
ESAIM: PS 17 (2013) 419–431 ESAIM: Probability and Statistics
DOI: 10.1051/ps/2012004 www.esaim-ps.org

SMOOTHNESS OF METROPOLIS-HASTINGS ALGORITHM
AND APPLICATION TO ENTROPY ESTIMATION

Didier Chauveau1 and Pierre Vandekerkhove2

Abstract. The transition kernel of the well-known Metropolis-Hastings (MH) algorithm has a point
mass at the chain’s current position, which prevent direct smoothness properties to be derived for the
successive densities of marginals issued from this algorithm. We show here that under mild smoothness
assumption on the MH algorithm “input” densities (the initial, proposal and target distributions),
propagation of a Lipschitz condition for the iterative densities can be proved. This allows us to build a
consistent nonparametric estimate of the entropy for these iterative densities. This theoretical study can
be viewed as a building block for a more general MCMC evaluation tool grounded on such estimates.
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1. Introduction

A Markov Chain Monte Carlo (MCMC) method generates an ergodic Markov chain x(t) for which the
stationary distribution is a given probability density function (pdf) f over a state space Ω ⊆ R

s. In, e.g.,
Bayesian inference, f is a posterior distribution typically known only up to a multiplicative normalization
constant, hence simulation or integration w.r.t. f can be approximated by ergodic averages from the chain.
The metropolis-hastings (MH) algorithm [18, 23] is one of the most popular MCMC algorithm. An account of
definitions and convergence properties of MCMC algorithms can be found, e.g., in Gilks et al. [13].

In this paper we are concerned with smoothness properties of the MH transition kernel. Each MH step is
based on the generation of the proposed next move y from a general conditional proposal density q(y|x). For a
starting value x(0) ∼ p0, the n-th step x(n) → x(n+1) of the algorithm is as follows:
1. generate y ∼ q(·|x(n));

2. compute α(x(n), y) = min
{

1,
f(y)q(x(n)|y)

f(x(n))q(y|x(n))

}
;

3. take x(n+1) =
{

y with probability α(x(n), y),
x(n) with probability 1 − α(x(n), y).

It is clear from the definition that the “target” pdf f needs to be known only up to a (normalizing) multiplica-
tive constant. Two well-known MH strategies are (i) the Independence Sampler (IS), with proposal distribution
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q(y|x) = q(y) independent of the current position, and (ii) the Random Walk MH algorithm (RWMH), for which
the proposal is a random perturbation u of the current position, y = x(n) +u. The common choice for the latter
is a Gaussian perturbation with a fixed variance matrix which acts as the scaling parameter of the perturbation
and has to be tuned. Ergodicity and convergence properties of the MH algorithm have been intensively studied
in the literature, and conditions have been given for its geometric convergence (see, e.g., [21, 22, 27]).

In practice, many choices for the proposal density can be made, with the goal of improving mixing and
convergence properties of the HM algorithm. In the IS case, Mengersen and Tweedie [22] proved geometric
convergence with rate (1 − a)n under the minoration condition q(y) ≥ af(y) for some a > 0, pointing out the
link between the convergence rate and how q resembles f . For the RWMH strategy, “good” scaling constants must
be found, since the mixing depends dramatically on the variance matrix of the perturbation [26]. Hence selection
of “good” proposal densities in these senses can be done using several procedures, either a priori (numerical
approximation of the shape of f , e.g., modes), or more recently using adaptive methods to dynamically build
a proposal density on the basis of the chain(s) history (see, e.g., [4, 6, 14, 17], or [3] for a recent survey on
adaptive MCMC). One practical difficulty is that these various strategies are often associated to unknown rates
of convergence because of the complexity of the MCMC kernels.

The objective of this paper is twofold: (i) provide a detailed study of the smoothness of the successive marginal
densities induced by the MH kernel, assuming only mild smoothness conditions of the “input ingredients” of the
MH algorithm that are the initial, proposal and target densities, and (ii) taking advantage of this smoothness
property to propose a simulation-based estimate of the entropy of the marginal density pn of a MH algorithm
at time n, H(pn), where

H(p) =
∫

p(x) log p(x) dx (1.1)

is the relative entropy of a probability density p. A motivation for (ii) is related to the evaluation of the often
unknown rates of convergence of MH algorithms as discussed above: indeed an estimate of H(pn) – more precisely
a monitoring of n �→ H(pn) – can be used to evaluate the rate of convergence of a (eventually adaptive) MH
algorithm. The algorithm efficiency can also be monitored through the evolution in time (n) of the Kullback-
Leibler divergence

K(pn, f) =
∫

log
(

pn(x)
f(x)

)
pn(x) dx = H(pn) − Epn [log f ],

for which the estimation of H(pn) is a building block. The Kullback divergence is currently used as a criterion
in other simulation approaches (see [10]), and Holden’s [19] uniform condition implies that K(pn, f) decreases
geometrically (see Prop. A.1 in Appendix A).

