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Abstract 

We introduce a family of smoothing algorithms that can produce discontinuous output. 

Unlike most commonly used smoothers, that tend to blur discontinuities in the data, this 

smoother can be used for smoothing with edge detection. We cite examples of other approaches 

to (two-dimensional) smoothing with edge detection in image processing, and apply our one- 

dimensional smoother to sea surface temperature data where the discontinuities arise from 

changes in ocean currents. 
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1. Introduction 

In recent years smoothers have become popular with statisticians and data analysts. For 
example smooth curves superimposed on scatterplots help one to understand the relationship 
between two variables (Mosteller and Tukey, 1977) and smooth curves estimated from data 
are used in nonparametric regression models such as projection pursuit regression (Riedman 
and Stuetzle, 1981). In this paper we introduce a smoother that produces piece-wise smooth 
curves with a small number of diecontinuities in the function or its first derivative. This allows 
certain desirable features such as jumps, or instantaneous slope changes to be present in the 
smcoth curve. We start with a general discussion of smoothing. 

Commonly used smoothers include nmning averages, running .medians (Mosteller and 
Tukey, 1977), smoothing splines (Wahba, 1984 and references cited there) aud running robust 
regressions (Cleveland, 1977). 

Whether we approach smoothing with the objective of summarizing a set of data, or with 
the idea that we are estimating an underlying function, our requirements are similar. We want 
a curve that is close to our data and looks ‘smooth’. 

Closeness to the data is often measured by squared error. Smoothness is more difficult 
to quantify; sometimes it is incorporated by adding to the sum of squared errors a penalty 
proportional to the integrated squared second derivative of the function. In this setup the 
optimal function is a smoothing spline, and the choice of a constant of proportionality governs 
the tradeoff between smootbness and goodness of fit. 

If one is estimating a function in the presence of additive errors essentially the same 
tradeoff arises in terms of bias and variance. For example, if one estimates with running 
averages, the fewer points in the average the lower is the bias and the closer to the data is the 
smooth. Longer windows increase bias, but reduce the variance of the estimate, and produce 
smoother-looking output. 

In some contexts the underlying function is a low frequency signal to which high frequency 
noise is added. The smoother is then thought of as a low-pass filter, and the design of the 
filter involves a tradeoff between noise filtered out and signal extracted. 

-. 

The usual notions of smoothness involve the existence of some number of continuous 
derivatives, or bounds on norms of derivatives. These ways of quantifying smoothness usually 
rule out curves with discontinuities, or discontinuous lower derivatives. Thus they are too 
restrictive for the some smoothing problems. Curves with steps, abruptly changing derivatives 
or even cusps could easily be appropriate for some data, and such curves are also reasonable 
underlying functions in some situations. Consider for example: Sweasy’s kinked demand curve 
(Lipsey, Sparks and Steiner, 1976) in microeconomics, the transition of air resistance from a 
quadratic function of velocity to a linear one at high velocities (Marion, 1970, Set 2.4), the 
expected patterns in the fossil record under the punctuated equilibrium theory of evolution 
(Gould, 1980, Essay 17), or the New Jersey Pick-It Lottery Data (Becker and Chambers, 
1984, section 1.2) in which the payoffs tended to be sharply higher for numbers less than 100 
because people tended not to select lottery numbers with leading zeroes. In some applications, 
such as computer vision, the discontinuity (an edge, say) can be the most important part of 
the function. Most commonly used smoothers blur discontinuities in the function or its first 
derivative. (Even medians can blur discontinuities if the underlying function is not monotone.) 
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Our motivation came from looking at data with a continuous smooth superimposed and 
seeing that it would be improved by incorporating a discontinuity. We then sought smoothing 
techniques that would automatically put the desired discontinuities into the smooth without 
unduly sacrificing other aspects of the smooth. Our algorithm does this; the typical output 
contains a small number of discontinuity features (possibly sero) and is piece-wise smooth. 

In the next section we present the split linear smoother, a one dimensional edge-detecting 
smoother. In section 3 we apply it to data generated by adding noise to a discontinuous 
function, and compare the results to some other smoothers. We also applied the smoother 
to daily readings of the sea surface temperature off the California coast. The temperature 
changes sharply when ocean currents change. This application is illustrated in section 4. 
Sections 5 through 7 contain comments on asymptotics, related work.in image processing, and 
a summary with conclusions. 

