide applications including image restora-
tion, signal reconstruction, variable selection, optimal control, stochastic equi-
librium and spherical approximations. In this paper, we focus on smoothing
methods for solving such optimization problems, which use the structure of the
minimization problems and composition of smoothing functions for the plus
function (x)+. Many existing optimization algorithms and codes can be used
in the inner iteration of the smoothing methods. We present properties of the
smoothing functions and the gradient consistency of subdifferential associated
with a smoothing function. Moreover, we describe how to update the smooth-
ing parameter in the outer iteration of the smoothing methods to guarantee
convergence of the smoothing methods to a stationary point of the original
minimization problem.

Keywords nonsmooth · nonconvex minimization · smoothing methods ·
regularized least squares · eigenvalue optimization · stochastic variational
inequalities

1 Introduction

This paper considers the following nonsmooth, nonconvex optimization prob-
lem

min
x∈X

f(x) (1)
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where the feasible set X ⊆ Rn is closed and convex, and the objective function
f : Rn → R is continuous and almost everywhere differentiable in X. Of
particular interest is the case where f is not smooth, not convex and perhaps
not even locally Lipschitz. Here nonsmoothness refers to nondifferentiability.

Recently, problem (1) has attracted significant attention in engineering and
economics. An increasing number of practical problems require minimizing a
nonsmooth, nonconvex function on a convex set, including image restoration,
signal reconstruction, variable selection, optimal control, stochastic equilib-
rium problems and spherical approximations [1,8,10,11,13,21,29,30,33,42,44,
61,76,85,101,105]. In many cases, the objective function f is not differentiable
at the minimizers, but the constraints are simple, such as box constraints,
X = {x ∈ Rn |ℓ ≤ x ≤ u} for two given vectors ℓ ∈ {R ∪ {−∞}}n and
u ∈ {R∪{∞}}n. For example, in some minimization models of image restora-
tion, signal reconstruction and variable selection [8,33,42,85], the objective
function is the sum of a quadratic data-fidelity term and a nonconvex, non-
Lipschitz regularization term. Sometimes nonnegative constraints are used to
reflect the fact that the pixels are nonnegative, and box constraints are used to
represent thresholds for some natural phenomena or finance decisions. More-
over, a number of constrained optimization problems can be reformulated as
problem (1) by using exact penalty methods. However, many well-known op-
timization algorithms lack effectiveness and efficiency in dealing with nons-
mooth, nonconvex objective functions. Furthermore, for non-Lipschitz contin-
uous functions, the Clarke generalized gradients [34] can not be used directly
in the analysis.

Smooth approximations for optimization problems have been studied for
decades, including complementarity problems, variational inequalities, second-
order cone complementarity problems, semidefinite programming, semi-infinite
programming, optimal control, eigenvalue optimization, penalty methods and
mathematical programs with equilibrium constraints. Smoothing methods are
not only efficient for problems with nonsmooth objective functions, but also
for problems with nonsmooth constraints. See [1,2,4–7,14,16–18,22,24–31,33,
39,40,46–50,54,56–60,63,64,66,70,72,73,81,82,88–92,94,97,103,104].

In this paper, we describe a class of smooth approximations which are
constructed based on the special structure of nonsmooth, nonconvex opti-
mization problems and the use of smoothing functions for the plus function
(t)+ := max(0, t). Using the structure of problems and the composition of
smoothing functions, we can develop efficient smoothing algorithms for solv-
ing many important optimization problems including regularized minimization
problems, eigenvalue optimization and stochastic complementarity problems.

In particular, we consider a class of smoothing functions with the following
definition.

Definition 1 Let f : Rn → R be a continuous function. We call f̃ : Rn ×
R+ → R a smoothing function of f , if f̃(·, µ) is continuously differentiable in
Rn for any fixed µ > 0, and for any x ∈ Rn,

lim
z→x,µ↓0

f̃(z, µ) = f(x).
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Based on this definition, we can construct a smoothing method using f̃
and ∇xf̃ as follows.

(i) Initial step: Define a parametric smooth function f̃ : Rn × R+ → R to
approximate f .

(ii) Inner iteration: Use an algorithm to find an approximate solution (no
need to be an exact solution) of the smooth optimization problem

min
x∈X

f̃(x, µk) (2)

for a fixed µk > 0.
(iii) Outer iteration: Update µk to guarantee the convergence of the smooth-
ing method to a local minimizer or a stationary point of the nonsmooth
problem (1).

The advantage of smoothing methods is that we solve optimization prob-
lems with continuously differentiable functions for which there are rich theory
and powerful solution methods [86], and we can guarantee to find a local min-
imizer or stationary point of the original nonsmooth problem by updating
the smoothing parameter. The efficiency of smoothing methods depends on
the smooth approximation function, the solution method for the smooth opti-
mization problem (2) and the updating scheme for the smoothing parameter
µk. For example, if f is level-bounded and the smoothing function satisfies

f(x) ≤ f̃(x, µ) ∀x ∈ Rn, ∀µ > 0 (3)

then problem (2) has a solution for any fixed µk > 0. In section 3, we show
that a class of smoothing functions satisfy (3).

This paper is organized as follows. In section 2, we describe three mo-
tivational problems for the study of smoothing methods for (1): regularized
minimization problems, eigenvalue optimization problems and stochastic equi-
librium problems. In section 3, we demonstrate how to define smoothing func-
tions for the three motivational problems by using the structure of the prob-
lems and the composition of smoothing functions for the plus function (t)+.
In section 4, we summarize properties of smoothing functions and the subdif-
ferential associated with a smoothing function. In particular, we consider the
relation between the Clarke subdifferential

∂f(x) = con{v |∇f(z) → v, f is differentiable at z, z → x}

and the subdifferential associated with a smoothing function

Gf̃ (x) = con{v |∇xf̃(x
k, µk) → v, for xk → x, µk ↓ 0 },

where “con” denotes the convex hull. According to Theorem 9.61 and (b)
of Corollary 8.47 in the book of Rockafellar and Wets [94], if f is locally
Lipschitz, then Gf̃ (x) is nonempty and bounded, and ∂f(x) ⊆ Gf̃ (x). We
show the gradient consistency

∂f(x) = Gf̃ (x) (4)
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holds for locally Lipschitz functions in the three motivational problems and
a class of smoothing functions. Moreover, we show the affine-scaled gradient
consistency for a class of non-Lipschitz functions. In section 5, we use a simple
smoothing gradient method to illustrate how to update the smoothing param-
eter in the algorithms to guarantee the convergence of smoothing methods. In
section 6, we illustrate numerical implementation of smoothing methods using
the smoothing SQP algorithm [6] for solving ℓ2-ℓp(0 < p < 1) minimization.

2 Motivational Problems

In this section, we describe three classes of nonsmooth, nonconvex minimiza-
tion problems which are of the form (1) and can be solved efficiently by the
smoothing methods studied in this paper.