For point (ii), we propose to simulate N i.i.d. copies of Markov chains from the MH algorithm and to use
the N chains locations at time n, (Xn

1 , . . . , Xn
N) i.i.d. ∼ pn. Note that when f is analytically known, an a.s.

consistent estimate of Epn [log f ] is obtained easily by Monte Carlo integration

1
N

N∑
j=1

log f(Xn
j ) a.s.−→ Epn [log f ], (1.2)

where the convergence comes from the strong law of large numbers. When f is known only up to a multiplicative
constant f(·) = Cϕ(·), Epn [log ϕ] can be estimated similarly, hence evaluation of K(pn, f) can be made up to
the constant log(C). Hence we focus here only on the estimation of H(pn) for MH algorithms.

Various estimators for H(p) based on an i.i.d. sample from p have been proposed and studied in the literature,
mostly for the univariate case s = 1. One approach consists in obtaining a suitable density estimate p̂N for p,
and then susbtituting p by p̂N in an entropy-like functional of p. This approach have been adopted by Dmitriev
and Tarasenko [8,9], Ahmad and Lin [1,2], Györfi and Van Der Meulen [15,16], and Mokkadem [24] who prove
strong consistency of their estimators in various framework. More recently Eggermont and LaRiccia [12] proved
best asymptotic normality for the Ahmad and Lin’s estimator for s = 1, this property being lost in higher
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dimension. Another method used to estimate H(p) is based on considering the sum of logarithms of spacings of
order statistics. This approach was considered by Tarasenko [29], and Dudewicz and Van Der Meulen [11].

For the MH case, a major difficulty comes from the fact that the MH kernel has a point mass at the current
position, which prevent strong smoothness properties to be provable. Hence we choose to use the entropy estimate
proposed by Györfi and Van Der Meulen [16], but with smoothness conditions of Ivanov and Rozhkova [20]: a
Lipschitz condition which appeared tractable in our setup. Note that another appproach to estimate H(pn) in
Markov chains setup has been proposed by Chauveau and Vandekerkhove [7]. It is based on a “double” Monte
Carlo integration, and does not require the regularity assumptions needed for the kernel density methods. This
double Monte Carlo consistent estimator (also based on the simulation of i.i.d. chains) applies when pn is the
pdf at time n of a Gibbs sampler, whenever the full conditional distributions are known (which is the usual
case). Unfortunately, this estimate cannot be applied in the MH case since its kernel has a point mass in the
current position (see Sect. 2).

In Section 2, we establish assumptions on the proposal density q, f and the initial density p0 to insure
that, at each time n, adequate smoothness conditions hold for the successive densities pn, n ≥ 1. We give in
Section 3 theoretical conditions under which our simulation-based estimate of H(pn) is proved to converge.
Finally, Section 4 illustrates the behavior of our estimator for a synthetic example in moderate dimension.

2. Smoothness of MCMC algorithms densities

For estimating the entropy of a MH algorithm successive densities, we start by showing that a mild smoothness
assumption, a Lipschitz condition, can propagate to the sequence of marginals (pn), n ≥ 1.

2.1. The MH independence sampler case

From the description of the MH algorithm in Section 1, we define the off-diagonal transition density of the
MH kernel at step n by:

p(x, y) =
{

q(y|x)α(x, y) if x �= y,
0 if x = y,

(2.1)

and set the probability of staying at x, r(x) = 1 − ∫
p(x, y)dy. The MH kernel can be written as:

P (x, dy) = p(x, y)dy + r(x)δx(dy), (2.2)

where δx denotes the point mass at x.
We focus first on the IS case (q(y|x) ≡ q(y)) since it allows for simpler conditions. Let p0 be the density of

the initial distribution of the MH algorithm with proposal density q and target f . We will assume that these
densities are sufficiently smooth in a sense that will be precised. From (2.2), the successive densities of the IS
are given by the recursive formula

pn+1(y) = q(y)
∫

pn(x)α(x, y) dx + pn(y)
∫

q(x)(1 − α(y, x)) dx (2.3)

= q(y)In(y) + pn(y) (1 − I(y)) , (2.4)

where

In(y) =
∫

pn(x)α(x, y) dx, n ≥ 0 (2.5)

I(y) =
∫

q(x)α(y, x) dx. (2.6)

We consider the first iteration of the algorithm. From (2.4), the regularity properties of the density p1 are
related to the regularity properties of the two parameter-dependent integrals I1 and I, that are classically
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handled by standard results (see, e.g., [5] Thm. 16.8, p. 212). Continuity is straightforward here, and the proof
is omited since it is simply an application of Lebesgue’s dominated convergence theorem:

Lemma 2.1. If q and f are strictly positive and continuous on Ω ⊆ R
s, and p0 is continuous, then pn is

continuous on Ω for n ≥ 1.

