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Abstract

For regularized hard potentials cross sections, the solution of the spatially ho-
mogeneous Boltzmann equation without angular cutoff lies in Schwartz’s space
S(RN ). The proof is presented in full detail for the two-dimensional case, and
for a moderate singularity of the cross section. Then we present those parts of the
proof for the general case, where the dimension, or the strength of the singularity
play an essential role.

1 Introduction

We consider in this work the spatially homogeneous Boltzmann equation (Cf. [3])

∂f

∂t
(t, v) = Q(f, f)(t, v) , (1)

wheref : RN → R+ is the nonnegative density of particles which at timet move with
velocity v, and the bilinear operator in the right-hand side is defined by

Q(g, f)(v) =
∫

RN

∫
SN−1

{
f(v′) g(v′∗) − f(v) g(v∗)

}
b(cos θ, v − v∗) dσdv∗. (2)

In this formula,v′, v′∗ andv, v∗ are the velocities of a pair of particles before and after a
collision,

v′ =
v + v∗

2
+

|v − v∗|
2

σ,

v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

whereσ ∈ SN−1. Throughout the paper,θ denotes the angle betweenσ andv − v∗.
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Our goal is to prove that for a large class of collision cross sectionsb, and for all
initial datafin ≥ 0 with finite mass, energy and entropy, i.e. satisfying the

Assumption 1: ∫
RN

fin(v)
(
1 + |v|2 + | log(fin(v))|) dv < +∞ ,

there exists a solution of the homogeneous Boltzmann equation (1) withf(0, ·) = fin

such that whent > 0, f(t, ·) ∈ S(RN ). Apart from certain technical conditions that
are discussed below, the main assumption onb is that nearθ = 0, it looks like |θ|−γ ,
with 1 < γ < 3. Such a behavior, which naturally appears when the interaction be-
tween the particles has a long range, is called “non cutoff”. It means that all the grazing
collisions (those for whichθ is close to0) are taken into account. Under such a condi-
tion, the collision operator is expected to behave essentially as a fractional power of the
Laplacian:

Q(f, f) = −Cf (−∆)(γ−1)/2f + more regular terms,

whereCf > 0 depends only on quantities which are somehow controlled.
Relevant existence results were obtained in [2], [13], and [8]. Previous works have

demonstrated partial regularity under rather general conditions (Cf. [1], [5], [6], [9],
[10], [13]) or C∞ regularity as here, but under severe restrictions on the equation :
namely, the cross section did not depend onv−v∗ (Maxwellian molecules assumptions)
and the solution was radially symmetric (Cf. [4]).

In order to keep the paper rather short, we refer to the quoted papers for a more
complete history of the problem, and for discussions on the physical relevance.

The precise conditions that we impose on the cross sectionb = b(cos θ,w) are the
following:

Assumption 2: We suppose that

inf
w∈RN , θ∈[−δ,δ]

|θ|γ b(cos θ,w)
(1 + |w|2)α ≥ K (3)

for someK > 0, α ∈]0, 1[, γ ∈]1, 3[, δ ∈]0, π[, and that for allp ∈ N,

sup
w∈RN , θ∈[−π,π]

|θ|3−ε |Dpb(cos θ,w)|
(1 + |w|2)rp

≤ C1
p , (4)

whereε > 0 is a given number,rp, C1
p > 0 are given constants, andDp is any derivative

of orderp with respect to the variable w.
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Note that the usual regularized hard potentials without angular cutoff satisfy As-
sumption 2; those are cross sections of the form

b(cos θ,w) = b1(w) b2(θ),

whereb1 is a smooth and strictly positive function such thatb1(w) ∼w→+∞ |w|α for
α ∈]0, 1[ andb2 is a function such thatb2(θ) ∼θ→0 |θ|−γ for γ ∈]1, 3[.

We can now state our main theorem :

Theorem 1 : Let b be a cross section satisfying Assumption 2 andfin be an initial
datum satisfying Assumption 1. Then, there exists a solution to eq. (1), (2) with initial
datumfin lying in L∞([t0,+∞[;S(RN )) for all t0 > 0.