2.1 Regularized minimization problems

min Θ(x) + λΦ(x)
s.t. Ax = b, ℓ ≤ x ≤ u,

(5)

where Θ : Rn → R+ is a convex function, Φ : Rn → R+ is a continuous
function, A ∈ Rm×n, b ∈ Rm, ℓ ∈ {R∪{−∞}}n, u ∈ {R∪{∞}}n, (ℓ ≤ u) are
given matrices and vectors. Problem (5) is a nonlinear programming problem
with linear constraints, which includes the unconstrained optimization prob-
lem as a special case. The matrix A has often simple structure. For instance
A = (1, . . . , 1) ∈ R1×n and b = 1 in Markowitz mean-variance model for
portfolio selection. In the objective, Θ forces closeness to data, Φ pushes the
solution x to exhibit some priori expected features and λ > 0 is a parameter
that controls the trade-off between the data-fitting term and the regularization
term. A class of regularization terms is of the form

Φ(x) =
r∑

i=1

φ(dTi x), (6)

where di ∈ Rn, i = 1, . . . , r and φ : R → R+ is a continuous function. The
regularization term Φ is also called a potential function [85] in image sciences
and a penalty function [42] in statistics. The following fitting functions and
regularization functions are widely used in practice.

– least squares: Θ(x) = ∥Hx− c∥22,
– censored least absolute deviations [83]: Θ(x) = ∥(Hx)+ − c∥1,
– bridge penalty [61,67]: φ(t) = |t|p,
– smoothly clipped absolute deviation (SCAD) [42]:

φ(t) =

∫ |t|

0

min(1, (α− s/λ)+/(α− 1))ds,

– minimax concave penalty (MCP) [106]: φ(t) =

∫ |t|

0

(1− s/(αλ))+ds,
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– fraction penalty [52]: φ(t) = α|t|/(1 + α|t|),
– logistic penalty [84]: φ(t) = log(1 + α|t|),
– hard thresholding penalty function [41]: φ(t) = λ− (λ− |t|)2+/λ,

where H ∈ Rm1×n and c ∈ Rm1 are given data, and α and p are positive
constants. For the bridge penalty function, smoothness and convexity are de-
pendent on the value of p. In particular, |t|p (p > 1) is smooth, convex, |t|p
(p = 1) is nonsmooth, convex, and |t|p (0 < p < 1) is non-Lipschitz, nonconvex.
The other five regularization functions are nonsmooth, nonconvex.

There is considerable evidence that using nonsmooth, nonconvex regular-
ization terms can provide better reconstruction results than using smooth
convex or nonsmooth convex regularization functions, for piecewise constant
image, signal reconstruction problems, variable selection and high dimensional
estimations. Moreover, using non-Lipschitz regularization functions can pro-
duce desirable sparse approximations. See [13,30,42,61,62,84]. However, find-
ing a global minimizer of (5) with a non-Lipschitz regularization function can
be strongly NP-hard [23].

It is worth noting that the regularization term in (6) can be generalized to

Φ(x) =

r∑
i=1

φi(d
T
i x) (7)

and

Φ(x) =

r∑
i=1

φi(Dixi), (8)

where Di ∈ Rνi×γi , xi ∈ Rγi and φi(Dixi) =log(1 + α∥Dixi∥) or φi(Dixi) =
(∥Dixi∥1)p. In (7), various functions φi are used instead of using a single
function φ. In (8) variables are divided into various groups which can be used
for both group variable selections and individual variable selections [62].

2.2 Eigenvalue optimization

min
x

g(Λ(C + Y (x)TY (x))), (9)

where g : Rm → R is a continuously differentiable function, C is an m ×
m symmetric positive semidefinite matrix and Y (x) is an r × m matrix for
any given x ∈ Rn. Suppose that each element Yij of Y is a continuously
differentiable function from Rn to R. Let

B(x) = C + Y (x)TY (x).

Then B(x) is an m × m symmetric positive semidefinite matrix and each
element is a continuously differentiable function of x. We use

Λ(B(x)) = (λ1(B(x)), . . . , λm(B(x)))
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to denote the vector of eigenvalues of B(x). We assume that the eigenvalues
are ordered in a decreasing order:

λ1(B(x)) ≥ λ2(B(x)) ≥ . . . ≥ λm(B(x)).

Consider the following eigenvalue optimization problems.

(i) Minimizing the condition number

g(Λ(B(x))) =
λ1(B(x))

λm(B(x))
.

(ii) Minimizing the product of the k largest eigenvalues

g(Λ(B(x))) =
k∏

i=1

λi(B(x)).

(iii) Maximizing the minimal eigenvalue

g(Λ(B(x))) = −λm(B(x)).

Such nonsmooth, nonconvex problems arise from optimal control, design of
experiments and distributions of points on the sphere [10,29,71,76].

2.3 Stochastic complementarity problems

Let F : Rn → Rn be a continuously differentiable function. The following
nonsmooth and nonconvex minimization problem

min
x

θ(x) := ∥min(x, F (x))∥22 =
n∑

i=1

(min(xi, Fi(x)))
2 (10)

is equivalent to the nonlinear complementarity problem, denoted by NCP(F ),

0 ≤ x⊥F (x) ≥ 0, (11)

in the sense that the solution sets of (10) and (11) coincide with each other if
the NCP(F ) has a solution.

The function θ : Rn → R+ is a residual function of the NCP(F ). A function
γ : Rn → R is called a residual function (also called a merit function) of the
NCP(F ), if γ(x) ≥ 0 for all x ∈ Rn and γ(x∗) = 0 if and only if x∗ is a solution
of the NCP(F ). There are many residual functions of the NCP(F ), see [36,
40]. The function θ in (10) is called a natural residual function. We use θ here
only for simplicity of explanation.

When F involves stochastic parameters ξ ∈ Ξ ⊆ Rℓ, in general, we can
not find an x such that

0 ≤ x⊥F (ξ, x) ≥ 0, ∀ ξ ∈ Ξ, (12)
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equivalently, we can not find an x such that

θ(ξ, x) := ∥min(x, F (ξ, x))∥22 = 0 ∀ ξ ∈ Ξ.

We may consider a variety of reformulations. For example, find x ∈ Rn
+ such

that

Prob
{
θ(ξ, x) = 0

}
≥ α or 0 ≤ x⊥E[F (ξ, x)] ≥ 0,

where α ∈ (0, 1) and E[·] denotes the expected value over Ξ, a set representing
future states of knowledge. The first formulation takes on the form of a “chance
constraint”. The second one is called Expected Value (EV) formulation, which
is a deterministic NCP(F̄ ) with the expectation function F̄ (x) = E[F (ξ, x)].
See [53,65,95,100]. Using the residual function θ, the EV formulation can be
equivalently written as a minimization problem

min
x

∥min(x,E[F (ξ, x)])∥22. (13)

There are other two ways to reformulate the stochastic NCP by using
a residual function θ(ξ, x) as the recourse cost, which depends on both the
random event ξ and the first-period decision x. By the definition of a residual
function, the value of θ(ξ, x) reflexes the cost due to failure in satisfying the
equilibrium conditions at x and ξ. Minimizing the expected values of cost in
all possible scenarios gives the expected residual minimization (ERM) for the
stochastic NCP

min
x≥0

E[θ(ξ, x)]. (14)

The ERM formulation (14) was introduced in [21] and applied to pricing Amer-
ican options, local control of discontinuous dynamics and transportation as-
signment [54,98,105]. Mathematical analysis and practice examples show that
the ERM formulation is robust in the sense that its solutions have a minimal
sensitivity with respect to random parameter variations in the model [32,43,
74,105].