2. The Split Linear Smoother 

We suppose that we have observations xi, vi, i = 1,. . . , n where wj < xj+r, and that we 
wish to smooth Y on X. That is we want to find a function of the xi that is close to the gi 
and is (piece-wise) smooth as described above. 

A-set of A successive z’s is said to be a window of size k. A linear fit at point i over a 
window is the value at xi of a line fit (typically by some kind of least squares) to the (X, Y) 
pairs in the window. 

The split linear smoother begins by obtaining at each point i, a family of linear fits 
corresponding to a family of windows. Some of the windows are centered on point i (i.e. xi is 
the median of the X’s in the window), some of the windows have zi as their left-most point, 
and some have it as their right-most point. For each of these orientations (left, right, and 
center) several (typically three to five) window siees are used. 

The smooth at point i is obtained as a weighted average of the linear fits there. The 
weights depend on a mewure of the quality of the corresponding linear fits. 

Finally, the above may be iterated. That 4 the split linear smoother as described above 
is applied to its own output. 

-. 

The reason that this algorithm cau find isolated discontinuity features is that on either 
side of the feature, some of the lies fit well over their windows and the others are affected 
by extreme bias. The fits from the windows over which the data appear reasonably linear get 
most, or all, of the weight. This factor will also lead the smoother to put greater weight on 
the smaller windows in regions where the curvature is highest. 

We discuss in turn: the technique for obtaining the fits, the goodness of fit criterion, 
the weighting function, the reason for iteration, and the design issues raised in choosing the 
windows. 

We used the same set of window sizes for each window orientation and fit the lines to the 
windows by ordinary least squares. This way the typical fitted line provides three linear fits; 
a left-sided fit for the right-most point, a central fit, and a right-sided fit for the left-most 
point.. 



The use of ordinary least squares allows us to use updating formulae to fit all the lines for 
a given window size by ‘passing the window over the data’. Using a (non-rectangular) kernel 
of weights would take a lot more computation, unless updating formulae could be found for 
the particular kernel used. The price we pay for this speed is that the ordinary least squares 
fits (as a function of z) are noisy, since points are added and dropped with unit weight at 
the ends of the windows where their influence is greatest. We raise this issue again when we 
discuss iteration. 

The windows are shrunk as they approach the ends of the data, left-sided windows are 
not used for the left-most few points, and similarly at the right end of the data. 

We based the smoother on linear fits because the usual running linear smoothers tend 
to provide better results than running averages (especially regarding end effects) and our 
experience with higher order local polynomials indicates that they behave erratically, probably 
because the extreme points get even greater influence than in a linear fit. 

The fits were assessed on the basis of the mean squared residual about the line, taken 
over all points in the window except the target point. (We will use ‘pmse’ to refer to this 
pseudo-mse.) The target point is left out/of the averaging to reduce the tendency of a linear fit 
to look good simply because it came close to the data point, and cause the resultant smooth 
to capture more of the noise at that point. (The point must be left in the fitting of the lie, 
or else fits from the ‘wrong’ side of the target point will get high weights.) We tried cross- 
validated squared errors as a means of assessing the linear fits but found that the resulting 
smooths had a very jagged appearance. This could be because the cross-validated squared 
errors all depend so strongly on vi. It may be that the use-of one-sided windows exacerbates 
this problem beyond what it would be for combinations of central fits. 

The split linear smooth value at point i is a weighted average of the linear fits there, with 
higher weights corresponding to better fits. If the pseudo-mse exceeds a cutoff value, then the 
associated linear fit gets zero weight. This way the split linear smoother can put all its weight 
on one side, and for example, exactly reproduce step functions. This scheme includes simply 
picking the fit from the best fitting line. We strongly recommend against that, because, where 
neighboring fits come from windows of differing size and/or orientation spurious bumps are 
added to the output. (A few large isolated discontinuities are acceptable, whereas a large 
number of small discontinuities are not.) More generally, the weight function should decline 
smoothly to zero as the pmse increases to the cutoff. Otherwise if a single window is just 
barely cut off in one point and just barely included in a neighboring point a spurious bump 
may result. 