Let us now rapidly discuss the assumptions and the conclusion of this theorem. Note
first that the initial data are only assumed to belong to the space of functions satisfying
the natural bounds coming from physics (finite mass, energy and entropy). It is likely
that the assumption of finite entropy can be somewhat relaxed (Cf. recent works by
Villani (Cf. [11])). The assumptions on the dependence with respect toθ of the cross
section are also quite satisfying, and probably close to being optimal (Cf. [1] to get an
idea of what really optimal assumptions might be). The situation is however not so good
as far as the kinetic part of the cross section (that is, its dependence with respect tov−v∗)
is concerned. First, we basically assume that this dependence is smooth, and this is not
true for inverse power laws (Cf. [3] for example). While for such a cross section (having
a singularity nearv = v∗) some smoothing effect certainly occurs (Cf. [1] for example),
it is not clear whether a complete smoothing of the solution can appear (the study of
the Landau equation with that kind of cross section would suggest that the complete
smoothing should indeed appear, Cf. [7]). Secondly, we also assume that (the kinetic
part of) the cross section is strictly positive. This is also not true for inverse power laws.
The study of this problem in [1] suggests that this assumption of strict positivity could
maybe be relaxed. Most probably however, to look for a result for “true” hard potentials
(that is, coming from inverse power laws) would lead to tremendous technicalities (the
proof of our theorem is already quite technical), which we leave to future works.

Finally, we would like to put the stress on the following facts: the conclusion of
Theorem 1 most probably does not hold when soft potentials or Maxwellian molecules
are concerned (no gain of moments is expected in such a situation) or when the singular-
ity in the angular variable is removed (no gain of smoothness is expected in this case).
Under our assumptions, we think that maybe the solution of the Boltzmann equation is
even smoother thanS, it might belong to some Gevrey space for example.

Since our computations are rather long, we first present the proof of Theorem 1 in
the case when the dimension isN = 2 and when in Assumption 2, eq. (4), the term
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|θ|3−ε is replaced by|θ|2−ε (that is, the singularity in the angular variable is moderately
strong). These simplifications enable to present complete proofs: this is done in Sec-
tion 2. Then, in Section 3, we explain how to modify the proof to get the result in the
general case. Finally, for the sake of completeness, we give in an appendix the proof of
a (more or less standard) interpolation lemma which is crucial in our proof.

2 The simplified case

In this section, we prove Theorem 1 in the case when the dimension isN = 2 and when
eq. (4) in Assumption 2 is replaced by

sup
w∈R2, θ∈[−π,π]

|θ|2−ε |Dpb(cos θ,w)|
(1 + |w|2)rp

≤ C1
p , (5)

where (as in eq. (4))ε > 0 is a given number,rp, C1
p > 0 are given constants, andDp

is any derivative of orderp with respect to w.

When velocities are restricted to two dimensions, it is possible to parametrize the
pre- and postcollisional velocities by a rotation of the relative velocityv − v∗:

v′ =
v + v∗

2
+Rθ

(
v − v∗

2

)
, (6)

v′∗ =
v + v∗

2
−Rθ

(
v − v∗

2

)
, (7)

whereRθ denotes a rotation by the angleθ. Then the integral overSN−1 in (2) can be
replaced by

∫ π
−π dθ, which simplifies many of the subsequent calculations.

Thanks to the change of variableθ 7→ θ±π, which exchangesv′ andv′∗, the collision
operator can be written

Q(f, f)(v) =
∫

R2

∫ π/2

−π/2

{
f(v′) f(v′∗) − f(v) f(v∗)

}

×
[
b(cos θ, v − v∗) + b(cos(θ − π), v − v∗) 1[0,π/2](θ)

+ b(cos(θ + π), v − v∗) 1[−π/2,0](θ)
]
dθdv∗.

As a consequence, it is enough (as far as the Boltzmann equation∂tf = Q(f, f) is
concerned) to assume thatb(cos(·), v − v∗) has its support included in[−π/2, π/2].
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We shall use in the sequel the following (easy) consequences of eq. (5) (C2
p andC3

p

are constants which depend only onC1
p ) :

sup
w∈R2

∣∣∣∣Dp

∫ π/2
−π/2

[
b
(
cos θ, w

cos θ
2

)
1

(cos θ
2
)2

− b(cos θ,w)
]
dθ

∣∣∣∣
(1 + |w|2)rp

≤ C2
p , (8)

sup
w∈R2, θ∈[−π/2,π/2]

|θ|2−ε

∣∣∣∣Dpb
(
cos θ, w

cos θ
2

)∣∣∣∣
(1 + |w|2)rp

≤ C3
p . (9)

The proof of Theorem 1 (under the assumptions of this section) runs as follows: in
Section 2.1, we split quantities like∫

R2

(DkQ(g, f))(v)Dkf(v) dv

(whereDk is any derivative of orderk) in a certain number of terms. Each term is then
estimated in Section 2.2. Finally, we gather the estimates in Section 2.3 to conclude the
proof of our theorem.

