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In this paper we shall examine what smoothness assumptions are made about object surfaces, 

object motion, and image intensities. We begin by looking into the physiological limits of vision 

and how these might influence our perception of smoothness. We then look at a sampling of the 

computer vision and psychology literature, inferring smoothness constraints from the mathematical 

assumptions tacitly presumed by researchers. This look at computer vision and psychology of 

vision is not meant to be an inclusive study, but rather representative of the assumptions made, and 

in part representative of the mathematical models used therein. We shall conclude that prevalent 

assumptions are that surfaces, motion, and intensity images are functions in C2, eland c2 

respectively. 

In the latter portion of this paper we examine one use of explicit assumptions on smoothness in the 

defInition of existing method for obtaining "optimal" surface interpolation. We briefly introduce 

the nomenclature of information-based complexity originated by Traub, Woz'niakowski, and their 

colleagues, which is the mathematical machinery used in obtaining these "optimal" surfaces. This 

theory requires that we know the class of functions from which our desired surface comes, and part 

of the defInition of a class is the degree of smoothness. We then survey many possible classes for 

the visual interpolation problem of two dimensional surfaces, and state formulas from which one 

can obtain the optimal surface interpolating given depth data. 

§ 1 Some Definitions and the Relation between 

Derivatives and Smoothness. 

Throughout most of this paper we shall be looking at smoothness as conditions on the number of 

derivatives of surfaces, and occasionally as upper bounds on the magnitude of derivatives of the 

surface. Let D be a closed, simply connected two set (region) in 9{2, and define the following 

classes of functions: 

{ f: D~9{ such that f is continuous } 

{ f: D~9{ such that f, aflax and Of/ay are continuous .. } 

and for k = 1,2, .... 
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d'(D) = 

and fmally, 

CO(D) = 

is continuous. 

{ f : D~~ such that 'V k, f E c~). } 

Observe that by definition we trivially have CO c ... c Ck c Ck-1 c ... c C1 c cO, i.e. 

functions which are of the class Ck are also of the class Ck-1. Similar definitions can be made for 

functions of a single variable on one dimensional sets. 

In vector calculus one says that a function (surface) f is "smooth" if and only if fECI and at each 

point on the surface the nonna! to the surface is defmed and * 0, see [Marsden 76]. Intuitively this 

definition says a surface is smooth if it has no edges or corners. Unfortunately, the requirements 

on the surface nonna! do not generalize to "higher degrees of smoothness", therefore we extend 

this definition of smoothness and say that function f has "smoothness of degree k" iff f E Ck. 

We now consider that derivatives are a mathematical abstraction, and that in the physical world, we 

do not have formulae, but physical objects (or their motion in space). Therefore we address the 

problems of what it means for an object to have a surface with smoothness of some degree; what it 

means for an object to move with smoothness of some degree; and how can an image (which is 

registered at a fmite number of points) have any degree of smoothness. The solution to all three 

problems is that we assume that the derivatives are approximated by difference quotients and that 

the denominator of the difference does not go to zero, but is bounded from below by some "small" 

value. However this assumption creates a problem of its own; in particular. what does "small" 

mean. The answer is that "small" is relative to the accuracy of the measurements of both the 

numerator and denominator, and is scale dependent. It is important that "small" be less than the 

limit of accuracy of measurement (or perception) of the numerator of the difference quotient This 

places some limit on the degree of smoothness that can be measured. Recalling that the kth 

derivative is defined by the limit of a difference quotient with the numerator involving the (k-l)th 

derivative we see that approximations of higher order derivatives are limited by the quality of the 

approximation of the lower derivatives. Marr discusses exactly this problem, and present a 

theorem originally due to Bernstein (see [Marr 82, p289]) which states that for any function f with 

band limit B (and any fmite physical measurements result in band limited data) then 
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sup If(x)1 * B ~ sup If(x) I. 

XE D XE D 

Throughout this paper we shall usually infer from an author's use of kth order derivatives that the 

image, object, or motion is in the class Ck. This, however, is often not the case; often a model, or 

an algorithm will use the fact that under certain circumstances there is a violation of the class 

assumption (e.g. a point is only k-l times differentiable or not even continuous). This generally 

results in an approximation to the kth derivative that is very large. If this is the case we shall say 

that they imply piecewise smoothness of degree k, (or piecewise Ck), i.e. smoothness of degree k 

except at a small fmite number of points or CUlVes. Some authors use a type piecewise Ck that is 

globally Ck-1, while others employ a piecewise Ck that may not even be globally cO. We shall not 

distinguish greatly between these two different uses, since in both cases the authors generally 

assume they can segment the surfaces, images, or motions, into regions that are truly Ck. 

We end this section with a fmal remark on the class CO. The reader should be aware that there is a 

theorem due to Weirstrass [Rudin 64] that states that on any compact domain D, any continuous 

function can be approximated arbitrarily closely, including its derivatives, with a CO function (in 

fact with a polynomial). This theorem touches the heart of Fourier series approximations inasmuch 

as the components of Fourier series (sin Ox, cos Ox) span (are dense in) CO. One result of this 

theorem is that if one uses the Fourier series approximation, and includes all components from the 

lowest perceivable frequency to and including the highest frequency, then the recovered curve 

(surface in 2D) should not be visually distinguishable from the original, and is in CO. 
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Part 1: Smoothness Assumptions in Vision. 

§2 Spatial and Temporal Limits of Human Visual Perception. 

Given the above discussion on derivatives, it is important to examine the limits of human visual 

perception. We break the discussion of these limits into two categories, spatial and temporal. 

Note that this is not meant to be an implication that they are separable components of perception 

(although they are generally believed to be), but it is a classification long used in psychology. 

Acuity is the tenn used in perception literature to refer to the lower limit of spatial resolution. "For 

very many years (from Lord Rayleigh's time) it was common practice to defme visual performance 

in terms of one of several forms of resolution criteria." [Hartridge, p52] It has been experi

mentally determined that approximately .15 mrad (milliradian) is the lower spatial limit of 

perception for both detection (in good light) of a black disk on a white background, and for the 

minimal separation of two point sources of light to be perceived as two (not one) points. 

Unfortunately there is no single "limit" on spatial perception. The measurements are a function of 

the stimuli used (e.g. points of light, dark points, lines, bars ... ), the contrast between objects, the 

viewing time, the observer's experience, and age. See [Overing ton 76] for a discussion of how 

these and other properties effect perception. 

For motion, there are both upper and lower bounds on the speed that an object can move and still 

be perceived as a moving object (though the shape may be distorted). Again, the actual values of 

these limits are influenced by target size, distance and contrast, the orientation of targets, and the 

direction of movement, structure (or lack thereof) of the background, and the mode of perception 

(static, or tracking). A lower bound of about 0.2 cm/sec for a 7.5cm x 2.5cm source at 2.Om from 

the observer was obtained by [Bonnet, 77], and the bound was shown to vary greatly with 

different display formats. Upper bounds range from about 30' to about 100' of visual angle per 

second [Kolers 72]. 

Due to their wide context sensitivity, the limits presented here are not universally accepted in the 

psychology field, and are meant to give the reader an intuitive feel of the limits. The results are a 

factor of many aspects of vision, and these figures model only a small number of possible 

experiments. More information on the exact apparatus used can be found in the cited sources. 
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§3 What We are Not Going to Consider. 

There is a large volume of literature in both the psychology of perception and in machine vision, 

and only some of this literature makes assumptions on the smoothness of objects or their motion. 

In psychology many of the early models dealt with restricted aspects of vision, for example with 

the size of an object vs contrast threshold for detection. Therefore we shall not consider such 

restricted models, including (but not limited to): Ricco's law, Piper's law, Bloch's law, the 

Blondel-Rey theory, quantum theory, circuit theory, and element contribution theory. We also 

shall not examine models (neural or otherwise) of the higher level vision process, since they do not 

in general require smoothness assumptions. 

In the plethora of computer vision algorithms there are many that offer no assumptions on 

smoothness, including (but not limited to): template matching (for either edge detection, or object 

recognition), edge relaxation, edge following, Hough transforms, region growing algorithms, 

splitting and merging methods, quad-tree algorithms, algorithms for the blocks' world, spatial gray 

level dependence algorithms, model matching algorithms, medial axis transform recognition, and in 

general inhibition I excitation networks. Most of these methods are are not continuous models of 

the world but rather discrete algorithms, treating the image purely as pixels, dealing with 'objects' 

as members of a fmite set (Often they have so restricted their domains as to offer no useful 

assumption about the real world.) These algorithms, though important to machine vision as a 

whole, shall not be pursued further in this paper. 

What we shall examine is the assumption on "smoothness" in both computer vision and 

psychology of vision. From psychology we shall mostly examine work on modeling the intensity 

image, and on visual motion. With respect to intensity images we shall examine the work of 

[Bekesy 60], [Fry 48], [Huggins and Licklider 51], [Marr 79], and [Overington 76]. In the area 

of motion we shall examine the work of [Bahill83], [Oocksin 81], [Fennema and Thompson 79], 

[Hoffman 80], [Prazdny 81, 83]. 

From computer vision we shall examine assumptions implicit and explicit in: internal object 

representations, shape from X algorithms, surface reconstruction algorithms, subjective contours, 
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imaging operators, object motion, optical flow, and photometric stereo. 

§4 Assumptions on the Smoothness of Object. 

In this section we examine the assumptions in both psychology and computer vision about the 

smoothness of objects. We shall conclude that in general the surfaces of objects are assumed to be 

at least piecewise C2, possibly with some upper bound on the magnitude of the second derivative. 

In section 4.1 we examine the smoothness assumptions in the work on stereoscopic contours, 

which will tell us something about smoothness of object boundaries. In 4.2 we continue with 

contours by examining the work on subjective contours. In section 4.3 we examine the 

assumptions which can be inferred about surfaces from their representations and from the work of 

Marr et al.. In section 4.4 we examine the smoothness assumptions about objects that can be 

inferred from work on shape from stereo. Section 4.5 deals with the assumptions implicit and 

explicit in work on shape from texture. Finally in section 4.6 we examine the assumptions on 

object smoothness implied by the use of second order differential operators on the intensity image. 

