
SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA

OF SEQUENTIAL GAMES

SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

Abstract. We develop first-order smoothing techniques for saddle-point problems
that arise in the Nash equilibria computation of sequential games. The crux of our
work is a construction of suitable prox-functions for a certain class of polytopes that
encode the sequential nature of the games. An implementation based on our smooth-
ing techniques computes approximate Nash equilibria for games that are four orders of
magnitude larger than what conventional computational approaches can handle.

1. Introduction

The Nash equilibria of two-person, zero-sum sequential games are the solutions to

(1) min
x∈X

max
y∈Y

〈y, Ax〉 = max
y∈Y

min
x∈X

〈y, Ax〉

where X and Y are polytopes defining the players’ strategies and A is the payoff ma-
trix [13, 14]. When the minimizer plays a strategy x ∈ X and the maximizer plays
y ∈ Y , the expected utility to the maximizer is 〈y, Ax〉 and, since the game is zero-
sum, the minimizer’s expected utility is 〈y,−Ax〉. Problem (1) can be expressed as
a linear program, but the resulting formulations are prohibitively large for most inter-
esting games. For instance, the payoff matrix A in (1) for limit Texas Hold’em poker
has dimension 1014 × 1014 and contains more than 1018 non-zero entries. Problems of
this magnitude are far beyond the capabilities of state-of-the-art general-purpose linear
programming solvers. Even solving a substantially smaller game with a 106 × 106 payoff
matrix containing 50 million non-zeros with conventional linear programming solvers is
computationally demanding both in terms of time and memory [3].

We present a novel algorithmic approach for finding approximate solutions to (1).
To this end, we define polytopes called complexes and concentrate on solving (1) when
X and Y are polytopes of this type. Complexes generalize simplexes and include as a
special case the strategy sets of sequential games. In this paper, we adapt Nesterov’s
smoothing techniques [11, 12] for approximating (1). In particular, we develop first-order
algorithms that take O(1/ǫ) iterations to compute x ∈ X and y ∈ Y such that

0 ≤ max
v∈Y

〈v, Ax〉 − min
u∈X

〈y, Au〉 ≤ ǫ.

Such a pair of strategies is called an ǫ-equilibrium.
An attractive feature of our algorithms is their simplicity and the low computational

cost of each iteration. An implementation based on our approach has been successful in
obtaining ǫ-equilibria for sequential games where the payoff matrix A is of size 108 × 108

* Tepper School of Business, Carnegie Mellon University.
† Computer Science Department, Carnegie Mellon University.

1

2 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

and contains more than 1012 entries [2]. (This is four orders of magnitude larger than
what was previously possible.) That implementation is a key component of several
successful poker-playing computer programs [4, 5].

The paper is organized as follows. Section 2 summarizes Nesterov’s smoothing tech-
nique as it applies to problem (1). We highlight that technique’s crucial ingredient, a
pair of suitable prox-functions for the sets X and Y . Section 3 presents our main idea,
a template for constructing suitable prox-functions for complexes. Section 4 considers
the special case of uniform complexes. For these complexes we provide explicit bounds
on the number of iterations needed for finding an ǫ-equilibrium. Section 5 summarizes
some computational experience with an implementation based on our approach. Finally,
Section 6 summarizes the main conclusions and discusses ideas for future work.

2. Smoothing techniques

Problem (1) can be stated as

(2) min
x∈X

f(x) = max
y∈Y

φ(y)

where
f(x) = max

y∈Y
〈Ay,x〉 and φ(y) = min

x∈X
〈Ay,x〉.

The functions f and φ are respectively convex and concave non-smooth functions. The
left-hand side of (2) is a standard convex minimization problem of the form

(3) h̄ := min{h(x) : x ∈ X}.
First-order methods for solving (3) are algorithms whose search direction at each iteration
is obtained using only the first-order information of h, such as its gradient or subgradient.
When h is smooth with Lipschitz gradient, there is a first-order algorithm for finding a
point x ∈ X such that h(x) ≤ h̄+ ǫ after O(1/

√
ǫ) iterations [9]. When h is non-smooth,

subgradient algorithms can be applied, but they have a worst-case complexity of O(1/ǫ2)
iterations [6]. However, that pessimistic result is based on treating h as a black-box where
the value and subgradient are accessed via an oracle. For non-smooth functions with a
suitable max structure, Nesterov devised first-order algorithms requiring only O(1/ǫ)
iterations by applying a clever smoothing technique [11, 12]. In this paper, we adapt that
smoothing technique for solving problem (1).

The key component of Nesterov’s smoothing technique is a pair of prox-functions for
the sets X and Y . These prox-functions are used to construct smooth approximations
fµ ≈ f and φµ ≈ φ. To obtain approximate solutions to (2), gradient-based algorithms
can then be applied to fµ and φµ.

Definition 2.1. Assume Q ⊆ R
n is a convex compact set. A function d : Q → R is a

prox-function if it satisfies the following properties

• d is strongly convex in Q, i.e., there exists σ > 0 such that for all x,y ∈ Q, and
α ∈ [0, 1]

(4) d(αx + (1 − α)y) ≤ αd(x) + (1 − α)d(y) − 1

2
σα(1 − α)‖x − y‖2.

The largest value of the constant σ that satisfies (4) is the strong convexity mod-

ulus of d.

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 3

• min{d(x) : x ∈ Q} = 0.