On the other hand, taking on the form of robust optimization (best worst
case) [3] gives

min
x

max
ξ∈Ξ

θ(ξ, x). (15)

In the reformulations above, we need prior commitments of probability dis-
tributions. However, in practice, we can only guess the distribution of ξ with
limited information. To find a robust solution, we can adapt the ideas of “distri-
butionally robust optimization” [38], which take into account knowledge about
distribution’s support and a confidence region for its mean and its covariance
matrix. In particular, we define a set P of possible probability distributions
that is assumed to include the true ρξ, and the objective function is reformu-
lated with respect to the worst case expect loss over the choice of a distribution
in P. Distributionally robust complementarity problems can be reformulated
as

min
x≥0

max
ρξ∈P

E[θ(ξ, x)]. (16)
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As the complementarity problem is a special subclass of the variational
inequality problem, the stochastic complementarity problem is also a special
subclass of the stochastic variational inequality problem. The EV reformula-
tion and the ERM reformulation for finding a “here and now” solution x, for
the stochastic variational inequality problem:

(y − x)TF (ξ, x) ≥ 0, ∀y ∈ Xξ, ∀ξ ∈ Ξ,

can be found in [28,95], where Xξ is a stochastic convex set.

3 Smooth approximations

The systematic study of nonsmooth functions has been a rich area of mathe-
matical research for three decades. Clarke [34] introduced the notion of general-
ized gradient ∂f(x) for Lipschitz continuous functions. Comprehensive studies
of more recent developments can be found in [80,94]. The Clarke gradient and
stationarity have been widely used in the construction and analysis of numer-
ical methods for nonsmooth optimization problems. In addition to the study
of general nonsmooth optimization, there is a large literature on more special-
ized problems, including semismooth and semiconvex functions [79], noncon-
vex polyhedral functions [87], composite nonsmooth functions [9,99,102] and
piecewise smooth functions [93]. Furthermore, the study of smooth approx-
imations for various specialized nonsmooth optimization and exact penalty
functions has a long history [14,17,24,27,31,33,40,59,70,81,82,90,94].

In this section, we consider a class of nonsmooth functions which can be
expressed by composition of the plus function (t)+ with smooth functions. All
motivational problems in section 2 belong to this class.

Chen and Mangasarian construct a class of smooth approximations of the
function (t)+ by convolution [17,90,94] as follows. Let ρ : R → R+ be a
piecewise continuous density function satisfying

ρ(s) = ρ(−s) and κ :=

∫ ∞

−∞
|s|ρ(s)ds <∞.

Then

ϕ(t, µ) :=

∫ ∞

−∞
(t− µs)+ρ(s)ds (17)

from R × R+ to R+ is well defined. Moreover, for any fixed µ > 0, ϕ(·, µ) is
continuously differentiable, convex, strictly increasing, and satisfies [14]

0 ≤ ϕ(t, µ)− (t)+ ≤ κµ. (18)

Inequalities in (18) imply that for any t ∈ R,

lim
tk→t,µ↓0

ϕ(tk, µ) = (t)+. (19)
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Hence ϕ is a smoothing function of (t)+ by Definition 1. Moreover, from 0 ≤
∇tϕ(t, µ) =

∫ t
µ

−∞ ρ(s)ds ≤ 1, we have

lim
tk→t,µk↓0

∇tϕ(tk, µk) ∈ ∂(t)+ =

 1 if t > 0
0 if t < 0

[0, 1] if t = 0,
(20)

where ∂(t)+ is the Clarke subdifferential of (t)+. The subdifferential associated
with the smoothing function ϕ at a point t is

Gϕ(t) = con{τ |∇tϕ(tk, µk) → τ, tk → t, µk ↓ 0}.

At t = 0, taking two sequences tk ↓ 0 and tk ↑ 0, and setting µk = t2k, from

0 ≤ ∇tϕ(tk, µk) =
∫ tk

µk
−∞ ρ(s)ds ≤ 1, we find Gϕ(0) = [0, 1]. Hence the Clarke

subdifferential coincides with the subdifferential associated with the smoothing
function ϕ, namely, we have

Gϕ(t) = ∂(t)+. (21)

Many nonsmooth optimization problems including all motivational prob-
lems in section 2 can be reformulated by using the plus function (t)+. We list
some problems as follows

|x| = (x)+ + (−x)+
max(x, y) = x+ (y − x)+

min(x, y) = x− (x− y)+

mid(x, ℓ, u) = min(max(ℓ, x), u), for given ℓ, u

xr1xr2xr3 = max{xixjxk : i < j < k, i, j, k ∈ {1, . . . , n}},

wherexr1 ≥ . . . ≥ xrn ≥ 0.

We can choose a smooth approximation of (t)+ to define smooth approxi-
mations for these nonsmooth functions and their compositions.

Example 1 Consider minimizing the following function

f(x) =

r∑
i=1

|(hTi x)+ − ci|p,

in censored least absolute deviations [83], where p > 0 and hi ∈ Rn, ci ∈ R,
i = 1, . . . , r.
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Choose ρ(s) =

{
0 if |s| ≥ 1

2
1 if |s| < 1

2 .
Then

ϕ(t, µ) =

∫ ∞

−∞
(t− µs)+ρ(s)ds =

{
(t)+ if |t| ≥ µ

2
t2

2µ + t
2 + µ

8 if |t| < µ
2

is a smoothing function of (t)+. This function is called the uniform smoothing
function.

From |t| = (t)+ + (−t)+, we know

ψ(t, µ) := ϕ(t, µ) + ϕ(−t, µ) =

{
|t| if |t| ≥ µ

2
t2

µ + µ
4 if |t| < µ

2 .

is a smoothing function of |t| and

f̃(x, µ) =
r∑

i=1

ψ(ϕ(hTi x, µ)− ci, µ)
p

is a smoothing function of f(x) =
r∑

i=1

|(hTi x)+ − ci|p.

Example 2 [29,76] Consider minimizing the condition number of a symmetric
positive definite matrix B(x) in section 2.2,

f(x) =
λ1(B(x))

λm(B(x))
.

Let h(x) = max(x1, . . . , xn). Choose ρ(s) = e−s/(1 + e−s)2. Then

ϕ(t, µ) =

∫ ∞

−∞
(t− µs)+ρ(s)ds =

{
µ ln(1 + et/µ) if µ > 0
(t)+ if µ = 0

is a smoothing function of (t)+. This function is called the Neural Networks
smoothing function.

For n = 2, from max(x1, x2) = x1 + (x2 − x1)+, we know

x1 + ϕ(x2 − x1, µ) = x1 + µln(e(x2−x1)/µ + 1) = µln(ex1/µ + ex2/µ)

for µ > 0. Hence x1 + ϕ(x2 − x1, µ) is a smoothing function of max(x1, x2).