From equation (2.4), we have directly that

|pn+1(y)−pn+1(z)| ≤ ||q||∞ |In(y)−In(z)|+ ||In||∞ |q(y)−q(z)|+ ||1−I||∞ |pn(y)−pn(z)|+ ||pn||∞ |I(y)−I(z)|.
(2.7)

To prove recursively that pn+1 is Lipschitz, we have first to prove that In and I are both Lipschitz. For
convenience, we denote (where a ∧ b = min{a, b})

α(x, y) = φ(x, y) ∧ 1, φ(x, y) =
h(x)
h(y)

, h(x) =
q(x)
f(x)

·

Lemma 2.2. If f/q is c1-Lipschitz, and
∫

p0h < ∞, then for all n ≥ 1,
∫

pnh < ∞, and In is (c1

∫
pnh)-

Lipschitz.

Proof. First we have to check that
∫

p0h < ∞ can be iterated. This comes directly from the recursive defini-
tion (2.3) (since 0 ≤ r(x) ≤ 1):∫

p1(y)h(y) dy =
∫ [∫

p0(x)p(x, y) dx + p0(y)r(y)
]

h(y) dy

≤
∫

q(y)2

f(y)

[∫
p0(x)φ(x, y) dx

]
dy +

∫
p0(y)

q(y)
f(y)

dy

= 2
∫

p0(y)h(y) dy < ∞.

Hence
∫

p0h < ∞ ⇒ ∫
pnh < ∞ for n ≥ 1. Then, we have

|In(y) − In(z)| ≤
∫

pn(x)|α(x, y) − α(x, z)| dx

≤
∫

pn(x)|φ(x, y) − φ(x, z)| dx

≤
∫

pn(x)h(x)
∣∣∣∣f(y)
q(y)

− f(z)
q(z)

∣∣∣∣ dx ≤
(

c1

∫
pnh

)
||y − z||. �

Note that the hypothesis that f/q is Lipschitz is reasonable in the IS context. As recalled in the introduction,
the IS is uniformly geometrically ergodic if q(y) ≥ af(y) for some a > 0 [22]. Actually, these authors also proved
that the IS is not even geometrically ergodic if this condition is not satisfied. But satisfying this minoration
condition requires q to have tails heavier than the tails of the target f . Hence, common choices for implementing
the IS make use of heavy-tailed proposal densities, so that f/q is typically a continuous and positive function
which goes to zero when ||x|| → ∞. It can then be assumed to be Lipschitz. This condition in Lemma 2.2 may
thus be viewed as a consequence of the following assumption, which will be used below:

Assumption (A): q and f are strictly positive and continuous densities on Ω, and q has heavier tails than f ,
so that lim||y||→∞ h(y) = +∞.

We turn now to the second integral I(y) =
∫

q(x)α(y, x) dx. The difficulty here comes from the fact that the
integration variable is now the second argument of α(·, ·). Hence, applying the majoration used previously gives

|I(y) − I(z)| ≤
∫

q(x)|φ(y, x) − φ(z, x)| dx =
∫

f(x)|h(y) − h(z)| dx,
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but with assumption A, h = q/f is obviously not Lipschitz. A direct study of α(·, x) = [h(·)/h(x)] ∧ 1 is
needed here. Clearly, for each fixed x ∈ Ω there exists by (A) a compact set K(x) such that for any y /∈ K(x),
h(y) ≥ h(x). This entails that ∀y /∈ K(x), α(y, x) = 1. Now, for any y ∈ K(x), α(y, x) is a continuous function
truncated at one, so that it is uniformly continuous. If we assume slightly more, i.e. that α(·, x) is c(x)-Lipschitz,
we have proved the following lemma:

Lemma 2.3. If assumption (A) holds, and if for each x there exists c(x) < ∞ such that

∀y, z ∈ K2(x), |α(y, x) − α(z, x)| ≤ c(x)||y − z||, (2.8)

where c(x) satisfies ∫
q(x)c(x) dx < ∞, (2.9)

then I satisfies the Lipschitz condition:

∀(y, z) ∈ Ω2, |I(y) − I(z)| ≤
(∫

q(x)c(x) dx

)
||y − z||.