2.1 Decomposition

First, we observe that (6) and (7) imply the following useful formulas :

v =
1

cos θ
2

R− θ
2
v′ + tan

θ

2
Rπ

2
v∗, (10)

v′ − v = sin
θ

2
R θ

2
+ π

2
(v − v∗), (11)

v′ − v∗ = cos
θ

2
R θ

2
(v − v∗). (12)

It is in these formulas that the simplifications related to the two-dimensional case
are obvious: For afixedangle of deflectionθ, all relations between velocities before and
after collision are given by some fixed linear operator, and hence these transformations
are smooth.

Denoting byτh the translation operator (that is,τhf(x) = f(x+h)), we write down
the invariance ofQ with respect to translations in the form

(τhQ(g, f))(v) = Q(τhg, τhf)(v) .
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In the following we denote any generic differential operator of orderk byDk, and when
it is necessary to indicate which variables it is acting on, we writeDk;v, for example.

A consequence of the translation invariance is that a Leibnitz formula holds for the
collision operator: for any derivativeDk of orderk, there exist derivativesDl of orderl
such that

(DkQ(g, f))(v) = Q(g,Dkf)(v) +
k−1∑
l=0

C l
k Q(Dk−lg,Dlf)(v),

and

∫
R2

(DkQ(g, f))(v)Dkf(v) dv =
∫

R2

Dkf(v)Q(g,Dkf)(v) dv +
k−1∑
l=0

C l
k Bkl, (13)

where

Bkl =
∫

R2

Dkf(v)Q(Dk−lg,Dlf)(v) dv. (14)

We then use the pre/post-collisional change of variablesv, v∗, θ 7→ v′, v′∗,−θ, and
get

Bkl =
∫

R2

∫
R2

∫ π/2

−π/2
Dkf(v)

{
Dlf(v′)Dk−lg(v′∗)

−Dlf(v)Dk−lg(v∗)
}
b(cos θ, v − v∗) dθdv∗dv (15)

=
∫

R2

∫
R2

∫ π/2

−π/2

{
Dkf(v′) −Dkf(v)

}
Dlf(v)Dk−lg(v∗) b(cos θ, v − v∗) dθdv∗dv.

The next step in our calculation is to carry out the change of variablesw = v′ (with
the variablesθ andv∗ fixed; this has been used eg. in [1]). From (10) and (12), we get
the following formulas,

w =
v + v∗

2
+Rθ

(
v − v∗

2

)
, (16)

v =
1

cos θ
2

R− θ
2
w + tan

θ

2
Rπ

2
v∗, (17)

|w − v∗| = cos
θ

2
|v − v∗|, (18)

dw = (cos
θ

2
)2 dv, (19)
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which then give

Bkl =
∫

R2

∫
R2

∫ π/2

−π/2
Dkf(w)Dlf

( 1
cos θ

2

R− θ
2
w + tan

θ

2
Rπ

2
v∗

)
×Dk−lg(v∗) b

(
cos θ,

w − v∗
cos θ

2

) 1
(cos θ

2)2
dθdv∗dw

−
∫

R2

∫
R2

∫ π/2

−π/2
Dkf(v)Dlf(v)Dk−lg(v∗) b(cos θ, v − v∗) dθdv∗dv.

Writing thenv instead ofw and using the notation

ṽ =
1

cos θ
2

R− θ
2
v + tan

θ

2
Rπ

2
v∗,

we get

Bkl =
∫

R2

∫
R2

∫ π/2

−π/2
Dkf(v)Dk−lg(v∗)

×
[
Dlf(ṽ) b

(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)2
−Dlf(v) b(cos θ, v − v∗)

]
dθdv∗dv.

Next, the termsBkl are split asBkl = B1
kl +B2

kl, where

B1
kl =

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v) [Dlf(ṽ) −Dlf(v)]Dk−lg(v∗)

× b
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)2
dθdv∗dv

B2
kl =

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v)Dlf(v)Dk−lg(v∗)

×
[
b
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)2
− b(cos θ, v − v∗)

]
dθdv∗dv.

