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SMOOTHING PROPERTIES OF

IMPLICIT FINITE DIFFERENCE METHODS

FOR A DIFFUSION EQUATION IN MAXIMUM NORM ∗

J. THOMAS BEALE †

Abstract. We prove a regularity property of finite difference schemes for the heat or diffusion
equation ut = ∆u in maximum norm with large time steps. For a class of time discretizations includ-
ing L-stable single-step methods and the second-order backward difference formula, with the usual
second-order Laplacian, we show that solutions of the scheme gain first spatial differences boundedly,
and also second differences except for logarithmic factors, with respect to nonhomogeneous terms.
A weaker property is shown for the Crank-Nicolson method. As a consequence we show that the
numerical solution of a convection-diffusion equation with an interface can allow O(h) truncation
error near the interface and still have a solution with uniform O(h2) accuracy and first differences of
uniform accuracy almost O(h2).

Key words. finite difference methods, parabolic equations, diffusion, regularity, stability, L-
stable, A-stable, maximum norm, interfaces, moving boundaries, immersed interface method

AMS subject classifications. 65M12,35K05,35R05

1. Introduction. We are concerned with finite difference methods for a diffusion
equation in R

d × [0,∞) such as

ut = ∆u + f (1.1)

which allow large time steps and gain regularity in maximum norm; that is, norms
of spatial differences of the discrete solution can be estimated by the norm of f . We
suppose that, at each time t, f and u are defined on a grid R

d
h = {jh : j ∈ Z

d} in all
d-space; a rectangular domain with periodic or homogeneous Dirichlet or Neumann
boundary conditions can be regarded as a special case. We replace ∆ by the usual
second-order discrete Laplacian

∆h =

d
∑

ν=1

D+
ν D−

ν (1.2)

where D±
ν are the forward and backward divided difference operators in direction ν.

If the time discretization is a single-step method, with time step k, the approximation
un to u(·, nk) in (1.1) with f = 0 has the form

un = s(k∆h)nu0 (1.3)

where s is the function so that s(kλ) is the corresponding factor for the model equation
yt = λy. The regularity results proved here include single-step methods that are L-
stable; that is, |s(z)| ≤ 1 for all z ∈ C with Re z ≤ 0 and s(∞) = 0. The simplest
example is the backward Euler method, but the results are more useful for second-
order methods. Two examples are a modification of the Crank-Nicolson method due
to Twizell et al. [25], adapted in [18], which we will call TGA, and a second-order
singly diagonally implicit Runge-Kutta method (SDIRK2). (Formulas are given in
the Appendix.) The results also apply to multistep methods such as the second-order
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backward difference formula (BDF2). These three methods and Crank-Nicolson (CN)
have all been useful in applications ([5, 6, 11, 15, 18, 24, 27]). We show that CN has
a regularity property for the nonhomogeneous equation which is weaker than that for
the L-stable methods.

The regularity results proved here can be used to estimate the error in the com-
puted solution with limited information about the truncation error. In problems with
discontinuities at interfaces, it is desirable to use an ordinary rectangular grid and
to allow the truncation error to be O(h) near the interface while O(h2) elsewhere.
Nevertheless, it is often expected in practice that the solution obtained is uniformly
second-order accurate. The O(h) truncation error near the interface can be achieved
using the immersed interface method of R. LeVeque and Z. Li [12, 14, 13, 11, 15] or the
related method of A. Mayo [17]; corrections are made to the difference approximations
based on jump conditions at the interface. For a Poisson problem it was proved in [3]
that the solution obtained in this way is uniformly O(h2); see also [14, 21]. We prove
here a result of the same kind for a linear convection-diffusion equation with a moving
interface. This conclusion provides assurance that the expected gain in accuracy in a
time-dependent interface problem can be achieved in some circumstances.

We now state the regularity property for single-step methods. The method is
called A(θ)-stable if |s(z)| ≤ 1 on a sector

Σ(θ) = {z ∈ C : | arg z − π| ≤ θ} ∪ {0} . (1.4)

For a linear operator E on L∞(Rd
h) we use the norm

‖E‖ = sup ‖Ef‖L∞(Rd
h
)/‖f‖L∞(Rd

h
) , f 6= 0 . (1.5)

We let Dh denote any divided difference operator D±
ν and D2

h any product of two
such operators. We first give bounds for the norm of s(k∆h)n and its differences, and
then estimates for the nonhomogeneous equation.

Theorem 1.1. Suppose the solution of the semi-discrete initial value problem

ut = ∆hu , u(0) = u0 (1.6)

is approximated by (1.3). Suppose (1.3) is consistent; s is analytic on a sector Σ(θ)
for some θ > 0 and on a neighborhood of infinity; s is A(θ)-stable; and s(∞) = 0.
Then for any h, k with 0 < h, k ≤ 1 and integer n > 0,

‖s(k∆h)n‖ ≤ C0 , (1.7)

‖Dhs(k∆h)n‖ ≤ C1(nk)−1/2 , (1.8)

‖D2
hs(k∆h)n‖ ≤ C2(nk)−1 (1 + | log h| + | log nk|) , (1.9)

with operator norm as in (1.5) and constants independent of h, k and n.
Theorem 1.2. With s as above, suppose the problem

ut = ∆hu + f , u(0) = 0 (1.10)

is approximated by

un+1 = s(k∆h)un + k

m
∑

i=1

qi(k∆h)(1 − ηik∆h)−1f(·, nk + τik) (1.11)
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where k = ch for some c > 0; m ≥ 1, ηi > 0, and τi are fixed numbers; and qi

is an analytic function on Σ(θ) such that qi(k∆h) is bounded in norm in L∞(Rd
h),

independently of h, k. Then for 0 < nk ≤ T ,

‖un‖ + ‖Dhun‖ ≤ C1 sup
t≤T

‖f(·, t)‖ , (1.12)

‖D2
hun‖ ≤ C2

(

1 + | log h|2
)

sup
t≤T

‖f(·, t)‖ , (1.13)

with norms in L∞(Rd
h) and constants depending on c and T but not on h or n.

The present theorems allow regularity with large k by making strong stability
assumptions on the choice of time discretization. They apply directly to TGA and
SDIRK2 among others, as explained at the end of Sec. 5. Theorem 4.1, proved in Sec.
4, contains Theorem 1.1 and also applies to multistep methods including BDF2. For
CN the estimate (1.7) is included in [19], but (1.8), (1.9) do not hold. Surprisingly,
(1.12) holds for CN, although (1.13) does not; this is shown in Sec. 7.

If an exact, smooth solution of (1.10) is approximated by (1.11) and has truncation
error O(k · (h2 + k2)) in L∞, with k = ch, then Theorem 1.2 applied to the error
equation gives O(h2) convergence for u and Du, and O(h2(log h)2) for D2u, bounded
by the maximum norm of the truncation error. To illustrate further the significance
of Theorem 1.2, we derive estimates in Sec. 8 for a convection-diffusion equation with
an interface. We suppose the equation is posed in a periodic domain with a prescribed
moving interface at which there may be a discontinuity. Once a scheme is chosen, the
corrections described above leave a truncation error which is O(h) near the interface
and O(h2) elsewhere. Estimates for the case of CN show that for a piecewise smooth
solution the error is uniformly O(h2). If one of the L-stable methods is used, the same
is true, and furthermore the error in first differences is O(h2(log h)2); a value for the
first derivatives of the same accuracy can then be found. The proof depends on the
fact that the local O(h) truncation error can be written as a discrete divergence of
an O(h2) function (Lemma 8.1). In [18] a distinction in accuracy and stability was
observed between TGA and CN in a finite-volume discretization of a moving boundary
problem.