When d : Q → R is differentiable, (4) can be equivalently stated in either of the
following two forms [10]:

(5) d(y) ≥ d(x) + 〈∇d(x),y − x〉 +
1

2
σ‖x − y‖2 for all x,y ∈ Q.

(6) 〈∇d(x) + ∇d(y),x − y〉 ≥ σ‖x − y‖2 for all x,y ∈ Q.

Assume dX and dY are prox-functions for the sets X and Y respectively. Then for any
given µ > 0, the smooth approximations fµ ≈ f and φµ ≈ φ are

fµ(x) := max{〈x, Ay〉 − µdY(y) : y ∈ Y}, φµ(y) := min{〈x, Ay〉 + µdX (x) : x ∈ X}.
The following result of Nesterov provides the theoretical foundation of our first-order

algorithms for solving (1). Let DX := max{dX (x) : x ∈ X}, and let σX denote the strong
convexity modulus of dX . Let DY and σY be defined likewise for Y and dY .

Theorem 2.2 (Nesterov [11, 12]). There is a procedure based on the above smoothing

technique that after N iterations generates a pair of points (xN ,yN) ∈ X × Y such that

(7) 0 ≤ f(xN) − φ(yN) ≤ 4 ‖A‖
N + 1

√

DXDY
σXσY

.

Furthermore, each iteration of the procedure performs some elementary operations, three

matrix-vector multiplications by A, and requires the exact solution of three subproblems

of the form

(8) max
x∈X

{〈g,x〉 − dX (x)} or max
y∈Y

{〈g,y〉 − dY(y)}.

In Section 5, we will present an algorithm based on Theorem 2.2. Before that, we first
provide a method for solving the subproblems in (8) as these are critical steps in the
algorithm. These subproblems can be phrased in terms of the conjugate of the functions
dX and dY . The conjugate of d : Q → R is the function d∗ : R

n → R defined by

d∗(s) := max{〈s,x〉 − d(x) : x ∈ Q}.
If d is strongly convex and Q is compact, then the conjugate d∗ is differentiable every-
where and

∇d∗(s) = argmax{〈s,x〉 − d(x) : x ∈ Q}.
For an algorithm based on Theorem 2.2 to be practical, the subproblems (8) must

be solvable quickly since they are solved three times at each iteration of the algorithm.
In other words, the conjugates d∗

X and d∗
Y and their gradients ∇d∗

X and ∇d∗
Y should be

easily computable. This motivates the following definition.

Definition 2.3. Assume Q ⊆ R
n is a compact convex set. We say that d : Q → R is a

nice prox-function for Q if it satisfies the following three conditions:

(i) d is continuous and strongly convex in Q, and differentiable in the relative interior
of Q.

(ii) The conjugate d∗ satisfies d∗(0) = 0.
(iii) The conjugate function d∗ and its gradient ∇d∗ are easily computable.

4 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

Example 1. For the k-dimensional simplex ∆k, the entropy function d(x) = ln k +
∑k

i=1 xi ln xi, and the Euclidean distance function d(x) = 1
2

∑k

i=1(xi − 1/k)2 are nice
prox-functions. Indeed, for the entropy prox-function, the gradient of the conjugate
∇d∗(s) is given by the closed-form expression

∇id
∗(s) =

esi

∑k

j=1 esj

, i = 1, . . . , k.

For the Euclidean prox-function, the gradient of the conjugate ∇d∗(s) is given by the
expression

∇id
∗(s) = (si − λ)+, i = 1, . . . , k,

where λ ∈ R is such that
∑k

j=1(sj − λ)+ = 1. This value of λ can be found in O(k ln k)
steps via a binary search in the sorted components of s.

3. Complexes

This section presents the essential elements of our approach. We define the class of
complex polytopes and provide a generic technique for constructing nice prox-functions
for complexes, using as building blocks any family of nice prox-functions for simplexes.
This allows us to create practical first-order algorithms based on Theorem 2.2 for solving
the saddle-point problem (1) over complexes X and Y .

A complex can be seen as a tree whose nodes are simplexes. The tree structure endows
the complex with a certain kind of sequential feature. In particular, complexes include
the types of polytopes that arise in the computation of Nash equilibria of sequential
games. The latter is an immediate consequence of the sequence form formulation of
Nash equilibria for sequential games, as detailed in [13, 14].

Definition 3.1. The class of complexes is recursively defined as follows:

• Basic sets: Every standard simplex ∆m :=
{

x ∈ [0, 1]m :
∑m

j=1 xj = 1
}

is a com-

plex.
• Cartesian product: If Q1, . . . , Qk are complexes then Q1 × · · · ×Qk is a complex.
• Branching: If P ⊆ [0, 1]p and Q ⊆ [0, 1]q are complexes and i ∈ {1, . . . , p} then

P i Q :=
{

(x,y) ∈ R
p+q : x ∈ P, y ∈ xi · Q

}

is a complex.

The Branching operation in Definition 3.1 has the following sequential interpretation:
the vector x is the set of “current stage” decision variables, and the vector y is the set
of “next stage” decision variables following the i-th current decision variable xi. Notice
that a complex can be written in the form {x ≥ 0 : Ex = e} for some matrix E with
entries in {−1, 0, 1} and vector e with entries in {0, 1}.

