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Abstract

We consider nonlinear coupled system of evolution equations, the simplest of which mod-
els a thermoelastic plate. Smoothing and decay properties of solutions are investigated as
well as the local well-posedness and the global existence of solution. For the system of
standard thermoelasticity it is proved that there is no similar smoothing effect.
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1 Introduction

In this paper we mainly consider regularizing properties of systems that are regarded as models

for thermoelastic plate equations. We will then show that the vertical deflection of the plate as

well as the temperature are arbitrarily smooth for positive times, no matter which regularity the

initial vertical deflection and the initial temperature have. This fact we will show in Section 3.

This property is not valid for other thermoelastic models, as the thermoelastic bar for example,

as we shall see in Section 4. More generally, we consider a nonlinear coupled thermoelastic plate,

modelled in a separable Hilbert space H by

utt +M([u, θ])A2u+N([u, θ])(A + µ)θ = 0, (1.1)

θt +R([u, θ])(A+ α)θ −Q([u, θ])(A + µ)ut = 0. (1.2)

Here M , N , R, Q : IR5 −→ IR are C2-functions, and M , R and NQ are strictly positive, α,

µ ∈ IR. Finally by [u, θ] we are denoting the following vector field

[u, θ](t) := (||ut||2, ||A
1

2u||2, ||A 1

2ut||2, ||Au||2, ||A
1

2 θ||2)(t),
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where || · || denotes the norm in H, A : D(A) ⊂ H −→ H is a nonnegative, self-adjoint operator.

The solution (u, θ) will satisfy the following initial conditions

u(t = 0) = u0, ut(t = 0) = u1, θ(t = 0) = θ0, (1.3)

and the abstract “boundary” conditions

u(t) ∈ D(A2), θ(t) ∈ D(A), t ≥ 0. (1.4)

A simple example is the following system modelling a thermoelastic plate in the linearized

version,

utt + ∆2u+ β∆θ = 0 in [0,∞[ × Ω, (1.5)

θt − ∆θ − β∆ut = 0 in [0,∞[ × Ω, (1.6)

where β 6= 0. The boundary ∂Ω of the open set Ω is assumed to be smooth, u and θ shall satisfy

u = ∆u = 0 on ∂Ω, θ = 0 on ∂Ω. (1.7)

Kim [6] studied the equations (1.5),(1.6) in a bounded domain with the boundary condition

(1.7) for u replaced by u ∈ H2
0 (Ω), showing exponential decay of the couple (u, θ).

We are first interested in proving smoothing properties, i. e. the solution (u, θ) is arbitrarily

smooth for t > 0, no matter which regularity the initial data have. Smoothness for the abstract

system (1.1)–(1.4) means that the solution (u(t), θ(t)) belongs toD(Am)×D(Am) for anym ∈ IN

and any t > 0. Then we shall investigate the rate of decay for the couple (u, θ) as t → +∞,

depending on A, and in case (1.5)–(1.7) naturally depending on the domain Ω. Finally we

show the global existence of solutions (u, θ) if A is strictly positive. These results describe the

system (1.1)–(1.2) as parabolic, the similarities to solutions of heat equations will be obvious.

In contrast to this we study the system of standard thermoelasticity, cf. [15], [16], which reads

as follows in the simplest one-dimensional case:

utt − τuxx + γθx = 0, (1.8)

θt − κθxx + γuxt = 0, (1.9)

u(t = 0) = u0, ut(t = 0) = u1, θ(t = 0) = θ0, (1.10)

u = θx = 0 on ∂Ω, (1.11)

where, Ω =]0, 1[, or Ω =]0,+∞[, or Ω =] − ∞,+∞[; (u, θ) is a function of t ≥ 0 and x ∈ Ω

and τ , |γ|, κ are positive constants. It is known, cf. [16], that solutions behave like solutions

to the heat equation with respect to the decay behavior; but it is not true for n−dimensional

thermoelastic systems, if n ≥ 2. It is well known by now, that in this case for the whole space
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IRn the displacement vector field can be decomposed in two parts: the solenoidal part which

satisfies the wave equation, and the irrotational part which is a gradient (see [11]). Clearly

the solenoidal part propagates singularities. We shall prove that the smoothing property does

not hold even for the irrotational part, moreover that it behaves like a wave equation which

propagates singularities.

For the formulation of the precise result we introduce the following notation: Ω will denote

a domain in IRn,

Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) = Wm,2

0 (Ω); m ∈ IN,

the usual Sobolev spaces based on L2(Ω) cf. [1]; ∇: gradient, < ·, · >: inner product in L2(Ω)

or in a general separable Hilbert space H; | · | the norm in L2(Ω); Ck(I, E), k ∈ IN : space of

k-times continuously differentiable functions from I ⊂ IR into a Banach space E, analogously:

Lp(I, E), 1 ≤ p ≤ ∞.