-. 
We chose to use weights proportional to the square of the difference between a window’s 

pmse and the cutoff value for those pmse’s below the cutoff. Other functions, such as powers 
higher than 2.0 would make a still smoother transition between eero weights and small non- 
zero weights at the expense of creating large weight differences for small pmse differences in 
some other range of pmses. A minor benefit of using an integral power is that it is fast to 
compute. 

The cutoff pmse at a point was taken to be the average of the pmse’s from all the fits 
at that point. Larger cutoffs would make the weights more nearly equal providing smoother 
looking output at the expense of blurring more discontinuity features. Similarly, smaller 
cutoffs trade off smoothness to Snd more features. 



Because the rectangular windows we use each produce noisy fits, there is a tendency for 
the split linear smoother to produce output with a somewhat jagged appearance. To alleviate 
this we iterate the smoother; that is we apply the algorithm described above to its own output. 
We find that one such application tends to remove the noise. This is a small computational 
price to pay since we use the updating formulae to compute the linear fits. We also fmd 
that the iteration tends not to erode the discontinuities found in the first pass. Most other 
smoothers would reduce curvature and blur discontinuities at every iteration. 

The curves produced by this algorithm tend to be piece-wise smooth. The size of the 
resulting pieces is governed by the sizes of the windows. The tendency is to produce pieces 
that are larger than all or most of the windows used. It is unlikely to produce pieces that are 
smaller than all the windows. The frequency with which piece-sizes between the smallest and 
largest window sizes will arise depends in part on the cutoff value used. 

Using a large number of windows of slightly varying size (e.g. a large number of consecutive 
odd integral sizes) tends to produce smoother looking output, mimicking the effects of non- 
rectangular kernels. 

Other ways of orienting the windows, such as putting one third of the data on one side 
of the target and two thirds on the other, were not used because it was thought that most of 
the relevant information would come from the central and extreme windows. 

The split linear smoother is similar to the Supersmoother (Friedman and Stuetzle, 1982), 
except that the latter uses only centered windows and uses a somewhat different way of 
combining the basic fits. 

3. Simulated Examples 

Figure 1 shows a sawtooth function with Gaussian noise added at n = 256 equispaced 
points between 0 and 1. The function consists of two lime segments rising from 0 to 1. The 
standard deviation of the noise is one half that of the function. Superimposed on it is a central 
smooth (like the Supersmoother) based on only the central fits in the split linear smoother. 
(Three windows sizes, .2n, .3n, and 4x-r were used.) The curve is qualitatively smooth but, 
as is no surprise, blurs the discontinuity. Figure 2 shows the same data smoothed by running 
medians of 11 points. There the curve has no trouble finding the discontinuity, but appears 
very rough. The split linear smoother applied to this data is illustrated in Figure 3. It found 
a curve that has the discontinuity and is smooth. 

-. 

The experiment described above was done 1000 times. Figure 4 shows some pointwise 
quantiles for the central smoother. The squares represent the true values (at every fifth 
point), and are drawn on the sawtooth curve. The outer envelope consists-of the 5th and 95th 
percentiles of the 1000 smooths. The inner envelope is obtained from the quartiles and the 
central line is the pointwise median. Figures 5 and 6 present the same information for the 
median smoother and the split linear smoother respectively. From Figure 4 we can see that 
the ensemble of central smooths miss the discontinuity. From Figure 5 it appears that the 
ensemble of running medians does not miss the discontinuity, and neither does the ensemble 
of split linear smoothers. 

We might also be interested in the width of the quantile envelopes. Those of the central 
smoother are generally the narrowest, and those of the running median are the widest. The 



central smoother only uses three central windows (of differing size). The split linear smoother 
uses the same three windows, and six more windows (one of each size on each side). It is in 
that sense using more parameters than the central window, and so it is to be expected that 
the results are less concentrated. The running median smoother can be made to have much 
narrower quantile envelopes and a much smoother appearance by increasing the span, but 
then it would badly miss the discontinuity. 