Suppose µln
∑n−1

i=1 e
xi/µ for µ > 0 is a smoothing function of max(x1, . . . , xn−1).

Then from max(x1, . . . , xn−1, xn) = max(xn,max(x1, . . . , xn−1)), we find

h̃(x, µ) = µln
n∑

i=1

exi/µ ≈ µln(exn/µ + emax(x1,...,xn−1)/µ)

for µ > 0 is a smoothing function of h(x) = max(x1, . . . , xn).
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Moreover, from min(x1, . . . , xn) = −max(−x1, . . . ,−xn), we have−h̃(−x, µ)
= −µln

∑n
i=1 e

−xi/µ for µ > 0 is a smoothing function of min(x1, . . . , xn).
Hence, we get

f̃(x, µ) =

−
ln
∑n

i=1
eλi(B(x))/µ

ln
∑n

i=1
e−λi(B(x))/µ if µ > 0

f(x) if µ = 0

is a smoothing function of f(x) = λ1(B(x))
λm(B(x)) . In computation, we use a stable

form

f̃(x, µ) =
λ1(B(x)) + µln

∑n
i=1 e

(λi(B(x))−λ1(B(x)))/µ

λm(B(x))− µln
∑n

i=1 e
(λm(B(x))−λi(B(x)))/µ

for µ > 0.

Example 3 [21,32,104] Consider the stochastic nonlinear complementarity prob-
lem and let

f(x) = E[∥min(x, F (ξ, x))∥22].

Choose ρ(s) = 2

(s2+4)
3
2
. Then

ϕ(t, µ) =

∫ ∞

−∞
(t− µs)+ρ(s)ds =

1

2
(t+

√
t2 + 4µ2)

is a smoothing function of (t)+. This smoothing function is called the CHKS(Chen-
Harker-Kanzow-Smale) smoothing function [15,66,96].

From min(x, F (ξ, x)) = x− (x− F (ξ, x))+, we have

f̃(x, µ) =
1

2
E[

n∑
i=1

(
xi + Fi(ξ, x)−

√
(xi − Fi(ξ, x))2 + 4µ2

)2

]

is a smoothing function of f(x) = E[∥min(x, F (ξ, x))∥22].

Remark 1 The plus function (t)+ has been widely used for penalty functions,
barrier functions, complementarity problems, semi-infinite programming, op-
timal control, mathematical programs with equilibrium constraints etc. Ex-
amples of the class of smooth approximations ϕ of (t)+ defined by (17) can be
found in a number of articles, we refer to the book [40] and [2,5,14,16–18,22,
24,27–31,33,39,64,92,104].

Remark 2 Some smoothing functions can not be expressed by the Chen-Mangasarian
smoothing function. For example, the smoothing function 1

2 (t+s−
√
t2 + s2 + 2µ2)

of the Fischer-Bumeister function [45] 1
2 (t+s−

√
t2 + s2) proposed by Kanzow

[66] for complementarity problems, and the smoothing function

ϕ(t, µ) =

{ 1
p |t|

p − ( 1p − 1
2 )µ

p if |t| > µ
1
2µ

p−2t2 if 0 ≤ |t| ≤ µ

of |t|p proposed by Hintermüller and Wu [58] for the ℓp-norm regularized min-
imization problems where 0 < p < 1.
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4 Analysis of smoothing functions

The plus function (t)+ is convex and globally Lipschitz continuous. Any smooth-
ing function ϕ(t, µ) of (t)+ defined by (17) is also convex and globally Lipschitz
and has nice properties (18)-(21). In addition, for any fixed t, ϕ is continuously
differentiable, monotonically increasing and convex with respect to µ > 0 and
satisfies

0 ≤ ϕ(t, µ2)− ϕ(t, µ1) ≤ κ(µ2 − µ1), for µ2 ≥ µ1. (22)

See [14]. These properties are important for developing efficient smoothing
methods for nonsmooth optimization. In this section, we study properties of
the smoothing functions defined by composition of the smoothing function
ϕ(t, µ). Specially, we investigate the subdifferential associated with a smooth-
ing function in such class of smoothing functions.

4.1 Locally Lipschitz continuous functions

In this subsection, we assume that f is locally Lipschitz continuous. According
to Rademacher’s theorem, f is differentiable almost everywhere. The Clarke
subdifferential of f at a point x is defined by

∂f(x) = con∂Bf(x),

where

∂Bf(x) = {v |∇f(z) → v, f is differentiable at z, z → x}.

For a locally Lipschitz function f , the gradient consistency

∂f(x) = con{ lim
xk→x,µk↓0

∇xf(x
k, µk)} = Gf̃ (x), ∀x ∈ Rn (23)

between the Clarke subdifferential and the subdifferential associated with a
smoothing function of f is important for the convergence of smoothing meth-
ods. Rockafellar and Wets [94] show that for any locally Lipschitz function f ,
we can construct a smoothing function by using convolution

f̃(x, µ) =

∫
Rn

f(x− y)ψµ(y)dy =

∫
Rn

f(y)ψµ(x− y)dy, (24)

where ψ : Rn → R is a smooth kernel function (a mollifier), which has the
gradient consistency (23).

Now we show the gradient consistency of smoothing composite functions
using ϕ in (17) for the plus function. For a vector function h(x) = (h1(x), . . . , hm(x))T

with components hi : R
n → R, we denote (h(x))+ = ((h1(x))+, . . . , (hm(x))+)

T

and

ϕ(h(x), µ) = (ϕ(h1(x), µ), . . . , ϕ(hm(x), µ))T .



Smoothing Methods for Nonsmooth, Nonconvex Minimization 13

Theorem 1 Let f(x) = g((h(x))+), where h : Rn → Rm and g : Rm → R
are continuously differentiable functions. Then f̃(x, µ) = g(ϕ(h(x), µ)) is a
smoothing function of f with the following properties.

(i) For any x, {limxk→x,µk↓0 ∇xf̃(x
k, µk)} is nonempty and bounded, and

∂f(x) = Gf̃ (x).
(ii) If g, hi are convex and g is monotonically nondecreasing, then for any
fixed µ > 0, f̃(·, µ) is convex.

Proof By the chain rule for continuously differentiable functions, f̃ is a smooth-
ing function of f with

∇xf̃(x, µ) = ∇h(x)diag(∇yϕ(y, µ)|y=hi(x))∇g(z)|z=ϕ(h(x),µ).

(i) Taking two sequences xk → x and µk ↓ 0, we have

{ lim
xk→x,µk↓0

∇xf̃(x
k, µk)}

= { lim
xk→x,µk↓0

∇h(xk)diag(∇yϕ(y
k, µk)|yk=hi(xk))∇g(zk)|zk=ϕ(h(xk),µk)}

⊆ ∇h(x)diag(∂(hi(x))+)∇g(z)|z=(h(x))+ .

Since (t)+ is monotonically nondecreasing and h is continuously differentiable,
by Proposition 2.3.6 in [34], (h(x))+ is Clarke regular. From Theorem 2.3.9 in
[34], we have

∇h(x)diag(∂(hi(x))+)∇g(z)|z=(h(x))+ = ∂f(x).