We have checked that Lemma 2.3 holds in some simple (one-dimensional) MH situations. An example is provided
in Appendix A.1.

Proposition 2.4. If the conditions of Lemmas 2.1–2.3 hold, and if

(i) ||q||∞ = Q < ∞ and q is cq-Lipschitz;
(ii) ||p0||∞ = M < ∞ and p0 is c0-Lipschitz;

then the successive densities of the Independance Sampler satisfy a Lipschitz condition, i.e. for any n ≥ 1, there
exists k(n) < ∞ such that

∀(y, z) ∈ Ω2, |pn(y) − pn(z)| ≤ k(n) ||y − z||. (2.10)

Proof. Using equation (2.7), and the fact that

||In||∞ ≤
∫

pn(x) dx = 1, ||I||∞ ≤
∫

q(x) dx = 1,

and

||pn||∞ ≤ Q||In−1||∞ + ||pn−1||∞ ||1 − I(y)||∞
≤ nQ + M,

we obtain

|pn+1(y) − pn+1(z)| ≤ Q|In(y) − In(z)| + |q(y) − q(z)| + |pn(y) − pn(z)| + (nQ + M)|I(y) − I(z)|.

Thus, applying this recursively, (2.10) is satisfied, with

k(n) = Qc1

∫
pn(x)h(x) dx + cq + ((n − 1)Q + M)

∫
q(x)c(x) dx + k(n − 1), n ≥ 2

k(1) = Qc1

∫
p0(x)h(x) dx + cq + M

∫
q(x)c(x) dx + c0. �
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2.2. The general Metropolis-Hastings case

When the proposal density is of the general form q(y|x) depending on the current position of the chain, the
successive densities of the MH algorithm are given by

pn+1(y) =
∫

pn(x)q(y|x)α(x, y) dx + pn(y)
∫

q(x|y)(1 − α(y, x)) dx

= Jn(y) + pn(y) (1 − J(y)) , (2.11)

where

Jn(y) =
∫

pn(x)q(y|x)α(x, y) dx, (2.12)

J(y) =
∫

q(x|y)α(y, x) dx. (2.13)

In comparison with the IS case, the continuity already requires some additional local conditions. Let B(y0, δ)
denotes the closed ball centered at y0 ∈ Ω, with radius δ.

Lemma 2.5. If q(x|y) and f are strictly positive and continuous everywhere on both variables, and p0 is con-
tinuous, and if:

(i) supx,y q(x|y) ≤ Q < ∞;
(ii) for any y0 ∈ Ω and some δ > 0, supy∈B(y0,δ) q(x|y) ≤ ϕy0,δ(x), where ϕy0,δ is integrable;

then pn is continuous on Ω for n ≥ 1.

Proof. As for Lemma 2.1, it is enough to check the dominating conditions of, e.g., Billingsley [5], page 212.
However, for J , we need the local condition (ii) to prove the continuity of J(y) at any y0 ∈ Ω. �

Note that condition (ii) is reasonable. For instance, in the one-dimensional RWMH with Gaussian perturbation
q(x|y) = pdf of N (y, σ2) evaluated at x, one can simply take

ϕy0,δ(x) = q(x|y0 − δ)Ix<y0−δ + q(y0 − δ|y0 − δ)I[y0−δ,y0+δ](x) + q(x|y0 + δ)Ix>y0+δ. (2.14)

Proposition 2.6. If conditions of Lemma 2.5 hold, and if

(i) ||p0||∞ = M < ∞ and p0 is c0-Lipschitz;
(ii) q(·|x)α(x, ·) is c1(x)-Lipschitz, with

∫
pn(x)c1(x) dx < ∞;

(iii) J(·) is c2-Lipschitz,

then the successive densities of the general MH satisfy a Lipschitz condition, i.e. for any n ≥ 0, there exists
�(n) < ∞ such that

∀(y, z) ∈ Ω2, |pn(y) − pn(z)| ≤ �(n) ||y − z||. (2.15)

Proof. First, it is easy to check that, similarly to the IS case, ||Jn||∞ ≤ Q, ||J ||∞ ≤ 1, and ||pn||∞ ≤ nQ + M .
Then, using the decomposition

|pn+1(y) − pn+1(z)| ≤ |Jn(y) − Jn(z)| + 2|pn(y) − pn(z)| + ||pn||∞|J(y) − J(z)|,

equation (2.15) is clearly a direct consequence of conditions (ii) and (iii), and the �(n)’s can be determined
recursively as in the proof of Proposition 2.4. �

We have checked that these conditions are satisfied, e.g., in the one-dimensional case for usual RWMH
algorithms with Gaussian proposal densities (see Appendix A.2).
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3. Relative entropy estimation

Let XN = (X1, . . . , XN) be an i.i.d. N -sample of random vectors taking values in R
s, s ≥ 1, with common

probability density function p.
Following Györfi and Van Der Meulen [16], we decompose the sample XN into two subsamples YN = {Yi}

and ZN = {Zi}, defined by

Yi = X2i for i = 1, . . . , [N/2] (3.1)
Zi = X2i−1 for i = 1, . . . , [(N + 1)/2], (3.2)

where [N ] denotes the largest integer inferior to N . Let p̂N (x) = p̂N (x,ZN ) be the Parzen-Rosenblatt kernel
density estimate given by

p̂N (x) =
1

hs
N (N + 1)/2

[(N+1)/2]∑
i=1

KhN

(
x − Zi

hN

)
, x ∈ R

s, (3.3)

where the kernel K is a density and hN > 0 with limN→∞ hN = 0, and limN→∞ Nhs
N = ∞. The entropy

estimate HN (p) = HN,Y,Z(p) introduced by Györfi and Van Der Meulen [16], is then defined by:

HN (p) =
1

[N/2]

[N/2]∑
i=1

log p̂N (Yi)I{pN (Yi)≥aN} (3.4)

where 0 < aN < 1 and limN→∞ aN = 0.

Theorem 3.1. Assume that H(f) < ∞. For all n ≥ 0, let Xn
N be an i.i.d. N -sample from pn, the p.d.f. of the

MH algorithm at time n, and consider the kernel density estimate p̂n
N given in (3.3), based on the subsample

Zn
N defined in (3.2). Let the kernel K be a bounded density, vanishing outside a sphere Sr of radius r > 0, and

set hN = N−α, 0 < α < 1/s. Consider the entropy estimate HN defined in (3.4) with aN = (log N)−1. Assume
that there are positive constants C, r0, a, A and ε, such that either:

(i) in the case of the Independance Sampler: f , q and p0 satisfy conditions of Proposition 2.4; q satisfies the
minoration condition q(y) ≥ af(y), and f satisfies the tail condition

f(y) ≤ C

||y||s(log ||y||)2+ε
, for ||y|| > r0; (3.5)

(ii) in the general MH case: f , q and p0 satisfy conditions of Proposition 2.6; q is symmetric (q(x|y) = q(y|x));∣∣∣∣p0/f
∣∣∣∣
∞ ≤ A, and f satisfies the tail condition

f(y) ≤ C

1 + ||y||s+ε
· (3.6)

Then, for all n ≥ 0, HN (pn) a.s.−→ H(pn), as N → ∞.

Proof. This result uses directly the theorem given in Györfi and Van Der Meulen [16] page 231. Conditions (3.5)
or (3.6) and the fact that H(f) < ∞ implies, for all n ≥ 0, the same conditions on the densities pn in either
cases (i) or (ii). Actually, H(f) < ∞ is a direct consequence of Proposition A.1 and of the positivity of K. For
the tail condition (3.5), case (i), it suffices to notice that from (A.2) we have for all x ∈ Ω:

0 ≤ pn(x) ≤ f(x) + κρnf(x)

≤ C(1 + κρn)
||x||s(log ||x||)2+ε

·
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The tail condition for the general case (ii) comes directly from the recursive formula (2.11) since

p1(y) = J0(y) + p0(y)(1 − J(y)) ≤
∫

p0(x)q(y|x)α(x, y) dx + p0(y)

≤
∫

p0(x)q(y|x)
f(y)
f(x)

dx + p0(y)

≤ Af(y)
∫

q(x|y) dx + p0(y) ≤ 2Af(y).

Applying this recursively gives

pn(y) ≤ 2nAf(y) ≤ 2nAC

1 + ||y||s+ε
,

which is stricter than Györfi and Van Der Meulen’s tail condition. As to smoothness, the conditions of our
Proposition 2.4 for case (i), and Proposition 2.6 for case (ii) give the Lipschitz condition of Ivanov and
Rozhkova [20] for pn, which in turn is stricter than Györfi and Van Der Meulen’s smoothness condition, as
stated in Györfi and Van Der Meulen [16]. �

4. An illustrative example

This section shows on a simple but multivariate example the good behavior of our entropy estimate of
n �→ H(pn) = Epn [log(pn)]. We choose as a target density a s = 5-dimensional Gaussian density with zero mean
and diagonal covariance matrix with diagonal elements (1, 2, 3, 4, 5). One advantage of this simple example is
that the true relative entropy is known for the Gaussian: for this particular case H(f) = Ef (log f) = −9.488.

