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Abstract 

Grouping based on common motion, or “common fate” 

provides a powerful cue for segmenting image sequences. 
Recently a number of algorithms have been developed that 
successfully perform motion segmentation by assuming that 
the motion of each group can be described by a low di- 

mensional parametric model (e.g. afine). Typically the 
assumption is that motion segments correspond to planar 
patches in 30 undergoing rigid motion. Here we develop 
an alternative approach, where the motion of each group is 
described by a smooth dense flow field and the stability of 
the estimation is ensured by means of a prior distribution 
on the class ofjow fields. We present a variant of the EM 

algorithm that can segment image sequences by$tting mul- 
tiple smooth flow fields to the spatiotemporal data. Using 

the method of Green’s functions, we show how the estima- 

tion of a single smoothjowfield can be performed in closed 
form, thus making the multiple model estimation compu- 

tationally feasible. Furthermore, the number of models is 
estimated automatically using similar methods to those used 
in the parametric approach. We illustrate the algorithm’s 
performance on synthetic and real image sequences. 

a b C d 

Figure 1. a. A simple three dimensional scene that 
can cause problems for existing motion segmentation al- 
gorithms. A cylinder is partially occluded by two bars. b. 
A cross section through the theoretical horizontal image ve- 
locity field caused by a moving camera. c. The same data as 

in (b) but with added Gaussian noise. In practice, the image 

velocity will be noisy. d. The desired description of the 
data. 
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Figure 2. a. The fit of a single smooth curve to the 

data shown in figure lc. Regularization causes heavy over- 

smoothing. b. Regularization with line processes. Fitting 
a smooth curve with discontinuities, or “line processes”, 
causes two problems. First, there is no indication that the 
three occluded parts are part of a single object. Second, 
since no information is propagated between the occluded 
parts, the curvature of the cylinder is lost by the fit. 

1 Introduction 

Considerable progress in motion analysis has been 

achieved by systems that fit multiple global motion mod- 
els to the image data [3, 10, 9, 8, 1, 191. While differing 
in implementation, these algorithms share the goal of deriv- 
ing from the image data a representation consisting of (1) a 
small number of global motion models and (2) a segmenta- 
tion map that indicates which pixels are assigned to which 

model. 

The advantages of these approaches over previous ones 
are twofold. First, by combining information over large 
region of the image, the local ambiguity of the image data 
is overcome and a reliable motion estimate can be found. 
Second, the derived segmentation map, in which individual 

pixels are grouped into perceptually salient parts, is useful 
for higher level processing (e.g. video database indexing, 
object recognition). 

In order to segment images based on common motion, 
most existing algorithms assume that the motion of each 

model is described by a low dimensional parameterization. 
The two most popular choices are a six parameter affine 
model [19, 201 or an eight parameter projective model [l, 
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91. Both of these parameterizations correspond to the rigid 
motion of a plane: the affine model assumes orthographic 

projection while the projective model assumes a perspective 

projection. 

Despite the success of existing algorithms in segment- 

ing image sequences, the assumption that motion segments 
correspond to rigid planar patches is obviously restrictive. 
Non-planar surfaces, or objects undergoing non-rigid mo- 
tion cannot be grouped. In order for the motion segmen- 
tation map to be useful for higher level processing, these 
methods need to be extended so they can deal with non- 

planar surfaces and non-rigid motions. 

Figure la shows a simple 3D scene that can cause prob- 

lems for existing motion segmentation algorithms. A cylin- 

der is partially occluded by two bars. Figure lb shows a 
cross section of the horizontal component of optical flow 
when a camera, viewing the scene head on, is rotated hor- 

izontally about a distant point. The bars that are closer to 
the camera move fastest, and the velocity of points on the 
cylinder trace out a smooth curve. In practice, of course the 
velocity field will not be so perfect and Figure lc shows the 

same data with added Gaussian noise. 