We now present our general procedure for constructing nice prox-functions for com-
plexes. The construction relies on the following dilation operation from convex analy-
sis [7]. Given a compact set K ⊆ R

d and a function Φ: K → R, define the set K̄ ⊆ R
d+1

as

K̄ :=
{

(x,y) ∈ R
d+1 : x ∈ [0, 1], y ∈ x · K

}

,

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 5

and define the function Φ̄ : K̄ → R as

Φ̄(x,y) =

{

x · Φ
(

y

x

)

if x > 0,
0 if x = 0.

Proposition 3.2. If K is compact and Φ is continuous in K, then Φ̄ is continuous in

K̄. Also if (x,y) ∈ K̄ is such that x > 0 and ∇Φ (y/x) exists, then ∇Φ̄ (x,y) exists and

(9)
∇xΦ̄(x,y) = Φ

(

y

x

)

−
〈

∇Φ
(

y

x

)

, y

x

〉

,

∇yΦ̄(x,y) = ∇Φ
(

y

x

)

.

Proof. The continuity follows via a straightforward limiting argument: Assume
(xi,yi), (x,y) ∈ K̄ and (xi,yi) → (x,y). If x > 0 then yi/xi,y/x ∈ K and yi/xi → y/x.
Hence, since Φ is continuous, we get

Φ̄(xi,yi) = Φ(yi/xi) → Φ(y/x) = Φ̄(x,y).

On the other hand, if x = 0 then xi → 0. It then follows that

|Φ̄(xi,yi)| = |xiΦ(yi/xi)| ≤ xi max{Φ(z) : z ∈ K} → 0 = Φ̄(x,y).

Finally, the identities in (9) follow by applying the chain rule. �

Assume we are given nice prox-functions dm for ∆m, m ∈ Z
+. Using this family, we

recursively construct functions for complexes as follows:

• Basic sets: For Q = ∆m, let dQ := dm.
• Cartesian product: If Q1, . . . , Qk are complexes and Q = Q1 × · · · × Qk, let

dQ(x1, . . . ,xk) :=
k
∑

i=1

dQi
(xi)

where dQ1
, . . . , dQk

are nice prox-functions for their respective complexes.
• Branching: If P ⊆ [0, 1]p and R ⊆ [0, 1]r are complexes, i ∈ {1, . . . , p}, and

Q = P i R, let

(10) dQ(x,y) := dP (x) + d̄R(xi,y)

where dP and dR are nice prox-functions for P and R.

Theorem 3.3. The functions dQ defined above are nice prox-functions for each complex

Q.

To prove Theorem 3.3, it suffices to show that the properties of nice prox-functions are
preserved for the Cartesian product and Branching steps. Since the Cartesian product
step is straightforward, we concentrate on the Branching step as stated in the following
proposition.

Proposition 3.4. Assume P ⊆ [0, 1]p and R ⊆ [0, 1]r are complexes, i ∈ {1, . . . , p},
and Q = P i R. Furthermore, assume dP and dR are nice prox-functions for P and R
respectively and

dQ(x,y) := dP (x) + d̄R(xi,y).

Then

6 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

(i) dQ is continuous and strongly convex in Q and differentiable in the relative inte-

rior of Q.

(ii) d∗
Q and ∇d∗

Q are computable via the following expressions

(11) d∗
Q(u,v) = d∗

P (ũ)

(12) ∇d∗
Q(u,v) = (∇d∗

P (ũ),∇id
∗
P (ũ) · ∇d∗

R(v))

where

ũj =

{

uj if j 6= i,
ui + d∗

R(v) if j = i.

Proof.

(i) The continuity of dQ in Q and the differentiability in the relative interior of Q
follow from (10) and Proposition 3.2. Since dQ is continuous in Q, to prove its
strong convexity, from (6) it suffices to show that there exists σ > 0 such that

(13) 〈∇dQ(x,y) −∇dQ(x̃, ỹ), (x,y) − (x̃, ỹ)〉 ≥ σ‖(x,y) − (x̃, ỹ)‖2

for all (x,y) and (x̃, ỹ) in the relative interior of Q.
Assume (x,y) and (x̃, ỹ) are in the relative interior of Q and set z := y/xi and

z̃ := ỹ/x̃i. From (10), Proposition 3.2, and some elementary calculations we get

〈∇dQ(x,y) −∇dQ(x̃, ỹ), (x,y) − (x̃, ỹ)〉 = 〈∇dP (x) −∇dP (x̃),x − x̃〉
+ xi · (dR(z) − dR(z̃) + 〈∇dR(z̃), z̃ − z〉)
+ x̃i · (dR(z̃) − dR(z) + 〈∇dR(z), z − z̃〉) .

Therefore, since dP and dR are strongly convex, (5) yields
(14)
〈∇dQ(x,y) −∇dQ(x̃, ỹ), (x,y) − (x̃, ỹ)〉 ≥ σP‖x − x̃‖2 + 1

2
σRxi‖z − z̃‖2 + 1

2
σRx̃i‖z − z̃‖2

= σP‖x − x̃‖2 + σRx̂i‖z − z̃‖2,

where x̂i = xi+x̃i

2
and σP , σR > 0 are the strong convexity moduli of dP and dR

respectively.
Next, we bound the right-hand side of (13). Applying the triangle inequality

we get

(15)
‖(x,y) − (x̃, ỹ)‖ ≤ ‖x − x̃‖ + ‖xiz − x̃iz̃‖

= ‖x − x̃‖ + ‖1
2
(xi + x̃i)(z − z̃) + 1

2
(xi − x̃i)(z + z̃)‖

≤ ‖x − x̃‖ + x̂i‖z − z̃‖ + 1
2
|xi − x̃i|‖z + z̃‖.