For schemes with k = ch2, regularity results like Theorem 1.1 have been proved for
general parabolic equations and without logarithmic factors in [26]. The estimate (1.7)
was proved in [19] without restriction on k for rational s with weaker assumptions.
A smoothing property for CN was proved in [16] in L2 norms with initial backward
Euler steps, in analogy to (7.2), the weakened version of (1.8) shown here for CN. The
technique of proof for Theorems 1.1 and 4.1 is close to that of [1, 22, 23] and related
work, relying on the point of view of analytic semigroups of operators, although the
sequence of steps here is different. Resolvent estimates were proved for a general
class of discrete elliptic operators in [1], Sec. 4.1, which include (2.26), (2.27) here
and appear to imply (2.28); we give a more direct proof for the special case of ∆h.
Resolvent estimates like (2.26) have been proved in the finite element setting for
general domains; see [2]. For this and smoothing properties with finite elements, see
[23].

In Sec. 2 we derive estimates (Thm. 2.1) for the solution operators e∆ht of (1.6)
and their spatial differences, for complex t. These lead to estimates (Thm. 2.2) for the
resolvent (z −∆h)−1 and its differences for z ∈ C outside a sector about the negative
axis. For periodic grid functions we give estimates for (∆h)−1 and its differences in
Sec. 3. The resolvent estimates in Secs. 2 and 3 are close to best possible; there are
logarithmic factors for the second differences. In Sec. 4 we prove Theorem 4.1, the
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generalization of Theorem 1.1, by writing the time step operators as contour integrals
and estimating, as was done in [1, 23]. In Sec. 5 we show that Thm. 1.1 follows from
Thm. 4.1, prove Thm. 1.2, and comment on TGA and SDIRK2. In Sec. 6 we verify
for BDF2 that Thm 4.1 applies and Thm. 1.2 holds. In Sec. 7, we show that (1.12)
of Thm. 2.1 holds for CN. Sec. 8 explains the application to the interface problem
and verifies the statements above.

2. The exponential and resolvent of the discrete Laplacian. The solution
of the semi-discrete initial value problem (1.6) is u(·, t) = e∆htu0. We derive estimates
for the solution operator e∆ht on L∞(Rd

h) for complex t in a sector about t > 0. As
noted in [23], p. 83, the maximum principle holds for t > 0, since it holds for
the backward Euler approximation (see [20], p. 48). Here we obtain more general
estimates by adapting an argument of [10], as presented in [22], for real, discrete time
with step O(h2). We then write the resolvent (z − ∆h)−1 as an integral of e∆ht and
estimate its differences for z in the complement of a sector of the form (1.4).

Theorem 2.1. For any M > 0 the operator e∆ht on L∞(Rd
h) extends to an

analytic function on the sector

TM = {t = t1 + it2 : t1 > 0, |t2| ≤ Mt1} (2.1)

and has the estimates, with constants depending on M but not on h,

‖Dα
he∆ht‖ ≤ Cm|t|−m/2 , |α| = m, m ≥ 0 . (2.2)

Here Dα
h is any mth-order partial difference, where each first-order difference has the

form D±
ν , 1 ≤ ν ≤ d.

Proof. We express the solution of the equation in terms of the discrete Green’s
function g(x, t) satisfying

gt = ∆hg , g(jh, 0) = δj0 , (2.3)

that is, g(0, 0) = 1 and g(jh, 0) = 0 for all j 6= 0 in Z
d. The solution of (1.6) is

u(jh, t) =
∑

ℓ∈Zd

g(jh − ℓh, t)u0(ℓh) . (2.4)

Thus for each j ∈ Z
d,

|u(jh, t)| ≤
∑

j

|g(jh, t)|‖u0‖∞ , (2.5)

and for the case m = 0 it will be enough to show that g(·, t) extends analytically in t
with

∑

j∈Zd

|g(jh, t)| ≤ C0 , t ∈ TM . (2.6)

Now if g(d) denotes the Green’s function in dimension d, we have

g(d)(j1h, j2h, . . . , jdh) = g(1)(j1h)g(1)(j2h) · · · g(1)(jdh) . (2.7)

Thus if we prove (2.6) for dimension d = 1, it then follows for general d. A similar
remark applies to differences of g(d).
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We write the discrete Fourier transform of g and its inverse for d = 1 as

ĝ(ξ, t) =
∑

j∈Z

g(jh, t)e−ijξ , (2.8)

g(jh, t) =
1

2π

∫ π

−π

ĝ(ξ, t)eijξ dξ . (2.9)

In the transform ∆h = D+D− has symbol

∆h
ˆ(ξ) = − 4

h2
sin2(ξ/2) = − 1

h2
σ(ξ) , σ(ξ) ≡ 4 sin2(ξ/2) (2.10)

so that (2.3) becomes

ĝt = −(σ/h2)ĝ , ĝ(ξ, 0) = 1 (2.11)

and thus

ĝ(ξ, t) = e−σ(ξ)t/h2

. (2.12)

It will be important that

|ξ|/π ≤ | sin(ξ/2)| ≤ |ξ|/2 , |ξ| ≤ π (2.13)

so that σ/|ξ| is bounded above and below. Formula (2.12) extends analytically to
t = t1 + it2 ∈ C, and for t in the sector TM we have

|ĝ(ξ, t)| ≤ e−ξ2t1/(πh)2 ≤ e−cξ2|t|/h2

, (2.14)

with c depending on M . We will also need the bound

∣

∣

∣

∣

∣

(

∂

∂ξ

)2

ĝ(ξ, t)

∣

∣

∣

∣

∣

≤ C
|t|
h2

(

1 +
ξ2|t|
h2

)

e−cξ2|t|/h2

. (2.15)

We now estimate g(jh, t) using (2.9), (2.14), (2.15). The change of variables ξ =
sh/

√

|t| gives

|g(jh, t)| ≤ 1

2π

∫ π

−π

|ĝ(ξ, t)| dξ ≤
∫ ∞

−∞

e−cs2 h
√

|t|
ds = C

h
√

|t|
. (2.16)

On the other hand, if we integrate by parts twice in (2.9), apply (2.15), and change
variables again, we get, for j 6= 0,

|g(jh, t)| ≤ C

j2

∫ π

−π

|ĝξξ(ξ, t)| dξ ≤ C ′

j2

|t|
h2

h
√

|t|
=

C ′′

j2

√

|t|
h

. (2.17)

Finally we sum over j. Let J =
[

√

|t|/h
]

. For 0 < |j| ≤ J we estimate |g(jh, t)| by

(2.16) and for |j| > J we use (2.17), and noting that |g(0, t)| ≤ 1, we verify (2.6):

∑

j∈Z

|g(jh, t)| ≤ 1 + C1J(h/
√

|t|) + C2(J + 1)−1
√

|t|/h ≤ C . (2.18)
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This proves (2.6) with m = 0 for d = 1, and by (2.7) it also holds for d > 1.
Next we prove (2.2) for m = 1, the first difference. We first note that the conclu-

sion is trivial for |t| ≤ h2, since ‖D±
ν ‖ = 2/h ≤ 2|t|−1/2. Thus we assume hereafter

that |t| ≥ h2. In view of (2.4) and (2.7), it is enough to show that with d = 1, for
t ∈ TM and |t| ≥ h2,