One way to overcome the noisiness of the flow field is 

to use regularization to approximate the data with a single 
smooth function. Figure 2a shows the result of applying a 
typical regularization algorithm to the data shown in figure 
lb. Although the noise is smoothed out, the fit suffers from 
heavy over-smoothing: the motions of the cylinder and the 
bars are averaged together. Figure 2b shows the output 
of a “regularization with discontinuities algorithm” [ 181 on 
the same data. Although this fixes the problem of over- 
smoothing, discontinuities are a bad model of occlusion 

(cf. [13, 3, 121): data in a scene containing multiple oc- 
cluding objects is not generated by a single discontinuous 

function but rather multiple smooth functions interacting 
nonlinearly. The results of fitting a single discontinuous 
function causes two problems, which can be seen in the 

b 3 .” rr ?. 

a b C 

Figure 3. a,b. Two outputs of a multiple line fitting 
algorithm. Three lines are needed to achieve a reasonable fit, 
and the cylinder is broken apart. Various different solutions 
are found, and only two are shown. c. A result of extending 
the order of the models to quadratic. Although the model 
class is now rich enough to capture the data, estimation 
becomes unstable. 

fit. First, there is no indication that the three parts of the 
cylinder are part of a single object. Second, because no 

information is propagated between the different fragments, 

the cylinder is fit with three nearly straight lines, rather than 

curved segments. The cylindrical shape is lost in the fit. 

These limitations of regularization motivated much of the 
recent work in motion segmentation and led to the develop- 
ment of approaches that fit multiple global motion models 
to the data. How would parametric segmentation work on 
the data in figure l? Figure 3 shows the output of a mul- 
tiple parametric curve fitting algorithm to this data. The 

number of models was estimated automatically as in [20] 

(cf. [19, 11). When the curves are restricted to be lines, 
different outcomes are obtained depending on initial condi- 

tions, two of which are shown in figures 3a-b. Three lines 
are needed to achieve a reasonable fit, and the cylinder is 

fragmented. 

What about using a quadratic model? In this case, the 
model class is rich enough to capture the data, but the esti- 
mation becomes unstable. Figure 3c shows a typical output. 

The instability of fitting higher order models causes each of 

the two bars to be fit with a parabola, an example of over- 

fitting. Although the correct fit is sometimes obtained, it is 
in no way favored over other erroneous interpretations. 

The instability problems associated with increasing the 
dimensionality of parameterization are, of course, not lim- 
ited to motion analysis or even to computer vision. It is 
generally accepted that one should avoid fitting high order 
polynomials to data. Multidimensional splines and regular- 
ization theory present an elegant alternative - the functions 
used in this approach are flexible enough to model the data 

yet avoid the instability associated with high order polyno- 

mials. Regularization theory has a long history of use in 
computer vision [ 141 and has enjoyed considerable success, 
yet its disadvantages are well known. First, smoothness is 
simply a bad thing to assume over the whole image. Typi- 
cally the image will contain multiple occluding objects, and 
assuming smoothness will lead to terrible estimates partic- 
ularly in the regions of discontinuities. Second, calculating 
the regularized solution has typically involved highly iter- 

ative algorithms (e.g. [5, 18, 13, 121) whose convergence 
may be excruciatingly slow. 

Here we develop an approach to segmentation that is 

based on the assumption of smoothness in layers. Rather 
than assuming that the motion of the whole image varies 
smoothly, we assume that the motion of a given motion 
group or layer varies smoothly. We show how this leads to 
the notion of nonparametric mixture estimation, where the 
stability of the estimation process is ensured by means of a 
prior distribution on the class of flow fields. We present a 
variant of the EM algorithm that can perform the segmenta- 

tion in acomputationally feasible manner, and show how the 
algorithm is able to segment higher order flow fields while 
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avoiding over-fitting. 2.2 Nonparametric mixture estimation 

2 Algorithm Description 

2.1 Generative Model 

The model assumes that the image data (the spatial and 

temporal derivatives of the sequence) were generated by I< 

smooth motion groups. The velocity field of each group is 
drawn from a distribution where smooth velocities are more 
probable: 

Here Dv is a differential operator that penalizes fields that 
have strong derivatives: 

(4 

We follow [21] in using a, = cr2”/(n!2”), althoughsimilar 
results are obtained with other choices. 