The smoothing properties for the systems (1.1),(1.2) and (1.5),(1.6), respectively, is expressed

in Theorem 3.1. The local existence of solutions is subject of Theorem 2.4. To describe the decay,

we consider the linearized version of (1.1),(1.2) assuming α = µ = 0 (only for simplicity, in the

general case α is nonnegative and µ is such that the product µq(t) is positive), i.e.

utt +m(t)A2u+ n(t)Aθ = 0, (1.12)

θt + r(t)Aθ − q(t)Aut = 0, (1.13)

assuming that m, n, r, q are C1-function of t, satisfying

m0 ≤ m(t) ≤ m1; n0 ≤ |n(t)| ≤ n1; q0 ≤ |q(t)| ≤ q1; r0 ≤ r(t) ≤ r1.

with m0, . . . , r1 being positive real numbers, n(t)q(t) > 0 ∀t > 0 and with similar bounds for

the derivatives of them m′, n′, r′, q′.

Exponential decay is obtained for coercive operators A (see Theorem 3.5) which implies in

particular the decay of solutions for the thermoelastic plates given by (1.5)–(1.7) when Ω is a

bounded domain. If the spectrum of A approaches zero, one needs more information on A than

given in the general setting. We present in Theorem 3.6 a typical result for the thermoelastic

plate equation (1.5),(1.6) if Ω is the whole space IRn or if Ω is an exterior domain, that is L2-

and L∞- decay rates. By interpolation one also gets decay rates in Lq(Ω), 2 < q <∞.

For the case A ≥ ν > 0, α = µ = 0 we shall extend our local existence result to a global

existence result (see Theorem 2.8)

We remark that right-hand sides in (1.1) and (1.2), respectively, with appropriate regularity

(for Theorem 2.4) and smallness (for Theorem 2.8), easily can be included.
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Using Theorem 3.6 it would also be possible to prove a global existence result for (1.5)–

(1.7),(1.3) for small data in exterior domains including the whole space IRn, cf. [17], we do not

go into details here. Finally we turn to the system (1.8)–(1.11) in standard thermoelasticity and

related systems as (1.8)–(1.10) with the boundary conditions

ux = θ = 0 on ∂Ω, (1.14)

or systems in higher dimensions of the following type

utt − τ∆u+ γ∇θ = 0, (1.15)

θt − κ∆θ + γdiv ut = 0, (1.16)

u(t) ∈ ∇H1
0 (Ω) ∀t ≥ 0. (1.17)

for Ω = IR2 or Ω = IR3. For domains in IR3 with smooth boundary we will consider boundary

conditions of the form

div u = θ = 0 on ∂Ω. (1.18)

(The initial condition according to (1.10) has to be satisfied in each case.)

The systems (1.8)–(1.10), (1.4) and (1.8)–(1.10), (1.14), respectively, describe the initial

boundary value problem for a one-dimensional thermoelastic rod with rigidly clamped and ther-

mally insulated boundary in case of (1.11), and with traction free boundary at constant temper-

ature in case of (1.14). The system (1.15)–(1.17) describes the dissipative part of the solution to

the Cauchy problem in IR2 or IR3, cf. [12], [15]. The system (1.15)–(1.18) are equations for the

dissipative part of a thermoelastic problem in IR3 with the specific boundary condition given

above, cf. [13].

In each case the solution (u, θ) has the same decay rates as solution to the heat equation,

see [3], [5], [10], [11], [12], [13], [15], [18], [19]; for a survey cf. [16]. In contrast to this we

shall prove that they do not have the same smoothing property: singularities in the initial

data are propagated as time increases. This shows that the coupling for thermoelastic plates

is much stronger than that in standard thermoelasticity. All problems above can be considered

simultaneously, namely, for (1.8),(1.9) or (1.15), (1.16), with boundary conditions given by

(1.17), (1.18), it is easy to see that v := u satisfies

vttt − κ∆vtt − (γ2 + τ)∆vt + κτ∆2v = 0, (1.19)

v(t = 0) = v0 := u0, vt(t = 0) = v1 := u1, vtt(t = 0) = v2 := τ∆u0 − γ∇θ0, (1.20)

as well as

v = ∆v = 0 on ∂Ω (1.21)
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in case (1.11), and

vx = vxxx = 0 on ∂Ω (1.22)

in case (1.14). For (1.10), (1.15)–(1.18) v := div u satisfies (1.19) too, as well as (1.20) with

v0 = div u0, v1 := div u1, v2 := τ∆div u0 − γ∆θ0,

and the boundary condition (1.21). We remark that θ satisfies a similar differential equation

as v with appropriate boundary conditions. Denoting by A the vector-Laplace operator with

domain

D(A) := H2(Ω) ∩H1
0 (Ω), Av := −∆v,

respectively

D(A) :=
{

v ∈ H2(Ω);∀ϕ ∈ H1(Ω);< ∇v,∇ϕ >= − < v,∆ϕ >
}

; Av := −∆v,

we see that v satisfies

vttt + κAvtt + (γ2 + τ)Avt + κτA2v = 0, (1.23)

v(t = 0) = v0, vt(t = 0) = v1, vtt(t = 0) = v2, (1.24)

v(t) ∈ D(A2), t ≥ 0. (1.25)

(1.23)–(1.25) will be considered in a separable Hilbert space H again, v : [0,∞[→ H and our

result on propagation of singularities will be proved in Theorem 4.1.