§4.1 Smoothness of stereoscopic contours. 

We begin with a discussion on the shape of stereoscopic contours. These contours are not edges of 

actual surfaces in 9{ 3, but rather the edges of a perceived shape of a surface generated by 

stereograms and random dot stereograms. Random dot stereograms were proposed by lulesz 

[lulesz 60] as a means of studying stereo vision, because they give rise to perceived depth when 

viewed stereoscopically even though they contain no image intensity "edges" of the perceived 

surface. Random dot stereograms have attained a widespread acceptance in the study of stereo 

vision. (The interested reader is referred to [MarT 80] or [Grimson 81] for more information on the 

computational aspects of random-dot stereograms, and for a more complete psychophysical 

treatment see [Julesz 71] or [Gulick and Lawson 76].) In there study of human stereopsis, Gulick 

and Lawson noted: 

" ... matrix targets (stereograrns) occasionally led to the perception of well-defmed 
contours that served to delimit the surfaces of sub-matrices seen in stereoscopic 
depth. These contours occurred in the absence of a continuous abrupt luminance 
gradient, and they seem to depend on the perception of surface depth brought about 
by the binocular abstraction of a disparate fonn." [Gulick and Lawson 76, p 121.] 
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Through a number of experiments they found that stereoscopic contours could be straight, or 

piecewise circular segments (which they refer to as curved). However they report " .. . straight 

stereoscopic contours took precedence over curved [their italics], and the presence of some curved 

contours based on luminance gradients did not appear to be influential." [Gluck 76, p.150] They 

found that the straight contours could cross homogeneous space (where there are no borders of 

dots) but could find no evidence that curved stereoscopic contours could cross these homogeneous 

spaces. In fact, their results suggested that in such circumstances observers reported curved 

portions of boundaries connected with straight segments. It was not made explicit in their work if 

the curved segments must be circular arcs or rather twice differentiable curves. It was also not clear 

however if the observers could detect where the straight regions ended and the curved ones began. 

If the observers could detect the "connection" points, it is probably safe to infer that they felt that 

stereoscopic contours are perceived as piecewise COO (if we can see only circular segments) or C2 

(if we can see arbitrary twice differentiable curves). If observers cannot detect where straight 

contours meet curved segments, then the contours should be assumed to be C 1, i.e. they have 

continuous slope, but not continuous curvature. 

§4.2 Smoothness of Subjective Contours 

A problem related to stereoscopic contours is that of subjective contours. These contours are 

generated by the subjective "filling in" of missing portions of diagrams, for example see Figure 

4.2.1. On the computational side of this problem [Ullman 76] proposed a local computation 

network for the calculation of subjective contours utilizing assumptions on isotropy, smoothness, 

minimum curvature and a localization hypothesis. In particular the smoothness assumption he 

made was "except for some special cases of filled in corners, the generated curves are smooth, that 

is differentiable at least once." [Ullman 76, p.l] He also express the assumption, inspired by the 

similarity of subjective contours to a thin doubly cantilevered beam, that these contours should 

possess minimum curvature. That this implies the curves are piecewise twice differentiable (i.e. 

piecewise C2) follows directly from his deflnition of curvature, I (dB/ds)2, where B is the curve 

slope and s is arc length, (this is generally called total curvature). 
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Figure 4.2.1: Examples of subjective contours. 

In his treatment on subjective contours (of which stereoscopic contours are one type), Marr [Marr 

82] proposes that the shape of curved subjective contours are piecewise circular arcs with minimal 

curvature. Mathematically this implies that they are Coo ( if they are really circular arcs). If the 

circular arcs are just an approximation to some other cures, the fact that the contours are to 

minimize curvature implies that they are at least piecewise C2. 

§4.3 Surface Smoothness. 

Some of the strongest assumptions on the smoothness of an object can often be derived from the 

representation of that object (e.g. from the representations internal to a computer vision algorithm). 

Unfortunately, most of the work in psychology and psychophysics does not attempt to model the 

internal representation of an object surface, and therefore it is hard to infer smoothness assumptions 

(on surfaces) from their work. In particular almost any neural model, especially those driven by 

inhibitory I excitatory connection networks, will not offer any implications on the degree of 

smoothness of object surfaces. 

However, there are a number of computer vision algorithms that utilize specific internal 

representations having implications on the smoothness of surfaces. Three examples are: the class 

of generalized cylinden used in ACRONYM, [Brooks 79,80,81] and similar classes of generalized 

cylinders all of which imply that surfaces are piecewise Coo; representations with polynomial 

patches or polynomial splines, e.g. bi-cubic or Coons patches [Allen 83] [Coons 76] which imply 

that surfaces are globally C 1 (and piecewise COO); and representation as fInite element patches as in 

[Terzopoulos 83] which implies the surface is piecewise C2 (however this representation is not 

even globally CO). The smoothness assumptions in internal representations are not diffIcult to 

infer, and unfortunately do have far reaching implications. For these reasons we shall not consider 

the assumptions from representation further, but instead tum our attention to the assumptions 
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implicit in the mathematical models on which much of computer vision work is based. 

We begin with a computational theory of human visual perception as presented in [Marr 82], noting 

that this book draws heavily upon other sources including [Marr and Poggio 77], [Marr and 

Ullman 80], [Marr and Hildreth 81] [Grirnson 81]. In this book, Marr explicitly expresses some 

assumptions involving smoothness. Unfortunately only a few assumptions are mathematically 

precise: most are defmed only intuitively. The latter include the following statements from [Marr 

82]: 

"Stated precisely, it is that the visible world can be regarded as being composed of 
smooth surfaces having reflectance functions whose spatial structure may be 
elaborate." (p. 44, their italics) 

"The basic feature is that markings often fonn smooth contours on a surface, ... " 
(p.49) 

" ... the loci of discontinuities in depth or in surface orientation are smooth almost 
everywhere. This is probably the physical constraint that makes the mechanism of 
smooth subjective contours a useful one." ( p. 50, their italics) 

Clearly Marr was well aware that there are advantages to making assumptions that constrain the 

smoothness of objects, edges, and motion. But what should we infer for their meaning of 

"smooth" in the above statements (and others in the work)? One clue is given in Marr's discussion 

of the physical constraints for the matching in stereopsis, where he says "continuity means that the 

disparity varies smoothly almost everywhere" [Marr 82, p 114]. As stated, this implies that 

smoothness is equivalent to continuity; in other words, smooth objects are elements of cO. Again 

when discussing the problem of "smooth motion" (see Marr 82, p.184), he implies that being 

continuous is equivalent to being smooth. However, when discussing subjective contours, Marr 

states, "In both cases, continuity and smoothness (minimum curvature) seem to be important 

criteria" [Marr 82, P 288]This implies that a smooth object is at least C1 and piecewise C2. Lastly, 

when discussing discontinuities and interpolation methods [Marr 82, pp 289-290], Marr states that 

in the discrete case "underlying discontinuity can no longer be discriminated from a very high 

curvature change". 

Thus one could infer two separate defmitions of the word smooth. We feel, however, that the 

correct inference is that Marr's defmition of smooth is equivalent to piecewise C2 objects that do 

not have too high a curvature. This last condition can be viewed as placing an upper bound on the 

magnitude of the second derivative. 
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As an aside, we note that in a recent paper Mayhew [Mayhew 82] interprets the Marr and Poggio 

principle of continuity (quoted in the above discussion), as implying that surfaces are piecewise 

planar. While this might hold if the planar patches are extremely small (so small as to not be 

detectable), this does not seem to fit well with the overall impression of Marr's use of the word 

"smooth". 

§4.4 Assumptions about Object Smoothness In Shape from Stereo. 

There have been many computer vision algotithms for surface reconstruction from stereo depth 

data, each with its own set of implicit smoothness assumptions. Much of the earlier work treated 

the surface as a discrete set of depth points in space, and made almost no mathematical assumptions 

about smoothness. 

The assumptions that can be drawn from many stereo algorithms are generally derived from their 

internal representations, e.g. the work of Allen, [Allen 83] (which incorporates tactile depth data 

and stereo) uses an internal representation (bi-cubic patches) which implies that surfaces are truly 

C 1 and piecewise Coo. 

The assumptions on smoothness implied by the work of [Grimson 81], [Terzopoulos 83], and 

[Kender, Lee and Bout 85], are somewhat more fundamental. Their assumptions are not implicit in 

their representations, but rather in the formulation of the problem of reconstructing a "smooth" 

surface. These authors assume that a "smooth" surface is one that minimizes the functional given 

by 

au) ii If 
9{2 

2 2 2 2 

((~) + 2· (~) + ax oxoy 

Obviously the fact that this functional is well defmed implies that the surface is at least C2. 

Furthermore, their methods use 9(·) as a measure of the "unreasonableness" of a surface and 

attempt to fmd the surface that minimizes this functional. The dependence of 9(-) on the second 

derivative of the surface and the idea of minimizing the functional also supports the argument that 

smooth surfaces have small second derivatives. 
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§4.5 Smoothness Assumptions in Shape from Texture. 

Of all the "shape from X" algorithms, "shape from texture" probably makes the most restrictive 

assumption on surfaces. The idea that shape can be derived from textural cues comes from a long 

known [Gibson 50] phenomenon that humans can perceive surface orientation solely from the 

distortion of certain textures on the surface. The principle involved in most shape from texture 

algorithms is the computation (at least locally) of the surface gradient associated with the (local) 

texel properties. To see some of the assumptions we examine shape from texture as discussed in 

[Kender 80] and [Witkin 81]. 

In Kender's development and subsequent use of the Normalized Texture Property Map, for the 

recovery of shape from texture he explicitly assumes the continuity of local surface orientation. The 

NTPM "is a way of 'deprojecting' the effects that surface orientation has one primitive textural 

properties such as slope in the image, length of major axis of elongation, etc." [Kender 80, p9]. 

He uses the continuity assumption to allow the local approximation of surface orientation by planes; 

this approximation following his meta-heuristic that assumptions should make the mathematics of a 

problem as simple as possible. We defer the discussion of this assumption until we examine the 

work of Witkin (who makes similar assumptions). 