The next stage is to generate a labeling of the image, 
i.e. a vector L(x, y) at every location such that L~(z, y) = 

1 if and only if position 2, y will be assigned to group 

Ic. The labelings are drawn from a Markov Random Field 
distribution: 

The link weights w~,~,~J,~I determine the distribution of 

labelings. For example setting w~,~,~I,~I = 1 for neigh- 
boring sites and zero otherwise makes labelings in which 
neighboring locations have similar labels more probable. 

Now given the labeling and the velocity field of each 
group, the probability of observing 1, = 2, Iy = $$ at 
location (x, y) is given by: 

P(I,, I,(L, V) = exp(- C Lk(Cvk + ~t)‘l4i) (4) 

where, for clarity’s sake, we have omitted the dependence 
of LI,, Iz, IY, I,, vk, Lk on (x, y) and UN is the expected 
level of noise in the sequence. Similar likelihood functions 
have been used for the single motion case in [ 15, 1 I]. Note 
that here the likelihood depends on multiple velocities, but 
if Lk(x, y) is known then the likelihood depends only on 
the velocity model to which a pixel is assigned. 

To estimate the parameters of this model we use the 
Expectation-Maximization (EM) algorithm [4]. The algo- 
rithm iterates two steps: (1) the Expectation (or E) step in 

which the hidden labels are replaced with their conditional 
expectation and (2) the Maximization (or M) step in which 
the velocity fields are found by maximizing their posterior 

probability. 

Previous implementations of the EM algorithm for mo- 

tion segmentation are described in [20, 10, 11. Two aspects 
of the algorithm used here are similar to the implementation 
described in [20] and will only be described briefly: 

. 

2.3 

The number of models is estimated automatically, by 
initializing the algorithm with more models than will 
be needed. The algorithm merges redundant models 

and the final number of models found depends on the 
parameter UN. 

The MRF priors on the labelings make an exact E step 
computationally expensive and hence a consistent ap- 
proximation to the MRF distribution is used for which 
an exact E step can be computed efficiently. 

Estimating smooth flow fields using Green’s 
functions 

The distinguishing feature of our algorithm in compari- 
son to previous EM based approaches is in the M step. It 
requires finding, for each model, the dense flow field that 
maximizes the conditional posterior probability, or equiva- 
lently minimizes: 

(5) 
X,Y 

where the parameter X is determined by the ratios of flN 
and ‘TR in the generative model. ~?r, (z, y) is the “filled in” 
estimate for the labeling at location (x, y). It is these weights 
in equation 5 that cause the estimated dense flow to differ 
from model to model. 

Since the nonparametric EM algorithm calls for mini- 
mizing equation 5 at every iteration for all models, this 
approach can only be computationally feasible if the mini- 
mization can be performed efficiently. We now show how 

this can be done. 
Using the method of Green’s Functions (cf. [21, 61) it 

can be shown that the optimal velocity field Vk* is a linear 
combination of basis flow fields,& (x, y): 

v;(x, y) = x w&(x, Y> (6) 
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There is a basis flow field centered at every pixel where 
the image gradient is nonzero: 

Bi(x:, y) = G(x - xi, Y - Yi) [&ci, Yi), &(% Yi)]’ (7) 

The scalar valued function G(z, y) is the Green’s function 
corresponding to the differential operator D in equation 5 
(cf. [ 161). It is a solution to: 

D*DG = 6(x, y) (8) 

For the differential operator used here, the Green’s func- 

tion is a two dimensional Gaussian [21]. The coefficients a 

are the solution to the linear system: 

(WM + Xl)a = WY (9) 

With iVfij is given by the scalar product of the basis field 
centered on pixel i and the gradient at pixel j, Yi is simply 
the temporal derivative at pixel i and W is a diagonal matrix 
whose diagonal elements determine the weight of a pixel in 

estimating model parameters Wii = &Z. 
Although equation 9 gives a closed form solution for 

the optimal velocity field for each model, its solution is 
still computationally prohibitive as it requires solving a lin- 
ear system whose rank is equal to the number of nonzero 
gradients in the image. Are we then back to square one? 
No, because a remarkably good suboptimal solution can be 
found using this method in a computationally feasible way. 