Hence, we obtain

Gf̃ (x) = con{ lim
xk→x,µk↓0

∇xf̃(x
k, µk)} ⊆ ∂f(x).

By the continuous differentiability of g, h, the function f is locally Lipschitz,
and ∂f(x) is bounded. On the other hand, according to Theorem 9.61 and (b)
of Corollary 8.47 in [94], ∂f(x) ⊆ Gf̃ (x). Hence we obtain ∂f(x) = Gf̃ (x).

(ii) For any fixed µ, the smoothing function ϕ(t, µ) of the plus function
(t)+ is convex and monotonically nondecreasing. Hence for any λ ∈ (0, 1), we
have

f̃(λx+ (1− λ)y, µ) = g(ϕ(h(λx+ (1− λ)y), µ))

≤ g(ϕ(λh(x) + (1− λ)h(y), µ))

≤ g(λϕ(h(x), µ) + (1− λ)ϕ(h(y), µ))

≤ λg(ϕ(h(x), µ)) + (1− λ)g(ϕ(h(y), µ))

= λf̃(x, µ) + (1− λ)f̃(y, µ).

Corollary 1 Let f(x) = (g((h(x))+))+, where h : Rn → Rm and g : Rm → R
are continuously differentiable functions. Then f̃(x, µ) = ϕ(g(ϕ(h(x), µ)), µ) is
a smoothing function of f with the following properties.
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(i) For any x, {limxk→x,µk↓0 ∇xf̃(x
k, µk)} is nonempty and bounded, and

∂f(x) = Gf̃ (x).
(ii) If g, hi are convex and g is monotonically nondecreasing, then for any
fixed µ > 0, f̃(·, µ) is convex.

Proof By Proposition 2.3.6 in [34], (h(x))+, g((h(x))+) and f(x) are Clarke
regular. From Theorem 2.3.9 in [34] and Proposition 1, we derive this corollary.

Many useful properties of the Clarke subdifferential can be applied to
smoothing functions. For example, the following proposition is derived from
Theorem 2.3.9 in [34] for the Chain rules.

Proposition 1 [5] Let g̃ and h̃ be smoothing functions of locally Lipschitz
functions g : Rm → R and h : Rn → Rm with ∂g(x) = Gg̃(x) and ∂h(x) =

Gh̃(x), respectively. Set g̃ = g or h̃ = h when g or h is differentiable. Then

f̃ = g̃(h̃) is a smoothing function of f = g(h) with ∂f(x) = Gf̃ (x) under any
one of the following conditions for any x ∈ Rn.

1. g is regular at h(x), each hi is regular at x and ∇z g̃(z, µ)|z=h(x) ≥ 0.
2. g is continuously differentiable at h(x) and m = 1.
3. g is regular at h(x) and h is continuously differentiable.

Using the chain rules for smoothing functions, we can quickly find that the
smoothing functions f̃ in Example 1 with p ≥ 1 and Examples 2-3, satisfies
∂f(x) = Gf̃ (x).

4.2 Non-Lipschitz continuous functions

Lipschitz continuity is important in nonsmooth optimization. Generalized gra-
dient and Jacobian of Lipschitz continuous functions have been well stud-
ied [24,34,80,94]. However, we have lack of theory and algorithms for non-
Lipschitz optimization problems. Recently, non-Lipschitz optimization prob-
lems have attracted considerable attention from variable selection, sparse ap-
proximation, signal reconstruction, image restoration, exact penalty functions,
eigenvalue optimization, etc [42,62,70,75,78]. Reformulation or approximation
of non-Lipschitz continuous functions by Lipschitz continuous functions have
been proposed in [1,19,70,107]. In this subsection, we show that smoothing
functions defined by composition of smoothing functions (17) of the plus func-
tion for a class of non-Lipschitz continuous functions have both differentiability
and Lipschitz continuity.

We consider the following non-Lipschitz function

f(x) = ∥(g(x))+∥pp + ∥h(x)∥pp =

r∑
i=1

((gi(x))+)
p +

m∑
i=1

|hi(x)|p, (25)

where g : Rn → Rr and h : Rn → Rm are continuously differentiable functions
and 0 < p < 1. This function includes ℓp norm regularization and ℓp exact



Smoothing Methods for Nonsmooth, Nonconvex Minimization 15

penalty functions for 0 < p < 1 as special cases [13,30,42,62,70,75,78]. It is
easy to see that f is a continuous function from Rn to R+. Moreover, f is
continuously differentiable at x if all components of g and h at x are nonzero.
However, f is possibly non-Lipschitz continuous at x, if one of components of
g or h at x is zero.

We use a smoothing function ϕ(t, µ) in the class of Chen-Mangasarian
smoothing functions (17) for (t)+ and ψ(t, µ) = ϕ(t, µ) + ϕ(−t, µ) for |t| =
(t)+ + (−t)+ to define a smoothing function of f as the following

f̃(x, µ) =

r∑
i=1

(ϕ(gi(x), µ))
p +

m∑
i=1

(ψ(hi(x), µ))
p. (26)

Lemma 1 (ϕ(t, µ))p and (ψ(t, µ))p are smoothing functions of ((t)+)
p and

|t|p in R+ and R, respectively. Moreover, the following statements hold.

(i) Let κ0 = (κ2 )
p where κ :=

∫∞
−∞ |s|ρ(s)ds. Then for any t ∈ R,

0 ≤ (ϕ(t, µ))p − ((t)+)
p ≤ κ0µ

p and 0 ≤ (ψ(t, µ))p − |t|p ≤ 2κ0µ
p.

(ii) For any fixed µ > 0, (ϕ(t, µ))p and (ψ(t, µ))p are Lipschitz continuous
in R+ and R, respectively. In particular, their gradients are bounded by
p(ϕ(0, µ))p−1, that is,

0 ≤ p(ϕ(t, µ))p−1∇tϕ(t, µ) ≤ p(ϕ(0, µ))p−1, for t ∈ R+

and
|p(ψ(t, µ))p−1∇tψ(t, µ)| ≤ 2p(ϕ(0, µ))p−1, for t ∈ R.

(iii) Assume there is ρ0 > 0 such that |ρ(s)| ≤ ρ0. Let

νµ = p(1− p)ϕ(0, µ)p−2 +
1

µ
pϕ(0, µ)p−1ρ0

then for any fixed µ > 0, the gradients of (ϕ(t, µ))p and (ψ(t, µ))p are
Lipschitz continuous in R+ and R, with Lipschitz constants νµ and 2νµ,
respectively. In particular, if ρ is continuous at t then |∇2

t (ϕ(t, µ))
p| ≤ νµ

for t ∈ R+ and |∇2
t (ψ(t, µ))

p| ≤ 2νµ for t ∈ R.

In addition, if ρ(s) > 0 for s ∈ (−∞,∞), then (ϕ(t, µ))p is a smoothing
function of ((t)+)

p in R, and for any fixed µ > 0, (ϕ(t, µ))p and its gradient
are Lipschitz continuous in R.