2 Existence results

First we study the linearized problem,

utt +m(t)A2u+ n(t)(A+ µ)θ = f1, (2.1)

θt + r(t)(A+ α)θ − q(t)(A+ µ)ut = f2, (2.2)

u(t = 0) = u0, ut(t = 0) = u1, θ(t = 0) = θ0, (2.3)

(with more general right-hand sides), and we look for solutions (u, θ), satisfying

u ∈ C2([0,∞[,H) ∩ C1([0,∞[, D(A)) ∩ C0([0,∞[, D(A2)), (2.4)

θ ∈ C1([0,∞[,H) ∩ C0([0,∞[, D(A)). (2.5)

Rewriting (2.1)–(2.3) as a first-order system for

V :=






ut

Au
θ




 , V 0 :=






u1

Au0

θ0,
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we consider

Vt +






0 m(t)A n(t)(A+ µ)
−A 0 0

−q(t)(A+ µ) 0 r(t)(A+ α)






︸ ︷︷ ︸

=:B(t)

V (t) =






f1

0
f2






︸ ︷︷ ︸

=:F (t)

, (2.6)

V (t = 0) = V 0. (2.7)

The coefficients m, n, q, r are considered to be C1-functions. For V = (V 1, V 2, V 3),

W = (W 1,W 2,W 3), t ≥ 0, the Hilbert space Ht is defined by the inner product

< V,W >t:=< V 1,W 1 >H +m(t) < V 2,W 2 >H +
n(t)

q(t)
< V 3,W 3 >H .

Observe that the corresponding norm || · ||t is equivalent to the norm || · || in H. Defining the

operator B(t) by D(B(t)) := D(A) (in each component), it is not difficult to see that −B(t)

generates a C0-semigroup with constants M = 1, β̂ = max {0,−α} and hence {B(t)}t≥0 is a

stable family of negative generators in X = H with stability constants (M,β), β depending on

m′, n′, q′. With Y := D(A) we see that for t, s ≥ 0, v ∈ Y .

||B(t)v −B(s)v||X ≤ |t− s| ||v||Y

Therefore, ({B(t)}t≥0 ,X ,Y) are a CD-system in the terminology of Kato [4]. As a consequence

we have

Lemma 2.1 For V 0 ∈ Y, F : [0, T ] → X Lipschitz continuous, there is a unique solution

V ∈ C1([0, T ],X ) ∩ C0([0, T ],Y) of (2.6), (2.7).

Corollary 2.2 For u0 ∈ D(A2), u1 ∈ D(A), θ0 ∈ D(A), f1, f2 : [0, T ] → X Lipschitz continu-

ous, there is a unique solution (u, θ) of (2.1)–(2.3) satisfying (2.4), (2.5).

The higher regularity for more regular data is given by the following Lemma, where we

assume that f1 = 0, f2 = 0 for simplicity.

Lemma 2.3 Let k ≥ 2, u0 ∈ D(Ak), u1 ∈ D(Ak−1), θ0 ∈ D(Ak−1),m, n, r, q, ∈ Ck−1.

Then there is a unique solution (u, θ) solution to (2.1)–(2.3) satisfying

u ∈ ∩k
j=0C

j([0,∞[, D(Ak−j)), θ ∈ ∩1
j=0C

j([0,∞[, D(Ak−j−1))

Proof of Lemma 2.3. ∃λ ≥ 0, (A+λ)−1 : H → H is bounded, let w := (A+λ)u, ψ := (A+λ)θ.

Formally we obtain, assuming λ = 0 for simplicity,

wtt +m(t)A2w + n(t)(A+ µ)ψ = 0 (2.8)
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ψt + r(t)(A+ α)ψ − q(t)(A + µ)wt = 0, (2.9)

w(t = 0) = Au0, wt(t = 0) = Au1, ψ(t = 0) = Aθ0. (2.10)

Observe that ||A−1w|| ≤ c||w|| holds. Assuming u0 ∈ D(A3), u1 ∈ D(A2), θ0 ∈ D(A2) we

can solve (2.8)-(2.10) with Lemma 2.2. Then û =: A−1w, θ̂ =: A−1ψ solves (2.1)-(2.3), hence is

equal to u and θ respectively. We conclude from the regularity of (w,ψ) :

u ∈ ∩3
j=0C

j([0,∞[, D(A3−j), θ ∈ ∩2
j=0C

j([0,∞[, D(A2−j))

where we used the differential equations, and we needed m, n, q, r to be C 1-functions. The

case k ≥ 4 is obtained taking w(t = 0) = Aku0, wt(t = 0) = Aku1, ψ(t = 0) = Akθ0.

Q.e.d.

Our local existence result is summarized in the following theorem.

Theorem 2.4 Let k ≥ 3, let M, N, Q, R ∈ Ck−1(IR5, IR), with M , R and the product NQ

being positive functions, let

(u0, u1, θ0) ∈ D(Ak) ×D(Ak−1) ×D(Ak−1).

Then there exists a unique solution (u, θ) to (1.1)–(1.4) satisfying

(u, θ) ∈ ∩k
j=0C

j([0, T ], D(Ak−j)) ×∩k−1
j=0C

j([0, T ], D(Ak−1−j))

for some T > 0. T depends only on the initial data, T = T (ρ), where

ρ := (||u0||D(A2), ||u1||D(A), ||θ0||D(A)),

and T → ∞ as ρ→ 0.

In order to prove Theorem 2.4 we shall use a fixed point argument in appropriate spaces.

