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SUMMARY 
We discuss and develop further the methods of surface wave tomography in the 
frame of the geometric ray approximation. The general approach for determining 
the lateral phase or group velocity distribution, which is a standard 2-D tomography 
problem, involves linearization, representation of the unknown function as a series 
in some basis functions, and evaluation of the coefficients by the methods of linear 
algebra. If the wave paths cover the area under investigation non-uniformly, the 
basis functions should not be chosen a priori, but constructed proceeding from the 
pattern of paths. Different criteria for constructing the basis functions are compared, 
and a relation between them is considered. 

A more preferable approach is joint interpretation of phase and group velocity 
data for different periods, because it allows the information about phase velocity 
variations to be enlarged due to  the use of the group velocity data. Both the phase 
and group traveltimes are represented as linear functionals of the unknown phase 
slowness corrections. A specific form of the data kernels allows the basis functions 
to  be represented as a product of two functions, one depending on the horizontal 
coordinates, and the other on frequency. 
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INTRODUCTION 

Phase or group surface wave velocities observed along 
different paths are widely used to study lateral variations 
and anisotropy of lithospheric structure (see for example 
Sat0 & Santo 1969; Avetisyan & Yanovskaya 1973; 
Berteussen, Levshin & Ratnikova 1982; Nakanishi & 
Anderson 1982, 1983, 1984; Yanovskaya 1982; Nishimura 8t 
Forsyth 1985; Maaz et al. 1985; Tanimoto & Anderson 1985; 
Suetsugu & Nakanishi 1985; Montagner 1986; Sabitova & 
Yanovskaya 1986; Gobarenko, Nikolova & Yanovskaya 
1987; Hadiouche & Jobert 1988; Montagner & Jobert 1988). 
The final aim of most of these studies is to map local values 
of the velocities and-if possible-to display azimuthal 
anisotropy for a set of periods. In this paper we shall ignore 
anisotropy estimation and concentrate on determination of 
lateral heterogeneities. For qualitative conclusions on lateral 
heterogeneities of the lithosphere, or for determination of a 
3-D model, the maps of local surface wave velocities are 
used. The 3-D model may be constructed by solving a set of 
1-D inverse problems to determine vertical velocity and 
density distributions at each point of the area under 
investigation from corresponding dispersion curves. Mon- 
tagner (1986) has shown that this approach is equivalent to 
3-D inversion, if the vertical and horizontal velocity 

variations are decoupled (this assumption is practically 
fulfilled). Such a two-step approach is more preferable than 
a direct 3-D inversion, because in this case the calculations 
are much simpler. Thus the 3-D inverse problem using 
surface wave data may be separated into two independent 
problems: 2-D inversion for phase or group velocities for a 
iixed period, resulting in lateral variations of these velocities 
for a set of periods, and 1-D inversion for the vertical 
distribution of the elastic parameters, such as P and S 
velocities as well as density. 

However, this approach does not allow the phase and 
group velocities to be processed jointly, whereas they are 
related. Besides, it is preferable to use the data for all 
periods simultaneously to achieve better resolution. It 
should also be noted that to calculate the vertical velocity 
distribution the phase velocity dispersion curves are 
preferable: the non-uniqueness of the solution is much 
stronger, if we use group velocity dispersion curves, because 
one and the same group velocity curve corresponds to an 
infinite set of phase velocity curves and consequently to an 
infinite set of vertical velocity distributions. However, the 
phase velocities are obtained from seismological observa- 
tions with more difficulty, so that usually a poor set of phase 
velocity data is available. Therefore, it is better to use 
jointly phase and group velocity data and to combine the 
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data for different periods. Such an approach was proposed 
by Yanovskaya et al. (1988). It was shown by model 
examples that to reconstruct the main features of the phase 
velocity distributions within a wide range of periods it is 
sufficient to use an extremely scanty amount of phase 
velocity data: a deficiency of them is filled up by the data on 
group velocity. 

Since the 1-D inversion of phase (or group) velocity 
dispersion curves poses no problems, we shall neglect this 
last step in solving the 3-D inverse problem and formulate 
the surface wave tomography problem either as a standard 
2-D seismic tomography problem on a plane or on a 
spherical surface, or as a so-called ‘3-D’ inverse problem in 
the domain x , y ,  T (or 8, q, T) using the phase andlor 
group velocity data over different paths and corresponding 
to different periods. 