The suboptimal solution is obtained by using only a sub- 
set of the basis fields in equation 6. Denote by N the number 
of basis fields in the reduced expansion, then the N coeffi- 

cients are a solution to: 

(MtWM + XR)a = MtWY (10) 

where Mij is again given by the scalar product of the basis 
field centered on pixel i and the gradient at pixel j, R is a 
NzN submatrix of M in which only the pixels which have 
basis functions centered on them are used, and W and Y are 
as before. Note that equation 10 is of rank N independent 
of the number of pixels. Note also the term AR in the 
left hand side of equation 10. It is this term that imposes 

the prior distribution and makes the estimation well posed 
regardless of the dimensionality of the parameter vector c~. 
In general, the solution obtained by solving equation 10 
will be different from one obtained by simply assuming the 
flow field is parameterized by a spline basis set (e.g. [ 171). 

Finally, note that the reduced rank of the system is obtained 
by using only a subset of the basis fields, not by using 
a subset of the gradient constraints. The solution of the 
system gives the flow field spanned by the reduced basis set 
that best satisfies the gradient constraints at all pixels. 

The difference between the optimal and the suboptimal 

solution depends on the image data, the differential operator 

a b 

Figure 4. Using the method of Green’s functions, a closed 
form solution can be found for fitting a smooth dense flow 
field to the image data. A suboptimal solution, which is 
computationally efficient can also be found. We have found 
the difference between the optimal and suboptimal solutions 
to be negligible. a. A frame from a test sequence. A second 
frame was generated by warping this frame with the super- 
imposed flow field. b. Cross sections from the estimated 
velocity field using the full basis function set (circles) and 
using only 50 basis functions (crosses). The two solutions 
are indistinguishable. 

D and the choice of subsets. In practice, we have found the 

difference to be negligible when 50 basis fields are used, cho- 
sen so that they are equally spaced on the image. To get an 
intuitionregarding the optimal and suboptimal solutions, we 
generated a synthetic sequence by warping the image shown 
in figure 4a according to the superimposed flow. Figure 4b 
shows cross sections from the estimated velocity fields. The 
suboptimal solution is plotted with crosses, and the optimal 

one is plotted with circles. The solutions are indistinguish- 
able. On a R4400 Silicon Graphics workstation, solving 
equation 10 to calculate the suboptimal solution took less 
than I/ 100 of a second, while solving equation 9 to calculate 
the optimal solution took over an hour. 

Although we have used here the differential operator 
suggested in [21] the exact same method can be used with 
other differential operators. For example, we have been able 
to solve the Horn and Schunck [7] equations in closed form 

using this method. 

2.4 Algorithm summary 

To summarize, the statistical assumptions about the gen- 
erative model are characterized by four numbers: (T, X which 

embody the smoothness assumption, UN the assumed level 
of noise in the sequence and wlyZ~y~ which specifies the 
probability that a pixel will belong to a different model than 
its four neighbors. 

Given these assumptions and spatiotemporal derivatives 
computed over the image, we use a computationally efficient 
EM algorithm to calculate number of models, the segmen- 
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Figure 5. The performance of our algorithm on the data 
shown in lc. The model is randomly initialized with four 
curves and automatically decides that two curves are suffi- 
cient in this case. The algorithm converges in seven iter- 
ations. Note that the curvature of the cylinder is correctly 
estimated. 

tation of the image and a smooth dense flow field for every 
model. 

3 Results 

Before showing the results of our motion segmentation 

algorithm, we show the performance of a similar 1D non- 

parametric mixture estimation algorithm on the data, dis- 
cussed in the introduction and shown in figure lc. Although 
some of the problems characteristic of motion segmentation 
are not present in 1D (e.g. the aperture problem), we choose 
to first illustrate the performance on a ID problem because it 
enables us to display the evolution of the model’s estimates. 
Figure 5 shows the line fits and estimated labelings, 2k (x), 

as a function of iteration. Note that although the label Lk (x) 
are assumed to be binary, their “filled in” estimates ik(~) 

are continuous valued and lie between zero and one. The 
algorithm is initialized with four curves each of which has 
is initially assigned a random subset of the data. Hence the 
initial fits are nearly identical. After six iterations, when 
the algorithm converges, two of the models are merged and 
only two unique models are needed to explain the data. 