∑

j∈Z

|D+g(jh, t)| ≤ C/
√

|t| . (2.19)

We start with the representation

(D+g)(jh, t) =
i

hπ

∫ π

−π

sin(ξ/2)ĝ(ξ, t)ei(j+1/2)ξ dξ . (2.20)

Estimating as in (2.16), and noting the extra factor |ξ/h| = |s|/
√

|t|, we have

|(D+g)(jh, t)| ≤ Ch/|t| . (2.21)

As in (2.15) we have for |t| ≥ h2,

∣

∣

∣

∣

∣

(

∂

∂ξ

)2

sin(ξ/2)ĝ(ξ, t)

∣

∣

∣

∣

∣

≤ C
|ξt|
h2

(

1 +
ξ2|t|
h2

)

e−cξ2|t|/h2

. (2.22)

In place of (2.17) we find for j 6= 0

|(D+g)(jh, t)| ≤ C/(j2h) . (2.23)

Using (2.21) and (2.23), proceeding as in (2.18), we obtain (2.19).
Finally, having established (2.2) for m = 0 or 1, we consider higher m. Since each

D±
ν commutes with ∆h, and therefore e∆ht, we can write symbolically

‖D2e∆ht‖ = ‖(De∆ht/2)(De∆ht/2)‖ ≤ 2C2
1/|t| (2.24)

using the case m = 1. This verifies (2.2) with m = 2, and m > 2 can be handled
similarly.

Theorem 2.2. For any δ > 0 and all z in the sector

Sδ = C − ({z = z1 + iz2 : z1 < 0, |z2| < δ|z1|} ∪ {0}) (2.25)

we have the estimates, with constants depending on δ but not on h,

‖(z − ∆h)−1‖ ≤ C0|z|−1 ; (2.26)

‖Dh(z − ∆h)−1‖ ≤ C1|z|−1/2 ; (2.27)

‖D2
h(z − ∆h)−1‖ ≤ C2 (1 + | log |z|| + | log h|) . (2.28)

Proof. . We begin with the representation for z ∈ C with Re z > 0

(z − ∆h)−1 =

∫ ∞

0

e−zte∆ht dt . (2.29)
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For z in the sector S1 = {z : z1 > 0, |z2| ≤ δz1}, we have |e−zt| = e−z1t ≤ e−c|z|t for
t > 0, with c > 0 depending on δ. Using this and the boundedness of e∆ht in (2.29),
we obtain (2.26). Similarly, using (2.2) with m = 1, we have

‖Dh(z − ∆h)−1‖ ≤ C

∫ ∞

0

e−c|z|t

√
t

dt ≤ C ′|z|−1/2 . (2.30)

For the second difference, we proceed similarly but split the time interval. For t ≤ h2

we estimate Dα by h−2 to obtain

‖D2
h(z − ∆h)−1‖ ≤ Ch2h−2 + C ′

∫ ∞

h2

e−c|z|t

t
dt ≤ C ′′(1 + | log |z|h2|) (2.31)

which gives (2.28). We have proved the estimates for z ∈ S1.
Now let M = 2/δ. For any z = z1+iz2 with z1 > 0 and z2 ≥ 0, and for t = t1+it2

with t1 ≥ 0, t2 ≤ 0, we have Re tz = t1z1− t2z2 ≥ t1z1 and |e−zt| ≤ e−z1t1 , so that we
may deform the path of integration in (2.29) to the ray R2 = {t = t1 − iMt1, t1 ≥ 0}.
This new integral extends the resolvent as an analytic function of z to the sector
S2 = {z : z2 > 0, |z1| ≤ z2/δ}, since for such z and for t ∈ R2 we have Re tz =
t1(z1 + Mz2) ≥ z2t1/δ ≥ c|z||t| for some c > 0, so that |e−zt| ≤ e−c|z||t|. We can now
estimate for z ∈ S2 as before, using (2.2) with t ∈ R2. The sector S3 conjugate to S2

can be handled similarly, and since Sδ = S1 ∪ S2 ∪ S3, the proof of (2.26)–(2.28) is
complete.

3. The discrete Laplacian on a periodic grid. We now consider the problem
(1.6) with spatially periodic grid functions. We assume for convenience the period is
2π and the interval [−π, π] is discretized by the set Ih of N points. where N is even,
h = 2π/N , I = {j ∈ Z : −N/2 < j ≤ N/2}, and Ih = {jh : j ∈ I}. Similarly we
discretize [−π, π]d ⊆ R

d by the grid Ih
d. Let Xh be the subspace of L∞(Ih

d) whose
elements have mean value zero. We can consider the problem (1.6) on Xh× [0,∞) as a
special case of that on L∞(Rd

h)× [0,∞) and the operator ∆h on Xh as the restriction
of ∆h on L∞(Rd

h). Similarly (z−∆h)−1, when it exists, maps Xh to itself and thus is
the resolvent of ∆h on Xh. Thus the estimates (2.2), (2.26)–(2.28) hold on Xh but can
be improved. The important difference is that the resolvent set includes z = 0, that
is, (∆h)−1 exists on Xh. We first show exponential decay for the solution operator
for t > 0 on Xh and then estimate (∆h)−1 and its differences.

Theorem 3.1. There exists c > 0 so that on the space Xh,

‖Dα
he∆ht‖ ≤ Cmt−m/2e−ct , t > 0 , |α| = m, m ≥ 0 . (3.1)

Proof. We will consider only t ≥ 1, since the conclusion follows from this case
and (2.2). We introduce a periodic Green’s function with mean value zero,

gt = ∆hg , g(jh, 0) = δj0 − N−d . (3.2)

The solution of (1.6) for u0 ∈ Xh is given as in (2.4) but with ℓ ∈ Id. We use the
discrete transform

ĝ(k, t) =
∑

j∈Id

g(jh, t)e−ikjh , k ∈ Id , (3.3)

g(jh, t) = (2π)−d
∑

k∈Id

ĝ(k, t)eikjh hd , j ∈ Id . (3.4)
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We have ĝ(k, 0) = 1 for k 6= 0 and ĝ(0, 0) = 0, so that ĝ(k, t) = e−σt/h2

for k 6= 0,
σ = σ(kh), and ĝ(0, t) = 0, where now, in place of (2.10),

σ(kh) = 4

d
∑

ν=1

sin2(kνh/2) . (3.5)

Thus

g(jh, t) = N−d
∑

k 6=0

e−σt/h2

eikjh . (3.6)

In contrast to the earlier case, ĝ(k, t) decays at a uniform rate,

|ĝ(k, t)| ≤ e−ck2t , k ∈ Id, k 6= 0, t > 0 (3.7)

for some c > 0, because of (3.5) and (2.13). For t ≥ 1 and any j ∈ Id,

|g(jh, t)| ≤ N−d
∑

0 6=k∈Id

e−ck2t = N−de−ct
∑

0 6=k∈Id

e−c(k2−1)t ≤ CN−de−ct . (3.8)

Then
∑

j∈Id

|g(jh, t)| ≤ Nd · CN−de−ct = Ce−ct . (3.9)

The estimate (3.1) with m = 0 follows from this and the convolution form of the
solution operator (2.4), with sum over Id.