We shall review and compare the methods developed for 
solving both problems (2-D and 3-D), taking into account 
the following properties of surface wave observations: 

(1) the paths of the waves always cover the area under 
investigation non-uniformly and the total amount of them is 
never too large; and 

(2) lateral surface wave velocity variations are small 
enough, so that a starting model can be taken as laterally 
homogeneous, and the ray paths in the starting model are 
straight lines or great circles. 

GENERAL APPROACH TO THE 
TOMOGRAPHY PROBLEM 

In this paper we shall treat only traveltime inversion. As is 
well-known, in this case the geometric ray approximation is 
allowed for determining the relation between the data and 
the model, if the linear dimensions of heterogeneities under 
investigation are much larger than the wavelength, and the 
effect of small-scale heterogeneities on the traveltimes may 
be neglected. This assumption is practically fulfilled for 
surface waves, so when we refer below to a ‘tomography 
problem’, we shall imply geometric tomography. 

For regional studies we may use Cartesian coordinates 
x , y ,  because a small part of a spherical surface is easily 
reduced to a plane by a suitable transformation of the 
coordinates and velocity (Yanovskaya 1982; Jobert & Jobert 
1983). For global studies it is necessary to solve the problem 
in spherical coordinates 8, q. The general approach for 
solving the plane and the spherical problem is the same, but 
the functions, in which the solution is represented, are 
different for these two cases. Therefore for brevity we shall 
treat later the plane case in detail, and the results for the 
spherical case will be adduced in the points, where a 
difference exists. We emphasize the 2-D problem here: the 
3-D problem in the domain x ,  y,  T may be reduced to the 
2-D one, as we shall see in the last section. 

The general 2-D tomography problem is formulated as 
follows. The data set are the traveltimes ti(i = 1, 2, . . . , N) 
along different paths Li. The data involve experimental 
errors E~ described by the covariance matrix R,. We assume 
a velocity V, in the starting model and calculate traveltimes 
toi along the same paths in the starting model. 

Since the lateral velocity variations are small enough, we 

may determine the relative slowness correction 

m(x, y )  = [V(x,  y1-l- V,lI/V,’ 

instead of the unknown velocity distribution V(x, y ) ,  and 
use the traveltime residuals 6ti = ti - top 

According to the above-mentioned assumption, 
Im(x, y)l<< 1. Then 

where LOi is a segment of a straight line. 

form 
A general solution of this problem may be written in the 

where q, (x ,  y )  are basis functions, which may be either 
assumed a priori (Nolet 1987) or constructed proceeding 
from the given data set in explicit form (Tarantola & 
Nercessian 1984; Ditmar & Yanovskaya 1987) or in implicit 
form (Suetsugu & Nakanishi 1985). 

If the basis functions are assumed a priori and their 
number is less than the number of the data, the unknown 
coefficients q, forming the vector a, are determined by 
minimizing the functional 

(Sa - Gt)TR;l(Sa - lit) 

where 

s.. = qj(x, y)V,’dS. I 
The main disadvantage of this approach is that the 

solution depends seriously on the choice of the set of basis 
functions. In particular, a priori regionalization is an 
example of this approach, and difficulties connected with it 
are well-known (Suetsugu & Nakanishi 1985). If the basis 
functions are spherical harmonics or polynomials, then in 
the parts of the area covered densely by wave paths the 
solution becomes too smooth, and on the other hand, in the 
parts where the number of paths is small, the solution may 
contain spurious anomalies connected with peculiarities of 
the basis functions. Therefore, it is more expedient to 
determine a set of basis functions in concordance with the 
pattern of paths. 

The methods for determining the basis functions fitting 
this requirement seem to be principally different. But as we 
show later, they may be reduced to the same principle. The 
difference between them results from a priori assumptions 
concerning the unknown function. Below we describe the 
approach proposed by the authors (Ditmar & Yanovskaya 
1987) in a form valid for inaccurate data. Then the other 
criteria for constructing the basis functions will be reviewed 
and compared. 