We ran N = 200 and N = 500 i.i.d. copies of Markov chains issued from two different MH samplers: (i) A
RWMH strategy with Gaussian proposal of variance matrix σ2I5, where σ2 = 1 and I5 is the 5-dimensional
identity matrix; (ii) an Independence Sampler (IS) strategy with Gaussian proposal of variance σ2I5 with
σ2 = 25. In addition to the purpose of illustrating the performance of our estimator, this example also shows
that this entropy estimate can be used to evaluate the convergence rate of a MCMC sampler, since H(pn)
converges to Ef (log f) as n → ∞. Indeed, Figure 1 shows that the RWMH is more efficient than the IS: the
HMRW entropy estimates stabilizes after about 50 iterations whereas for the IS it requires about 150 iterations.
The reason is that the calibration of the HMRW variance is appropriate for this target f , whereas the IS is
using a Gaussian proposal density with a too large variance.

These simple examples have been run using a R [25] software package for MCMC comparisons, under devel-
opment (see Discussion section). CPU time is about few minutes on a today laptop. The (diagonal) bandwidth
matrix we used in practice in the multivariate kernel density estimate (3.3) is optimal for multivariate Gaus-
sian distributions [28]. Note that we did not use in equation (3.4) the treshold aN = log(N)−1 suggested in
the original theorem from Györfi and Van Der Meulen [16], but too large in practice for N about hundreds,
the important point being that limN→∞ aN = 0. Preliminary experiments we did suggest to use instead a
numerically reasonable scheme consisting in removing from the subsample YN the lowest αN percent of the
p̂N (Yi)’s. For these simulations we set αN = 2%. This technical point deserves a more comprehensive numerical
study to determine on this basis an appropriate aN , which is part of the software tool under development (see
Discussion).

5. Discussion

In this paper we have shown that, despite the fact that the metropolis-hastings kernel has a point mass at the
chain’s current position (corresponding to the probability of rejection of each proposed next move) a Lipschitz
smoothness property can “reasonably” be assumed for the iterative marginal densities. This allows us to build a
simulation-based, consistent nonparametric estimate of the entropy for these iterative densities. “Reasonably”
here means that the technical conditions of Theorem 3.1 are not meant to be verified by tedious calculations, as
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Figure 1. Plots of n �→ HN (pn) from left: N = 200, right: N = 500 i.i.d. chains up to n = 200
iteration for (i) a RWMH strategy with Gaussian proposal of diagonal variance matrix σ2I5

with σ2 = 1 (solid line); and (ii) Independence Sampler strategy with Gaussian proposal of
diagonal variance matrix σ2I5 with σ2 = 25 (dashed line). The horizontal dotted line is the
true limiting (in n) entropy H(f) = Ef (log f).

we did for two simple examples (Appendices A.1 and A.2). These examples support the idea that, if the input
(initial, proposal and target) densities of the MH algorithm have usual tail and smoothness properties, then one
can expect our estimate to behave well.

This theoretical study can be viewed as a building block for a methodological software tool for general
(including adaptive) MCMC convergence evaluation. Within this in-progress R software package, the simulations
output (e.g., stabilization of estimates of H(pn) or Kullback distances) is intended to provide numerical evidence
of convergence, without actual checking of the technical conditions. Note also that the MH homogeneous Markov
property of the simulated chains does not play any role in the convergence of the entropy estimates, since these
estimates are based on i.i.d. copies at time n only. Hence adaptive MCMC efficiency can also be evaluated by
this criterion.

On the negative side, our estimate is obviously sensitive to the “curse of dimensionality”, since the involved
kernel density estimates deteriorate as the dimension of the sample space increases. We are currently considering
alternative entropy estimation methods, and reduction of dimension techniques, but these approaches are beyond
the scope of this article.

Appendix A

Proposition A.1. If the proposal density of the Metropolis-Hastings algorithm satifies q(y|x) ≥ af(y), for all
x, y ∈ Ω, and a ∈ (0, 1), then

K(pn, f) ≤ κρn(1 + κρn), (A.1)

where κ = ||p0/f − 1||∞ > 0, f0 is the initial pdf, and ρ = (1 − a).
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Proof. We use a result due to Holden [19] assessing the geometric convergence of the MH algorithm under a
uniform minoration condition: if there exists a ∈ (0, 1) such that q(y|x) ≥ af(y) for all x, y ∈ Ω, then

∀y ∈ Ω,

∣∣∣∣pn(y)
f(y)