With a statistically based algorithm, using projective geometry and a few assumptions about texture 

geometry, Witkin was also able to recover the shape and orientation of both planar and curved 

objects, (see [Witkin 81]). In the same manner as Kender, his methods are developed for planer 

objects, with curves objects represented locally as tangent planes. His technique of shape recovery 

is to use a maxirnallikelihood estimator (MLE) for the slant and the angle of the slant with respect 

to the observer. For planes this is all the orientation information necessary to orient the plane. The 

rvIT...E is developed from a geometric model expressing surface tangent as a function of: the angle 

between projected tangent and tilt direction, the amount of tilt, and the angle of tilt with respect to 

the observer. 

Witkin states that it is not too difficult to obtain shape from texture with strong assumptions about 

the surfaces and the texture geometry, but that the real trick is to recover shape and orientations 

with minimal assumptions that are not only formally adequate, but are approximately true in nature. 

While his work does try to make minimal assumptions on the texture properties, he does impose 

limitations on smoothness of objects. 
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In two separate methods for shape from texture, we have seen that the assumptions of object 

smoothness were that curved surfaces could be reasonably well approximated by a tangent plane. 

Though this can be construed to imply that surfaces must be at least differentiable (which is 

equivalent to the continuity of surface orientation that Kender assumed), it is better stated as a 

limitation on curvature, or a bound on the second derivative. To see this, consider the surface 

generated by sin(1/(£+x2+y2», for some small £>0 and note that the surface orientation is a 

continuous function, but that for very small £ the surface will oscillate wildly near the origin, and 

therefore not be well approximated by a tangent plane. The function, however has very high 

second derivatives (and hence curvature) near the origin. This suggests that these methods require 

more than C 1, they also require that the surface orientation not change too quickly, or more simply 

that the surface be C2 and have bounded second derivative. 

§4.6 Object Smoothness Assumptions In Image Operators. 

We end the discussion of the assumption of object smoothness with a short exposition on an 

assumption implicit in the choice of a second order differential operators as the input to the other 

components of theories (e.g. stereopsis, motion). [Grimson 81] employed a second order 

differential operator known as the Laplacian of a Gaussian (V2G). (This is application of a 

Laplace operator to the result of the convolution of the input image with a two dimensional 

Gaussian fllter.) In [Grirnson 81] he states a condition on surfaces that has been paraphrased as no 

news is good news. In this he meant that the lack of zero crossing of V2G at some location 

constrained the surface in a neighborhood of that area. We shall see that in general this does not 

place constraints on the 3rd or higher derivatives of the surface. Note that this discussion applies to 

any theory in which the most powerful differential operator applied to the input is of second order 

(e.g. the model of Huggins and Licklider [Huggins 51], or the theory of Marr and Poggio 

discussed above). 

Given that an algorithm is using an approximation to at most a second order differential (Le. it 

approximates at most the second derivative of the surface), one can infer that the theory or model 

being implemented by the algorithm does not make any assumptions about the continuity of 3rd or 

higher derivatives. To wit, because imaging is a continuous transformation (assuming no 

occlusion), then if the surface reflectance is isotropic, lighting from a single point source at infmity, 

and viewing angle is such that the object is not self occluding, then any second order differential (in 
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particular an approximation to V2G ) can not detect discontinuities in the 3rd or higher derivatives 

of that surface. If they were trying to do so, they would be 3rd order differentials). This implies, 

that given any theory with at most a second order differential operator on the input image, that 

unless some combination of viewing angle, surface reflectance properties, lighting, etc., interact to 

highlight a 3rd or higher derivatives, they should be invisible to the human observer. 

§4.7 Conclusions on Object Smoothness. 

In conclusion, the bulk of the literature in psychology of vision and computer vision alike, assume 

that the surface of objects are at least piecewise twice differentiable (Le. in piecewise C2 and in 

general globally in C 1), with a possible bound on the magnitude of the curvature or second 

derivative. As a point of interest we present two observations from fields other than psychology 

and machine vision that also support this definition of smoothness. 

The first point of interest is linguistic in nature. Although we have a number of words (in English) 

that refer to the second derivative of an object surface or object motion (these are "curvature", and 

"acceleration" respectively), we do not have such general terms for the third derivative of either 

object surfaces or object motion. (Actually there is "jerk" for motion and torision for surfaces 

neither of these terms is exactly a third derivative, nor are they commonly used). 

The second is an observation from a recent paper by Jan Koenderink and Andrea van Doom 

[Keonderink and van Doom 82]. In their paper, they cite numerous papers from the academic-art 

literature to support their claim (which they also support mathematically) that the end of a visible 

contour must be concave, and that the corresponding portion of the rim must be from a hyperbolic 

patch, see Figure 4.7.1. Koenderink and van Doom note that throughout much of the art literature 

authors seem to neglect the possibility of a shape being hyperbolic and instead discussed shapes 

only as a combination of concave and I or convex elliptic patches. We note that ellipticity implies 

that objects are piecewise at least C2 (they have curvature defined), and may imply piecewise CX'. 

We also note that in their discussion, Koenderink and van Doom never mention a difference 

between objects that are composed of patches that meet with continuous slope, and those that meet 

with continuous curvature (i.e. with continuous ftrst or second order derivatives respectively). 
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A proper drawing of an object: end of the contours are concave 
and the surface near the ends of the contours form hyperbolic 
patches (at both the top and bottom of column). 

An imporper drawing: at the end of the contours (bottom of 
column) the surface is not hyperbolic. (Note that this could 
a valid object in occlusion). 

An improper drawing: the end of the contours is convex. If 
the contours were correct, there should be a visible rim 
connecting them. 

Figure 4.7.1 Examples of valid and invalid drawings. 

§ 5 Assumptions on Smoothness of Motion. 

There are two types of visual motion to be considered. The flrst, considered in section 5.1, is 

visual tracking, where the eyes move in response to a moving stimuli. The second, considered in 

section 5.2, is trefered to as optic flow, where there is motion of intensity patterns across the retina. 

This is the result of the projection of a moving object, or of a flxed object and a moving observer, 

or of a moving image (such as a television program). We examine in tum the assumptions 

encountered in the study of each of these types of motion. 

§5.1 Smoothness of Visual Tracking. 

In the study of visual tracking the subject is generally presented with a point which moves with 

some pattern unknown to the observer. It has been reported ([Rashbass 61] referenced in [Bahill 

83]) that the human smooth pursuit eye movements have a latency of about 150 msec. However, 
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Bahill and McDonald [Bahill 83] report that given a suitably predictable target, humans can learn to 

perform zero latency tracking. "The target motion predominantly used [by others] to test the 

smooth pursuit system is predictable sinusoidal motion." [Bahill 83, p. 1574] In their paper they 

present the observers with a number of targets moving in patterns with: triangular waveforms (Le. 

continuous piecewise linear motion), piecewise parabolic waveforms, picewise cubic waveforms, 

sinusoidal waves or with pseudo-random discontinuities in acceleration. These are motions of 

smoothness CO, C1, C2, CO, and C 1 (with the distance between discontinuities of acceleration 

small with respect to motion period) respectively. (Note that if considered piecewise they are all 

Coo if we do not require continuity of lower derivatives across peice boundaries. If we take this into 

consideration they are piecewise C1, C2, C3, CO, and C2 respectively.) 

They report that there are problems in tracking at the discontinuities of velocity in triangular 

waveforms. In the case of the parabolic waveform, they found that the subjects could track the 

target with high accuracy, with the velocity of eye movements correctly following the velocity of 

the target (thus being insensitive to the discontinuities in the acceleration). Note that motion with 

parabolic waveforms is a very natural motion (objects subject to constant acceleration (e.g. gravity) 

follow such patterns. In the case of cubic motion pattern, which they comment does not seem to 

have any natural physical realization, the subjects initially tracked the target with mild success and 

after a short learning period the target was tracked with great fidelity. For the pseudo-random 

acceleration target waveform, the subjects initially tracked with "saccades every 200 msec, which is 

typical of poor tracking ability. The subject's velocities were widely dispersed from the target 

velocity. This waveform was the most difficult to learn." [Bahill 83, p. 1579]. 

The results of the pseudo-random acceleration target waveform suggests that subjects have 

problems with motion that is not at least piecewise C2. The result that subjects initially tracked 

parabolic motion better than cubic motion may however suggest that (global) Cl motion is more 

"natural" to track than (global) C2 motion. These conclusions are weak and the subject requires 

further research. 

§5.2 Smoothness Assumptions In Research on Optical Flow. 

Now we examine what assumptions psychologists and computer scientists make about the 

smoothness of flow fields generated by object motion. In optic flow, we shall consider two 

separate types of smoothness assumptions: assumptions on the differentiability of the image with 
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respect to time (Le. whether patterns in the image move with continuous velocities, whether they 

accelerate continuously, etc .. ), and assumptions on the spatial smoothness of the fields of motion 

(Le. whether there is spatial differentiability of the velocity or acceleration fields). Recently there 

has been a variety of work on the subject of recovery of shape from optic flow, e.g. [Clocks in 

81], [Hoffman 80], [Horn and Schunk 81], and [Prazdny 81,83]. Though many of these works 

also make assumptions about the smoothness of the intensity image, we shall consider only their 

assumptions on the smoothness of object motion. 

The idea that depth infonnation, and hence shape, could be recovered from patterns of angular 

velocities of light on the retina is due to Helmholtz [Helmholtz 25]. Additionally, in his studies of 

different stimulus to the human visual system, Gibson [Gibson 50] concluded that optic flow was 

a principle source of infonnation for surface layout and ego motion (motion of the observer with 

respect to the world). There are two main camps on how one calculates optic flow. Some feel that 

velocities are measured directly from a continuously changing retinal image, and others feel that 

optic flow can be calculated from a sequence of static images. We shall not go into this debate, for 

two reasons. The first reason is that the continuous approach generally uses neural motion or 

velocity receptors, which yield few assumptions about motion smoothness. The second is that 

although there is something intrinsically discrete about the latter approach, when the separate 

images are presented at a sufficiently high rate, they approach continuous motion. From our point 

of view the later approach encompasses the former, varying only in temporal scaling. 