Another property of interest is the difference between the true function and the median of 
the smooths. This feature is a form of bias for the smoother, while the width of the intervals is 
related to the variance. The central smoother is severely biased near the discontinuity whereas 
the median smoother and the split linear smoother are mildly biased there. 

While bias and variance are good optimality criteria in one sample location problems 
they do not tell the whole story in smoothing problems. A smoother could do well by both 
of these criteria, and yet never look much like the underlying function in qualitative terms. 
Other important criteria are: whether the smoother displays or blurs discontinuity features, 
whether the locations and magnitudes of such features are approximately right, and whether 
the smooth has roughly the correct curvature. 

Although we don’t show it in the figures, the central and split linear smooths both tended 
to be smooth (over the ensemble) and the running median smooth tended to be rough (over 
the ensemble). Thus the split linear smoother was the only one to get both features right, 
most of the time. 

In addition to preserving jumps, the split linear smoother does well in regions of high 
-curvature, that are still smooth in the analytic sense. (Most commonly used smoothers severely 
reduce such curvature.) To show this, the above experiment was reproduced for the function 
sins(2rz’) on 0 5 z 5 1. As before, the standard deviation of the noise was half that of the 
function, and the same window sizes were used. Figures 7 through 12 show the same results 
for this function as Figures 1 through 6 do for the sawtooth. 

The central smoother (Figures 7 and 10) provides smooth looking output, and as is typical, 
reduces the curvature, especially at the trough. It especially underestimates the depth of the 
trough, all the time. 

-. 

On this data the median smoother (Figures 8 and 11) provides very rough looking output 
but in the ensemble, tracks the function with low bias but high variability, even to the extent 
of catching the inflection. The other smoothers do not catch the inflection because, unlike the 
median smoother, all their windows are large compared to the region over which the inflection 
occurs. (The variability and roughness can both be removed by increasing the window size, 
but then the ensemble ceases to track the function as well.) 

The split linear smoother (Figures 9 and 12) produces smooth looking output that does 
not severely reduce the curvature. It has very good ensemble behaviour at the deep trough. 
It tends to slightly exagerate the curvature at the ‘first bend’. The quantile bands are nar- 
rower than those of the median smoother, but wider than those of the central smoother. An 
interesting feature of the ensemble of split linear smooths is the small ‘goatee’ in the lower 
quantiles near the right of Figure 12. This feature occurs at the boundary between points for 
which right sided windows were used and points for which there were deemed to be too few 
points to the right to fit a window. We have left this feature in to illustrate the importance of 
smooth transitions between zero and non-zero weights; weighting schemes that make abrupt 
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transitions can (and do) sprinkle such jagged features throughout the whole smooth. The 
transition can be smoothed out by applying a gradually increasing penalty to windows as 
their size decreases to the minimum. 

We see from this experiment that the split linear smoother is able to find discontinuous 
features and curvature and produce smooth output in moderately large but noisy samples. 

4. Smoothing the Sea Surface Temperature 

The data are daily measurements of the temperature of the ocean off Granite Canyon, 
near Monterey California, over the period from 1 March 1971 to 28 February 1983. This and 
related data is discussed in Breaker, Lewis, and Orav (1983). The data appear noisy, but 
some features are discemable. There is a strong yearly cycle, so that summer and winter 
are easily identifiable. There are three el Nifio years (including 1983) and they have hotter 
summers than the other years. Some years there is a cooling in the middle of the summer, 
some years not. The temperature peaks do not come at the same time each year. The feature 
most relevent to our discussion is the called the spring transition. Between February and 
April the ocean currents may change, causing an upwelling of cold water and a temperature 
drop of as much as 4 degrees Celsius in a few days. (It may otherwise take months for a 
change of this magnitude.) The transitions don’t come every year, and in the years they 
do come, they don’t always come at the same time, cause the same size of drop or take the 
same number of days to cool the surface. There are 6 spring transitions in the data, and also 

_ some autumn warming transitions. Such irregular seasonal behaviour is a serious problem 
for most time series techniques. If one wanted to take out the deterministic component, 
possibly as a preliminary to some standard time series analysis, it would be necessary to Snd 
a representation that preserved the gross features of the data such as its curvature, and the 
location and magnitude of the discontinuities. 