Let u0 ∈ D(A3), u1 ∈ D(A2), θ0 ∈ D(A2). For N1 > 0, N2 > 0, T > 0 let

X (N1, N2, T ) =:

{

(u, θ) : [0, T ] → H; ∂j
t u ∈ L∞([0, T ];D(A3−j)), j = 1, 2, 3. ∂k

t θ ∈ L∞([0, T ];D(A2−k)); k = 0, 1, 2
}

intersected with the set of couples (u, θ) satisfying

u(t = 0) = u0, ut(t = 0) = u1, θ(t = 0) = θ0,

sup
0≤t≤T







2∑

j=0

||∂j
t u(t)||2D(A2−j ) +

1∑

k=0

||∂k
t θ(t)||2D(A1−k)






≤ N2

1 ,

sup
0≤t≤T







3∑

j=0

||∂j
t u(t)||2D(A3−j ) +

2∑

k=0

||∂k
t θ(t)||2D(A2−k)






≤ N2

2 .

We observe that X (N1, N2, T ) 6= ∅ if Nj = Nj(||u0||D(A1+j ), ||u1||D(Aj), ||θ0||D(Aj )) j = 1, 2, is

large enough.
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Lemma 2.5 X (N1, N2, T ) is a closed subspace of the complete metric space Z defined by

Z :=
{

(u, θ) : [0, T ] → H;ut, θ ∈ L∞([0, T ], D(A
1

2 )), u ∈ L∞([0, T ], D(A))
}

and the metric

d((u, θ), (v, η)) := ||(ut − vt, A
1

2 (ut − vt), u− v,Au−Av, θ − η,A
1

2 θ −A
1

2 η)||L∞([0,T ],H).

The standard proof (cf. [18]) of Lemma 2.5 exploits the weak–∗ compactness of bounded sets in

L∞([0, T ],H) (observe that H is assumed to be separable).

A mapping S : X (N1, N2, T ) ⊂ Z → Z is defined by S(u, θ) := (û, θ̂) := solution to

ûtt +M([u, θ])A2û+N([u, θ])(A+ µ)θ̂ = 0,

θ̂t +R([u, θ])(A + α)θ̂ −Q([u, θ])(A+ µ)ût = 0,

û(t = 0) = u0, ût(t = 0) = u1, θ̂(t = 0) = θ0,

which exists according to Lemma 2.3. Observe that d
dtM([u, θ](t)) is bounded since (u, θ) ∈

X (N1, N2, T ).

Lemma 2.6 The mapping S defined above maps X into itself if T is sufficiently small, depend-

ing on N1.

Proof of Lemma 2.6. Let us denote by

V̂ =






ût

Aû

θ̂




 , V̂0 =






û1

Aû0

θ̂0




 .

Then V̂ satisfies

V̂t(t) + B̂(t)V̂ (t) = 0, , V̂ (t = 0) = V0,

where B̂ equals the previously defined B(t) with m(t) := M([u, θ](t)) and so on.

||V̂ (t)|| ≤Meβt||V̂0||

with β ≤ cN 2
1 , cf. [4], since β depends on m′, n′ q′ essentially, and

||AV̂ (t)|| + ||V̂t(t)|| ≤ M̂eβ̂t||V̂0||D(A)

with β̂ ≤ cN2
1 . Ŵ := AV̂ satisfies

Ŵt(t) + B̂(t)Ŵ (t) = 0, Ŵ (t = 0) = AV̂ 0
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and hence we obtain also

||AV̂t(t)|| + ||A2V̂ (t)|| ≤ M̂eβ̂t||AV̂ 0||D(A).

This implies (u, θ) ∈ X (N1, N2, T ) if

N2
1 ≥ 4||V̂ 0||2D(A), N2

2 ≥ 4||V̂ 0||2D(A), MeβT ≤ 2

which is true if

T ≤ 1

2cN2
1

log(
2

N1
). (2.11)

Q.e.d.

Lemma 2.7 The mapping S defined above is a contraction mapping if T is sufficiently small,

depending on N1.

Proof of Lemma 2.7. Let (ûj , θ̂j) := S(uj , θj) j = 1, 2, and let (2.11) be satisfied. Then

w := û1 − û2, ψ := θ̂1 − θ̂2 satisfy

wtt +m(t)A2w + n(t)(A+ µ)ψ = m̂(t)A2û2 + n̂(t)(A+ µ)θ̂2,

ψt + r(t)(A+ µ)ψ − q(t)(A+ µ)wt = r̂(t)(A + µ)θ̂2 − q̂(t)(A + µ)û2
t ,

w(t = 0) = 0, wt(t = 0) = 0, ψ(t = 0) = 0,

wherem := M([u1, θ1]), m̂ := M([û1, θ̂1])−M([û2, θ̂2]), and so on. Let (cf. (3.9) )K3 = K3(w,ψ)

be given by

K3 :=
1

2

{

||wt||2 +m||Aw||2 +
n

q
||ψ||2 − εq0

4
< wt, Aw > −ε < ψ,wt > (2.12)

+||Awt||2 +m(t)||A2w||2 +
n

q
||Aψ||2 − εq0

4
< Awt, A

2w > −ε < Aψ,Awt >

}

.