Compare the fit obtained by our algorithm to those dis- 
cussed in the introduction. Unlike the regularization with 
discontinuities fit in figure 2b, our algorithmcombines infor- 

mation across the different portions of the occluded cylinder 
and the curvature of the cylinder is apparent in the fit. Since 
each of the models is flexible enough, our algorithm can 
achieve a good fit with just two curves, unlike the line fit 
shown in figure 3. Since our algorithm uses a prior favor- 
ing smooth fits, it does not over-fit as does the quadratic fit 
shown in figure 3c. 

a b C 

Figure 6. a. A single frame from the cylinder sequence. 
A textured cylinder is partially occluded by two textured 
bars, and the camera is rotating about a distant center. b. 
Reconstructed three dimensional surfaces obtained from the 
horizontal dense velocity fields estimated by our algorithm. 
c. The segmentation maps displayed on top of the surfaces, 
indicating the opacity of each layer. 

We now show an example of the full 2D motion segmen- 

tation algorithm. We generated a synthetic image sequence 
modeled after the scene in figure la. Figure 6a shows a sin- 
gle frame from the sequence. A textured cylinder is partially 
occluded by two textured bars, and the camera is rotating 
about a distant center and translating. The camera was as- 
sumed to be orthographic and the translation was such that 
the mean horizontal velocity of the image was zero. Similar 

to the 1D case discussed earlier, this sequence is hard to seg- 

ment using parametric approaches. Figures 6b-c show the 
output of our algorithm - it correctly estimates the number 

of models and the segmentation. The high quality velocity 
field obtained using our method enables us to reconstruct a 
three dimensional surface for each segment output (assum- 
ing orthography, this is simply the horizontal component of 
the derived dense flow fields). Figure 6b shows the surfaces 
obtained in this way, and Figure 6c shows the segmentation 
maps displayed on top of the surfaces, indicating the opacity 
of each layer. 

We have found that sequences which are easily seg- 

mented using parametric motion models are also segmented 
using our approach. This is not surprising - the low dimen- 
sional motion models are often smooth and hence favored 
as segmentations by our model. Figure 7a shows a single 
frame from a sequence that was segmented using transla- 
tional models in [IO, 31. A person is moving behind a 
plant. Figure 7b shows the segmentation derived by our al- 
gorithm. The parameter settings are identical to those used 
in the cylinder sequence. The number of models is correctly 
estimated and the different fragments corresponding to the 
person are grouped together. Figure 7c shows the estimated 
velocities. 

Figure Sa shows a single frame from the MPEG flower- 
garden sequence that was segmented using planar models 
in [ 19, 1, 201. Since this sequence contains large motions, 
we replaced the temporal derivative in equation 4 with a cal- 
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4 Discussion 

a b C 

Figure 7. a. The plant sequence. A person is moving 

behind a plant. b. The segmentation found by our algorithm. 

Pixels belonging to the person are grouped together. c. 
The velocity estimate obtained by plotting at each pixel the 
velocity of the model to which that pixel is assigned. 

a b C 

Figure 8. a. The flower garden sequence. The camera is 
translating approximately horizontally. b. The segmenta- 
tion found by our algorithm. Two segments are found - one 

corresponding to the tree (shown) and another correspond- 
ing to the rest of the image. c. A cross section through the 
horizontal flow field taken at the dotted line in a. Note that 
the algorithm correctly finds the nonplanar motions of the 
flower bed and the tree. 

culated normal velocity at each pixel. The normal velocity 
was calculated using a coarse-to-fine method (cf. [2]). The 
other aspects of the algorithm were identical to those used 
in previous sequences. 

For the value of UN used two segments are found, one 
corresponding to the tree (shown in figure 8b) and the other 
corresponding to the rest of the image. An advantage of 

using nonparametric models for the segmentation, is that 

the nonplanarity of the scene can be captured in the out- 

put. Figure 8c shows a cross section through the horizontal 
flow recovered by our algorithm (since the camera motion 

is roughly horizontal, this flow is approximately related to 
distance from the camera). The cross section is taken at the 
position indicated by the dotted line in figure 8a. Note that 
the motions of the flower bed and the tree are smooth, curved 
functions. This type of structure can be easily captured in 
a nonparametric technique, but is lost when segments are 

assumed to be 3D planes. As a result, when we use the esti- 
mated motions to align the two frames, we obtain a notice- 
ably better alignment with the nonparametric segmentation 
technique as compared to affine segmentation. 