For the case m = 1, we suppose D+
1 , a difference in the first coordinate, is applied

to g. To prove (3.1) in this case it will be enough to verify, in analogy with (3.9), that

∑

j∈Id

|D+
1 g(jh, t)| ≤ C√

t
e−ct , t ≥ 1 . (3.10)

From (3.3) and (3.4),

|(D+
1 g)̂ (k)| ≤ |k1|e−ck2t , (3.11)

|D+
1 g(jh, t)| ≤ N−d

∑

k∈Id

|k1|e−ck2t = N−d

(

∑

k1∈I

|k1|e−ck2

1
t

)

. . .

(

∑

kd∈I

e−ck2

dt

)

.

(3.12)

For t ≥ 1 each factor above except the first is bounded by a constant. For the first
we write

∑

k1∈I

|k1|e−ck2

1
t = 2e−ct + 2

e−ct

√
ct

S1 (3.13)

S1 =

∞
∑

k1=2

k1

√
ct e−c(k2

1
−1)t ≤ 2

∞
∑

k1=2

√

(k2
1 − 1)ct e−(k2

1
−1)ct . (3.14)

This sum is decreasing in t for t ≥ 1/c, since the function xe−x2

is decreasing for
x ≥ 1. Thus the sum is bounded independent of t ≥ 1. The conclusion (3.10) follows
as in (3.9). For higher m, (3.1) again follows from m = 1.
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Corollary 3.2. For ∆h on Xh, we have the estimates

‖(∆h)−1‖ ≤ C0 , ‖Dh(∆h)−1‖ ≤ C1 ; (3.15)

‖D2
h(∆h)−1‖ ≤ C2(1 + | log h|) . (3.16)

To derive this, we use (3.1) to write

(−∆h)−1 =

∫ ∞

0

e∆ht dt (3.17)

and estimate directly as in (2.29)–(2.31).
For z near 0 we can write (z − ∆h)−1 = (−∆h)−1(1 − z∆−1

h )−1. We can then
improve the earlier estimates for the space Xh, replacing |z| in (2.26), (2.27) with
(1 + |z|), and | log z| in (2.28) with log(|z| + 1).

4. The Main Regularity Theorem. We suppose a time discretization is cho-
sen for the initial value problem (1.6) with time step k and solution operator at time
n of the form sn(k∆h)u0, where sn is a function depending on the method. This
operator is meaningful provided sn is analytic on the spectrum of k∆h. For single
step methods sn(z) = s1(z)n. We derive estimates for the time step operators on
L∞(Rd

h) in which ∆h is replaced by a general operator with resolvent estimates like
(2.26)–(2.28) and with general assumptions for the functions sn.

We suppose for each h > 0 we have a bounded operator Ah on L∞(Rd
h) with

spectrum in a sector about the negative real axis, specifically

‖Ah‖ ≤ Ch−2 , spec (Ah) ⊆ Σδ′ (4.1)

for some 0 < δ′ < δ where

Σδ = {z = z1 + iz2 : z1 ≤ 0, |z2| ≤ δ|z1|} . (4.2)

We assume that on the complementary sector Sδ of (2.25) we have resolvent estimates

‖(z − Ah)−1‖ ≤ C0|z|−1 ; ‖Dh(z − Ah)−1‖ ≤ C1|z|−1/2 ; (4.3)

‖D2
h(z − Ah)−1‖ ≤ C2 (1 + | log |z|| + | log h|) (4.4)

as in (2.26)–(2.28). We assume there is an open set in C, containing Σδ and a neigh-
borhood of ∞, on which each function sn is analytic, n ≥ 1, and

sn(∞) = 0 . (4.5)

We assume there is a disk about 0 ∈ C and some c0, C0 > 0 so that for all z in the
disk and each n,

|sn(z)| ≤ C0(1 + c0|z|)n . (4.6)

Finally, we assume there exist c1, C1 > 0 and p > 0 so that for all z ∈ Σδ and all n

|sn(z)| ≤ C1(1 + c1|z|)−pn . (4.7)

Theorem 4.1. With assumptions (4.1)–(4.7) for Ah and sn, we have the follow-
ing estimates for the operators sn(kAh) and their differences acting on L∞(Rd

h).

‖sn(kAh)‖ ≤ C0 ; (4.8)

‖Dhsn(kAh)‖ ≤ C1(nk)−1/2 ; (4.9)

‖D2
hsn(kAh)‖ ≤ C2(nk)−1(1 + | log h| + | log nk|) (4.10)
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with constants independent of h and k for 0 < h, k ≤ 1.
Proof. As in [1] and [23] we write sn(kAh) as a contour integral and estimate

norms using (4.3), (4.4). For a simple closed curve Γ in C enclosing the spectrum of
kAh, positively oriented and depending on k, h, we can write

sn(kAh) =
1

2πi

∫

Γ

sn(z)(z − kAh)−1 dz (4.11)

(see e.g. [4], section VII.3). For reference we rewrite (4.3), (4.4) in terms of kAh: for
k ≤ 1 and z ∈ Sδ

‖(z − kAh)−1‖ ≤ C0|z|−1 . (4.12)

‖Dh(z − kAh)−1‖ ≤ C|kz|−1/2 . (4.13)

‖D2
h(z − kAh)−1‖ ≤ Ck−1 (1 + | log h| + | log (|z|/k)|) . (4.14)

Choosing a curve Γ to include segments on the rays z = z1 + iz2, z1 < 0, z2 = ±δz1,
and an arc of a circle enclosing z = 0, we can extend the rays to infinity, using (4.12)
and (4.7). In this way we replace Γ by a path Γn, depending on n but not on h, k ≤ 1,
consisting of the arc

R0 = {z = (ε/n)eiθ, |θ| ≤ θ0} (4.15)

and the two rays

R± = {re±iθ0 , r ≥ ε/n} . (4.16)

Here ε is chosen small enough so that (4.6) holds for |z| ≤ ε, with tan θ0 = −δ and
π/2 < θ0 < π. We assume for now that n > 2/p and return to the remaining cases
later.

We first verify (4.8). For z ∈ Γn and k ≤ 1, using (4.12) and (4.6), we estimate
the portion of the integral (4.11) on R0 by (1 + εc0/n)n · (n/ε) · 2π(ε/n) ≤ C. Using
(4.12) and (4.7) we estimate the portion on R± by

∫ ∞

ε/n

(1 + c1r)
−pnr−1 dr ≤ n

ε
J , (4.17)

J =

∫ ∞

0

(1 + c1r)
−pn dr =

1

c1(pn − 1)
≤ C

n
. (4.18)

so that this portion is bounded, and (4.8) is established.
For (4.9) we proceed similarly, starting with the integral

Dα
hsn(kAh) =

1

2πi

∫

Γn

sn(z)Dα
h (z − kAh)−1 dz (4.19)

with |α| = 1. In estimating the portion on R0, we now have a factor of (n/(εk))1/2

from (4.13) in place of the earlier factor (n/ε), resulting in a bound of C(nk)−1/2.
For the portion on R± we estimate as in (4.17), (4,18), with r−1 in (4.17) replaced
by (rk)−1/2, again from (4.13), and in a similar way we obtain the bound (4.9).