Proof We first prove this lemma for (ϕ(t, µ))p. Since ϕ(t, µ) is a smoothing
function of (t)+ and ∇tϕ(t, µ) > 0 in R+, (ϕ(t, µ))

p is a smoothing function
of ((t)+)

p.
(i) Since tp is a monotonically increasing function in R+, from (18), we

have (ϕ(t, µ))p − ((t)+)
p ≥ 0. Moreover, from

∇µϕ(t, µ) = −
∫ t/µ

−∞
sρ(s)ds, for t ≥ 0,
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the difference between (ϕ(t, µ))p and ((t)+)
p has the maximal value at t = 0,

that is,

0 ≤ (ϕ(t, µ))p − ((t)+)
p ≤ (ϕ(0, µ))p = (

κ

2
)pµp.

(ii)-(iii) Note that 0 ≤ ∇tϕ(t, µ) =
∫ t/µ

−∞ ρ(s)ds ≤ 1. Straightforward calcu-
lation shows that for any t ∈ R+,

p(ϕ(t, µ))p−1∇tϕ(t, µ) ≤ p(ϕ(0, µ))p−1

∫ t/µ

−∞
ρ(s)ds ≤ p(ϕ(0, µ))p−1

and if ρ is continuous at t, then

|∇2
t (ϕ(t, µ))

p| = |p(p− 1)(ϕ(t, µ))p−2(∇tϕ(t, µ))
2 + p(ϕ(t, µ))p−1∇2

tϕ(t, µ)|

≤ p(1− p)(ϕ(0, µ))p−2 + pϕ(0, µ)p−1ρ(
t

µ
)
1

µ
≤ νµ.

Since ρ is piecewise continuous, the gradient of (ϕ(t, µ))p is locally Lipschitz
and the second derivative ∇2

t (ϕ(t, µ))
p almost everywhere exists in R+. By the

mean value theorem in [34], we find for any t1, t2 ∈ R+,

|∇t(ϕ(t1, µ))
p −∇t(ϕ(t2, µ))

p| ≤ νµ|t1 − t2|.

In addition, if ρ(s) > 0 for s ∈ (−∞,∞), then 0 < ∇tϕ(t, µ) =
∫ t/µ

−∞ ρ(s)ds <
1. Hence, we complete the proof for (ϕ(t, µ))p.

By the symmetrical characteristic of |t| = (t)+ + (−t)+ and ψ(t, µ) ≥
2ϕ(0, µ) = κµ > 0 for t ∈ R, µ > 0, we can prove this lemma for ψ by the
same argument above.

Remark 3 If the density function ρ(s) = 0 for some s ∈ (−∞,∞), (ϕ(t, µ))p is
not necessarily a smoothing function of ((t)+)

p in R. For example, the function
ρ in Example 1 is a piecewise continuous function with ρ(s) = 0 for |s| ≥ 1

2 .
Consider the gradient of (ϕ(t, µ))p at t = −µ

2 , we have

lim
τ↑0

(ϕ(t+ τ, µ))p − (ϕ(t, µ))p

τ
= lim

τ↑0

0− 0

τ
= 0

and

lim
τ↓0

(ϕ(t+ τ, µ))p − (ϕ(t, µ))p

τ
= lim

τ↓0

(ϕ(t+ τ, µ))p

τ
= lim

τ↓0
(
1

2µ
)pτ2p−1.

Hence (ϕ(t, µ))p is a smoothing function of ((t)+)
p in R if and only if p > 1

2 .
On the other hand, (ψ(t, µ))p is smoothing functions of |t|p in R. Again

consider the gradient of (ψ(t, µ))p at t = −µ
2 ,

lim
τ↑0

(ϕ(t+ τ, µ))p − (ϕ(t, µ))p

τ
= p|t|p−1sign(t) = −p(µ

2
)p−1

= lim
τ↓0

(ϕ(t+ τ, µ))p − (ϕ(t, µ))p

τ
= p(

t2

µ
+
µ

4
)p−1 2t

µ
= −p(µ

2
)p−1.
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Proposition 2 Let f and f̃ be defined as in (25) and (26), and let Ω =
{x|g(x) ≥ 0}. Then f̃ is a smoothing function of f in Ω. Moreover, the fol-
lowing statements hold.

(i) There is a positive constant α0 such that

0 ≤ f̃(x, µ)− f(x) ≤ α0µ
p.

(ii) For any fixed µ > 0, f̃(·, µ) and ∇xf̃(·, µ) are locally Lipschitz continuous
in Ω.

(iii) If g and h are globally Lipschitz continuous, then f̃(·, µ) is globally Lip-
schitz continuous in Ω; If ∇g and ∇h are globally Lipschitz continuous,
then ∇xf̃(·, µ) is globally Lipschitz continuous in Ω.

In addition, if ρ(s) > 0 for s ∈ (−∞,∞), then f̃ is a smoothing function of f
in Rn, and (i) and (ii) hold in Rn.

Proposition 2 can be easily proved by the Chain rules and Lemma 1. Hence,
we omit the proof.

Now we compare the smoothing function f̃ with the robust regularization

f̄µ(x) = sup{ f(y) : y ∈ X, ∥x− y∥ ≤ µ }

for approximating a non-Lipschitz function f : X ⊂ Rn → R. The robust
regularization f̄µ is proposed by Lewis and Pang [70]. They use the following
example

f(t) =

{
−t if t < 0√
t if t ≥ 0

(27)

to illustrate the robust regularization. The function f is non-Lipschitz, since

limϵ↓0
f(ϵ)−f(0)

ϵ−0 = limϵ↓0
1√
ϵ
= ∞. The minimizer of f is 0. The robust regu-

larization of f is

f̄µ(t) =

{
µ− t if t < α(µ)√
µ+ t if t ≥ α(µ),

where µ > α(µ) = 1+2µ−
√
1+8µ

2 > −µ. The robust regularization f̄µ(t) is
Lipschitz continuous with the Lipschitz modulus 1

2
√

µ+α(µ)
for any fixed µ > 0,

but not differentiable. The minimizer of f̄µ is α(µ) which is different from the
minimizer of f .

Now we use the smoothing function ψ(t, µ) of |t| in Example 1 to define a
smoothing function of f in (27). To simplify the notation, we replace µ by 4µ
in ψ(t, µ). Then we have

f̃(t, µ) =

{
ψ(t, µ) if t < 0√
ψ(t, µ) + µ−√

µ if t ≥ 0

=


−t if t < −2µ
t2

4µ + µ if − 2µ ≤ t < 0√
t2

4µ + µ+ µ−√
µ if 0 ≤ t < 2µ

√
t+ µ−√

µ if t ≥ 2µ.
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Compared with the robust regularization, the smoothing function f̃(t, µ)
is not only Lipschitz continuous, but also continuously differentiable with
|∇tf̃(t, µ)| ≤ 1

2
√
2µ

≤ 1

2
√

µ+α(µ)
for any fixed µ > 0. Moreover, the minimizer

of f̃(·, µ) is 0, which is the same as the minimizer of f .