The problem of shape from motion has two components: the calculation of the optic flow fields, 

and the recovery of shape and depth from the flow fields, each of which we discuss in turn. For 

the calculation of optic flow, either there are detectors for motion built into the eye which can be 

thought of as returning optic flow, or there is some process that takes a sequence of images, finds 

corresponding points in each, and calculates the velocities of each point 

[Marr and Ullman 79] proposed a neural model for the calculation of directionally sensitive motion 

detection cells, and explicitly state that they assume sequences of intensity images which are 

continuously differentiable with respect to time, and make no assumptions on the spatial smooth

ness of the velocity field. 

The statistically based cluster analysis algorithm developed in [Fennema and Thompson 79] 

assumes that an image sequence is temporally differentiable, and deals only with velocity flow 
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fields that spatially are piecewise constant The latter assumption rules out many objects, for 

example, a stationary but rotating object, where the optic flow yields a field with a continuum of 

velocities. 

Horn and Schunck, see [Horn and Schunck 81], explicitly assume that the images are at least once 

differentiable with respect to time. They go on to consider the square of the magnitude of the 

spatial gradient of the velocity as a measure of the spatial smoothness of the velocity flow fields. 

However the implementation of their algorithm uses the spatial Laplacian of the velocity fields, 

which implies they assume the velocity flows are spatially at least piecewise C2. 

Finally, we examine the assumptions in [Hildreth 83]. In this work, Hildreth reconstructs the 

"smoothest" flow field. Again, the assumption is that the intensity images are continuously 

differentiable with respect to time (actually, she assumes that V2G (I) is differentiable with respect 

to time). For the spatial smoothness of the velocity fields (which exist only along the edge 

contours returned from the v2a operation), she considers the use of a functional to measure the 

smoothness, which then would be minimized She considers functionals of the fonn (using her 

notation): 

f 
ak yes) J 

k 
ds, 

as 
and 

f 
j 

ak 
<I> (s) 

k 
ds, 

as 

for k, j = 0, 1, 2, .... Where yes) is the full velocity vector (pararneretrized with respect to arc 

length of the contour), and f is the angle of the velocity with respect to arc length. 

Among this class of functional she settles upon f I aV(s)/as 12ds as the appropriate choice. In an 

experimental test, she found that the algorithm (minimizing this functional) results in flow fields 

that are similar to those produced by humans. In a number of cases where the algorithm resulted in 

a physically incorrect flow field, its results were very similar to human responses, which were also 

physically incorrect The fonn of the functional to be minimized implies she is assuming that the 

velocity field is spatially at least piecewise C 1. 

In conclusion, the psychologists and computer scientists generally assume that motion is temporally 

at least C 1, and spatially at least C2. 
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§6 Assumptions on the Smoothness of the Intensity Image . 

First we examine the differentiability assumptions on the "image" (light input to the system) in a 

number of psychological models of human visual perception. Then we examine the assumptions 

on the image made by the theory behind a few machine vision algorithms. We note that because 

imaging is a continuous transfer one might feel that smoothness of objects should imply 

corresponding smoothness of the image (and visa versa). However, the problems of object 

occlusion, and reflection and/or refraction of light invalidate this assumption for the general case. 

But as we shall see, the assumptions people make (without referring to the smoothness of objects) 

are about the same as for object smoothness. 

Before we begin our look into the smoothness assumptions on the image we note that many targets 

used in psychophysical/ psychological experiments are projected patterns, comprised of constant 

or linearly varying luminescence. The "projected patterns" are generally not meant to be the two 

dimensional projection of a three dimensional object viewed under particular conditions, but rather 

are purely two dimensional stimuli. These patterns are then generated to be piecewise COO in 

intensity (usually some type of gratings). 

From the psychology literature we examine a number of historically significant models surveyed in 

[Overing ton 76], and extract the assumptions present in each. All of these psychological models 

are "inhibition" theories developed to explain the Mach effect (The Mach effect, named for Earnst 

Mach, a physiologist in the late 19th century, is the appearance of bands at or near a step edge that 

form an accentuation of the light and dark portions of a scene near the high contrast step edge.) 

"Mach himself, having noted the strange distortions mentioned above, questioned 
whether the relationship between local stimulus intensity, I, and neural response Qs 
might be expressed in terms of the second derivative of the two dimensional luminance 
distribution in the original stimulus. He thus proposed the possible relationship: 

Os = I - m· [ a
2

I + a
2

I 1 
ax2 ay 2 

where m is a constant" [Overington 76, p. 121]. 
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This approach also implies that there is some neural interconnections that have the ability to 

approximate the second derivative, and that the image is at least twice differentiable. 

Another inhibitory model was proposed by Fry. [Fry 48]. Fry's work is based on an assumed 

inhibitory electric field component, first studied by Granit, in the electric potential difference 

between the front and back of the retina. Fry assumed that the potential at one point would have 

contributions (graded with the distance) from neighboring points (Physically nearby points in the 

retina). Then, since each stimulated point in the retina would set up its own potential field, the total 

response would be the simple local component field sum. Fry assumed that the form of component 

field distribution function is Gaussian i.e. 

p oc a • E • R 

[~l 
e 

where cr expresses the extent of the inhibitory field, a is the area of a stimulated receptor and P is 

the potential difference at any point a distance <is from the point of stimulation. Fry experimentally 

detennined that cr = 6 m.rad. This approach differs from Mach's model in that there is no assumed 

neural interactions, the inhibition potentials being directly controlled by the retinal illuminance 

distribution. We can infer that Fry assumed an 'intensity' image that is the sum of a number of 

gaussians and therefore is ~ (not piecewise Coo, but globally ~. 

A neural model of inhibition which assumes that the intensity image is C2 was put forward in 

[Huggins and Licklider 51]. In their model, the input is processed by neurons outputting a 

discrete set of values for input and the first and second derivatives (actually differences) thereof. 

Huggins and Licklider investigated what weighting functions necessary to "smooth" the outputs 

and to approximate the true input function. They then defme the neural response as a convolution 

of the approximated input function with a weighing function, where the weighting has a positive 

central lobe, surrounded by negative lobes. 

Bekesy [B~k~y 60] proposed a neural model to explain the Mach effect, and contrast effects 

similar to Mach effects in auditorial and tactile perception. He claims his model is equivalent to a 

continuous functional, in that it predicts Mach bands whose strength depends on the magnitude of 

the intensity gradient, and rate of change of gradient (this is the second derivative of the intensity). 

Thus Bekesy's model assumes that the intensity image (and the input to the auditorial and tactile 

perception systems) are at least C2. 
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We would like to point out that one of the more recent computational theories of human visual, that 

of Marr and Poggio [Marr 79], does not actually make assumptions on the input intensity image per 

se. This model convolves the input image with Gaussian filters of varying sizes then applies a 

Laplacian (a second order differential operator). (Actually they use the linearity of convolution to 

fIrst apply the Laplicaian to the Gaussian and then to convolve the Laplacian of the Gaussian (V2G) 

with the image.) Convolution with a Gaussian results in a smoothed intensity image that is CO, 

hence the fact that they apply the Laplacian does not make assumptions on the smoothness of the 

original image. Thus they do not even assume that the input is cO! 

In machine vision, of the most common early processing steps is the extraction of edges from the 

image. There are a wide variety of operators for this, many of them are discrete template matching 

algorithms. One of the earliest however was the use of the maximum of the gradient of the 

intensity image (using the fact that edges are discontinuities of the intensity and hence have infinite 

gradient). This clearly assumes that the image is piecewise C 1. 

In the optic flow work of [Hom and Schunck, 81] described in section 5, we note that the work 

makes assumptions not only about the temporal differentiability but also about the differentiability 

of the intensity image. Namely, they explicitly assume that the brightness E(x,y,t) at point (x,y) at 

time t is differentiable with respect to x,y and t (The optic flow work of [Hildreth 83] does not 

make these assumptions since she applies V2G to the image before attempting to calculate the 

temporal derivatives.) 

Yet another assumption that the image is Cl can be found in [Woodham 81]. Here, in showing 

the relationship between the reflectance map, R(p,q), the hessian matrix H, and the image intensity 

I(x,y), Woodham (by differentiating the image irradiance equation [Hom 77]) obtains the equation 

[lx' Iy] T = H rRp,Rql T which clearly implies that he assumes that I is at least C 1. 

The assumptions of the smoothness of images can be broken in to two categories: those derived 

from models of image in the visual system, and those inferred from the application of mathematical 

operators to the intensity image. In the former case we found that in general the assumptions were 

that the intensity image was at least C2. In the latter case we found the assumptions were generally 

C 1 (or none at all if the image was fIrst smoothed). There may be some rational for this difference, 

the application of a differential operator tends to increase the noise present in an image. 
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Furthennore, the higher the order of the operator the greater the magnification of the noise. Thus 

while it may be convenient to mathematically model the intensity image as twice differentiable, the 

application of a second order differential to an actual digitized may be impractical because of the 

inherent noise. (This also fits well into the fact that those theories that apply a second order 

differential first smooth the image to reduce the noise (e.g. the V20 operator.) 

page 22 



Part 2: Optimal Surface Interpolation 

§ 7 Introduction to Surface Interpolation. 

Up to this point, we have been considering what assumptions on the degree of smoothness have 

been made explicitly or implicitly by both computer vision and psychology researchers. Although 

these assumptions are interesting because of the implications they pose for the human visual 

system, they also have some practical import for a number of problems in computer vision. The 

remainder of this paper studies one such problem: surface interpolation given a sparse depth map. 

In recent years this topic has become the subject of fervent research, e.g. see [Grimson 81], 

[Grimson 80], [Terzopoulos 83,84], [Kender, Lee and Boult 85]. 