CRITERION BASED ON AN ASSUMPTION 
ABOUT THE SMOOTHNESS OF T H E  
SOLUTION 

In the above-mentioned paper (Ditmar & Yanovskaya 1987) 
the authors proposed to determine the unknown function 
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m(x, y ) proceeding from the following conditions: 

(i) the solution must be smooth in the following sense 

(ii) on the contour C, of the area S 

(iii) the solution obeys the constraints corresponding to 
accurate data 

1 Gi(r)m(r) dr = 6ti 

where 

I, G,(r)m(r) dr = m(x, y)V,' ds. ILj 
This approach can be easily expanded to inaccurate data in 
the framework of Tikhonov's 'regularization' method 
(Tikhonov & ArsCnine 1976). According to this method we 
shall look for the solution proceeding from the following 
assumption on the function m(r): 

(at - Gm)TR;'(6t - Gm) + cr 1 VmI2 dr = min, (3) I, 
where cr is a parameter of regularization, the notation 

(Gm), =I, Gi(r)m(r) dr 

is implied, and G(r) is regarded as a vector with components 
Gi(r). The unknown parameter a must be chosen so that the 
first term in (3) would be equal to the total number N of 
data. Later we shall refer to (3) as criterion 1. 

We assume S to be the whole plane (C, is removed to 
infinity) and m(r) to be a constant at infinity. So that 
(am/3n), = 0. 

Minimizing (3) and taking into account the Green's 
formula 

(Vm, Vrl) dr = - Am dr + rl(3m/an) dl 1 I, I, 
and the above-mentioned assumption about (arn/an),, we 
obtain the following integro-differential equation: 

a Am = GT(r)R;'(Gm - st). (4) 

The Green's function of the 2-D Laplace equation in the 
x, y plane is 

g(r', r) = (2n)-' In (r' - rl-' = g(r, r'). 

We may look for the solution of (3) in the form 

m(r) = I F(r')g(r', r) dr' + @(r) (5) 

where F(r) and @(r) are unknown functions, @(r) being a 
harmonic function. 

Substituting ( 5 )  into (4) and using the notations 

Ci = G,(r)@(r) dr, J 
Ui = qi(r)F(r) dr, I 
we obtain 

crF(r) = GT(r)R,'(6t - U - C) (6) 

Multiplying (6) by q,(r) and integrating over the area we 
obtain an algebraic system of equations with respect to U 
and C: 

crU=SR;'(Gt-U-C), (7) 
where 

S, = I/ Gi(r)Gj(r')g(r, r') dr dr' 

Solving (7) for U and substituting the solution into (6) we 
obtain 

F(r) = GT(r)R;'(SR;' + crl)-'(6t - C) 

and 

m(r) = qT(r)R;'(SR;' + crl)-'(6t - C) + @(r). (8) 

Now let us recall the assumption about the behaviour of 
m(r) at infinity. The first term of the right-hand side of (8) 
increases at infinity like In r (since *"(re)+ tOi In r-' ,  r - m ) ,  
and the second is a harmonic function, which either is a 
constant or increases like a polynomial of x, y at r + m .  
Therefore, in order that m(r) is constant at infinity, @(r) 
must be a constant (c) and the coefficient of In r (r+ a) in 
the first term must be equal to zero. Consequently 

c = c t ,  ( 9 4  

~R;~(sR;~  + aI)-'(6t - ~t,) = 0,  

and 

or 

c(S + &,)-'(St - ~ b )  = 0. 

Hence 

c(S + crR,)-' 61 
c(S + crR,)-'b 

C =  

and 

m(r) = qT(r)(S + aR,)-' 6t  

For accurate data R,=O, and we obtain the solution 
proposed earlier (Ditmar & Yanovskaya 1987). 