To prove (4.10) we start with the integral (4.19) with |α| = 2. We estimate the
integral on R0 using (4.14), with |z|/k = ε/(nk), as

C(nk)−1 (1 + | log h| + | log nk|) . (4.20)
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On R± we write |z|/k = nr/(nk) and estimate the integral by

k−1

∫ ∞

ε/n

(1 + c1r)
−pn (1 + | log h| + | log nk| + | log nr|) dr . (4.21)

The factor (1 + | log h| + | log nk|) multiplies a term bounded by k−1J ≤ C(nk)−1,
according to (4.18), and this part of (4.21) is bounded as in (4.20). In the last term
we split the integral, presuming ε < 1,

k−1

∫ ∞

ε/n

(1 + c1r)
−pn| log nr| dr = k−1

∫ 1/n

ε/n

+ k−1

∫ ∞

1/n

. (4.22)

For ε ≤ nr ≤ 1, | log nr| ≤ | log ε|, a constant, so that the first term in (4.22) is
bounded by C(nk)−1. For the second term, we use the convexity of the function
x 7→ xnp/2 with np/2 > 1 to say that (1 + c1r)

np/2 ≥ 1 + c1pnr/2. For nr ≥ 1,
| log nr|/(1 + c1pnr/2) is bounded, and we can now estimate

k−1

∫ ∞

1/n

(1 + c1r)
−pn| log nr| dr ≤ Ck−1

∫ ∞

1/n

(1 + c1r)
−pn/2 dr ≤ C ′(nk)−1 (4.23)

the last as in (4.18). This completes the proof of (4.10).
It remains to prove (4.8)–(4.10) for n ≤ n0, where n0 > 2/p is fixed. Since the

decay in (4.7) for large z is slow for such n, we subtract a term from sn(z) to improve
the convergence in (4.11), (4.19). Since sn(∞) = 0, we have sn(z) = anz−1 +O(|z|−2)
for some an. We set s̃n(z) = sn(z)+an(1− z)−1, so that s̃n(z) = O(|z|−2) as z → ∞,
and thus for some c, C

|s̃n(z)| ≤ C(1 + c|z|)−2 , z ∈ Σδ . (4.24)

Since sn(z) = s̃n(z) − an(1 − z)−1,

sn(kAh) = s̃n(kAh) − an(1 − kAh)−1 . (4.25)

From (4.12)–(4.14), with z = 1, we see that (1 − kAh)−1 satisfies (4.8)–(4.10); here
we note that k−1 ≤ n0(nk)−1 = C(nk)−1. We can estimate s̃n(kAh) as before
for sn(kAh), using the integral representation, with (4.24) in place of (4.7). The
modification is straightforward since n is bounded.

5. Proofs of Theorems 1.1 and 1.2. We prove Theorems 1.1 and 1.2 from
Theorem 4.1. For Theorem 1.1 we verify that the hypotheses on s imply those for
sn = sn in Theorem 4.1. The application to TGA and SDIRK2 is explained.

Proof of Theorem 1.1. First, since the time discretization is consistent, we
must have

s(z) = 1 + z + O(z2) as z → 0 . (5.1)

This implies that |s(z)| ≤ 1+ c0|z| for z in some disk about 0 and for some c0, so that
(4.6) holds with C0 = 1. We will show that (4.7) holds with p = 1 and C1 = 1; that
is, we show for some c1 > 0,

|s(z)| ≤ (1 + c1|z|)−1 , z ∈ Σδ . (5.2)
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Here δ > 0 is chosen so that s is analytic on a neighborhood of Σδ and |s(z)| ≤ 1 on a
larger sector. We consider three parts of Σδ, starting with z small. For z = z1 + iz2 ∈
Σδ, we have |1 + z|2 = (1 + 2z1) + |z|2, z1 ≤ 0, and |z| ≤ (1 + δ2)1/2(−z1). From
these facts and (5.1) we can see that |s(z)| ≤ (1 − c1|z|) ≤ (1 + c1|z|)−1 for |z| ≤ ε,
provided c1 ≤ (1 + δ2)−1/2/2 and ε is small enough. Next we consider z large. Since
s is analytic at ∞ and s(∞) = 0, we have s(z) = a/z + O(|z|−2). Then there exist
r0,M > 0 so that |s(z)| ≤ M/|z| for |z| ≥ r0. Let r1 = max(r0, 2M) and c1 = 1/(2M).
Then for |z| ≥ r1, (1 + c1|z|) ≤ |z|/M , so that (1 + c1|z|)−1 ≥ M/|z| ≥ |s(z)|. We
have now verified (5.2) for z small or large, and we are left with the compact set
Σmid = {z ∈ Σδ : ε ≤ |z| ≤ r1}. Since this set has a neighborhood where s is analytic
and |s(z)| ≤ 1, it follows from the Maximum Modulus Principle that |s(z)| < 1 on
Σmid. Then there exists κ < 1 so that |s(z)| ≤ κ for z ∈ Σmid, and we can choose c1

sufficiently small so that κ < (1 + c1r1)
−1. Thus (5.2) holds on Σmid as well, and the

inequality is verified for all of Σδ. ¤

Proof of Theorem 1.2. Let M = supt≤T ‖f(·, t)‖, and denote the right side of

(1.11) by kf̃n. The solution of (1.11) is

un =

n−1
∑

ℓ=0

s(k∆h)n−1−ℓf̃ ℓ k . (5.3)

From (4.8) and (4.12) with z = 1, we have ‖un‖ ≤
∑

CMk = CMnk ≤ C ′M . For
first differences, we note that (4.13) implies ‖Dh(1− ηik∆h)−1f‖ ≤ CMk−1/2. Using
this for ℓ = n − 1 and (4.9) for ℓ < n − 1 we get, with ℓ 7→ n − 1 − ℓ,

‖Dhun‖ ≤ CMk1/2 + CM

n−1
∑

ℓ=1

(ℓk)−1/2k ≤ C ′M(nk)1/2 ≤ C ′MT 1/2 . (5.4)

For D2
h, (4.14) gives ‖D2

h(1 − ηik∆h)−1f‖ ≤ CMk−1(1 + | log h|). We use this for
ℓ = n − 1 and otherwise we use (4.10) to obtain

‖D2
hun‖ ≤ CM(1 + | log h|)

(

1 +

n−1
∑

ℓ=1

(ℓk)−1k

)

≤ CM(1 + | log h|)(1 + | log T | + | log k|) ≤ C ′M(1 + | log h|2) ¤ (5.5)

TGA and SDIRK2. We verify that Theorems 1.1 and 1.2 apply to these two
methods among others. Each is L-stable. We can see from (A.3) and (A.6)–(A.8)
that each operator qi(k∆h) in (1.11) has the form

qi(k∆h) = p(k∆h)(1 − a1k∆h)−1 . . . (1 − aℓk∆h)−1 (5.6)

where p is a polynomial, aj > 0 for 1 ≤ j ≤ ℓ, and ℓ ≥ deg p. Now (2.26) implies
that the operator (1−ajk∆h)−1 on L∞ has norm bounded by C0. It follows that any
operator (b0 + b1k∆h)(1 − ajk∆h)−1 is bounded on L∞ uniformly in h and k, and
thus qi(k∆h), being a product of bounded factors, is also uniformly bounded on L∞.
Thus the hypotheses of the two theorems are satisfied. The same remark applies to
any other L-stable single-step method with equation (1.11) provided qi(k∆h) has the
form just described.
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6. The backward difference formula. We verify that Theorem 4.1 applies to
BDF2, as given in (A.11). As a consequence, Theorem 1.2 holds for BDF2 as well. We
suppose here that the two-step BDF2 method is started with one step of the backward
Euler formula.