Since R is compact, M := max{‖z‖ : z ∈ R} < ∞. Therefore from (15) we get

‖(x,y) − (x̃, ỹ)‖ ≤ (1 + M)‖x − x̃‖ + x̂i‖z − z̃‖.
Now, by the Cauchy-Schwarz inequality,

‖(x,y) − (x̃, ỹ)‖2 ≤
(

(1 + M)2 1

σP

+
x̂i

σR

)

(

σP‖x − x̃‖2 + σRx̂i‖z − z̃‖2
)

.

But x̂i ∈ [0, 1] because x, x̃ ∈ P ⊆ [0, 1]p, so

(16) ‖(x,y) − (x̃, ỹ)‖2 ≤
(

(1 + M)2 1

σP

+
1

σR

)

(

σP‖x − x̃‖2 + σRx̂i‖z − z̃‖2
)

.

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 7

From (14) and (16) it follows that (13) holds for

σ =
1

(1+M)2

σP
+ 1

σR

> 0.

(ii) For a given vector (u,v) ∈ R
p+r we have

(17)

d∗
Q(u,v) = sup{〈(u,v), (x,y)〉 − dQ(x,y) : (x,y) ∈ Q}

= sup{〈u,x〉 + 〈v,y〉 − dP (x) − d̄R(xi,y) : x ∈ P, y ∈ xi · R}
= sup{〈u,x〉 − dP (x) + xi · (〈v, z〉 − dR(z)) : x ∈ P, z ∈ R, xi > 0}
= sup{〈u,x〉 − dP (x) + xi · d∗

R(z) : x ∈ P}
= sup{〈ũ,x〉 − dP (x) : x ∈ P}
= d∗

P (ũ).

The third and fourth steps above hold by the continuity of d̄R and dP . Hence (11) is
proven. To prove (12), observe that the maximizer in the second to last step in (17)
is x̄ = ∇d∗

P (ũ). Next, consider two cases depending on the value of x̄i. If x̄i > 0
then the maximizer in the third step in (17) is z̄ = ∇d∗

R(ṽ), and consequently the
maximizer in the first step in (17) is (x̄, x̄i · z̄). If x̄i = 0 then the maximizer in the
first step in (17) is (x̄,0). In either case the maximizer in the first step in (17) is
∇d∗

Q(u,v) = (x̄, x̄i · z̄) = (∇d∗
P (ũ),∇id

∗
P (ũ) · ∇d∗

R(v)). �

Remark 3.5. We can generalize the above construction and results to weighted versions
of the prox-functions. More precisely, in the Branching step, we could define dQ(x,y) :=
wP dP (x) + wRd̄R(xi,y) for some constants wP , wR > 0. We will elaborate on this idea
to obtain prox-functions yielding better complexity guarantees for uniform complexes.

4. Uniform complexes

In this section we derive complexity results for first-order smoothing algorithms for
the problem (1) in the special case when X and Y are uniform complexes. This special
case of (1) covers the formulation of Nash equilibrium for instances of many interesting
games. Indeed, as will be discussed in Section 5, uniform complexes naturally arise in
multi-round sequential games such as poker.

Definition 4.1. Assume that a complex Q ⊆ [0, 1]q, an index set I = {i1, . . . , ib} ⊆
{1, . . . , q}, and a positive integer k are given. Define Qr, r = 1, 2, . . . , as follows

• Q1 := Q × · · · × Q (k times).

• Qr+1 := Q̂r × · · · × Q̂r (k times), where

Q̂r := Q I Qr := {(x,y1, . . . ,yb) : x ∈ Q, yj ∈ xij · Qr, j = 1, . . . , b}.
We will refer to Qr as the r-th uniform complex generated by Q, I, k and will sometimes
write it as Q(Q, I, k, r).

Remark 4.2. Notice that the operation I is the same as the operation i applied b
times. More precisely,

Q I Qr = Q i1 Qr i2 · · · ib Qr.

Given a nice prox-function dQ for Q and constants wr > 0, r = 1, 2, . . . , consider the
following weighted version of our previous construction of prox-functions for complexes.

8 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

• For Q1 = Q × · · · × Q (k times) let

dQ1
(x1, . . . ,xk) :=

k
∑

j=1

dQ(xj)

• For Qr+1 = Q̂r × · · · × Q̂r (k times), let

dQr+1
(u1, . . . ,uk) :=

k
∑

j=1

dQ̂r
(uj),

where dQ̂r
is defined as follows

dQ̂r
(x,y1, . . . ,yb) := wr · dQ(x) +

b
∑

j=1

d̄Qr
(xij ,y).

We now present an explicit iteration complexity bound for a first-order smoothing
algorithm for the saddle-point problem (1), when X and Y are uniform complexes.

Theorem 4.3. Suppose A, X , Y, dX , and dY satisfy the following conditions:

(i) X = Q(Q, I, k, r) ⊆ R
m and Y = Q(Q̃, Ĩ, k̃, r̃) ⊆ R

n.