Through out this paper we have and shall continue to refer to the problem of visual surface 

interpolation. Although we are actually interested a method of approximating the surface, we refer 

to it as surface interpolation because we restrict the surface to interpolate the data. More preceisly 

the problem of surface interpolation is to fmd the "best" approximation to a surface passing through 

(Le. interpolating) a (generally sparse) set of depth values. The trick here, of course, is in the 

proper defmition of the term "best" . There are infmitely many surfaces passing through a given set 

of points, yet, in general, human observers perceive only one (there are certain cases in which 

there is more then one interpretation, see [Julesz 71].) In all of the afore mentioned work, the 

overwhelming consensus is that flnding the "best" surface is equivalent to flnding which surface 

humans would perceive, and how it can be specified. 

One way to specify which surface is perceived. is to flnd some functional, say 8, such that for any 

set of input depth data the interpolating function f* perceived by human observers, minimizes SCf) 

for all f from some class of functions that "represent" physical or perceived objects that have the 

same values as f$ at the data points. An interpolation algorithm could then attempt to fmd f* by 

minimizing this functional over the given class of functions. Note that there are a number of major 

assumptions here: 

* The "best" surface is the surface seen by humans; 

* There is some class of functions accurately representing physical or perceived objects; 
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* A functional measuring reasonableness of a function exists; 

* Given that such a functional exists, that it can be minimized. 

The flrst of these assumptions is a statement about the goals of computer vision. If taken as a true 

assumption, it implies that we are interested not is perception of true physical world, but in the 

visual world ala Gibson. The second of these assumptions has, up to this point, been the reason 

for most of this paper. A conclusion of this paper is that psychologists and computer scientists 

alike assume the world (perceived or physical) is at least piecewise C2, possibly with a bound on 

the second derivative. Therefore any class modeling the world should be at least C2, and be such 

that the second derivatives is bounded. The third of these assumptions, i.e. that there exists a 

functional measuring the reasonableness of a surface is a matter that needs further study. Though 

a number of functionals have been proposed, their relationship to the surfaces perceived by 

humans should be examined. The fmal assumption mentioned above, (i.e. that such a functional 

can be minimized), is a purely mathematical assumption, though it is of course dependent on the 

choice of the functional. The reader should keep in mind that the last two assumptions present a 

trade off between the physiological / psychological plausibility of some functional form, and the 

mathematical properties of that functional. This survey shall not, however, consider this points 

further. 

Though all of the afore mentioned work on surface interpolation is in part grounded in this concept 

of minimization of a "measure of smoothness", [Kender, Lee and Boult 85] arrive at this approach 

from a different point of view. They show that given certain assumptions this problem flts into the 

framework of a Information-Based Complexity developed by Traub and Woz'niakowski and their 

colleagues. This general theory then yields a spline algorithm that is optimal in the sense that it 

has minimal error among all algorithms. 

We begin with a brief introduction to the nomenclature of the information-based complexity. This 

in hand, the "needed" assumptions for application of the general theory shall be examined. Then 

we shall present a number classes of functions which, based on the assumptions reported in the 

earlier sections of this paper, are candidate classes for the interplaotry surface. For each class we 

shall also present an associated measure of smoothness, and some other information necessary to 
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construct the optimal algorithm. 

§8 Terminology of Information-Based Complexity. 

To use the results of the information-based complexity we must flrst cast the problem of surface 

interpolation in their tenninology. To do this, we must exactly define the problem, in tenns of: 

the allowed class of information operators, and the allowed class of algorithms, the class of 

functions the infonnation operator is applied to, the class of functions that the solution belongs to, 

and a restriction operator to restrict the class of functions to consider as solutions. We briefly 

discuss the definition of each of these in turn; the interested reader should consult [Kender, Lee 

and Boult 85], [Woz'niakowski 85], [Traub and Woz'niakowski 80] or [Traub, Wasilkowski and 

Woz'niakowski 83]. (Information-based complexity is a unified framework for discussing many 

previous, and numerous new theories dealing with optimal algorithms.) Then we discuss the 

defInition of an algorithm, and the measure of error of an approximation. Please note that the 

defInitions in this section are given in generality, in the hope that other vision problems may more 

easily be cast in this framework. This section may be skiped without signillcant loss of continuity. 

First we recall the definition of a linear problem. Let F 1 and F3 be linear spaces, and F2 and F 4 

be nonned linear spaces (with norms 11-112 and 11-114 respectively). Then we define S: F 1 ~ F2, (S 

is called the solution operator), N: Fl ~ F3, (N is called the information operator), T: Fl ~ F4, 

(T is called the restriction operator) be linear operators. We also defme the class of functions F == 

{f e Fl such that II Tf 114 S l}. 

We make this more concrete by describing the linear spaces and operators for the problem of visual 

surface interpolation. F 1 is the class of all surfaces that we wish to approximate. Different 

deflnitions of F 1 give formally different problems: see later sections of this paper for examples. F2 

== {flD: f e F I} is the class of surfaces restricted to some domain D. D maybe a circle or a square, 

or ~2 if we do not wish to restricted the domain at all. We also assume that there exists a norm on 

F2 denoted by 11-112' This norm might be the L2, L 00 or any other norm, and will be generally 

depend on the defmition of Fl' F3 is simply ~1C, where k is the the number of depth samples. In 

our case F 4 will be = F2, with the defInition of smoothness being reflected in the nonn 11-114' 
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Now let us consider the linear operators S, T, and N for our problem. The solution operator S is = 

I (I being the Identity operator), i.e. we are trying to recover the physical surface which generated 

the information. (If for example we were instead trying to approximate the orientation of the 

interpolating surface, S would be the fIrst partial derivatives.) The solution operator will be used 

later in the defInition of error. In our treatment, we shall use T = c . I , where the constant c is 

simply a scaling factor so that II Tf 114 $ 1 for all f e F 1 that are "smooth" for the current scale of 

resolution. Without loss of generality we assume that the resolution scale is such that the constant 

c = 1, hence T; I and the class of functions F4 is given by { f: II f 114 S I}. The information 

operator Nk consists of k adaptively chosen function evaluations (depth values), that is Nk(f) = 

[f(xl,Yl), ... , f(xk,Yk)] where in general xi and Yi depend in an arbitrary manner on [f(xl,Yl), ... , 

f(xi-l,Yi-l)]. If there is no dependence of xi and Yi on [f(xl,Yl), ... , f(xi-l,Yi-l)] we term the 

information nonadaptive. Nonadaptive information has many nice properties, the foremost of 

which is that the information can be collected in parallel. It turns out that for our problem (in fact 

for linear problems in general, see [Traub and Woz'niakowski 80, pS7-63]) that adaptive 

information is no more powerful that nonadaptive information. That is to say that for any adaptive 

information there exists nonadptive information (with the same number of function evaluations) 

such that the intrinsic error in the nonadaptive information is not greater than that in the adaptive 

information. Therefore without loss of generality we may restrict ourselves to nonadaptive 

information, Nk(f) [f(xl,Yl), ... , f(xk,Yk)] where xi and Yi, i = l..k are given a priori. The 

implication of this is that nothing is lost (as far as amount of information needed) by a system that 

gathers all of its depth data simultaneously. The fact that the human eye collects its stereo 

information in parallel suggest that evolution has already learned this unintutative lesson. 

Now we examine the definition of an algorithm. In the general theory, an algorithm 4>:N(f)-+F2 is 

an arbitrary mapping from N(f) (the information) to F2, the class of restricted surfaces. This 

defInition is then augmented by restricting the algorithm 4> to be an element of a class of realizable 

algorithms <%>, which may, for example, be algorithms implementable in a digital computer. 

Statements about an algorithm 4> (e.g. about 4>'s optimality) made without such a restriction on the 

class of algorithms are much farther reaching. They have implications for any algorithm to solve 

the problem, even those implemented with vastly different properties than 4>: even algorithms 

implemented within biological organisms. 

Finally, we can address the definition of error. We consider only the worst case absolute error. 

All the results presented here turn out to be independent of the choice of relative or absolute error, 
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see [Traub, Wasilkowski and Woz'niakowski 83, appendix E]. Then we define the error of a 

algorithm cj) using infonnation Nk to be: 

sup II ~ - cj) (Nk(f)) 112 
~E V(Nk,f) 

where V(Nk,f) = {g E F: Nk<.g) = Nk(f)} is the set of functions from F, with the same infonnation 

as f. Since we know only Nk we can not distinguish f from any other element of V(Nk,f), thus 

we take the supremum to handle the worst case. 

Now we define an algorithm cj) * to be strongly optimal if and only if 

e(Nk, cj) *,f) = inf e(Nk' cj),f) Tj f E F 
cj) E ~ 

where we place no restrictions on~. In other words, we defme an algorithm cj)* to be strongly 

optimal if and only if for each surface f, cj)* has error less than or equal to any other algorithm. 

Observe that the error then depends on both 11-112 and 11-114' The above defmitions of error are 

however independent of the choice of these nonns and in fact the optimal algorithm cj)* is also 

independent of this choice. This is a non trivial result of the general theory, see [Traub, 

Wasilkowski, and Woz'niakowski 83, appendix E]. However, the error of the optimal algorithm, 

cj)*, is dependent on the choice of 11-112 and 11-114, and if they are not restrictive enough, it may be 

happen that the error of the optimal algorithm is infmite. In such a case, flO algorithm could solve 

the problem for every fin F. 

§9 Optimal Surface Interpolation: A General Setting. 

In this section we present a form of the optimal algorithm, given a semi-norm and reproducing 

kernel of the space F2' and the semi-norm of the space F 4' To be precise, given the reproducing 

kernel and semi-norm 11-112 (with null space N) of a space X, and letting 11-114 = 11-112 we defme F2 

and F4 to be the quotient space x/N. Then F2 and F4 are normed linear space with norm 11-112' For 

the sake of brevity we shall often refer to 11-112 and 11-"4 as norms even though they can be 

semi-norms. If it is important that they are not semi-norms we shall explicitly state this. 