If we replace ∆h with λ ∈ C and un with yn in (A.11), we have the iteration

3

2
yn+1 − 2yn +

1

2
yn−1 = kλyn+1 (6.1)

or, with z = kλ,

(

yn+1

yn

)

= M(z)

(

yn

yn−1

)

, M(z) =

(

2( 3
2 − z)−1 − 1

2 ( 3
2 − z)−1

1 0

)

. (6.2)

With y0, y1, specified, yn(z) is analytic for Re z ≤ 0. The general solution of (6.1) is

yn = c+wn
+ + c−wn

−, w± = (2 ±
√

1 + 2z)/(3 − 2z) . (6.3)

It is well-known that BDF2 is A-stable ([8], Sec V.1; [9] Sec. 4.4), i.e.,

|w±(z)| ≤ 1 , Re z < 0 . (6.4)

(The double root at z = −1/2 will not concern us directly.)
Since we start with one backward Euler step, we take y0 = 1 and y1 = (1− z)−1.

Then yn corresponds to sn(z) in the Theorem, and sn(z) = c+wn
+ + c−wn

− with

c+ = (−w− +y1)/(w+−w−) , c− = (w+−y1)/(w+−w−) , y1 = (1−z)−1 . (6.5)

We now check the hypotheses of the Theorem. From (6.2) we can regard sn(z)
as the first component of M(z)n−1((1− z)−1 1)T . It is analytic on any sector Σδ and
at infinity. Since

M(z)2 = (
3

2
− z)−1

(

4 − ( 3
2 − z)−1/2 −1

2 − 1
2

)

(6.6)

it is apparent that sn(∞) = 0. For z near 0, we choose the positive square root, so
that w+(z) = 1 + z + z2/2 + O(z3), while w−(0) = 1/3. From (6.5), c+ = 1 + O(z2),
c− = O(z2). It is now evident that (4.6) holds for some C0, c0 and z in a disk about
0. It is also evident, as in the discussion of the single step method, that (4.7) holds
for z near 0 with p = 1 and therefore also p ≤ 1. For large z, w± ≈ ±1/

√
2z and

c± → 1/2. From this and (6.3),

|sn(z)| ≤ C|z|−n/2 , z large . (6.7)

Now on the rays z = z1 ± δz1, z1 < 0, we have |w±| ≤ 1 by the stability condition
(6.4), and c± are bounded. Thus sn(z) is bounded independent of n on these rays,
and by its analyticity it is also bounded inside the sector. We can now verify (4.7)
with p = 1/2, using the boundedness in the sector, (6.7) for large z, and the case
of small z already checked, in a manner similar to the proof in Theorem 1.1 for a
single-step method.

The proof of Theorem 1.2 is easily modified for BDF2, writing the nonhomoge-
neous equation in a form like (6.2), and noting fn is multiplied by (3/2 − k∆h)−1 as
in (1.11).
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7. The Crank-Nicolson method. For the Crank-Nicolson, or trapezoidal,
discretization of (1.10), stated in (A.1), (A.2), Theorem 4.1 does not apply since
s(∞) 6= 0. It can be seen easily from examples that the analogues of (1.8), (1.9) and
(1.13) do not hold for CN with k = ch, since s(k∆h) = −1 + O(h) in the highest
modes. We prove a weaker version of (1.8) and the smoothing property (1.12) for the
nonhomogeneous problem. The boundedness of s(k∆h)n follows from [19], but we
give a brief proof here.

Theorem 7.1. With Ah as in Theorem 4.1 and s given by (A.2) we have

‖s(kAh)n‖ ≤ C0 , (7.1)

‖Dhs(kAh)n(1 − kAh/2)−1‖ ≤ C1(nk)−1/2 . (7.2)

Proof. We first estimate |s(z)| for z ∈ Σδ. For such z = z1 + iz2 we have z1 ≤ 0,
|z| ≤ C|z1|, |1 + z/2|2 = |1 − z/2|2 + 2z1 or |s(z)|2 = 1 + 2z1/|1 − (z/2)|2, and

|s(z)| ≤ 1 +
z1

|1 − z/2|2 ≤ 1 − c|z|
1 + |z|2 (7.3)

for some c > 0. We will use the two consequences

|s(z)| ≤ 1 − c0|z| , |z| ≤ 1, z ∈ Σδ , (7.4)

|s(z)| ≤ 1 − c1/|z| , |z| ≥ 1, z ∈ Σδ . (7.5)

On the other hand, for any large z we have

|s(z)| ≤ 1 + 8/|z| , |z| ≥ 4 . (7.6)

We now prove (7.2) in a way similar to [1], Lemma 1.1, p. 189. In view of the
above, we may write the operator as a Cauchy integral as in (4.11), (4.19),

Dhs(kAh)n(1 − kAh/2)−1 =
1

2πi

∫

Γn

s(z)n(1 − z/2)−1Dh(z − kAh)−1 dz (7.7)

using the same n-dependent contour as in (4.15), (4.16). On the arc R0 near z = 0
we have the same estimate as before, since the factor (1 − z/2)−1 is bounded away
from zero for z small. On the ray R± we use the inequality |1− z/2| ≥ c(1 + |z|), the
resolvent estimate (4.13), and (7.4),(7.5) above. We obtain the upper bound for the
integral on R±

C

∫ ∞

ε/n

|s(z)|n
(1 + |z|)

√

k|z|
d|z| ≤ C ′k−1/2(I1 + I2) , (7.8)

I1 =

∫ ∞

1

(1 − c/r)nr−3/2 dr , I2 =

∫ 1

0

(1 − cr)nr−1/2 dr . (7.9)

The change of variables s = 1/r in I1 results in the same integral as I2. For either we
estimate, presuming c < 1,

∫ 1

0

(1 − cr)nr−1/2 dr ≤
∫ 1/n

0

r−1/2 dr + n−1/2

∫ 1

1/n

(1 − cr)n dr

≤ 2n−1/2 + Cn−1/2n−1 ≤ C ′n−1/2 (7.10)
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so that (7.8) is bounded by C1(nk)−1/2, completing (7.2).
To prove (7.1) we first note that, for each n, s(z)n − (−1)n = O(|z|−1) as z → ∞.

With this fact and (4.12), we can use an integral representation with the same contour
(4.15), (4.16)

s(kAh)n − (−1)n =
1

2πi

∫

Γ

(s(z)n − (−1)n) (z − kAh)−1 dz . (7.11)

The integrand is O(|z|−2) for large z. To estimate s(kAh)n we change the contour to
a bounded one as in [23], Thm. 9.1. With ρ > 0 large, we use the closed curve Γρ

consisting of the arc R0, the segments on the rays R± with ε/n ≤ |z| ≤ ρ, and the
arc Rρ = {z = ρeiθ, |θ| ≤ θ0}, with θ0 as in (4.15). Since the integrand is O(|z|−2)
for large z, in principle we commit an error O(1/ρ) in using this contour, but in fact
the integral is independent of ρ > 2, by the analyticity of s and (z − kAh)−1. Thus
the new integral formula is exact. Moreover, the term (−1)n contributes zero to the
integral. We now have

s(kAh)n = (−1)n +
1

2πi

∫

Γρ

s(z)n(z − kAh)−1 dz . (7.12)

We choose ρ1 > 2 and ρn = nρ1. We can now show that the norm is bounded. Using
(7.6), (4.12) we bound the integral on Rρ by C(1 + 8/(nρ1))

n ≤ C ′, and similarly for
R0, as before. We bound the integrals on the rays, using (4.12), (7.4), (7.5), by a
constant times

∫ ρn

1

(1 − c1/r)nr−1 dr +

∫ 1

ε/n

(1 − cr)nr−1 dr . (7.13)

The second integral is bounded by

(n/ε)

∫ 1

0

(1 − cr)n dr ≤ C (7.14)

while the first converts under the change of variable s = 1/r to an integral with the
same integrand, from 1/ρn = 1/(ρ1n) to 1, and is estimated in the same way.