Although in the spherical case it is unnecessary to assume 
a boundary condition similar to that in the plane case, the 
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final solution will also be of the form (lo), where the 
Green's function g(r', r) must be substituted by the function 

g(0', q'; 0, q) = -(4n)-' In [2(1- cos A)] ,  (11) 

where A is the great circle distance between the points 
(0, q) and (0', q'). This result follows from the fact that 
the function (11) is not a real Green's function on the 
sphere, so that to express a function m(0,  q), which fits the 
Poisson equation 

Am =f(e, q) 
in the form 

we must assume 

/If(e, q) sin ede dq = 0,  

which is analogous to (9b). 
The system of basis functions in this case is following: 

The function Vi(r) has a maximum along the ray, the 
derivative being discontinuous on the ray. The behaviour of 
these functions is illustrated in Fig. 1. 

It should be noted that in general we may require any rate 
of smoothness, so that the second term in the left-hand side 
of (3) will be as follows: 

where V V . . .  V is the tensor of nth derivatives of the - 
n 

Figure 1. Example of the basis function ~ ( x ,  y)  for a ray along the 
y-axis between the points y = -1 and y = +l. It is clear that the 
derivative d*/& is discontinuous on the ray. 

function m(x, y ) ,  and 11. * - 1 1  denotes its norm: 

To obtain a unique solution for m(r) it is necessary to add 
some conditions on the contour. 

OTHER CRITERIA FOR CONSTRUCTING 
THE BASIS FUNCTIONS 

Criterion 2. Tarantola & Nersessian (1984) proposed to 
solve the tomography problem proceeding from a Bayesian 
approach. If the a priori covariance function of the model 
Rmo(r, r') is assumed, m(r) is determined by minimizing the 
functional 

mTR,b + (Gm - 6t)TR;1(Gm - at) (13) 

where m=m(r) and Rmo=Rmo(r ,r ' )  are regarded as a 
vector and a matrix in Hilbert space, so that 

mTR;& = 11 m(r)R;h(r, r')m(r') dr dr'. (14) 

The solution is 

m = Rm0GT(R, + GRm0GT)-' 6t (15) 

and the basis functions are 

rpi(r) = Rmo(r, r')Gi(r') dr' = R,,(r, r')VG1 h. (16) 

A delicate point of this approach is how to choose the a 
priori covariance function. Tarantola & Nersessian (1984) 
proposed different functions to describe the covariance 
between the points r and r'. The simplest analytical form of 
the function is Gaussian: 

I I 

Rmo(r, r') = d exp (-lr - r'12/2~') (17) 

where L is a correlation length. The behaviour of the basis 
function (16) with R,, defined by (16) is shown in Fig. 2. 

Montagner (1986) proposed a covariance function on a 
sphere: 

R,,(M, M') = a ( M ) o ( M ' )  exp [(cos A - l ) / L z ]  (18) 
where A is the angular distance between the points M and 
M ' ,  and L is also a correlation length. 

The correlation length L is a kind of smoothing 
parameter: if it is too large, the solution will be very 
smooth, and if it is too small, the solution will be 
concentrated along rays. Montagner (1986) discussed the 
problem how to choose L:  it must be larger than the 
wavelength, and if we assume the effective path width to be 
equal L ,  the paths must ensure a good coverage of the area. 
However, a difficulty arises in those cases when the coverage 
of the area by the paths is non-uniform: in principle it is 
possible to assume L as a function of r, but it would 
complicate calculations too much. 

The ART solution (Suetsugu 8c Nakanishi 1985) may be 
regarded as a particular case corresponding to criterion 2. In 
this case the unknown function is replaced by a set of 
parameters representing the values of m in blocks. As was 
shown by Herman (1980), the iterative procedure ART 
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Figure 2. Examples of the basis functions (16) for the same ray as in Fig. 1 for two different values of L: (a), L = 0.333; (b), L = 1.0. 

leads to a solution with minimum norm, So that it is the 
same as that obtained by minimizing the functional (13), in 
which R,, = u21 where I is a unit matrix. 

Criterion 3. According to the approach developed by 
Backus & Gilbert (1968,1970), Chou & Booker (1979) and 
Yanovskaya (1980) proposed to construct a as a 
‘local average’: 

where f(r,r’) is a particular function. In principle this 
function may be chosen arbitrarily, so that different f(r, 1’) 
result in different criteria. But to ensure better ‘deltaness’ 
this function should have some extremal points. For 
instance, it may have a maximum in = r r .  