[Traub, Wasilkowski and Woz'niakowski 83] (see [Kender, Lee and Boult 85] for a less 
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mathematical treatment) proves that the optimal algorithm for the problem defIned as above is given 

by the spline function <!N(f) interpolating the data. We recall that the spline erN(f) is such that: 

II erN(f) 114 = inf II f 114' 
f E V(N,f) 

Now that we know, at least in a mathematical sense, what the optimal algorithm is, we need to 

express it in a form that can be realized. This problem has. for a number of classes. already been 

answered in the approximation literature. Atteia [Atteia 66a, 66b, 70] and Thomann [Thomann 

70a, 70b] fIrst dealt with the case when F4 was a Hilbert space, and their results were generalized 

by Duchon [Duchon 75. 76] to the case of semi-hilbert cases. We note that the following 

realization of the spline algorithm erN(f) is not the only possible realization. In fact the work of 

[Grimson 81] is actually an attempt to obtain the spline by direct minimization of the semi-norm 

which is used to defme erN(f). 

We follow the summary of Duchon's work given in [Schumaker 80]. If the space X is a 

semi-Hilbert space, and N = { f E X: II f 114 = O} then the optimal algorithm can be written down in 

tenns of K(x,y), the reproducing kernel of X. (Note that these reproducing kernels always exist, 

though in practice they may be very difficult to derive.) Namely letting Nk(f) = Z = [zIt ... zk] = 

[f(x l'y 1)' ... ,f(xk'Yk)] we can write the interpolating spline as 

k d 

L a.· K«x,y);(x.,y.» 
1 1 1 

+ L ~. · p.(x.y) 
. 1 1 1 i = 1 1= 

where {Pi}i=1. .. d is a basis for the set N, and the coefficients {~} and {~i} can be determined 

from the linear system of equations 

k d 

L a.· K«xJ·'YJ·);(x"y.» + 
i=l 1 1 1 

L ~. · p'(XJ·'YJ·)= z· 
i=l 1 1 J 

k 

L a.· p.(x .• y.) 
i=1 1 J 1 1 

0, j = 1, ... , d 
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There are two basic approaches for finding the appropriate classes, the associated norms and the 

reproducing kernels needed to find optimal spline for visual surface interpolation. The first 

approach is to derive (some how) from psychological models of human perception the classes of 

functions, and the associated norms for measuring smoothness. Given these two components, one 

must then derive the reproducing kernel(s) for the class(es) derived. This approach has the 

drawback that deriving mathematical classes and norms may be difficult, based on current m~els 

of the human visual system. Even given these classes and norms, obtaining the reproducing 

kernel remains technically difficult The second approach for arriving at optimal visual surface 

interpolation algorithms is to take classes that reasonably fit the known psychological process for 

which we already know the norm and reproducing kernel, and to find the optimal algorithms for 

these classes. That is we compile a collection of reasonable (class, norm, reproducing kernel) 

triples that currently exist, and apply (9.1) and (9.2) to obtain the optimal algorithm. Given an 

implementation of these algorithms, we then experimentally determine which if any of these classes 

best approximates human perception of smooth surfaces. It is of course imperative to use optimal 

algorithms, so that any differences in the reconstructions are due to the (class, norm) choice and not 

a poor algorithm. 

There are many properties that we might wish the interpolation algorithm to possess including: 

smoothness that coincides with the smoothness known to be present in human visual interpolation, 

time and space efficient implementations, biologically feasible implementations, high degree of 

parallelism, exact solution for low order polynomials, etc .. 

Keeping these properties in mind, the rest of this paper shall present a number of (class, norm, 

reproducing kernel) triples that have been used elsewhere in the approximation literature and meet at 

least the first of the above properties (i.e. they have acceptable smoothness.) We shall present each 

of these first in the general form, and then give a particular example of the formulas. 

§ 1 0 The uBending Energy Norm" and a little Notation. 

In a number of the following (classes, norms, kernel) triples we shall encounter the following 

semi-norm (here after we shall refer to is as S(f) : 
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f 
= I 

I 
L 

This semi-norm has a nice physical interpretation as the amount of bending energy in a thin elastic 

plate. Hence minimizing 8(t) is equivalent to ftnding the function from a given class, which 

passes through the data points, and has minimum bending energy. The reader familiar with the 

work of Gmnson [Grimson 79,80,81] will recognize this as the same functional that his relaxation 

algorithm attempted to minimize. GriInson argues that this functional is minimized by the human 

visual system, though he does not present any psychophysical basis for his conclusions. It is also 

important to note that although Grimson's algorithm attempted to minimize a discrete version of this 

functional, it was not doing so with respect to any particular class of functions, and hence does not 

possess the optimality properties of the algorithms presented here. This functional has a null space 

spanned by {I ,x,y}. This latter information will be used in the construction of the optimal 

algorithm for interpolation with respect to any class, with 9(t) as a semi-norm or norm. 

We present a little notation that will aid in the discussion of the classes, norm, and the associated 

reproducing kernel. First. we shall at times use the variable r locally in to denote the class of 

functions we are currently examining. We shall also use the notation Dx 1 to represent the 

differential operator di( e )/dXi, and similarly we shall use Dy i. For the case i = 1 we shall often drop 

the superscript. In what follows the notation Dxf(a,e) should be interpreted as a function of y 

deftned as df/dX evaluated at the point (x,y) = (a,y). (We assume similar deftnitions for derivatives 

with respect to y.) Also DxDyf(a,~) should be interpreted as Dx applied to Dyf(x,~) and 

evaluated at a. We shall use K(x,y;s,t) as the notation for a reproducing kernel in cartesian 

coordinates, and K(PI' aI; P2'~) for reproducing kernels in polar coordinates. Finally we Use 

the standard notation TIp for the space of bivariate polynomials with degree Spin each variable. 

§ 11 Atteia's C2 functions on a disk or on a rectangle. 

Here we investigate some of the mathematical details deftning the two reproducing kernels derived 

in [Atteia 70]. Both classes of functions have the standard Sobelev semi-norm given by (10.1) , 
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but have their domains restricted to circular or rectangular regions. These classes are considered 

because they contain the appropriate smoothness, use a intuitively pleasing semi-norm, and are 

defined over convenient regions. As we shall see however, they do not lead to very efficient 

implementations. 

Let n be an open bounded region of ~2. Then let H be the set of twice differentiable continuous 

functions f:Q -+ ~ 2, such that the first and second order partial derivatives are elements of L 2(n). 

Atteia shows that 9(f)IQ (that is the function defmed in 10.1, where the integral is restricted to n) 

is a norm on the (quotient) space H / n l' He examined two separate classes. 

First, let Q be a disk with radius r centered at the origin, and let our class of functions, r be defmed 

as 

(11.1) r = {fEH: f f(x,y) = f x . f(x,y) = f y' f(x,y) = 0 } 
an an an 

(The mathematical restrictions in definition of this class is similar to restricting the reconstructed 

surfaces to be such that if a thin wire was placed along the space curve given the value of the 

surface along the boundary of n, then that wire would have its center of gravity at the origin.) 

Then the reproducing kernel given by [Atteia 70] is 

2 2 

( ~ _ .:. ) . ( P2 _ .:. ) 
2r 2 2r 2 

(11.2) K( P (X' P (X) = _1 . 
l' l' 2' 2 21t 

p3 p3 
+ --L. (:..l. - P ) . ( .:...l. - P ) . cos «(X 1 - (X2) 

121t r 1 r 2 

00 
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2 'Q:iT 
n + 2 r 



i'a i'a 
1 2 

where zl == P . e and z2 == P . e 
1 2 

Now let us take n to be [a,b] x [c,d], then Atteia shows that if we take the class of functions to be 

(11.3) r= { f E H: [f(X,y) == [( x'f(x,y) + Ox f(x,y» == ! ( y'f(x,y) + Dy f(x,y» == 0 } 

Jan Jan Ja,a 

then 8(f)ln is a nonn on r lIT l' and the reproducing kernel is given by: 

00 00 

(11.4) K( x,y; s,t) = L L ~m.n . sin (m·7t· ~: ) . sin (n·7t· ~: ) 

m==1n==1 

( 
s-a ) 

. sin m·7t·--
b-a 

J 
3' 

2 . ( (b-a) . (d-c) ) 

where Ym,n == --~2-~2-"""'If'2-~2r--
7t2 (m'(d-c) +n'(b-a) ) 

. sin ( n.7t.~)) 
d-c 

It is unfortunate that both of the above reproducing kernels are infinite series. In practice, they 

would of course be truncated after some number of tenns (note that both series go to zero strictly 

faster than n-1.5). It is very unlikely that the human visual system would be reconstructing a 

surface using truncated intmite series, but it may be reconstructing a surface that can be very 

closely approximated by one of the above approaches. 

§ 12 Duchon's Classes of em functions on 9t 2 . 

Here we actually examine three infinite families of classes from [Duchon 70]. In all three families 

the domain of the functions is the entire space ~2, though when actually approximating we shall 
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restrict this space to some finite domain n. All three classes have the standard mth Sobelev 

semi-norm (given by (10.1) for the case m = 2) , and are considered because they have the 

appropriate smoothness (for any m ~ 2). Although these classes seem to differ in mostly 

mathematical terms, these differences have an effect on the efficiency of implementation as well as 

the visual appearance of the optimal interpolatory surface. 

The ftrst families of spaces Duchon called D-m L2, and for a given m ~ 2 each class is deftned as 

the space of functions which have all partial derivatives of order m in L2(9t2). Then given that m ~ 

2 we have that D-m L 2 ITIm-1 is a Hilbert space with the m th Sobelev semi-norm as a norm. The 

reproducing kernel for D-m L2(9t2) is given by 

(12.1 ) 

K( x,y; s,t) 
2 2 m-l J 2 2' 

( (x - s) + (y - t) ) . Lo~ (x - s) + (y - t) 

If we deftne D-mH~, for ~ ~ 1, to be the space of functions which have all partial derivatives of 

order m in H~, where H~ is the Hilbert space of functions such that their tempered distributions v 

have Fourier transform y that satisfy 

f It 12101
. 1 y. (t) 12 dt ( 00 

~2 

Then for ~ > 1 - m the reproducing kernel of the space D-m~ is given by : 

(12.2) 

2 2 m+~-l J 2 2 ' 
(x - s) + (y - t) ) . Lo& (x - s) + (y - t) 

K( x,y; s,t ) = 
2 2 m+~-l 

( (x - s) + (y - t) ) 
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As an example of these classes, let us choose rn = 2, hence our example is for functions from C
2 

such that their second derivatives are in HJl. If we take Jl = 0, we get a reproducing kernel = 

((x-s)2 +(y_t)2) .. 5 . Log( (x-s)2 + (y_t)2) ), and if Jl = 1 we have a reproducing kernel that is 

simply the cube of the euclidean distance. It is this last case that was reported upon in [Kender, 

Lee and Boult 85]. 