(ii) The prox-functions dX , dY are constructed as above with weights wj =

(kM)2(bk)j, j = 1, . . . , r − 1 and w̃j = (k̃M̃)2(b̃k̃)j, j = 1, . . . , r̃ − 1 respectively,

where b = |I|, b̃ = |Ĩ|, M := max{‖u‖ : u ∈ Q}, M̃ := max{‖u‖ : u ∈ Q̃}.
Then after N iterations the procedure from Theorem 2.2 yields (x,y) ∈ X ×Y such that

(18) 0 ≤ f(x) − φ(y) = max
v∈Y

〈v, Ax〉 − min
u∈X

〈y, Au〉 ≤ 4‖A‖G
N + 1

√

DQDQ̃

σQσQ̃

,

where G = mn(kMr)(k̃M̃ r̃).

The crux of the proof of Theorem 4.3 is Lemma 4.4 below, which bounds the ratio of
the maximum value to the strong convexity modulus for the prox-functions for uniform
complexes. This ratio can be seen as a measure of the prox-function’s quality. Lemma 4.4
provides an estimate of this ratio for the prox-functions dQr

constructed above, provided
the weights wr are chosen judiciously.

Lemma 4.4. Assume Q and Qr, r = 1, 2, . . . , are as in Definition 4.1. Let σ, σr, D,

Dr, and M be defined as follows

σ := strong convexity modulus of dQ, σr := strong convexity modulus of dQr
,

D := max{dQ(z) : z ∈ Q}, Dr := max{dQr
(z) : z ∈ Qr},

M := max{‖z‖ : z ∈ Q}.
If wr = (kM)2(bk)r, r = 1, 2, . . . then

(19)
Dr

σr

≤ b2r−2k2r+2r2M2D

σ
.

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 9

Proof of Theorem 4.3. Since X = Q(Q, I, k, r) ⊆ R
m, Lemma 4.4 yields

DX
σX

≤ b2r−2k2r+2r2M2DQ

σQ

.

In addition, a simple induction argument shows the dimension m of X = Q(Q, I, k, r)

satisfies m = kq · (bk)r−1
bk−1

. Therefore

(20)
DX
σX

≤ m2k2r2M2DQ

σQ

.

Similarly,

(21)
DY
σY

≤ n2k̃2r̃2M̃2
DQ̃

σQ̃

.

The iteration bound (18) now follows from (7), (20), and (21). �

The proof of Lemma 4.4 in turn relies on the following technical lemma.

Lemma 4.5. Let Mr := max{‖z‖ : z ∈ Qr}. Then the strong convexity moduli σr of

dQr
, r = 1, 2, . . . satisfy

(22) σr+1 ≥
1

k(1+Mr)2

wrσ
+ bk

σr

.

Proof. Let σ̂r be the strong convexity modulus of dQ̂r
. From the construction of dQr

,
it follows that σr+1 ≥ σ̂r/k. Hence it suffices to bound σ̂r. Proceeding as in the proof of
Proposition 3.4(i), it follows that for all w = (x,y1, . . . ,yb) and w̃ = (x̃, ỹ1, . . . , ỹb) in

the relative interior of Q̂r we have

(23) 〈∇dQ̂r
(w) −∇dQ̂r

(w̃),w − w̃〉 ≥ wrσ‖x − x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2

and

(24) ‖w − w̃‖ ≤ (1 + Mr)‖x − x̃‖ +
b
∑

j=1

x̂ij‖zj − z̃j‖,

where zj = yj/xij , and z̃j = ỹj/x̃ij for j = 1, . . . , b. Applying the Cauchy-Schwarz
inequality to (24) we get
(25)

‖w − w̃‖2 ≤
(

(1 + Mr)
2

wrσ
+

∑b

j=1 x̂ij

σr

)(

wrσ‖x − x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2

)

≤
(

(1 + Mr)
2

wrσ
+

b

σr

)

(

wrσ‖x − x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2

)

.

From (23), (25), and the continuity of dQ̂r
we obtain

σ̂r ≥
1

(1+Mr)2

wrσ
+ b

σr

,

10 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

which yields (22) since σr+1 ≥ σ̂r/k. �

Proof of Lemma 4.4. Let Mr := max{‖z‖ : z ∈ Qr}. We have M1 = kM and
Mr+1 ≤ k(M + bMr), so

1 + Mr ≤ kM(bk)r, r = 1, 2,

Hence wr ≥ (1+Mr)2

(bk)r , and consequently (22) yields

1

(bk)r+1σr+1

≤ 1

bσ
+

1

(bk)rσr

.

Therefore, since σ1 ≥ σ/k, it follows that

(26)
1

(bk)rσr

≤ r

bσ
, r = 1, 2,

On the other hand, from the construction of Qr and dQr
we have

D1 ≤ kD, Dr+1 ≤ k(wrD + bDr), r = 1, 2, . . .

so,

Dr ≤ kD

(

(bk)r−1 +
r−1
∑

j=1

wj(bk)r−1−j

)

.

Thus

(27)

Dr ≤ kD
(

(bk)r−1 +
∑r−1

j=1 wj(bk)r−1−j
)

= kD
(

(bk)r−1 + (kM)2
∑r−1

j=1(bk)j(bk)r−1−j
)

= kD(1 + (kM)2(r − 1))(bk)r−1

≤ krD(kM)2(bk)r−1.