It is easy to show that the criterion (21) with s(r) 
determined by (22) results in the following form of the basis 
functions: 

&(r) = A(r, r’)m(r‘) dr’ (19) I 
and determine the averaging (or resolving) kernel A(r, r’) 
proceeding from a certain deltaness criterion. Ditmar & 
Yanovskaya (1987) have shown that a solution fitting the 
criteria (2a), (2b) may be regarded as a local average, the 
averaging kernel A(r, r’) satisfying the following deltaness 
criterion: 

(E(r, r’) - H(r, r’)I2 dr’ = min, (20a) 

J A(r, r’) dr’ = 1, W b )  

where 

div E(r, r’) = A(r, r’), 
H(r, r’) = (2n)-’V‘ In Ir - r‘l . 
This criterion is an extension to the 2-D case of that 
proposed by Johnson & Gilbert (1972) for the 1-D inverse 
ray problem. 

For inaccurate data the criterion (20a) turns into the 
following: 

s(r) + CY Var [%(r)] = min (21) 

where the trade-off parameter CY is the same as in (3). 

defined as follows 
An alternative criterion is obtained if the ‘spread‘ s(r) is 

s(r) = [ I N r ,  rOf(r’, P )  dr’ -f(r,  P ) ] ~  dp (22) 

RELATION BETWEEN THE METHODS FOR 
DETERMINING THE BASIS FUNCTIONS 

The most natural a priori assumption about the unknown 
function seems to be its smoothness of a certain degree.* 
Therefore it is important to realize whether the three 
above-mentioned criteria are principally different, or if they 
may be deduced from each other. 

At first we consider the relation between the criteria 1 and 
2. Assuming the a priori covariance function (17) it can be 
shown that (14) with (17) is reduced to the following 
expression: 

*There is an analogy with spline-approximation of a function 
known in some discrete points: it is well-known that the power of 
the spline depends on the required degree of smoothness. 



68 

where C is the contour of the area, A the Laplacian, 
x ,  = x ,  x2 = y, and n the normal to the contour C. 

m = am/& = a2m/an2 =.  . . = 0,  

which are equivalent to akm13xi 3x t -q  = 0 for all k and 
q k, then the integrals over the contour in (25) vanish and 
m(r) will be determined by minimizing the functional 

T. B. Yanovskaya and P.  G. Ditmar 

If we assume the conditions on the contour 

+ (Gm - St)TR,(Gm - St). (26) 
The same functional is obtained for the spherical case on a 
global scale, if the covariance function is assumed in the 
form (17) with u = constant (see Appendix). 

Thus the Bayesian approach for determining the unknown 
function is reduced to a certain criterion for its smoothness, 
involving some conditions on the contour of the area. The 
method, outlined in the Appendix, is valid for determining 
the criterion of smoothness corresponding to a wide class of 
correlation functions. 

The relation between criteria 1 and 3 was mentioned 
above (see equation 20a,b). Similar deltaness criteria may 
be derived also for the cases when a higher degree of 
smoothness is required. 

Now we consider the relation between criteria 2 and 3. 
Tarantola & Valette (1982) and Montagner (1986) discussed 
this problem proceeding from analysis of the a posteriori 
covariance function R,(r, r') for the solution satisfying 
criterion 2, which is expressed as follows: 

R,(r, r') = [S(r - I") - A(r, r")]R,,(r", r') dr' (27) I 
or in matrix notation, 

R, = (I - A)R,, 

where I is identity operator, and 

A = R,,GT(R, + GR,,GT)-'G 

is a generalization of the resolving kernel. It is obvious that 
the closer A(r, r') approaches the &function, the better the 
solution is resolved, and the a posteriori covariance function 
tends to vanish. 

Now let us put the following question: if the solution is 
determined proceeding from criterion 2, in what sense 
tends the resolving kernel to the &function? In other words, 
what deltaness criterion for the resolving kernel corresponds 
to the solution (15)? It turns out that this criterion is (21) 
with s(r) determined by (22), the function f(r, r') being 
related to the a priori covariance function R,,(r, r'). 
According to the Backus-Gilbert approach the resolving 
kernel is expressed as a linear combination of the data 
kernels: 

A(r, r') = Ai(r)Gi(r'). (28) 

Using the notation AT = [k,(r), . . . , A,(r)], we may write 
(28) in the form 

A = A ~ G .  