All of the classes considered so far have had a Sobelev semi-nonn (given by 10.1 for m = 2), 

which as we mentioned has a nice physical interpretation. We now consider a few classes that are 

more mathematically abstract. However, they are all of the appropriate smoothness, and some 

have other desirable properties. 

§ 1 3 Arthur's Classes of functions in Rm,n on [a,b] x re,d]. 

The classes and their associated norms are considered in this section because have the appropriate 

smoothness, should have reasonable efficient implementations, and allows modeling of non

isotropic smoothness. Although many researchers in computer vision have assumed that the visual 

space is isotropic (in tenns of smoothness or number of continuous derivatives), this is not an 

established psychophysical fact In fact, given the horizontal placement of the eyes, which has 

many effects including yielding less stereo depth data along horizontal contours, one might infer 

that he visual space is in fact non-isotropic. 

Let Rm,n be the Hilbert space containing all functions defmed on n = [a,b] x [c,d] such that for 

every fER m,n we have 

0Xl f is continuous for i = I, ... , m-I; 

O~ f is continuous for j = I, ... , n-l; 

Oxm-If and 0yn-If(x,y) are absolutely continuous; 

and fmally Ox m f, 0y n f, and Ox m-l Oy n-I f are in L 2(n). 

Let {Xl, ... , xm} and {YI' ... , Yn} be distinct points in [a,b] and [c,d] respectively. Then Arthur 

[Arthur 74], shows that (f,f) 112 is a semi-norm on Rm,n, where the irmer product (f,g) for Rm,n 

is given by: 
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m n 

( f, g) - L L f( Xi' Yj ) . g( Xi' Yj ) 

i=1 j=1 

(13.1 ) 

n b 

+ 4, f D: f( X, Yj ) . D: g( X, Yj) dx 

J=1 a 

m d 

+ 4, f D; f( xi, Y ) 0 D; g( Xi, Y) dy 

1=1 c 

b d 

+ f f D: D~ f( x, Y ) 0 D: D~ g( x, Y) dy dx 

a c 

The null space associated with this semi-nonn is 

m-l n-l 

{ f E Rm,n: f(x,y) = L L ~i' 0 xi 0 yj ; 

. O· 0 J 
1 = J= 

which is of finite dimension mono 

for some constants ~.. } 
I,J 

Before we can define the reproducing kernel for R m,n with the above nonn, we need a few 

auxiliary functions. Let 

m 

Ci (x) II 
x-x· 

x· -x: 
J=1 I J 

i = 1, "0, m 

j;ei 

Then defme 

m m 

K 1 (x,s) = L ci (x) 0 cds) + (-1) 
i=1 (2m-I)! 

(13.2) 

and ~ (y) 
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II 
J=I 
j;ei 

i = 1, ... , n 



and similarly define 

(13.3) 

where 

n D 

~ (-1) 
= ~ ~ (y) . ~ (t) + (2n _ 1)! 

j=1 

(Z) == 
+ { 

Zo 

if Z ~ 0, 

otherwise. 

Finally the reproducing function derived by Arthur for the class Rm,n with norm derived from the 

inner product (13.1) is K(x,y;s,t) = K 1(x,s)' K2(y,t). This separability significantly decreases 

the cost (both in time and space) necessary to obtain the optimal interpolatory surface for this class. 

Using the above formulas, one can chose different m and n (they need not be the same) to obtain 

optimal interpolations for many classes, for example R 2,2 , R 2,3, R 3,3, etc .. Note that changing 

the location of the points {Xl"" xm }, {Y1' ... , Yn} results in a different norm as well as the 

associated kernel. At the present time we do not fully understand the implications of these changes. 

We now examine the particular case with 0=[0,1] x [0,1], with m=2, n=2, x1=0, x1=1, Y1=0, 

Y2= 1. Then the class of functions for our example contains those functions defined on 0 with first 

partial derivatives absolutely continuous, and with second partial derivatives in L2(0). Then the 

appropriate semi-norm (from 13.1) is 

1 1 

( 
2 2 2 2 

II f II == f(O,O) + f(O,l) + f(1.0) + f(1,1) + f 2 2 f 2 2 
(Dx f(x,O») dx + (Dx f(x,!)) dx 

° ° 
(13.5) 
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1 

f 
2 2 

(Dy f(O,y» dy 

o 

1 

+ feD: f(1,Y)/ dy + 

o 

1 1 

ff(D~D~ f(x,y»2 dy dx ) 

00 

Then, if we restrict 0 ~ x, y, S, t ~ 1, we obtain (from (13.2 and (13.3)) 

1 (3 3 3 ) 
K1(x,s) = X's + (x - 1)'(s - 1) + -' (x - s) - (x - 1)·s + s'X + (1 - s) . (1 - x) 

6 + + 

1 (3 3 3 ) 
K2(y,t) = y·t + (y-I)·(t-I) + 6' (y-t)+ - (y-l)·t + t·y + (l-t)+'(I-y) 

Then for this example the reproducing kernel K(x,y;t,s) = KI (x,s) . K2(y,t), and the null space 

for the semi-norm 13.4 is spanned by {I, x, y, xy }. 

§ 14 Mansfield's classes RcP,q on [a,b] x [e,d]. 

In this section we present a family of class and their associated semi-norm and reproducing kernel 

developed by Lois Mansfield [Mansfield 71]. We consider these classes because they have the 

appropriate amount of smoothness for the visual surface interpolation problem. Again these 

classes allow experiments to see if the perception of smoothness is non-isotropic, since we can 

vary the degree of smoothness in the x and y directions separatly. These families of classes also 

allow us to incorporate prior knowledge (on a set of points or lines) into the norm we will 

minimize. Finally, the second of the two families of classes examined, has the property that the 

optimal algorithm is exact for information generated by low order polynomials. 

We point out that given the right choice of parameters, the norms and reproducing kernels 

developed by Mansfield totally subsumes the (chronologically later) work of [Arthur 74]. 

However, the Mansfield families of class are more general, and the equations arising from it, 

though equivalent for the right choice of parameters, are more complex. Before we can define the 

class RcP,q we need a few auxiliary definitions. 

Let our domain of interest be the two dimensional rectangle n == [a,b] x [c,d]. Let p ~ 1 and define 
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FP[a,b] == {f: 9t-79t such that Dxp-l is absolutely continuous, and DxP E L2[a,b] } . 

Let G l , ... , Op be a set of linear functionals which are linearly independent over TIp-I' such that 

each 0i is of the form 

O. (f) == 
1 

~b 
L J dx f(x) doo.(x), 
. 0 J 
J= a 

where the OOj'S are generalized functions of bounded variation (in the standard mathematical sense 

not in the sense of Orimson), for example, delta functions (in which case the integral reduces to a 

function evaluation at the spike of the delta function), constant functions, etc .. 

Similarly let q be ~ 1, defme 

Pl[c,d] == {f: 9t-79t such that Dyq-l is absolutely continuous, and Dyq E L2[c,d]}, 

and Q l' ... , Oq be linear functionals of the form: 

~(t) == 

-1 d 

l J D; f(y) dlll;(Y) , 

J=O c 

~(y) functions of bounded variation, 

which are linearly independent over TIq-l' 

Now we can defme our class of functions RcP,q, RcP,q:9t2-79t as 

D~ dy f is continuously differentiable on Q, 'V i < p and 'V j < q; 

~l. P 2 . 
Dx ~ f IS AC[Q], and Dx Qj f E L [Q], 'V J = l..q; 

q-l q 2 
oy OJ f is AC[Q], and OY OJ f E L [Q], 'V j = l..p; 

~.q= 

p q 2 
Dx Dy f E L [Q]. 

where AC[O] is the set of absolutely continuous functions on Q. Here we note that if Gi and Qj 
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are taken as function evaluations at points within [a,b] and [c,d] respectively (that is by choosing 

ro(x) and Ql(y) as delta functions), then by setting m=p, n=q , we have RcP,q = Rm,n the class 

defined in (13.2). 

Again, on the way to defining the semi-norm for this space, we develop a few other functions, to 

wit, let rj E IIp-l' j = l..p be functions such that 

where aij is the Kroneker delta. Similarly let Ij E I'Iq-l' j = l .. q be functions such that 

Now define P and Q to the linear projections on FP[a,b] and PI[c,d] respectively with: 

P(f(x» and Q(f(y» = t Qj (f(y» . Ij . 

j=l 

Now with the notation I as the indenty operator, (L)xf(x,y) meaning to apply the linear functional 

L to f as a function of x, and (z)+ defmed as in (13.3) defme the two functions: 

(14.1) G(x,t) 

and note that 

(14.2) 

and 

(14.3) 

(x-t)+p-l 

= (l-P)x' 

(P-l)! 

(I - P)f(x) 

(y-s)+ q-l 

and Q(y,s) = (I-Q)y . 