Finally (19) follows by putting together (26) and (27). �

For the special case when the norm in R
q and each R

qr is the Euclidean norm, we can
sharpen the bound in Lemma 4.4, and thus also the bound in Theorem 4.3.

Lemma 4.6. Assume b, M,D,Dr, σ, and σr, are as in Lemma 4.4, and the norm in R
q

and each R
qr is the Euclidean norm. If wr = kM2kr, r = 1, 2, . . . , then

(28)
Dr

σr

≤ b2r−2kr+1r2M2D

σ
.

Proof. For the Euclidean norm we have σr+1 = σ̂r, where σ̂r is the strong convexity
modulus of dQ̂r

. Next, we proceed to bound σ̂r as in the proof of Lemma 4.5. For all

w = (x,y1, . . . ,yb) and w̃ = (x̃, ỹ1, . . . , ỹb) in the relative interior of Q̂r the inequality
(23) holds. Next, instead of (24) we can use

‖w − w̃‖2 = ‖x − x̃‖2 +
b
∑

j=1

‖xijz
j − x̃ij z̃

j‖2

≤ ‖x − x̃‖2 +
b
∑

j=1

(

|xij − x̃ij |Mr + x̂ij‖zj − z̃j‖
)2

.

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 11

Hence, by the Cauchy-Schwarz inequality, we get
(29)

‖w − w̃‖2 ≤ ‖x − x̃‖2 +

(

M2
r

wrσ
+

b

σr

)

(

wrσ‖x − x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2

)

≤
(

(1 + M2
r)

wrσ
+

b

σr

)

(

wrσ‖x − x̃‖2 + σr

b
∑

j=1

x̂ij‖zj − z̃j‖2

)

.

Thus, the bound in Lemma 4.5 can be sharpened to

(30) σr+1 = σ̂r ≥
1

1+M2
r

wrσ
+ b

σr

.

Furthermore, in this case M2
1 = kM2 and M2

r+1 ≤ k(M2 + bM2
r) which implies

1 + M2
r ≤ kM2(bk)r.

Hence wr ≥ 1+M2
r

br , and consequently (30) yields

1

br+1σr+1

≤ 1

bσ
+

1

brσr

.

Therefore, since σ1 = σ, it follows that

(31)
1

brσr

≤ r

bσ
, r = 1, 2,

On the other hand, since D1 = kD and Dr+1 ≤ k(wrD + bDr), it follows that

(32)

Dr ≤ kD
(

(bk)r−1 +
∑r−1

j=1 wj(bk)r−1−j
)

= kD
(

(bk)r−1 + kM2
∑r−1

j=1 kj(bk)r−1−j
)

≤ kD(1 + kM2(r − 1))(bk)r−1

≤ k2rDM2(bk)r−1.

Finally (28) follows by putting together (31) and (32). �

We conclude this section with an estimate on the number of extreme points of the uni-
form complexes Q(Q, I, k, r). This highlights the intricate geometry of these polytopes.

Proposition 4.7. Assume Q, I, b, k are as in Definition 4.1. For r = 1, 2, . . . , the

number of extreme points of Qr is at least vkr

, where v is the number of extreme points

of Q. When Q is a simplex, the number of extreme points of Qr is b
kr−k
k−1 vkr

.

Proof. Let vr and v̂r denote the number of extreme points of Qr and Q̂r respectively.
Observe that

v1 = vk, vr+1 = v̂k
r ≥ vk

r , r = 1, 2,

Thus vr ≥ vkr

, r = 1,
When Q is a simplex, we have

v1 = vk, vr+1 = v̂k
r = (bvr)

k, r = 1, 2,

Thus vr = b
kr−k
k−1 vkr

. �

12 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

5. Implementation and application

In this section we discuss our computational experience with our implementation of
Nesterov’s excessive gap technique [11]. Section 5.1 presents a description of this algo-
rithm specialized for the problem (1). The prox-functions used in our implementation
are the same as the ones designed in this paper. In Section 5.2 we briefly summarize
some computational experiments, and in Section 5.3 we discuss how the prox-functions
designed in this paper have enabled the application of Nesterov’s excessive gap technique
to solving real-world instances of poker.

5.1. Nesterov’s Excessive Gap Technique. Assume dX and dY are nice prox func-
tions for X and Y respectively. For µX , µY > 0 consider the pair of problems:

fµY
(x) := max{〈x, Ay〉−µYdY(y) : y ∈ Y}, φµX

(y) := min{〈x, Ay〉+µXdQ(x) : x ∈ X}.
The algorithm below generates iterates (xk,yk, µk

X , µk
Y) with µk

X , µk
Y decreasing to zero

and such that the following excessive gap condition is satisfied at each iteration:

(33) fµk
Y
(xk) ≤ φµk

X
(yk).

Intuitively, for small values of µX and µY , fµY
≈ f and φµX

≈ φ. Since f(x) ≥ φ(y)
for all x ∈ X , y ∈ Y and the excessive gap condition (33) is maintained for all iterates
(xk,yk) it follows that f(xk) ≈ φ(yk) when µk

X and µk
Y are small.

The detailed EGT (Excessive Gap Technique) algorithm is as follows.