Using the multiplicative techniques we obtain for sufficiently small ε

d

dt
K3(t) ≤ c1(N

2
1 )K3(t) + c2N

2
1

{

|m̂(t)|2 + |n̂(t)|2 + |r̂(t)|2 + |q̂(t)|2
}

≤ c1(N
2
1 )K3(t) + c3(N

2
1 )d2((u1, θ1), (u2, θ2)),

where cj ≥ 0, j = 1, 2, 3. This implies

sup
0≤t≤T

K3(t) ≤ c4(N
2
1 )N2

1Td
2((u1, θ1), (u2, θ2))

if ε is small enough. We obtain

d2((û1, θ̂1), (û2, θ̂2)) ≤ c5(N
2
1 )N2

1Td
2((u1, θ1), (u2, θ2))
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≤ σ2d2((u1, θ1), (u2, θ2))

with 0 < σ < 1 if T = T (N1) is small enough.

Q.e.d.

The unique fixed point of S in X (N1, N2, T ) is the desired solution (u, θ) in Theorem 2.4 for

k = 3. The case k ≥ 4 can either be dealt with stuying a corresponding X (N1, N2, ..., Nk−1, T )

or inclusively proving the higher regularity of (u, θ) by introducing w := A−1u, ψ := A−1θ

as in the proof of Lemma 3.4. (Observe that the new nonlinearities look like M̂([w,ψ]) =

M([A−1w,A−1ψ)]) and are easier to deal with since they are of lower order. This completes the

proof of Theorem 2.4.

Q.e.d.

Theorem 2.8 Let A ≥ ν > 0, α = µ = 0 and k ≥ 3. Then there is δ > 0 with the following

property: For any

(u0, u1, θ0) ∈ D(Ak) ×D(Ak−1) ×D(Ak−1)

satisfying

||u0||D(A2) + ||u1||D(A) + ||θ0||D(A) < δ,

there exists a unique global solution (u, θ) of (1.1)–(1.4) satisfying

(u, θ) ∈ ∩k
j=0C

j([0,∞[, D(Ak−j)) × ∩k−1
j=0C

j([0,∞[, D(Ak−1−j))

Moreover, (u, θ) decays exponentially.

Proof.- Let (u, θ) be a local solution according to Theorem 2.4. Under the assumption of

Theorem 2.8 we obtain for

K4 := K3(u, θ),

K3 having been defined in (2.12),

d

dt
K4(t) ≤ c1(N

2
1 )K2

4 (t) − d1(N
2
1 )K4(t)

with c1, d1 > 0 depending on N 2
1 . If N2

1 ≤ 1, we have

c1(N
2
1 ) ≤ c0, d1(N

2
1 ) ≥ d0 > 0

with c0, d0 being independent of N1 and also of t. Then

d

dt
K4(t) ≤ c0K

2
4 (t) − d0K4(t).

this implies by a standard arguments, using Gronwall’s inequality, that if K4(0) is sufficiently

small, then

K4(s) ≤ e−
d0
2

sK4(0) (2.13)
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holds on some interval 0 ≤ s ≤ t1 > 0. This yields an a priori estimate in s = t1 and by

a continuation argument the solution exists globally and satisfies (2.13) for all s ∈ IR. The

smallness of K4(0) is guaranteed by choosing ||u0||D(A2) + ||u1||D(A) + ||θ0||D(A) small enough.

Q.e.d.

3 Smoothing effect

The main result of this section is given by

Theorem 3.1 Let (u, θ) ∈ ∩2
j=0C

j([0, T ], D(A2−j)) × ∩1
j=0C

j([0, T ], D(A1−j)) be a solution of

(1.1)–(1.4) for some T > 0 with (u0, u1, θ0) ∈ D(A2) × D(A) × D(A). Then for any t ∈]0, T ]

and for all m ∈ IN we have that: (u(t), θ(t)) ∈ D(Am) ×D(Am).

Proof.- Let us denote by m(t) := M([u, θ](t)), n(t) := N([u, θ](t)), r(t) := R([u, θ](t)), q(t) :=

Q([u, θ](t)). Then m, n, r, q ∈ C1([0, T ]) since

|[u, θ]| ≤ c
{

||utt||2 + ||ut||2 + ||Aut||2 + ||Au||2 + ||θ||2 + ||θt||2 + ||Aθ||2
}

.

By the spectral theorem for self-adjoint operators (cf. [2], [8]) there exists a Hilbert space

H̃ =

∫

⊕
H(λ)dµ(λ),

a direct integral of Hilbert spaces H(λ), λ ∈ IR, with respect to a pointwise measure µ, and a

unitary operator U : H → H̃ such that

D(Am) =
{

v ∈ H;λ 7→ λmUv(λ) ∈ H̃
}

, m ∈ IN0,

and

U(Amv)(λ) = λmUv(λ).

Moreover,

||Amv||2 =

∫ ∞

0
λ2m|Uv(λ)|2 dµ(λ).