− 1
∣∣∣∣ ≤ (1 − a)n

∣∣∣∣
∣∣∣∣p0

f
− 1

∣∣∣∣
∣∣∣∣
∞

. (A.2)

Using equation (A.2), we have:

K(pn, f) =
∫

log
(

pn(y)
f(y)

)
pn(y) dy

≤
∫

log
(∣∣∣∣pn(y)

f(y)
− 1

∣∣∣∣ + 1
)(∣∣∣∣pn(y)

f(y)
− 1

∣∣∣∣ + 1
)

f(y) dy

≤ log(κρn + 1)(κρn + 1) ≤ κρn(κρn + 1). �
The two last sections of this appendix illustrates that some of the conditions required in Propositions 2.4

and 2.6, which look difficult to check in actual situations, are satisfied for standard MH algorithms in the
one-dimensional case.

A.1. The one-dimensional independence sampler case

In the IS case, the technical assumptions are conditions (2.8) and (2.9) of Lemma 2.3. These conditions are
simpler to handle in the one-dimensional case. In this case, when q and f are in addition derivable, and have
non-oscillating tails, assumption (A) leads to

∃m1 < m2 : ∀x < m1, h
′(x) < 0, and ∀x > m2, h

′(x) > 0. (A.3)

For a fixed x ∈ R, there exists by (A.3) a compact set K(x) = [a(x), b(x)] such that: (i) [m1, m2] ⊆ K(x);
(ii) h(a(x)) = h(b(x)) = h(x); (iii) for any y /∈ K(x), h(y) ≥ h(x). As in the general case, this entails that
∀y /∈ K(x), α(y, x) = 1. If we have the Lipschitz condition on K(x):

∀y, z, |α(y, x) − α(z, x)| ≤ c(x)|y − z|,
the expression of c(x) can be precised

c(x) = sup
y∈K(x)

∣∣∣∣∂φ(y, x)
∂y

∣∣∣∣ < ∞, (A.4)

and Lemma 2.3 holds if the integrability condition (2.9) is satisfied. Note that |a(x)| and b(x) both go to +∞
as |x| → ∞; in particular, b(x) = x for x > m2. Hence c(x) → ∞ as |x| → ∞, and condition (2.9) is not always
true, but merely depends on the relative decreasing rate of the tails of q and f .

For an illustrative example, assume that the tails of f are of order x−β , and the tails of q are of order x−α.
Satisfying assumption A requires that β > α. Now, one can always use the fact that

c(x) ≤ sup
y∈R

∣∣∣∣∂φ(y, x)
∂y

∣∣∣∣ ,
so that if β−1 < α < β, then c(x) is of order xα−β for large x and (2.9) is satisfied. The condition α ∈ [β−1, β]
states that the tails of q should be “not too heavy”, compared with the tails of f . This requirement is obviously
stronger than what is needed, but more precise conditions require some analytical expression of c(x) for x /∈
[m1, m2], and this expression depends on a(x) and h′.

Fortunately, condition (2.9) is satisfied in much more general settings. For instance, consider situations
where f and q are both symmetric w.r.t. 0, so that K(x) = [−|x|, |x|] for x outside [m1, m2], and c(x) can be
expressed in closed form. Then it is easy to verify that (2.9) holds for, e.g., f ≡ N (0, 1) and q ≡ t(d), the
Student distribution with d degrees of freedom, for d ≥ 2 (even if, for d = 2 the tails of q are of order x−3).
In this example, the proposal density has tails much more heavier than f , but Lemma 2.3 holds i.e., I is still
Lipschitz.
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A.2. The one-dimensional general MH case

In the general MH case, the difficult conditions are conditions (ii) and (iii) of Proposition 2.6. Our aim is to
show that these conditions hold in the simple RWMH case with Gaussian proposal density. In order to obtain
a tractable case, let q(y|x) be the p.d.f. of the Gaussian N (x, 1), and f be the density of N (0, 1).

For condition (ii) we have to prove that q(·|x)α(x, ·) is c(x)-Lipschitz, with
∫

pn(x)c(x) dx < ∞. Here q(y|x) =
q(x|y), so that

α(x, y) = 1 ∧ f(y)
f(x)

≤ f(y)
f(x)

,

which is a truncated function such that, for any x, lim|y|→∞ α(x, y) = 0. In other words, both α(x, y) and
q(y|x)α(x, y) have tails behavior for large y. The non-troncated function ϕx(y) = q(y|x)f(y)/f(x) is then
Lipschitz, with

c(x) = sup
y∈R

|ϕ′
x(y)| .