The data are plotted as Figure 13, and a split linear smooth is superimposed on them. The 
smooth used window sizes 61,91, and 121. While these window sizes are small as proportions 
of the data set they are large compared to the rate at which the temperature changes. The 
resulting smooth helps us to pick out the seasons, assess which years were the hot ones, and 
generally see where the data go. 

-. 

Figure 14 is a close-up of a spring transition, with the smooth shown. Even though the 
smallest window size is 61 days, the smoothed temperature drops sharply. Figure 15 is a 
close-up of the third year in the data, the one in which summer seemingly never came. This 
year also exhibits a sharp temperature drop. 

At such close range it becomes evident that what looks like noisy data on the scale of 
Figure 13, actually has a finer level of structure. The temperature goes through a steady 
alternation of temperature for most of this year. In Figure 15 the same year is shown with 
another split linear smooth. This one used window sizes of 11, 21, 31, 41, and 51. It fits 
especially well to the last few months shown. The earlier months appear to have some slightly 
finer structure. Similar finer structure persists over the 12 years. The choice of which smooth 
to use is not based on whether the smaller dips are ‘really in the data’ (they are), but instead 
on a determination of the scale on which we want to see the data. 

- 

In choosing window sizes one must remember that the resulting smooth will tend be 



piece-wise smooth, and the pieces will tend to be larger than all or most of the window sizes. 

6. Analytic Properties of S.L.S. 

It would be desirable to have a smoother with the same capabilities as the split linear 
smoother but that is simpler conceptually and for which mathematical analysis would be more 
tractable. In our view the right theorems to prove are related to the probabilities of detecting 
the presence or absence of discontinuities and other features in finite samples. The experiment 
in the previous section suggests that the split linear smoother does well by these measures. 

There may be some concern that one-sided estimates used as components in a smoother 
may be subject to certain pitfalls. We offer the following example to show that one-sided 
estimates can have asymptotic properties comparable to central ones. Suppose that we have 
pairs Of reals (Zi, fli),i, . . . , n and that at each z we estimate the conditional mean of Y given 
X = z by a symmetric kernel that puts non-zero weight only on each of the first k,, points 
to the left of z and similarly on the right of z. Suppose that the i’th points to either side 
get the same weight. (Some modification is made to the left of the A, + 1st point and also at 
the right side of the sample. Typically k,, is a o(n) as n -) 00, so this modification is slight.) 
Finally suppose that all the kernel weights are non-negative and sum to unity at each z. In 
short it is a symmetric kernel running average. If this procedure is consistent in the sense of 
Stotie(1977, p. 597), and we modify it at each z between z&,+1 and z,,), by doubling all 
the left-sided weights and setting all the right-sided weights to zero we get a left-sided kernel 

- smoother. All of the weights used in this smoother are by- construction between 0 and twice 
the corresponding weights in the symmetric kernel running average. It follows from Corollary 
2 of Stone (1977) that this left-sided smoother is also consistent. (The consistency involved is 
in P for all r > 1 for which the r’th moment of Y is finite.) A similarly obtained right-sided 
kernel smoother would also be consistent. Even knowing the underlying mean function and 
chasing whichever fit (left or right) is worst is consistent. Conversely if the left and right sided 
smoothers are both consistent then so is their average, and hence so is the central smoother. 

The situation is more complicated when linear fits are used, but we conjecture that under 
reasonable conditions on the regression of Y on X and the marginal distribution of X, that 
the split linear smoother will be consistent. 

6. Related Work 

-. The Super-smoother of FKedman and Stuetzle (1982) is similar to the split linear smoother, 
but uses only central smooths. 

In the image processing literature similar algorithms have been developed for smoothing 
two-dimensional images. Scher, Velasco, and Rosenfeld (1980) consider the eight nearest 
neighbors of a point in a square grid. They use all eight different ‘triangular wedges’ consisting 
of the target point and three of its neighbors. They try various ways of combining averages of 
the points over the neighborhoods, iterating each procedure, and report on the relative merits 
of each method. 