Let us denote by v := Uu, ψ := Uθ. Then (1.1),(1.2) turn into

vtt +m(t)λ2v + n(t)(λ+ µ)ψ = 0, (3.1)

ψt + r(t)(λ+ α)ψ − q(t)(λ+ µ)vt = 0, (3.2)

where we have dropped the parameters t and λ in v and ψ. Let

E(t, λ) :=
1

2
|vt(t, λ)|2 +

m(t)

2
λ2|v(t, λ)|2 +

n(t)

2q(t)
|ψ(t, λ)|2
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where | · | is to be understood in H(λ). Multiplying equation (3.1) by vt and (3.2) by n
qψ and

summing up we get

d

dt
E(t, λ) = −n(t)r(t)

q(t)
(λ+ α)|ψ|2 +

m′(t)

2
λ2|v|2 +

d

dt

{
n

2q

}

|ψ|2, (3.3)

d

dt
Re {λvtv} ≤ λ|vt|2 −m(t)λ3|v|2 + n(t)λ2|ψ||v| + n(t)λ|µ||ψ||v|. (3.4)

We will suppose that q(t) ≥ q0. (Otherwise we take −ψvt instead of ψvt). Multiplying (3.2) by

vt we obtain
d

dt
Re {ψvt} = −r(t)(λ+ α)Re{ψvt} + q(t)λ|vt|2 (3.5)

+µq(t)|vt|2 −m(t)λ2Re {vψ} − n(t)λ|ψ|2 − n(t)µ|ψ|2

The inequalities (3.4) and (3.5) imply

d

dt
Re {λvtv} ≤ λ|vt|2 −

m0

2
λ3|v|2 +

n2(t)

2m0
λ|ψ|2 + n(t)λ|µ||ψ||v|, (3.6)

d

dt
Re {−ψvt} ≤ −q0

2
λ|vt|2 +

r2(t)λ

2q0
|ψ|2 + {r(t)|α| − q(t)µ} |vt|2 (3.7)

+
q0m0

16
λ3|v|2 +

4m2(t)

q0m0
λ|ψ|2 + n(t)λ|ψ|2 + (n(t)|µ| + r(t)|α|) |ψ|2,

respectively. From (3.6), (3.7) we conclude

d

dt
Re

{
q0
4
λvtv − ψvt

}

≤ −q0
4
λ|vt|2 (3.8)

−q0m0λ
3

16
|v|2 + cλ|ψ||v| + c|vt|2 + cλ|ψ|2 + c|ψ|2

with c being a constant depending essentially on T , possibly varying from formula to formula.

Combining (3.3) and (3.8) we obtain

d

dt
K(t, λ) ≤ −cλ

{

|vt(t, λ)|2 + λ2|v(t, λ)|2 + |ψ(t, λ)|2
}

(3.9)

+c
{

λ2|v(t, λ)|2 + |ψ(t, λ)|2 + |vt(t, λ)|2
}

,

where

K(t, λ) := E(t, λ) + ε
q0
4
λRe{vtv} − εRe{ψvt}.

Taking ε small enough, we get

1

2
E(t, λ) ≤ K(t, λ) ≤ 2E(t, λ), (3.10)

hence
d

dt
K(t, λ) ≤ −c1λK(t, λ) + c2K(t, λ)

12



d

dt
K(t, λ) ≤ −c1λK(t, λ) + c2K(t, λ)

with positive constants c1, c2. We will consider two cases, first when λ ≥ 2c2
c1

=: c3, then λ ≤ c3.

So for λ ≥ c3 we get

d

dt
K(t, λ) ≤ −c1

2
λK(t, λ)

thus

E(t, λ) ≤ cE(0, λ)e−
c1
2

λt. (3.11)

Multiplying by λm and integrating for λ ≥ c3 we get
∫

λ≥c3
λmE(λ, t) dµ(λ) ≤

∫

λ≥c3
λmE(λ, 0)e−

c1
2

λt dµ(λ). (3.12)

On the other hand, if λ < c3 we get

d

dt
K(t, λ) ≤ c2K(t, λ) ⇒ K(λ, t) ≤ ec2tK(λ, 0) ∀λ ∈ [0, c3].

Using (3.10) we get

E(t, λ) ≤ cE(0, λ)ec2t (3.13)

Multiplying by λm and integrating over 0 ≤ λ ≤ c3 we obtain
∫

λ≤c3
λmE(λ, t) dµ(λ) ≤ ccm3

∫

λ≤c3
E(λ, 0)ec2t dµ(λ) (3.14)

Finally from (3.12) and (3.14) we conclude that for t > 0,
∫ ∞

0
λmE(λ, t) dµ(λ) ≤ c(t,m)

∫ ∞

0
E(λ, 0) dµ(λ).

Using the diagonalization theorem, cf. [2], we get

∀t > 0 : ||Amu(t)|| + ||Amθ(t)|| ≤ c(t,m) {||u1|| + ||Au0|| + ||Aθ0||} . (3.15)

Q.e.d.

Remark 3.2 The constant c(m, t) given in inequality (3.15) is such that c(m, t) → ∞ as t→ 0.

Remark 3.3 If M, N, R and Q are Ck−1-function then the solution (u, θ) of (1.1),(1.2)

satisfies

(u, θ) ∈ Ck(]0, T ];∩j∈IND(Aj))

Remark 3.4 The smoothness effect property does not depend on the largeness of the initial

data, because the method we used can be applied for local or global solutions.
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Theorem 3.5 Let A ≥ ν > 0, α ≥ 0, µ ≥ 0, and let (u, θ) ∈ ∩2
j=0C

j([0,∞], D(A2−j)) ×
∩1

j=0C
j([0,∞], D(A1−j)) be a solution to (1.12),(1.13),(1.3),(1.4). Then (u, θ) decays to zero

exponentially, i.e.