For the nonhomogeneous problem (1.10), the analogue of (1.11) for CN is

un+1 = s(k∆h)un + k(1 − k

2
∆h)−1fn+1/2 . (7.15)

Because of the resolvent factor on the right, we can estimate ‖un‖, ‖Dhun‖ using
(7.1), (7.2), as in the proof of Theorem 1.2:

Corollary 7.2. If (1.10) is approximated by (7.15) with k = ch, 0 ≤ nk ≤ T ,
then ‖un‖ and ‖Dhun‖ are bounded as in (1.12).

8. Convection-diffusion with an interface. We consider the approximation
of spatially periodic solutions of a convection-diffusion equation

ut + a · ∇u = ∆u (8.1)

where a = a(x, t) ∈ R
d, with discontinuities at an interface. In a rectangular domain

Ω = (0, L)d ⊆ R
d, suppose that, for 0 ≤ t ≤ T , B(t) is a subdomain with boundary

Γ(t) ⊆ Ω, and suppose ∪0≤t≤T (Γ(t) × {t}) is the image of Sd−1 × [0, T ] under a C1,
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injective, nondegenerate mapping, preserving t, where Sd−1 = {x ∈ R
d : |x| = 1}.

We will assume that a and u are smooth on the set ∪t B(t) × {t} and also smooth
on ∪t (Ω − B(t)) × {t} with periodic boundary conditions; jump discontinuities are
allowed at Γ(t). We suppose that the jumps

u+ − u− = g0 ,
∂u+

∂n
− ∂u−

∂n
= g1 on Γ(t) (8.2)

are specified or otherwise known, where n is the normal vector to Γ(t).
We suppose this problem is discretized on a square grid with size h, with L/h

an integer, and with time step k = ch, using any of the schemes discussed here. We
suppose the truncation error is O(h2) away from the interface and is corrected to
O(h) near the interface. We show that, with reasonable assumptions, the error in the
solution εn at time nk is uniformly O(h2):

‖εn‖ ≤ Ch2 . (8.3)

Moreover, for TGA, SDIRK2, or BDF2, first spatial differences are almost O(h2):

‖Dhεn‖ ≤ Ch2(1 + | log h|2) . (8.4)

From these differences, accurate values can be obtained for first derivatives, using
corrections at the interface.

To be specific, we assume at first that (8.1) is discretized with CN, using an
explicit O(h2) version of a · ∇u at time n + 1/2,

un+1 − un

k
+

3

2
an · ∇hun − 1

2
an−1 · ∇hun−1 =

1

2
∆hun+1 +

1

2
∆hun (8.5)

where k = ch and ∇h is the centered difference. (A different scheme is needed for
n = 0; see below.) The exact solution has truncation error in the form χn + τn,
where χn will represent large errors near the interface. We will call (jh, nk) a regular
point if the interface does not intersect the stencil of ∆h centered at jh at time nk
or (n + 1)k, and also does not cross the line segment at jh from nk to (n + 1)k.
For such jh the difference formulas in (8.5) have the usual accuracy; in this case we
set χn(jh) = 0, and τn(jh) = O(h2). At an irregular point the largest contribution
χn(jh) can be found using the jump conditions (8.2), as in [12, 13, 17], so that the
remaining truncation error τn(jh) is O(h). Once χn is known, the discrete solution
can be corrected by adding χn to the right side of (8.5). In this way, a discrete solution
is obtained so that the error εn satisfies equation (8.5) with τn on the right, that is,

(1 − k

2
∆h)εn+1 = (1 +

k

2
∆h)εn − 3

2
kan · ∇hεn +

1

2
kan−1 · ∇hεn−1 + kτn (8.6)

or

εn+1 = s(k∆h)εn + kq(k∆h)Fn + kq(k∆h)τn (8.7)

where

s(z) = (1 + z/2)(1 − z/2)−1 , q(z) = (1 − z/2)−1 (8.8)

and Fn represents the convection terms in (8.6). We will need the following lemma,
proved at the end of the section. It shows that τn is the discrete divergence of an
O(h2) grid function plus remainder:
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Lemma 8.1. If the periodic grid function τn is uniformly O(h2) at regular points
and O(h) and irregular points, then there are periodic grid functions Φn

ν , 0 ≤ ν ≤ d,
so that

τn =

d
∑

ν=1

D−
ν Φn

ν + Φn
0 and ‖Φn

ν‖ ≤ Ch2 . (8.9)

We assume the scheme is started at n = 1 in such a way that ε0 = 0 and
‖ε1‖ ≤ Ch2. We now have, as in (5.3), for n ≥ 2,

εn = s(k∆h)n−1ε1 + k

n−1
∑

ℓ=1

s(k∆h)n−1−ℓq(k∆h)

(

F ℓ +

d
∑

ν=1

Dh,νΦℓ
ν + Φℓ

0

)

(8.10)

We estimate ‖εn‖. From (7.1), ‖s(k∆h)n−1ε1‖ ≤ C0‖ε1‖ ≤ C ′h2. We proceed
with the other terms as in the proof of Thm. 1.2, beginning with the first convection
term. We write aℓ · ∇hεℓ = ∇h · (aℓεℓ) + bℓ, where bℓ depends boundedly on εℓ. We
commute operators in the main term:

s(k∆h)n−1−ℓq(k∆h)∇h · (aℓεℓ) = ∇h · s(k∆h)n−1−ℓq(k∆h)(aℓεℓ) . (8.11)

For ℓ ≤ n−2 we use (7.2) to bound this by C((n−1−ℓ)k)−1/2‖εℓ‖. For ℓ = n−1 we use
(4.13) to get the bound Ck−1/2‖εn−1‖. Each term s(k∆h)n−1−ℓq(k∆h)bℓ is bounded
by C‖εℓ‖. For the second convection term we get similar estimates with εℓ replaced
by εℓ−1 and εn−1 by εn−2. For the terms in (8.10) with Dh,νΦℓ

ν we again commute
Dh,ν forward and find, using (7.2) and (4.13), that s(k∆h)n−1−ℓq(k∆h)Dh,νΦℓ

ν is
bounded by C((n − 1 − ℓ)k)−1/2‖Φℓ

ν‖ ≤ C ′h2((n − 1 − ℓ)k)−1/2 for ℓ ≤ n − 2 and
Ck−1/2‖Φn−1

ν ‖ ≤ C ′h2k−1/2 for ℓ = n − 1. The contribution to (8.10) from these
terms is thus bounded by

Ch2k

(

k−1/2 +

n−2
∑

ℓ=1

((n − 1 − ℓ)k)−1/2

)

≤ C ′h2 (8.12)

and the contribution from Φℓ
0 is similar but simpler. Combining the estimates we

obtain for n ≥ 2 (with sum omitted for n = 2, 3)

‖εn‖ ≤ C1

n−3
∑

ℓ=1

((n − 2 − ℓ)k)
−1/2 ‖εℓ‖ k + C1k

−1/2
(

‖εn−1‖ + ‖εn−2‖
)

k + C2h
2

(8.13)
To simplify this, we choose α, 1 < α < 2, so that t−1/2 ∈ Lα(0, T ). With 1/β = 1−1/α
we apply Hölder’s inequality,

‖εn‖β ≤ C ′
1

(

n−3
∑

ℓ=1

((n − 2 − ℓ)k)
−α/2

k + 2k−α/2k

)β/α n−1
∑

ℓ=1

‖εℓ‖βk + C ′
2h

2β (8.14)

The first sum is bounded independent of n, and we can now apply a discrete Gronwall
inequality (e.g. [23], Lemma 10.5, p. 175) to conclude ‖εn‖β ≤ C ′h2β , thus proving
(8.3) for the CN scheme (8.5).