Inserting (28a) into (19) and (22) we obtain 

var [6i(r)] = ATRA, 
s(r) = ATGffTGTA - 2ATGffT + g(r), 

where f denotes the functionf(r, r') and ffT = F is defined by 
the right-hand side of (24), 

(GffTGT), =/I Gi(r')F(r', r")G,(r") dr' dr", 

Minimizing (21) with respect to A, we obtain the following 
solution: 

A = (aR, + GffTGT)-'GffT 

and 

$(r) = AT 6t = ffTGT(aR, + GffTGT)-' St. 

Comparing this expression with the solution (15) we 
immediately obtain that they coincide, if a= 1 and 
ffT = R,,. 

f(r, r') = * L - ' U  exp (Ir - r'12/Lz). 

If the criterion (21) is supplemented with the normaliza- 
tion condition (20a), then interpretation of the solution from 
the standpoint of criterion 2 yields 

m(r) = ,W + m,, 

where 

If R,, is the Gaussian function (17), then 

W dr = 0 ,  

the functional (14) is changed by replacing m(r)  to p ( r ) ,  and 
the additional normalization condition allows the additional 
unknown m, to be determined. 

Thus the a priori assumption, which is used for 
constructing a solution of the tomography problem, may be 
interpreted differently: either in the frame of a Bayesian 
approach, the a priori covariance function being assumed; 
or as a certain degree of smoothness of the unknown 
function; or in the frame of Backus-Gilbert technique 
by approaching the resolving kernel to the &function. 
Certainly, the choice of a specific form of the criterion (for 
example, an analytical form and parameters of the 
covariance function) depends on our assumptions and the a 
priori knowledge about the unknown function. However, it 
turns out that if the data set is complete enough, the 
solution will depend mainly on the data set rather than on 
the a priori assumption. This fact is demonstrated by the 
following model example. 

The initial velocity distribution has been taken in the 
following form: 

V(x,y) =3 .0+  1.5exp[-a(x2+y2)] 

with a = 4.5 x lop4. The traveltimes have been calculated 
by integration along linear paths, in order to eliminate the 
effect of non-linearity of the problem. The paths are shown 
in Fig. 3. A different density of the paths in different parts 
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traveltimes along such paths differ from those corresponding 
to linear paths. When the traveltimes calculated along real 
paths were taken as the initial data for inversion, (certainly 
with greater variance than in the preceding case), and the 
problem was solved under the assumption on linearity, we 
obtained the solutions having the same main features as in 
Figs 4(a) and (b), but more smoothed (e.g. maximum 
velocity in the centre of the area was about 4.1 instead of 
4.3-4.35), but the difference between the two solutions 
corresponding to criteria 1 and 2 became even less due to 
smoothing. 

Since errors in real seismological data are usually larger 
than the traveltime residuals resulting from non-linearity of 
paths, it is convenient for processing real data to choose a 
function F(r, r’), which yields simple calculations and 
stability of the solution. For example, if F(r, r’) = In )r - 1’1, 
which corresponds to the criterion 1, the basis functions and 
the elements of the matrix S may be written in closed form 
and calculated without numerical integration, which is 
necessary when the solution is constructed proceeding from 
the criterion 2. 

Figure 3. A pattern of paths for testing the solutions corresponding 
to different criteria. 

of the area was taken deliberately, to demonstrate how the 
smoothness of the solution is affected by the data set. 

Figs 4(a) and (b) show the solutions obtained proceeding 
from the criteria 1 and 2, respectively, the a priori 
covariance function being assumed to be (17) with L = 12.5. 
The main features of the velocity distributions, as well as the 
rate of smoothness in the left and in the right parts of the 
area are practically the same for both solutions. 