E(t) ≤Me−dtE(0),

for some positive constants M , d, where

E(t) :=
1

2

{

||ut(t)||2 +m(t)||Au(t)||2 +
n(t)

q(t)
||θ(t)||2

}

.

Proof.- With the same technique as in the proof of Theorem 3.1 — the energy method —

we conclude from (3.11) that there are M > 0 and c1 > 0 for which we have

E(t) =

∫ ∞

ν
E(t, λ) dµ(λ) ≤M

∫ ∞

ν
e−c1λtE(0, λ) dµ(λ) ≤Me−c1νtE(0).

Q.e.d.

We observe that c1 depends on the C1-norm of m, n and q.

When the operator A is not coercive, that is A ≥ 0 only, the exponential decay is not

expected. In the following theorem we will study this case when Ω = IRn and Ω = IRn \B where

B is a bounded closed set.

Theorem 3.6 Let Ω = IRn or let n ≥ 3 and Ω = IRn \ B, where B 6= ∅ is a bounded closed set

with smooth boundary, and let IRn \ Ω be star-shaped. Then we have for the solution (u, θ) of

(1.5)–(1.7),(1.3) that

||(ut,∆u, θ)(t)||L∞(Ω){L2(Ω)} ≤ c t−
n
2
{−n

4
}||(u1,∆u0, θ0)(t)||L1(Ω)

with a positive constant c neither depending on t nor on the initial data.

Proof.- First let Ω = IRn. Denoting by û(t, ξ) and θ̂(t, ξ) the Fourier transform of u and θ,

respectively, we obtain

ûtt(t, ξ) + |ξ|4û(t, ξ) − β|ξ|2θ̂(t, ξ) = 0, (3.16)

θ̂t(t, ξ) + |ξ|2θ̂(t, ξ) + β|ξ|2ût(t, ξ) = 0, (3.17)

Combining (3.16), (3.17) with (3.1), (3.2) and defining

Ê(t, ξ) :=
1

2

{

|ût(t, ξ)|2 + |ξ|4|û(t, ξ)|2 + |θ̂(t, ξ)|2
}

we obtain by the same multiplicative technique as in the proof of Theorem 3.1.

∃M > 0 ∃d > 0 ∀t ≥ 0 ∀ξ ∈ IRn : Ê(t, ξ) ≤Me−d|ξ|2tÊ(0, ξ)
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which implies for

E(t) :=
1

2

{

|u(t)|2 + |∆u(t)|2 + |θ(t)|2
}

E(t, λ) =

∫

IRn
Ê(t, ξ) dξ ≤M

∫

IRn
e−d|ξ|2tÊ(0, ξ) dξ (3.18)

≤ ct−
n
2 ||Ê(0, ξ)||L∞

ξ
≤ ct−

n
2 ||(u1,∆u0, θ0)||L1(Ω).

Moreover,

|ut(x, t)| ≤ |
{

1√
2π

}n ∫

IRn
eixξût(t, ξ) dξ| (3.19)

≤ c

∫

IRn
e−

d
2
|ξ|2t

√

Ê(0, ξ) dξ ≤ ct−
n
2 ||(u1,∆u0, θ0)||L1(Ω).

(3.18) and (3.19) prove Theorem 3.6 for Ω = IRn. Now, let Ω 6= IRn be an exterior domain,

n ≥ 3. There exists a generalized Fourier transform F : L2(Ω) → L2(IRn) such that

F(ϕ(A)w)(ξ) = ϕ(|ξ|2)(Fw)(ξ), (3.20)

where A is the Laplace operator defined on H1
0 (Ω) ∩H2(Ω) and ϕ(A) is assumed to be defined

via the spectral theorem. F is represented by

(Fw)(ξ) =

∫

Ω
ψ̂(x, ξ)w(x) ≡ ŵ(t, ξ),

(F−1ŵ)(x) =

∫

IRn
ψ(x, ξ)ŵ(ξ) dξ,

with a kernel ψ(x, ξ), see [14], [17]. In [17] it is proved, based on results from [9], that

∃m ∈ N ∃c > 0 ∃x ∈ Ω ∀ξ ∈ IRn \ {0} : |ψ(x, ξ)| ≤ c(1 + |ξ|)m (3.21)

holds, provided IRn \ Ω is star-shaped. Using (3.20) we obtain the analogue of (3.16), (3.17).

Essentially repeating the calculation following (3.17) we obtain (3.18) again, and using (3.19)

we get

|ut(t, x)| ≤ c

∫

IRn
e−

d
2
|ξ|2t

√

E(0, λ)(1 + |ξ|)m ≤ ct−
n
2 ||(u1,∆u0, θ0)||L1(Ω).

Q.e.d.

In one space dimension we can use the Fourier-sine transform [7], for example if Ω =]0,∞[,

to obtain the corresponding result. For n = 2 the known estimate for ψ(x, ξ) has a factor log |ξ|,
as |ξ| → 0 wich leads to a decay like cεt

−n
4
+ε and cεt

−n
2
+ε, respectively (instead of ct−

1

2 and

ct−1 as expected).
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4 Propagation of Singularities

Theorem 4.1 Let A ≥ 0 be self-adjoint in a separable Hilbert space H, let v be a solution to

(1.23)–(1.25). Then we have for v0 = v2 = 0 that

∀s ≥ 0 : v1 /∈ D(As+2) ⇒ ∀t ≥ 0 : λ 7→ λs+2
(

Uvt(t, λ), λ1/2Uv(t, λ)
)

/∈ H ×H.