Motion segmentation algorithms are often categorized 
as “direct” or “indirect” based on whether they fit models 
directly to the image data (e.g. [I]) or to local optical flow 
measurements (e.g. [ 191). The particular implementation 

presented here would be classified as direct, since the models 

are fit to the spatiotemporal derivatives (see equation 4). 

However, the framework we have developed here is in no 

way restricted to spatiotemporal derivatives and can also be 
applied to local optical flow measurements, in cases when 
an indirect method is judged to be advantageous. 

Our generative model assumes that for every pixel, there 
exists a motion model that generated the spatiotemporal 
derivatives at that pixel. This formulation ignores the accre- 
tion and deletion of pixels at occlusion boundaries that give 

rise to spatiotemporal data that is not well explained by any 

of the motion models. In current work, we are exploring the 

use of outlier models to deal with those pixels (cf. [lo]). 

The preceding discussions highlight the relationship be- 
tween our approach and existing segmentation algorithms. 
Our approach fits a dense smooth flow field for every seg- 
ment, and this allows us to segment non-planar surfaces 
or objects undergoing non-rigid motions. However, our 
approach shares the basic structure of existing parametric 
segmentation algorithms, and thus when dealing with ques- 

tions of model selection, large motions and outlier rejection, 
we can build on the progress made by existing algorithms. 

The distinction between parametric and nonparametric 

estimation may seem rather arbitrary. Indeed, the dense flow 
field by which we represent the motion of each group may 
be thought of as a parametric description with the number of 
parameters equal to the number of pixels. However, there is 
a fundamental difference between the two approaches. The 
difference is not in the number of free parameters but rather 

lies in what is responsible for making the estimation well 

posed. In parametric approaches, this is accomplished by 

assuming a small number of’ unknowns, while in nonpara- 
metric approaches the well-posedness is a result of assum- 

ing a prior distribution over the unknowns. In this work, 
we assumed a prior distribution where the probability of a 
flow field is inversely related to its smoothness and showed 
how to efficiently maximize the posterior probability un- 
der this assumption. An advantage of the nonparametric 
mixture framework developed here, is that other types of 

prior distributions can be easily incorporated in place of the 
smoothness assumption. Thus this framework can be used 
to investigate what assumptions are necessary to achieve 
stable segmentation of arbitrary image sequences. 

52.5 



5 Conclusion 

Existing motion segmentation algorithms are able to seg- 

ment image sequences by restricting the motion of each seg- 

ment to lie in a low dimensional subspace. This approach 
has inherent limitations. If the subspace is small then it is 

too restrictive and cannot group together pixels undergoing 
more complex motions. If the subspace is rich enough to 
capture complex motions, the dimensionality is large and 
the estimation becomes unstable. 

Existing regularization approaches avoid some of the 
shortcomings of parametric models but introduce new prob- 

lems. The assumption of smoothness over the whole image 
leads to erroneous estimates in any scene containing multi- 

ple objects, and the solution involves slow, iterative calcula- 

tions. The addition of “line processes” to the regularization 

framework only partially addresses these problems: line 
processes are a bad model for occlusion, thus disabling the 
propagation of information between occluded fragments, 
and the computational cost associated with these algorithms 
is even more prohibitive. 

Here we have developed a new approach that builds on 
the recent progress made in statistically based segmenta- 
tion. We have presented a generative model that embodies 

a prior towards smoothness, but smoothness in a layer and 
not smoothness over the whole image. We have shown 
how this leads to nonparametric mixture estimation and de- 
veloped a variant of the EM algorithm that can efficiently 
perform segmentation under this assumption. By deriving a 
closed form solution to the smooth motion problem, we are 
able to avoid the slow iterative calculations of traditional 
approaches. Based on the successful performance of our 
algorithm on synthetic and real image sequences, we are 

optimistic that this framework will also be useful for other 

segmentation tasks in computational vision. 
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