So we may conclude that if our assumption about linearity 
of paths is valid, the basis functions can be taken in the 
general form (23) with an arbitrary function F(r,r’): the 
solutions will differ in small details. In reality the paths are 
not linear-they are bent due to lateral heterogeneity, and 
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3-D PROBLEM 

As was mentioned above, the so-called 3-D tomography 
problem for surface wave data is estimating the phase 
velocity corrections as a function of the variables x ,  y, T (or 
x ,  y, w )  from the phase and/or group traveltimes along 
different paths and corresponding to different periods. A 
special aspect of this problem is caused by the fact that the 
data are expressed as integrals along lines in the plane x ,  y ,  
the integrands involving the derivatives of the unknown 
function with respect to w. 

If we denote 

P ( X ,  y ,  w )  = v-+, y ,  w )  - V,’(w) 

where V(x ,  t ,  w )  is the unknown phase velocity and Vo(w) is 

Q , ,:::- ,---, , (3 

I , I  - 100 0 1 

I00 

3 

100 
I 

Figure 4. The isolines of velocity: (a), the solution corresponding to the criterion I;  (b), the solution corresponding to the criterion 2 
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the phase velocity in a starting model, then 

p ( x ?  y ,  wkj) ds = btph(wkj)> I, 
I, [ 3 3  ak = atgr(wqj). 

0 = Wql 

In (29) wkj ( k  = 1, 2 , .  . . , K j )  and wqj (q = 1, 2 , .  . . , Q j )  
are the frequencies, for which the phase and group velocities 
(or traveltimes) are available for the jth path. 

The relationship (29) may be written in the form of linear 
functionals of the unknown function p ( x ,  y ,  0): 

where 

H,(x, y )  dx d y  = ds = 1,. -L, 
In order to determine the function p ( x ,  y ,  w )  .fitting the 

constraints (30), we use one of the approaches described 
above, and each of them is reduced to a representation of 
the basis functions as the functionals of the data kernels. 
Then we may conclude that any basis function must be 
represented as the product of a function of x ,  y and a 
function of w. To construct such functions we may use any 
of the criteria mentioned in the preceding sections. 

Representation of the basis functions in the form of the 
product F,(x, y)F,(w) implies that if the data correspond to 
a uniform set of frequencies the functions F2(w) may be 
chosen arbitrarily, whereas the functions F,(x, t) are 
determined as in the 2-D case, i.e. as functionals of the data 
kernels H , ( x , y ) .  Such a method has been developed by 
Yanovskaya er al. (1988), who proposed to represent the 
unknown function p ( x , y ,  w )  as a polynomial of a certain 
degree in w and to determine the coefficients of the 
polynomial, which are functions of x ,  y ,  proceeding from 
criterion 1. In this case the basis functions are 

4 j q ( X ,  y ,  w )  = V j ( X ,  y ) w " ,  q = 0, 1, . . . , n, 
where q , (x ,  y )  is defined by (12) and n is the degree of the 
polynomial. This approach was applied by Nesterov & 
Yanovskaya (1988) for determination of Rayleigh wave 
phase velocity patterns in southeastern Europe. 

Certainly, this method is not the only possible one, but it 
is simple to achieve. 

CONCLUSIONS 

Solving the 2-D surface wave tomography problem we 
should choose the basis functions in concordance with the 
data, i.e. proceeding from the set of wave paths. Criteria for 
constructing the basis functions are different from the 
standpoint of a priori assumptions concerning the unknown 
function, but formally they are equivalent, and the solutions 
obtained proceeding from the different criteria are similar. 
Therefore it is convenient to choose that criterion, which 
simplifies the computational procedure. 

For the 3-D problem, which is the determination of the 
phase velocity as a function of the horizontal coordinates 
and frequency, the basis functions turn out to be 
representable as a product of two functions, one depending 
on x , y ,  and the other on w. Since practically always the 
data correspond to a uniform set of frequencies, the 
functions of w may be chosen a priori ,  and the functions of 
x ,  y should be constructed as for the 2-D problem, i.e. 
proceeding from the wave paths corresponding to the data 
set. 
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Represent exp (L2 lkI2/2) in the form of a Taylor series: 

exp (L2 lkI2/2) = r (L2/2)" lkI2". 

Insert (A4) into (A3) and examine the nth term of the 
series: 

('44) 
" 1  

,=on.  