For a non-Lipschitz function f , we can not define the gradient of f . The
scaled gradient, and scaled first order and second order necessary conditions
for non-Lipschitz optimization have been studied [4,25,30]. Now we consider
the scaled gradient consistency for the following non-Lipschitz function

f(x) := θ(x) + λ

m∑
i=1

φ(dTi x), (28)

where θ : Rn → R+ is locally Lipschitz continuous, λ ∈ R+, di ∈ Rn, i =
1, · · · ,m, and φ : R→ R+ is continuously differentiable in (−∞, 0)∪ (0,+∞).
Many penalty functions satisfy the conditions, for example, the six penalty
functions in subsection 2.1. For a given vector x ∈ Rn, we set

Ix = {i | dTi x = 0, i = 1, · · · ,m} and Jx = {i | dTi x ̸= 0, i = 1, · · · ,m}.

Let Zx be an n × ℓ matrix whose columns are an orthonormal basis for the
null space of {di | i ∈ Ix} [25].

Let f̃(x, µ) = θ̃(x, µ)+λ
∑m

i=1 ϕ(d
T
i x, µ), where θ̃ is a smoothing function of

θ which satisfies the gradient consistency ∂θ(x) = Gθ̃(x), and ϕ is a smoothing
function of φ which satisfies the gradient consistency φ′(t) = Gϕ(t) at t ̸= 0.

Theorem 2 For any x ∈ Rn, we have

ZT
x Gf̃ (x) = ZT

x ∂(θ(x) + λ
∑
i∈Jx

φ(dTi x)). (29)

Proof If x = 0, then Jx = ∅, and (29) holds. If x ̸= 0, then rank(Zx) = ℓ > 0.
Moreover, we have

ZT
x ∇xf̃(x

k, µ) = ZT
x (∇xθ̃(x

k, µ) + λ
m∑
i=1

di∇tϕ
′(tk, µ)|tk=dT

i
xk)

= ZT
x ∇xθ̃(x

k, µ) + λ
∑
i∈Jx

ZT
x di∇tϕ

′(tk, µ)|tk=dT
i
xk ,

where the last equality uses ZT
x di = 0, ∀ i ∈ Ix. Since φ is continuously dif-

ferentiable at dTi x for i ∈ Jx, we obtain (29) by the gradient consistency of θ̃
and ϕ.
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5 Smoothing Algorithms

Numerical methods for solving nonsmooth, nonconvex optimization problems
have been studied extensively [7,10,12,35,37,51,59,68,77,102]. To explain nu-
merical implementation and convergence analysis of smoothing methods in a
clear and simple way, we use a smoothing gradient method to show how to
update the smoothing parameter to guarantee the global convergence.

Burke, Lewis and Overton [10] proposed a robust gradient sampling al-
gorithm for nonsmooth, nonconvex, Lipschitz continuous unconstrained mini-
mization problems. Basically, it is a stabilized steepest descent algorithm. At
each iteration of the algorithm, a descent direction is obtained by evaluating
the gradient at the current point and at additional nearby points if the func-
tion is differentiable at these points, and then computing the vector in the
convex hull of these gradients with least ℓ2 norm. A standard line search is
then used to obtain a new point. If at one of these points, the function is not
differentiable, the algorithm will terminate. Kiwiel [69] slightly revised this
algorithm and showed that any accumulation point generated by the revised
algorithm is a Clarke stationary point with probability one. Under the same
conditions of [10,69], we show that any accumulation point generated by the
smoothing gradient method is a Clarke stationary point. Moreover, we show
that any accumulation point generated by the smoothing gradient method is
a scaled Clarke stationary point for non-Lipschitz optimization problems.

We consider (1) with X = Rn. Assume that f : Rn → R is locally Lips-
chitz, level-bounded, and continuously differentiable on an open dense subset
of Rn [10,69]. Let f̃ be a smoothing function with the gradient consistency (4).

Smoothing gradient method

Step 1. Choose constants σ, ρ ∈ (0, 1), γ > 0 and an initial point x0. Set
k = 0.

Step 2. Compute the gradient

gk = ∇xf̃(x
k, µk)

and the step size νk by the Armijo line search, where νk = max{ρ0, ρ1, · · ·}
and ρi satisfies

f̃(xk − ρigk, µk) ≤ f̃(xk, µk)− σρi(gk)T gk.

Set xk+1 = xk − νkg
k.

Step 3. If ∥∇xf̃(x
k+1, µk)∥ ≥ γµk, then set µk+1 = µk; otherwise, choose

µk+1 = σµk.

Theorem 3 Any accumulation point generated by the smoothing gradient method
is a Clarke stationary point.

This theorem can be proved in a similar way in [33, Theorem 2.6]. For com-
pleteness, we give a simple proof.
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Proof Denote K = {k |µk+1 = σµk}. If K is finite, then there exists an integer
k̄ such that for all k > k̄,

∥∇xf̃(x
k+1, µk)∥ ≥ γµk, (30)

and µk =: µ̄ for all k ≥ k̄ in Step 2 of the smoothing gradient method. Since
f̃(·, µ̄) is a smooth function, the gradient method for solving

min f̃(x, µ̄)

satisfies
lim
k→

inf
∞

∥∇xf̃(x
k, µ̄)∥ = 0, (31)

which contradicts with (30). This shows thatK must be infinite and limk→∞ µk =
0.

SinceK is infinite, we can assume thatK = {k0, k1, . . .} with k0 < k1 < . . ..
Then we have

lim
i→∞

∥∇xf̃(x
ki+1, µki)∥ ≤ γ lim

i→∞
µki = 0. (32)

Let x̄ be an accumulation point of {xki+1}. Then by the gradient consistency,
we have 0 ∈ ∂f(x̄). Hence x̄ is a Clarke stationary point.

Corollary 2 Any accumulation point x̄ generated by the smoothing gradient
method for solving (28) is an affine-scaled Clarke stationary point, that is,

0 ∈ ZT
x̄ ∂(θ(x̄) + λ

∑
i∈Jx̄

φ(dTi x̄)). (33)

Proof Following the proof of Theorem 3, we can show that there is a subse-
quence K = {k0, k1, . . .} with k0 < k1 < . . . such that (32) holds. Let x̄ be an
accumulation point of {xki+1}. From Theorem 2, we have

0 = lim
i→∞

ZT
x̄ ∇xf̃(x

ki+1, µki) ∈ ZT
x̄ ∂(θ(x̄) + λ

∑
i∈Jx̄

φ(dTi x̄)).

Remark 4 Developing a smoothing method for solving a nonsmooth, noncon-
vex optimization problem (1) involves three main parts. (i) Define a smooth-
ing function f̃ by using the methods and propositions in sections 3-4. (ii)
Choose an algorithm for solving the smooth optimization problem (2) with
the objective function f̃ . For instance, the smoothing gradient method uses
the gradient method in its Step 2. (iii) Update the smoothing parameter µk.
The updating scheme will depend on the convergence of the algorithm used
to solve the smooth optimization problem. As shown above, since the gradi-
ent method has the convergence property (31), we set the updating condition
∥∇xf̃(x

k+1, µk)∥ < γµk in Step 3 in the smoothing gradient method. The ef-
ficiency of smoothing methods will depend on the smoothing function f̃ , the
method for solving the smooth optimization problem (2) and the scheme for
updating the smoothing parameter µk.