(q-l)! 

b 

f G(x,t)· ~ f(t) dt 

a 
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d 

(1- Q) fey) = J U(y,s)' D; f(s) ds. 

c 

Using these last two equations, we have for all f E RcP,q 

f(x,y) = (p ® Q)f(x,y) + «I-P) ® Q)f(x,y) + (p ® (I-Q))f(x,y) + «I-P) ® (I-Q»f(x,y), 

where ® is the normal tensor product This directly leads to the following semi-norm on Rl,q: 

(14.4) 

b d 11 b 
2 ff p q 2 f P 2 II f II = (Dx ny f(x,y») dy dx +. (Dx Qj fex,y») dx 

a c J=1 a 

-1 d 

+ ~ J (D~ G;f(x.y») 2 dy + 
1=1 c 

2 
( G j Uj f(x,y) ) 

And we can define [f,f] as 

[f,f] 
2 

- II fll 
2 

( G j Qj f(x,y») 

where [f,f] 112 is also a semi-nonn on RcP,q. Both the semi-norm [f,f] 112 and the semi-norm 

(14.4) have a null space of dimension p'q given by 

~~ 
{ f: f(x,y) = L L ~i .. Xl • yJ; 

. 1 . 1 ,J 
1= J= 

for some constants ~... } 
I,J 

Finally the (separable) reproducing kernel, K*( x,y; s,t) = Kl (x,s) . K2(y,t), for RcP,q with semi

nonn (14.4) is given by 

(14.5) 
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(14.6) 

and Mansfield notes that 

(14.7) 

b 

b 

Kl (X,S) = f ri(x) . ri(s) + J G(x,z) . G(s,z) dz 

i=l a 

d 

= i r·(y) . r.(t) + J Q(y,z) . Q(t,Z) dz 
. I ~ -.1 
J= c 

J O(x,z) . O(s,z) dz 

a 

With a similar statement holding for f O(y,z) . G(t,z) dz. It can be shown that if we choose the 

OJ's and OJ'S to pointwise functional evaluations then the above fonnulas would reduce to those 

recounted in section 13. 

Now, we present an example of a particular class, say Rc 3,2, and develop the associated 

semi-nonn and kernel. Let our domain be n = [0,I]x[0,1] (that is a=c=O and b=d=O). Take 01 (f) 

= f(O), 02(f) = f(I), G3(f) = 0xf I x .. O' Ql (D = f(O), and G2(!) = f(l). (Note that if we let 

p=q=2 and drop 03(f) then we recover exactly the example from section 13.) 

Given these definitions out semi-nonn is given by 

bd b b 

1/ fl12 == II (D!D~f(X,y») 2 dydx + I (O!f(x,O») 2 dx + 1
3 2 

(Ox f(x,I») dx 

ac a a 

d d d 

+ I (0; f(O,y») 2 dy + I (D~ f(l ,y») 2 dy + f (r\ (Ox f(x,y)lx..o ») 2 dy 

c c c 

f(0,0)2 + f(0,1)2 + f(1,0)2 + f(1,1)2 + (af(x,y) l ) 2 + 
ax zO,yzO 

( af(x,y) I ) 2 

ax 
x=<>,y=l 
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For this class we have ft (x) = 1 - x2, r2(x) = x2, r3(x) = x - x2, rt (y) = 1 - y, and r2(Y) = y. 

Then by use of equations (14.5) - (14.7) we obtain the kernel K(x,y; s,t) = Kl(x,s) . K2(y,t) 

where Kl (x,s) and K2(y,t) are given by: 

2222 2 2 1 ( 5 5 2 
K

1
(x,s) = (1-x )-(1-s) + x·s + (x-x )'(s-s) + ST' (x-s)+ - (X)+'(1-s) 

5 2 4 2 5 2 2 2 2 2 2) 
(x - 1)+' s + 5'(x)+' (s - s) - (1 - s)+' x - (1-s )'(I-x ) + 5'(s - s ) - 5'(s - s )·x 

and 

K
2

(y , t) (1 - Y)'(1 - t) + y·t + ;, . (y - t)~ - (y)~. (1 - t) - (1 - t)~. Y + (1 - t) . y ) 

Mansfield notes that the optimal interpolation with respect to the semi-norm given by 14.4 "will 

not usually be exact for low degree polynomial" [Mansfield 71, P 119]. Since there is some belief 

that this may be a good property of an interpolation algorithm, she develops a new semi-norm, and 

associated reproducing kernel that will be exact for low degree polynomials. We present a 

simplification of her treatment here, for more details see [Mansfield 71]. Some vision researchers 

may not consider the property of exactness for low degree polynomials to be useful, yet in the 

work of others (e.g. [Marr 82], [Ullman 76]) there are assumptions that surfaces (or their 

boundaries) can be represented as conics (or circular arcs), The role of this property in a vision 

system for interpolation has not been shown; we present the following in the interest of 

completeness. 

Let F l' ... , F n be bounded linear functionals (in the usual mathematical sense), which are linearly 

independent over N == TIp-I (x) ® IIq-l (y) and of the form 

1 b d 

U = ~ ± J J 0; dy f(x,y) dol;jCx,y), 

1= 1 J= 1 a c 

where Ctlij(x,y) is of bounded variation (in the mathematical sense). Also let F l' ... , Fn be such 

that there exists constants Ai i = l..n such that f = Lkn Ai . Fi(f) for all fEN. (Note [Mansfield 

71] considers the case when the F(s are not linearly independent) Then II f II = [f,f] + Lkn (Fif)2 

is a semi-norm on RcP,q and the reproducing function is given by 
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n 

K( x,y; s,t) = (I - P)" (I - P)q K· ( x,y; s,t ) + L Tli (x,s) . Tli (y,t) 

i= 1 

where K*( x,y; s,t) is defined as above, P(f) is the projection from RcP,q onto N defmed by 

n 

Pf(x,y) = L Fi (f(x,y» . Tl(x,y) 

i=l 

and where Tli(S,~), i = 1..n are elements of TIp-I (S)®TIq-l (~) such that 

These definitions are simply mathematically in nature. It has yet to be shown if these classes are 

useful for interpolation (especially for computer vision). The nature of these classes however, is 

complex and the correct choice of the parameters (degree of continuity p and q, as well as the 

functionals Gi or Fi) is not obvious. 

§ 1 5 Mansfield's class Tp,q[a,~] on [a,b] x [c,d]. 

In [Mansfield 72] Mansfield derives the reproducing kernel for a class that is slightly smoother than 

RcP,q. This class, TP,q[a,~], has properties similar to the space of functions Bp,q(a,~) 

discussed by Sard [Sard 63, Chapter 4]. It allows the incorporation of prior knowledge (along the 

lines x = a and y = ~) into the definition of the nonn to minimize. Again we consider this space 

because it is sufficiently smooth (for p,q ~) and may have an efficient implementation. 

Let n = [a,b] x [c,d] be our domain of interest. Then letting m = p+q, we defme Tp,q[a,~], as 

the set of functions f: ~2-+~ such that 

and 

DxiD~ f(x,~) is contuious on n, for i= O .. p-l, j= O .. q-l, 

Dxm-J-ID_J f(·,~) is absoutly continuous on n, for j = l..q-l, 
. Y 2 

Dxm-~ DyJ ~(-,~) E L [a,b] for j = 1..q-l, 

Dym-l-I Dx! f(a,.) is absoutly continuous on n, for i = l..p-l, 

Dym-i Dxi f(a,) E L2[c,d] for i = 1..p-l. 
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Note that by this defmition, the partial derivatives Dxp+iD~ f(-,~), i = O .. q-j, j = l..q-l, need 

only exist with respect to y along the line y = p, hence all partials with respect to y must be taken 

before any partial of order ~ p with respect to x. Similarly for Dyq+jDxi f(a,'), j = l..p-i, i = 

1.. p-l we take all partials with respect to x before any partials with respect to y of order ~ q. 

Mansfield builds this class as the direct sum of a number of complete classes, and hence it is 

complete. By equipping it with the semi-nonn given by: 

II fl/ = 

b d 

II 
p q 2 

(Dx Dy f(x,y) ) dy dx + ~
1 b 

1 ' 2 . I (D:- Uy f(x,~») dx 

J=1 a a c 

(15.1) 

TP,q[a,~] becomes a Hilbert space. The null space of this semi-nonn has finite dimension 

m'(m+l)/2, and is given by 

{ f: f(x,y) = l y ... xi. yj; for some constants y .. } 
., IJ IJ 
l+J<m 

Given the semi-nonn (15.1), the reproducing kernel for the space TP,q[<l,~] is given by: 

~l 

(15.2) 

m'T 
2p-l 2q-l ~ 

Km ( x,y; s,t) = 'V (x,s) . ~ (y,t) + £..J lli (x,s) . lli (y,t) 

(t - ~)j (y - I3)J 2(m-j}-l 

., ., 'V (x,s) 
J. J. 
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Though these last few classes may seem formidable, when restricted to particular examples, they 

result in polynomial (and therefore relatively efficient) algorithms. Of course it is important to 

verify the usefulness of the resulting interpolation algorithms. Because of their rather complex 

definitions it is difficult to infer from these deftnitions any implications on human vision. Given 

that the methods have yet to prove there applicability we defer in any attempts to make inferences. 

§ 16 Conclusions 

In the first part of this paper we attempted to better understand what is generally implied (in 

computer and human vision research) by the tenn smooth. We found that in general smooth 

objects were assumed to have piecewise C2 boundaries with an upper bound on the magnitude of 

the second derivative, smooth visual motion was assumed to be was assumed at least piecewise 

C 1, and intensity images are assumed to be C2. Another conclusion about the tenn smooth which 

can be infered from the works surveyed in this paper is that increasing the number of continuous 

derivatives does not corrisponding to increasing the smoothness. In fact, no researcher even 

slightly implied this property of the tenn smooth. This should be contrasted with work in 

approximation theory where the number of continuous derivatives of a class of functions is often 

refered to as the degree of smoothness (we also used this defmition throughout this survey) and 

increasing the number of continuous derivatives corresponds to increasing the "smoothness". 

All of these conclusions are, however, not based on direct experimental research, but rather on the 

assumptions implicit or explicit in the mathematics of the researchers. Therefore the conclusions 

may be more a reflection of the researchers mathematical bias than of the true meaning of smooth or 

of the smoothness possessed by objects, motion or images. 

We then examined some of the terminology, and the results of application of infonnation-based 

complexity. Application of this theory (or any theory which would yield a "optimal" interpolation 

algorithm) force us to make explicit the global assumptions on the smoothness of object, requiring 

us to choose a class of functions in which the surfaces exist, and to choose a nonn (or semi-nonn) 

on that class. However biased the conclusions of the ftrst part of this paper, they serve as a useful 
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starting place for choosing a class in in which to do optimal visual surface interpolation, suggesting 

that we should consider classes which are at least C2. Given this starting point we examined a 

number of possible classes of functions giving the information necessary to implement the optimal 

error algorithm for that class. 
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