A direct calculation (feasible in this simple case) gives c(x) ∝ exp(x2−2)/4. Since to ensure the tails conditions
of the successive densities pn we have to assume that the initial distribution itself has tails lighter or equal to
that of f (i.e. that ||p0/f ||∞ < A, see Thm. 3.1) then by the recursive definition of pn we have, as in the proof
of Theorem 3.1, pn(y) ≤ 2nAf(y), so that

∫
pn(x)c(x) dx < ∞, i.e. condition (ii) of Proposition 2.6 holds.

We turn now to condition (iii) of Proposition 2.6, i.e. we have to show that J(y) given by (2.13) is Lipschitz.
For fixed y, z ∈ R,

|J(y) − J(z)| ≤
∫

|q(x|y)α(y, x) − q(x|z)α(z, x)| dx.

As for the IS case, we need a precise study of the truncated function here. We assume first that z > y > 0.
Since q is symmetric,

α(y, x) =
f(x)
f(y)

∧ 1,

and we can define two compact sets K(y) and K(z) by

K(t) = {x ∈ R : α(t, x) = 1} = {x ∈ R : f(x) ≥ f(t)}
which, in the present situation, are just K(y) = [−y, y], K(z) = [−z, z], and satisfy K(y) ⊂ K(z). Hence

|J(y) − J(z)| ≤
∫

K(y)

|q(x|y) − q(x|z)| dx +
∫

K(z)\K(y)

∣∣∣∣q(x|y)
f(x)
f(y)

− q(x|z)
∣∣∣∣ dx

+
∫

K(z)c

∣∣∣∣q(x|y)
f(x)
f(y)

− q(x|z)
f(x)
f(z)

∣∣∣∣ dx,

where K(z)c = R \ K(z). Using the mean value theorem, the first term can be written∫
K(y)

|q(x|y) − q(x|z)| dx ≤
∫

|q(x|y) − q(x|z)| dx

≤ |y − z|
∫ |x − y∗|

2π
exp

(−(x − y∗)2/2
)

dx

≤
√

2
π
|y − z|, (A.5)

where the last inequality comes from the absolute first moment of the normal density.
For the second term, consider first the integral on the right side of K(z)\K(y), that is

∫ z

y |ϕy,z(x)| dx, where

ϕy,z(x) = q(x|y)
f(x)
f(y)

− q(x|z).
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In this simple setting, it is easy to check that ϕy,z(·) is a bounded function, monotonically decreasing from
ϕy,z(y) = δ − q(y|z) > 0 to ϕy,z(z) = q(y|z) − δ < 0, where δ = q(y|y) is the value of the Gaussian density at
its mode. Hence ∫ z

y

∣∣∣∣q(x|y)
f(x)
f(y)

− q(x|z)
∣∣∣∣ dx ≤ δ|y − z|. (A.6)

The symmetric term
∫ −y

−z
|ϕy,z(x)| dx is handled in a similar way.

The third term can in turn be decomposed into∫
K(z)c

∣∣∣∣q(x|y)
f(x)
f(y)

− q(x|z)
f(x)
f(z)

∣∣∣∣ dx ≤ Q

∫
K(z)c

∣∣∣∣f(x)
f(y)

− f(x)
f(z)

∣∣∣∣ dx +
∫

K(z)c

|q(x|y) − q(x|z)| dx,

where, as in Proposition 2.6, Q = ||q||∞, and since supx∈K(z)c |f(x)/f(z)| = 1. Using the mean value theorem
as for the first term, ∫

K(z)c

|q(x|y) − q(x|z)| dx ≤
√

2
π
|y − z|. (A.7)

Finally, ∫
K(z)c

∣∣∣∣f(x)
f(y)

− f(x)
f(z)

∣∣∣∣ dx = 2
∫ ∞

z

∣∣∣∣f(x)
f(y)

− f(x)
f(z)

∣∣∣∣ dx

≤ 2
∣∣∣∣ 1
f(y)

− 1
f(z)

∣∣∣∣
∫ ∞

z

f(x) dx

≤ 2
√

2πzez2/2 e−z2

z +
√

z2 + 4/π
|y − z|, (A.8)

≤ D|y − z|, (A.9)

where the left term in (A.8) comes from the mean value theorem applied to the function 1/f(·), the rightmost
term in (A.8) is a well-known bound of the tail of the normal distribution, and

D = sup
z∈R

∣∣∣∣∣2√2πzez2/2 e−z2

z +
√

z2 + 4/π

∣∣∣∣∣ < ∞.

Collecting (A.5)–(A.7) and (A.9) together shows that

|J(y) − J(z)| ≤ k|y − z| for z > y > 0 and 0 < k < ∞.

The other cases are done similarly, so that J(·) is Lipschitz.
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