There are rich theory and abundant efficient algorithms for solving smooth
optimization problems [86]. With adaptive smoothing functions and updating
schemes, these theory and algorithms can be powerful for solving nonsmooth
optimization problems.
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6 Numerical implementation

Many smoothing methods have been developed to solve nonsmooth, nonconvex
optimization [4,5,18,22,24,26–31,33,39,40,46–48,54,64,66,72,73,81,82,89,90,
104]. Recently, Garmanjani and Vicente [50] propose a smoothing direct search
(DS) algorithm basing on smooth approximations and derivative free methods
for nonsmooth, nonconvex, Lipschitz continuous unconstrained minimization
problems. The smoothing DS algorithm takes at most O(−ε−3 log ε) function
evaluations to find an x such that ∥∇xf̃(x, µ)∥∞ ≤ ε and µ ≤ ε. In [6], Bian
and Chen propose a smoothing sequential quadratic programming (SSQP)
algorithm for solving regularized minimization problem (5) where Θ is con-
tinuously differentiable but the penalty function may be non-Lipschitz. The
worst-case complexity of the SSQP algorithm for finding an ε affine-scaled sta-
tionary point is O(ε−2). Moreover, if Φ is locally Lipschitz, the SSQP algorithm
with a slightly modified updating scheme can obtain an ε Clarke stationary
point at most O(ε−3) steps.

In the following, we illustrate numerical implementation of smoothing meth-
ods using the SSQP algorithm for solving the ℓ2-ℓp problem

min
x∈Rn

f(x) := ∥Ax− b∥22 + λ∥x∥pp, (34)

where A ∈ Rm×n, b ∈ Rm, ∥x∥pp =
∑n

i=1 |xi|p, p ∈ (0, 1). It is shown that
problem (34) is strongly NP hard in [23]. Let X = diag(x). The affine-scaled
first order necessary condition for local minimizers of (34) is

G(x) := 2XAT (Ax− b) + λp|x|p = 0 (35)

and the affine-scaled second order necessary condition is that

2XATAX + λp(p− 1)|X|p (36)

is positive semi-definite, where |X|p = diag(|x|p) [30]. Obviously, (34) is a
special case of (28) and (35) is a special case of (33) with the ith column
(Zx)i = (X)i/|xi| for i ∈ Jx. Moreover, (35) is equivalent to

2(AT (Ax− b))i + λp|xi|p−1sign(xi) = 0, i ∈ Jx = {i | xi ̸= 0}.

Using (35) and (36), several good properties of the ℓ2-ℓp problem (34) have
been derived [23,30], including the lower bounds for nonzero entries of its local
minimizers and the sparsity of its local minimizers. Moreover, a smoothing
trust region Newton method for finding a point x satisfying (35) and (36) is
proposed in [25].

Let us use the smoothing function

s(t, µ) =

{
|t| if |t| > µ
t2

2µ + µ
2 if |t| ≤ µ
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of |t| to define the smoothing function

f̃(x, µ) = ∥Ax− b∥22 + λ
n∑

i=1

s(xi, µ)
p

of f . Then we can easily find that

lim
xk→x,µ↓0

Xk∇xf̃(x
k, µ)

= lim
xk→x,µ↓0

2XkAT (Axk − b) + λp
n∑

i=1

s(xki , µ)
p−1s′(xki , µ)x

k
i ei

= 2XAT (Ax− b) + λp|x|p

= lim
xk→x,µ↓0

X∇xf̃(x
k, µ).

We apply the SSQP method [6] to solve (34).
SSQP Algorithm
Choose x0 ∈ Rn, µ0 > 0 and σ ∈ (0, 1). Set k = 0 and z0 = x0.
For k ≥ 0, set

xk+1 = argminx∈Rn f̃(xk, µk) + (x− xk)T gk + 1
2 (x− xk)TDk(x− xk),

µk+1 =

{
µk if f̃(xk+1, µk)− f̃(xk, µk) ≤ −4αpµp

k

σµk othewise,

zk+1 =

{
xk if µk+1 = σµk

zk othewise.

Here Dk is a diagonal matrix whose diagonal elements dki , i = 1, . . . , n are
defined by

dki =

 max{2∥ATA∥+ 8λp|x
k
i

2 |p−2,
|gk

i |
2

p
2
−1µ

p
2 |xk

i
|1−

p
2
} if |xki | > 2µ

max{2∥ATA∥+ 8λpµp−2,
|gk

i |
µ } if |xki | ≤ 2µ,

where gk = ∇xf̃(x
k, µk). The solution of the QP problem can be given as

xk+1
i = xki − gki /d

k
i , i = 1, . . . , n.

It is shown in [6] that for any ϵ > 0, the SSQP algorithm with any starting
point z0 takes at most O(ϵ−2) steps to find a zk such that ∥G(zk)∥∞ ≤ ϵ.

Example 4 We use Example 3.2.1: Prostate cancer in [55] to show numerical
performance of the SSQP algorithm. The data for this example consists of the
medical records of 97 men who were about to receive a radical prostatectomy,
which is divided into a training set with 67 observations and a test set with
30 observations. The variables are eight clinical measures: lcavol, lweight, age,
lbph, svi, lcp, pleason and pgg45. The aim is to find few main factors with
small prediction error.

We use the training set to build model (34) with matrix A ∈ R67×8, b ∈
R67 and p = 0.5. The test set is used to compute the prediction error and
judge the performance of the selected methods. Table 1 reports numerical



Smoothing Methods for Nonsmooth, Nonconvex Minimization 23

Table 1 Example 4: Variable selection by SSQP, Lasso, Best subset methods

SSQP Lasso Best subset
λ 7.734 7.78 22.1
x∗
1(lcavol) 0.6302 0.6437 0.7004 0.533 0.740

x∗
2(lweight) 0.2418 0.2765 0.1565 0.169 0.316

x∗
3(age) 0 0 0 0 0

x∗
4(lbph) 0.0755 0 0 0.002 0

x∗
5(svi) 0.1674 0.1327 0 0.094 0

x∗
6(lcp) 0 0 0 0 0

x∗
7(pleason) 0 0 0 0 0

x∗
8(pgg45) 0 0 0 0 0

Number of nonzero 4 3 2 4 2
Error 0.4294 0.4262 0.488 0.479 0.492

results of the SSQP algorithm with algorithm parameters σ = 0.99, µ0 = 10,
x0 = (0, . . . , 0)T ∈ R8 and stop criterion ∥G(zk)∥∞ ≤ 10−4 and µk ≤ 10−4.
Moreover, results of the best two methods (Lasso, Best subset) from Table
3.3 in [55] are also listed in Table 1. We use Figure 1 and Figure 2 to show
the convergence of {zk},f̃(zk, µk), f(z

k), µk and ∥G(zk)∥∞ generated by the
SSQP algorithm for (34) with λ = 7.734 and λ = 7.78.

Theoretical and numerical results show that smoothing methods are promis-
ing for nonsmooth, nonconvex, non-Lipschitz optimization problems.
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