Nagao and Matsuyama (1979) also consider small square neighborhoods about each pixel. 

. 
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They rotate an ‘elongated bar mask’ through each neighborhood, with one end fixed at the 
target pixel. Whichever position gives the minimum variance fit over the block is used to find 
the value for the target point. This procedure is iterated. - 

Haralick and Watson (1979) fit polynomials in the row and column variables over each of 
the Kz blocks of dimension K* K that contain the target point. They take the value from the 
block with least residual squared error, and iterate. They use K = 3 and linear or constant 
polynomials but give the least squares formulae for general K. 

The window sizes used in image processing would seem small to most statisticians. Their 
advantage in image processing is that they make it easier to build specialized hardware for 
parallel implementation. They also lower the computational cost per iteration. Their draw- 
back is that they do not provide output that is as smooth as one gets with larger windows. 
We think that two dimensional variants of the split linear smoother that operate on larger 
windows than those presently used could be useful in image processing. 

7. Summary 

We have described a smoother, based on running linear fits capable of producing curves 
with discontinuities, continuous curvature, and qualitative smoothness (between the disconti- 
nuities). The main idea is to take, at the i’th point in a sample, a weighted average of linear 
fits based on windows of various sizes and orientations; some of the windows are centered on 
i, others are entirely to the left of i, and still others are to the right of i. 

The split linear smoother is shown to be superior to a similar central smoother and to 
running medians when it comes to reliably finding certain important qualitative features such 
as smoothness, discontinuities, and troughs in moderately large samples. 

These results depend on the test function used. For example if there were no sharp 
features (e.g. the underlying function is constant) the split linear smoother in looking for them 
is essentially using more parameters than a central smoother and should therefore reproduce 
more noise or possibly create more artifacts. It should also be mentioned that medians with 
large spans would do very well on discontinuities if the underlying curve were monotone. 

The smoother is illustrated on a daily record of sea surface temperature at Granite Canyon 
California. It produces a smooth version of the temperature without blurring the sudden 
temperature changes caused by changing ocean currents. 

-. 

The split linear smoother provides an approach, in the one dimensional case, to the 
problem of smoothing without blurring boundaries (i.e. points at which the curve or its 
derivative are discontinous). It could therefore be used to search for and quantify change 
points. With a small number of smooths, the discontinuities are easily seen in plots. If the 
process must be automated, the weights that determined the smooth could be used. 

It is clear that other similar smoothers could be developed, but some features of the split 
linear smoother seem to the authors to be very important. The first such feature is the use of 
windows that are not centered. (Imagine running models over the data in which each form of 
non-linearity including curvature, cusps, and jumps could be assessed in every window.) The 
second point is that there must be a way of putting weight zero on all the windows for which 
a linear model is not appropriate. The third point is that weighting windows is better than 
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selecting windows, and more generally, the weights used should not change abruptly between 
neighboring points except at a discontinuity (otherwise one gets a large number of small steps 
in the output). - 
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Figure 1: A Central Smooth of a Sawtooth Function with Noise 
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Figure 2: A Median Smooth of a Sawtooth Function with Noise 
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Figure 3: A Split Linear Smooth of a Sawtooth Fupction with Noise 
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Figure 4: Ensemble of Central Smooths about thelSawtooth Rmction 
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Figure 6: Ensemble of Split Linear Smooths about, the Sawtooth Function 
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Figure 7: A Central Smooth of sin5( 2x2”) with Noise 
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Figure 10: Ensemble of Central Smooths about sinf( 2~2~) 
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Figure 1 I: Ensemble of Median Smooths of sin’( 2d ) 
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Figum 12: Ensemble of Split Linear Smooths of sin’( 2d) 



Figure 13: 12 Yeam of Daily Sea Surface Temp. at Granite Cove California 

2 
. 

. . 
. * 

. 

YL* . 
A 

. 
. 

. 

. 
. . 



I 

_
_

-a
-- 

_
--. 

---- 
.-.- 

-_
_

_
_

_
_

 
_

_
I 

--.- 
_

._
-------_

 
.------ 

-- 



Figure 15: Close-up of Cold Year in Sea Surface Temperature Data i 
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