EGT algorithm

Input: Nice prox functions dX , dY for X ⊆ R
m,Y ⊆ R

n respectively,
A ∈ R

m×n, and a positive integer N
Output: xN ∈ X ,yN ∈ Y such that

0 ≤ f(xN) − φ(yN) = max
v∈Y

〈v, AxN〉 − min
u∈X

〈yN , Au〉 ≤ 4‖A‖
N + 1

√

DXDY
σXσY

(1) µ0
X = µ0

Y = ‖A‖√
σXσY

(2) x̂ = ∇d∗
X (0)

(3) y0 = ∇d∗
Y

(

1
µ0
Y

Ax̂
)

(4) x0 = ∇d∗
X

(

∇dX (x̂) + 1
µ0
X

ATy0
)

(5) For k = 0, 1, . . . , N:

(a) τ = 2
k+3

(b) If k is even: /* Shrink µX */

(i) x̆ = ∇d∗
X

(

− 1
µk
X

ATyk
)

(ii) x̂ = (1 − τ)xk + τ x̆

(iii) ŷ = ∇d∗
Y

(

1
µk
Y

Ax̂
)

(iv) x̃ = ∇d∗
X

(

∇dX (x̆) − τ

(1−τ)µk
X

ATŷ
)

(v) yk+1 = (1 − τ)yk + τ ŷ
(vi) xk+1 = (1 − τ)xk + τ x̃

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 13

(vii) µk+1
X = (1 − τ)µk

X
(c) If k is odd: /* Shrink µY */

(i) y̆ = ∇d∗
Y

(

1
µk
Y

Axk
)

(ii) ŷ = (1 − τ)yk + τ y̆

(iii) x̂ = ∇d∗
X

(

− 1
µk
X

ATŷ
)

(iv) ỹ = ∇d∗
Y

(

∇dY (y̆) + τ

(1−τ)µk
Y

Ax̂
)

(v) xk+1 = (1 − τ)xk + τ x̂
(vi) yk+1 = (1 − τ)yk + τ ỹ
(vii) µk+1

Y = (1 − τ)µk
Y

5.2. Computational experiments. Here we summarize our computational experi-
ments which were published in a separate paper [2]. We first conducted experiments
comparing the performance of the EGT algorithm for the prox-functions induced by
the entropy and Euclidean prox-functions on simplexes. Based on our experience with
a variety of sequential games, we concluded that the use of the entropy prox-function
consistently enabled the EGT algorithm to reach a given ǫ about an order of magnitude
faster than was possible with the Euclidean prox-function.

We also developed two heuristics for speeding up the convergence of the algorithm in
practice. (Although we were not able to improve on the worst-case theoretical complexity
bounds given in this paper, we were able to substantially speed up the algorithm in prac-
tice, while maintaining the same theoretical worst-case guarantees.) The first heuristic
attempts to drive the smoothing parameters µX and µY to zero at a rate faster (i.e., a
larger τ) than suggested by the EGT algorithm, while still maintaining the excessive gap
condition. The second heuristic periodically adjusts the µX and µY parameters to keep
them approximately equal to each other, while also aggressively pushing them towards
zero in tandem. Our experimental results, conducted on a range of sequential games,
indicate that these heuristics provide a substantial speed-up of the basic algorithm, par-
ticularly when the game instance is large.

5.3. Application to Texas Hold’em poker. Poker is a game involving elements of
chance, imperfect information, and counter-speculation. Game-theoretic optimal strate-
gies are far from straightforward, often necessitating such tactics as bluffing and slow-
playing. For these reasons, and others, poker has been identified as an important chal-
lenge problem for the field of Artificial Intelligence (AI) [1]. Just as the development of a
computer program capable of beating the world’s best human chess player was once seen
as an important milestone, the development of an expert-level poker-playing program is
now seen as an equally important milestone for AI.

The prox-function construction described in Section 3 has been instrumental in the
development of some recent programs for playing Texas Hold’em poker. One parameter
of Texas Hold’em is the betting structure. Two common betting structures are limit, in
which players may bet a fixed amount, and no-limit, in which players may bet any num-
ber of their chips. Our equilibrium-finding algorithm computed the strategies for both
GS3 [4] and Tartanian [5], which play limit and no-limit Texas Hold’em, respectively.

14 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

In 2007 the Association for the Advancement of Artificial Intelligence (AAAI) held the
second Computer Poker Competition. GS3 placed third (out of 15) in the Limit Equi-
librium competition and third (out of 17) in the Limit Online competition. Tartanian

placed second (out of 10) in the no-limit competition. This is particularly impressive
given the small amount of poker-specific knowledge that was incorporated into those
programs. They instead depend on an equilibrium analysis (which in turn relied on
our prox-function construction) for determining their strategies. As the developers of
GS3 and Tartanian point out, it is currently not feasible to solve their models using
off-the-shelf linear programming solvers.

The approach used for constructing the above players is based on creating lossy ab-
stractions of the original game. These lossy abstractions are smaller sequential games
whose equilibria can be used to construct approximate equilibria for the original games.
The larger the abstraction, the better the quality of the approximate equilibrium. For
the limit competition, our implementation of the EGT algorithm solved an abstracted
game whose payoff matrix was 108 × 108. For the no-limit competition, our algorithm
solved a game with payoff matrix of size 107×107. The uniform complexes introduced in
Section 4 provide a perfect framework for modeling limit Texas Hold’em poker. For this
game, the complex QX for the first player is a uniform complex. The “basic” complex
Q ⊆ [0, 1]14 has the linear description Q = {x ∈ [0, 1]14 : Ex = e} where

E :=

1 1 1
−1 1 1 1

−1 1 1 1
−1 1 1 1

−1 1 1

, e :=

1
0
0
0
0

.