Remark 4.2 In terms of the example from one-dimensional thermoelasticity, the non-smoothing

of the “hyperbolic”energy ‖ut(t)‖2 + ‖ux(t)‖2 is proved. The formulation in terms of v1 is made

for simplicity of the exposition, similar results could be obtained in terms of v0 and v2.

Proof of Theorem 4.1.- Using the spectral theorem we conclude from (1.23), (1.24) that

w(t, λ) := Uv(t, λ) satisfies

wttt + κλwtt + (γ2 + τ)λwt + κτλ2w = 0, (4.1)

w(t = 0) = w0 := Uv0, wt(t = 0) = w1 := Uv1, wtt(t = 0) = w2 := Uv2. (4.2)

The solution w of (4.1), (4.2) is given by

w(t, λ) =
3∑

j=1

bj(λ)e−βj(λ)t,

where βj(λ), j = 1, 2, 3, are the roots of the characteristic equation

−β3 + κλβ2 − (γ2 + τ)λβ + κτλ2 = 0,

and

bj(λ) :=
2∑

k=0

bkj (λ)wk(λ)

with

b0j :=

∏

l 6=j βl
∏

l 6=j(βj − βl)
, b1j :=

∑

l 6=j βl
∏

l 6=j(βj − βl)
, b2j :=

1
∏

l 6=j(βj − βl)
.

Since w0 = w2 = 0 we obtain

w(t, λ) =
3∑

j=1

b1je
−βj(λ)tw1(λ) ≡

3∑

j=1

f j(t, λ)

The asymptotic behavior of βj(λ) is known (see [19], [15]) and given as follows:

Lemma 4.3 As λ→ 0:

β1(λ) =
κτ

τ + γ2
λ+O(λ

3

2 ), β2/3(λ) =
κγ2

2(τ + γ2)
λ± i

√

τ + γ2
√
λ+O(λ

3

2 ),
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as λ→ ∞ :

β1(λ) = κλ− γ2

κ
− α1

κ3
λ−1 +O(λ−

3

2 ),

β2/3(λ) =
γ2

2κ
+

α2

2κ3
λ−1 +O(λ−2) ∓ i

{√
τλ+

α3

κ2
λ−

1

2 +O(λ−
3

2 )

}

,

where αj = αj(γ, τ) are constants (j = 1, 2).

Except for at most two values of λ > 0 we get

βj(λ) 6= βk(λ), j 6= k.

For any value of λ 6= 0: Reβj(λ) > 0, j = 1, 2, 3.

There are positive constants r1 and Cj, j = 1, 2, 3. such that

λ ≤ r2
1 ⇒ C1λ ≤ Reβj(λ) ≤ C2λ

λ ≥ r2
1 ⇒ Reβj(λ) ≥ C3 (j = 1, 2, 3).

This implies the following asymptotic behavior for b1j (λ) j = 1, 2, 3.

Lemma 4.4 As λ→ 0:

b11(λ) = κγ2 +O(
√
λ), b12/3(λ) =

±i
2
√

λ(τ + γ2)
+O(1),

as λ→ ∞ :

b11(λ) = O(λ−2), b12/3(λ) =
∓i

2
√
λ

+O(
1

λ
).

Observe that the leading term for b12/3(λ) as λ→ 0 is like λ−
1

2 , but still b11e
−β2t + b13e

−β3t = O(1)

as λ → 0, hence the interesting part is λ → ∞. Now let t > 0. It is easy to see that for any

m ∈ IN
∞ >

∫ ∞

0
λ2m

{

|f1
t (t, λ)|2 + λ|f1(t, λ)|2

}

dµ(λ).

Hence the f 1-part is arbitrarily smooth. We will prove now that the remaining part of w it is

not smoother than w1. In fact, let us suppose the contrary, so we have

∞ >

∫ ∞

r1

λ2s+4
{

|f2
t (t, λ) + f 3

t (t, λ)|2 + λ|f2(t, λ) + f 3(t, λ)|2
}

dµ(λ)

and we obtain for r1 > 0 sufficiently large, depending on t later on, using Lemma 4.3 and Lemma

4.4,

∞ >

∫ ∞

r1

λ2s+4
{

| i

2
√
λ

(β2e
−β2t − β3e

−β3t)|2 +O(
1

λ2
) + λ| i

2
√
λ

(e−β3t − e−β2t)|2 +O(
1

λ
)

}

|w1(λ)|2 dµ(λ)
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=

∫ ∞

r1

λ2s+4 e
−2at

4

{

|√τ cos(bt) +O(
1√
λ

)|2 + | sin(bt)|2 +O(
1

λ
)

}

|w1(λ)|2 dµ(λ),

where a := Reβ, b := Imβ. Thus we obtain for r1 = r1(t) sufficiently large

∞ >
min{τ, 1}

4
e−

γ2t

2κ

∫ ∞

r1(t)
λ2s+4|w1(λ)|2 dµ(λ),

which is a contradiction because v1 /∈ D(As+2).

Q.e.d.
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