Now suppose we discretize (8.1) as in (8.5) using TGA rather than CN, treating
the convection term as before. We obtain an error equation as in (8.7) with different

17



s and q. Arguing just as above, but using (1.7), (1.8) rather than (7.1), (7.2), we can
again verify (8.3). Moreover, we can prove (8.4) in a related way provided we assume
the scheme is started carefully enough so that (8.3) and (8.4) hold for ε1. To verify
(8.4) we apply Dh,µ to (8.10). We bound the convection term by ∇hε rather than
ε, obtaining an estimate for this part similar to the earlier case. For the truncation
term we use (1.9) and (4.14) to estimate

Dh,µs(k∆h)n−1−ℓq(k∆h)Dh,νΦℓ
ν = Dh,µDh,νs(k∆h)n−1−ℓq(k∆h)Φℓ

ν (8.15)

by C((n−1−ℓ)k)−1(1+ | log h|)‖Φℓ
ν‖ ≤ C ′h2((n−1−ℓ)k)−1(1+ | log h|) for ℓ ≤ n−2

and Ck−1(1+ | log h|)‖Φn−1
ν ‖ ≤ C ′h2k−1(1+ | log h|) for ℓ = n−1. The resulting sum

is bounded by Ch2(1+ | log h|2) as in (5.5). Note that (1.9) was not available for CN.
Summing over µ, we get

‖Dhεn‖ ≤ C1

n−3
∑

ℓ=1

((n − 2 − ℓ)k)
−1/2 ‖Dhεℓ‖ k

+ C1k
−1/2

(

‖Dhεn−1‖ + ‖Dhεn−2‖
)

k + C2h
2(1 + | log h|2) (8.16)

which as before leads to (8.4). Similar estimates could be made for SDIRK2 or BDF2.
We have presumed here that the time-dependent position of the interface was

given. In a more realistic problem its position would depend on u, and the errors in
u and the interface position would be coupled. The estimates here apply only to the
error in u due to the treatment of the interface. The control of errors in ∇u as well
as u, given by (8.4), can be important in computing the interface motion.

Proof of Lemma 8.1. The proof is similar to that of Lemmas 2.2 and 2.6 in
[3] for the time-independent case. Since k = O(h), an irregular point of any kind at
time nk must be within O(h) of Γ(nk); this fact depends on the boundedness the
t-derivative of the map defining Γ(t). We suppose first that τ is supported in a coor-
dinate patch; specifically we assume that τ(jh, nk) is nonzero only for irregular points
(jh, nk) in a set where Γ(t) can be given by xd = Y (x̃, t); here x̃ = (x1, . . . , xd−1) and
Y is C1. We claim that with n fixed, for each j̃h = (j1h, . . . , jd−1h), any irregular
point (j̃h, jdh, nk) in this set, with some jd, must have |jdh − Y (j̃h, nk)| ≤ C0h for
some constant C0. Thus for each n and j̃, the number of irregular points (j̃h, jdh, nk)
must be bounded. To prove the claim, suppose we have such an irregular point. Then
there is a point on Γ(nk) of the form (x̃∗, Y (x̃∗)) within O(h). (We omit the depen-
dence on nk for simplicity.) Then x̃∗ − j̃h = O(h); therefore Y (x̃∗) − Y (j̃h) = O(h)
also, and thus jdh is within O(h) of Y (j̃h). This proves the claim.

Assuming τ has limited support as above, we now define

Φn
0 (j̃h) =

1

L

L/h
∑

ℓ=1

τ(j̃h, ℓh, nk) h , (8.17)

Φn
d (j̃h, jdh) =

jℓ
∑

ℓ=1

(

τ(j̃h, ℓh, nk) − Φn
0 (j̃h)

)

h (8.18)

for 1 ≤ jd ≤ L/h and Φn
d (j̃h, 0) = 0. Φn

0 extends to a periodic function since it
depends only on j̃h, and Φn

d extends periodically since Φn
d (j̃h, L) = 0. Moreover

τ = D−
d Φn

d + Φn
0 . (8.19)
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From the claim above, there are only O(1) nonzero terms in (8.17) and thus ‖Φn
0‖ ≤

Ch‖τ‖ ≤ C ′h2. Then for the same reason ‖Φn
d‖ ≤ C1h‖τ‖ + C2h

2 ≤ C ′h2. This
proves the lemma for the special case we have considered.

For general τ , we can use compactness to cover the time-dependent boundary by
a finite number of coordinate patches in which one spatial coordinate is a function of
the others. The irregular points for each such patch can be handled as above. (Cf.
the proof of Lemma 2.2 in [3].) For the remaining regular points, τ = O(h2), and
these points contribute to Φn

0 .

Appendix A. Particular Schemes. We summarize the four time-stepping
methods that are emphasized here, as applied to (1.1). All are second-order accurate
and A-stable. All except CN are L-stable. We give the function s(z) for the single-step
methods.

The familiar Crank-Nicolson (CN) method is

(1 − k

2
∆h)un+1 = (1 +

k

2
∆h)un + kfn+1/2 , (A.1)

s(z) = (1 + z/2)(1 − z/2)−1 . (A.2)

The TGA method, as defined in [25] and adapted in [18], is

(1 − kµ1∆h)(1 − kµ2∆h)un+1 = (1 + kµ3∆h)un + (1 + kµ4∆h)kfn+1/2 (A.3)

where a is chosen with 1/2 < a < 2 −
√

2 and

µ1, µ2 = (a ∓
√

a2 − 4a + 2)/2 , µ3 = 1 − a , µ4 = (1/2) − a (A.4)

s(z) = (1 + µ3z)(1 − µ1z)−1(1 − µ2z)−1 . (A.5)

SDIRK2, a singly diagonally implicit Runge-Kutta method, is (e.g., see [8], p. 98)

un+1 = un +
k

2
(K1 + K2) , (A.6)

K1 = ∆hun + kγ∆hK1 + fn+γ (A.7)

K2 = ∆hun + k(1 − 2γ)∆hK1 + kγ∆hK2 + fn+1−γ (A.8)

where

γ = (2 ±
√

2)/2 (A.9)

s(z) = (1 + (1 − 2γ)z)(1 − γz)−2 . (A.10)

BDF2, the second-order backward difference formula is (e.g., see [8], pp. 364-66, or
[9], p. 27)

3

2
un+1 − 2un +

1

2
un−1 = k∆hun+1 + kfn+1 . (A.11)

BDF2 is discussed further in Sec. 6.
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