The fourteen columns of E represent the possible sequence of actions that the first player
can take during each betting round of the game. Each row in E encodes a simplex over
three actions: fold, call, and raise. (The last row only allows fold and call.) The set
I = {2, 3, 5, 6, 8, 9, 11, 12, 14} indexes the sequences that do not end with a fold. Texas
Hold’em is played in four rounds so r = 4. Finally, the value of k depends on the quality
of the abstraction. The abstractions in [4] range from k = 6 to k = 40 (the k is actually
different in each round). The complex QY for the second player is also a uniform complex
with similar characteristics.

One particularly attractive feature of the EGT algorithm is the fact that the only
operation performed on the matrix A is a matrix-vector product. This allows for an
implicit representation of A. In the paper describing our implementation [2], we present
an implicit representation for poker that is based on constructing A using Kronecker
products of smaller matrices. Recall the Kronecker product applied to two matrices
B ∈ R

m×n and C ∈ R
p×q, is

B ⊗ C =

b11C · · · b1nC
...

. . .
...

bm1C · · · bmnC

 ∈ R
mp×nq.

SMOOTHING TECHNIQUES FOR COMPUTING NASH EQUILIBRIA 15

For limit Texas Hold’em, we can write the payoff matrix as

A :=

F1 ⊗ B1

F2 ⊗ B2

F3 ⊗ B3

F4 ⊗ B4 + S ⊗ W

.

The component matrices Fi, Bi, S, and W are small enough to be explictly represented
whereas it is infeasible to explicitly represent A. For the games our algorithm is currently
solving, that representation results in memory savings of more than three orders of
magnitude, and enables the solution of game instances that would be impossible even to
represent explicitly in memory.

6. Conclusions and future research

We developed first-order algorithms to approximate Nash equilibria of two-person
zero-sum sequential games. We applied Nesterov’s smoothing technique to the saddle-
point formulation (1) of the Nash equilibrium problem. The heart of our approach
is a construction of nice prox-functions for the complex polytopes in the saddle-point
formulation. An implementation based on our approach has been successful is obtaining
approximate equilibria for sequential games that are four orders of magnitude larger than
what conventional computational approaches can handle.

In contrast to a direct first-order approach to solve the linear programming formulation
of (1) such as that proposed in [8], our approach automatically yields algorithms that
generate feasible strategies x ∈ X , y ∈ Y throughout execution. This is of crucial
importance because points that violate the constraints defining the complexes X ,Y even
so slightly are typically meaningless strategies. Furthermore, the linear programming
formulation of (1) increases the dimension of the problem substantially since it requires
a new variable for each constraint in the description of the complexes X ,Y .

In addition to our first-order smoothing approach to the problem (1), it is conceivable
that specialized versions of other algorithmic approaches may also lead to effective algo-
rithms for solving the saddle-point problem (1). For example, a specialized interior-point
algorithm could use an appropriately designed iterative method to solve the system of
equations at each main iteration. No such approach has been successfully developed so
far. These interesting alternative algorithmic approaches will be the subject of future
research.

References

[1] D. Billings, L. Peña, J. Schaeffer, and D. Szafron. The challenge of poker. Artificial Intelligence,
134(1-2):201–240, January 2002. Special Issue on Games, Computers and Artificial Intelligence.

[2] A. Gilpin, S. Hoda, J. Peña, and T. Sandholm. Gradient-based algorithms for finding Nash equilibria
in extensive form games. In Workshop on Internet and Network Economics (WINE-07), 2007.

[3] A Gilpin and T. Sandholm. Lossless abstraction of imperfect information games. JACM: Journal
of the ACM, 54, 2007.

[4] A. Gilpin, T. Sandholm, and T. Sørensen. Potential-aware automated abstraction of sequential
games, and holistic equilibrium analysis of Texas Hold’em poker. In Proceedings of the National
Conference on Artificial Intelligence (AAAI), Vancouver, Canada, 2007.

16 SAMID HODA∗, ANDREW GILPIN†, AND JAVIER PEÑA∗

[5] A. Gilpin, T. Sandholm, and T. Sørensen. A heads-up no-limit texas hold’em poker player: Dis-
cretized betting models and automatically generated equilibrium-finding programs. In International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Estoril, Portugal, 2008.

[6] J.-L. Goffin. On the convergence rate of subgradient optimization methods. Mathematical Program-
ming, 13:329–347, 1977.

[7] J. Hirriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis. Springer-Verlag, Berlin,
2001.

[8] G. Lan, Z. Lu, and R. Monteiro. Primal-dual first-order methods with O(1/ǫ) iteration-complexity
for cone programming, December 2006. Manuscript.

[9] Y. Nesterov. A method for unconstrained convex minimization problem with rate of convergence
O(1/k2). Doklady AN SSSR, 269:543–547, 1983. Translated to English as Soviet Math. Docl.

[10] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimiza-
tion. Kluwer Academic Publishers, 2004.

[11] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Journal on Opti-
mization, 16(1):235–249, 2005.

[12] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152, 2005.
[13] B. von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,

14:220–246, 1996.
[14] B. von Stengel. Equilibrium computation for games in strategic and extensive form. In Noam

Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game Theory.
Cambridge University Press, 2007.