S,, 1 (L2/2)"(2n)-'(oL)-'II [I lkI2" exp [ik - (r - r')] dk] 
n .  

x m(r)m(r')  dr dr'. (A51 
Taking into account the identity I (kI2" exp [ik * (r - r' ) ]  d k  = 4n2(-l)"A"6(r - r') 

as well as that 

(A6) 
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APPENDIX: RELATION BETWEEN 
CRITERIA 1 A N D  2 

Plane case 

The a priori covariance function (17) may be represented in 
the form of the following Fourier integral: 

R,,,,,(r, r') = (2n)-'$L2 exp [-Lz JklZ/2 + ik * (r - r')] dk. 

(Al l  

J 
It is easy to see that 

RLk(r, r') = ( 2 n ) - 3 ~ - 2 ~ - 2  

x exp [L2 lkl2/2 + ik - (r - r')] dk. ('42) J 
Consequently the functional (14) may be written in the form 

( ~ ~ ) - ' o - ~ L - ~ / I  [I exp [L2 (kI2/2 + ik - (r - r')] d k }  

x rn(r)m(r') dr dr' E S.  (A3) 

A"6(r - r')m(r') dr' = A"m(r) (A71 

we obtain 

S, = 7 (L'/2)"(2n)-'(-l)"(~L)-~ m(r)  A"m(r) dr. (A8) 

Applying Green's formula to the integral on the right-hand 
side of (A8), we obtain 

I m(r) A"m(r) dr  = - (Vm . V A " - h ( r ) )  d r  

I 1 
n. 

I 
dl. 

It can be shown that 

[ Vm(r) .  VAq]  dr  = - (VVm . VVq) dr I 
where VV is a tensor of second derivatives, and the product 
of the tensors is defined as 

a2m 9 q  
(VVm . VVq) = -- 

axi axi axi axi ' 

summation over the repeated subscripts being implied. 
So we have 

-1 (Vm . VA"-'m) dr  = (VVm . VVA"-2m) dr  I 
dm a2 AnP2m 

ni dl. (A12) -I c - ax, axi axi 

Reiterating the transformation (A10) we obtain the 
following expression for the nth term of the series: 
S,, = - 1 (L2/2)"(2n)-'(oL)-2[ 11 VV- . . Vrn1l2 dr 

n !  ';t 
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Summation of all functionals S, results in the following 
expression for the functional S: 

dA"m 
ni dl 

n + l  

1 (- l)"+ dm i? A"m 
+ (n + l)(n + 2) ( ~ ~ / 2 ) z j ~  

nj dl + . * * , 

('414) 
A similar approach for transforming the functional (14) 

may be applied for any covariance function Rmo(r,rf), if a 
function inversely proportional to the Fourier transform of 
Rmo(r, r') may be expanded in a Taylor series around k = 0. 

Spherical case 

The a priori covariance function (18) with u ( M ) =  
o ( M ' )  = u is represented as a series of Legendre functions 

Rmo(ei, q', 8, q) = 2 exp ( - L - ~ )  CU,P,(C~S A) (~15) 

where 

a,, = (2n + 1 ) $ G 5 / 2 t , , + , , ( ~ - ~ ) .  

Using the summation theorem for associated Legendre 
functions we obtain that R;A(8', q', 8, q) may be also 
written in the form of a series of Legendre functions: 

R,A(8', q', 8',  q) = o-'exp (L-') /3,,Pn(cos A) 

where 

2n + 1 
= 2 x 4n2L~tn+, , (L-2)  * 

1 
If we expand the function @(n) = LVGI,,+,,(L-~) in a 

series in powers of N' = n(n + 1): 

@(n) = 2 qk(L2)N2k 
k 

and take into account that 

AP,(cos A) = (-l)kN2kPn(Cos A) 

we easily obtain 

R;'(e', pi, 8, V) 
= ( 2 n ) - l ~ - ~  exp ( L - ~ )  2 qk(L2)Ak 6(ei  - 8, qi  - q), 

where d(8-  8',  q - q') is the 6-function on a sphere: 
6(4)/(2nsinA) and A is the distance between the points 

The subsequent derivation is analogous to that in the 
plane case, but the integrals along the contour vanish. 
Finally we obtain 

k 

(8,  q) and (e' ,  q'). 