2.2 Estimates

We introduce the weightedLp and Sobolev spaces and their following norms:

Definition 1 : For all p ∈ [1,+∞[ andr > 0, we define the spaceLp
r(RN ) by its norm

||f ||p
Lp

r(RN )
=

∫
RN

|f(x)|p (1 + |x|2)rp/2 dx. (20)
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For all k ∈ N and r > 0, we also define the weighted Sobolev spaceHk
r (RN ) by its

norm

||f ||2Hk
r (RN ) =

∑
|α|≤k

∫
RN

|∂αf(x)|2 (1 + |x|2)r dx. (21)

We begin with an estimate of the termsB2
kl (k ∈ N, l = 0, 1, .., k − 1).

Lemma 1 : For k ∈ N, l = 0, 1, .., k − 1, one has the estimate

|B2
kl| ≤ C2

p ||g||L1
2rp

||f ||2Hk
rp
, (22)

for some constantC2
p > 0.

Proof :We recall that

B2
kl =

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v)Dlf(v)Dk−lg(v∗) (23)

×
[
b
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)2
− b(cos θ, v − v∗)

]
dθdv∗dv,

so that (afterk − l integrations by part, and denoting byDk−l;2 a derivative of order
k − l with respect to the second variable (v − v∗))

|B2
kl| ≤

∣∣∣∣
∫

R2

∫
R2

Dkf(v)Dlf(v) g(v∗)

×Dk−l;2

∫ π/2

−π/2

[
b
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)2
− b(cos θ, v − v∗)

]
dθ dv∗dv

∣∣∣∣
≤C2

p

∫
R2

∫
R2

|Dkf(v)| |Dlf(v)| g(v∗) (1 + |v − v∗|2)rp dv dv∗

≤C2
p ||g||L1

2rp
||f ||2Hk

rp
.

�
We now study the termB1

kl. Integrating by partsk − l times with respect to the
variablev∗, we get
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B1
kl =(−1)k−l

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v) g(v∗)

× Dk−l;v∗

(
[Dlf(ṽ) −Dlf(v)] b

(
cos θ,

v − v∗
cos θ

2

) )
1

(cos θ
2)2

dθdv∗dv (24)

=
k−l∑
m=0

(−1)m Cm
k−lB

1
klm,

with

B1
klm =

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v) g(v∗)Dm;v∗ [Dlf(ṽ) −Dlf(v)]

×Dk−l−m;v∗ b
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2 )2
dθdv∗dv.

In those formulas,Dr;v∗ denotes a derivative of orderr with respect to the variablev∗.

Lemma 2 : We suppose thatk ∈ N, l = 0, .., k − 1, andm = 1, .., k − l. Then there
exists a constantC4

klm > 0 such that

|B1
klm| ≤ C4

klm ||g||L1
2 rk−l−m

||f ||2Hk
rk−l−m

.

Proof: Note first that for a given functionh, one has (form ≥ 1)

|Dm;v∗ [h(ṽ) − h(v)]| ≤ | sin θ
2
|m|Dmh(ṽ)|.
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Then,

|B1
klm| ≤

∫
R2

∫
R2

∫ π/2

−π/2
|Dkf(v)| g(v∗) | sin θ2 |

m |Dm+lf(ṽ)|

× 1
| cos θ

2 |k−l−m+2

∣∣∣∣Dk−l−mb
(
cos θ,

v − v∗
cos θ

2

) ∣∣∣∣ dθdv∗dv
≤

∫ π/2

−π/2
| sin θ

2
|m |θ|ε−2

| cos θ
2 |k−l−m+2

∫
R2

∫
R2

1
2
g(v∗)

(
|Dkf(v)|2 + |Dm+lf(ṽ)|2

)

× C3
k−l−m (1 + |v − v∗|2)rk−l−m dvdv∗dθ

≤ C3
k−l−m

2

∫ π/2

−π/2
| sin θ

2
|m |θ|ε−2

| cos θ
2 |k−l−m+2

dθ

×
∫

R2

∫
R2

g(v∗) |Dkf(v)|2 (1 + |v|2)rk−l−m (1 + |v∗|2)rk−l−m dvdv∗

+
C3

k−l−m

2

∫ π/2

−π/2
| sin θ

2
|m |θ|ε−2

| cos θ
2 |k−l−m+2

(25)

×
∫

R2

∫
R2

g(v∗) |Dm+lf(ṽ)|2 (1 + (cos
θ

2
)2 |ṽ − v∗|2)rk−l−m (cos

θ

2
)2 dṽdv∗dθ,

where the factor(cos θ
2 )2 in the last term is simply the Jacobian in the transformation

v → ṽ (see formula (12)). Finally, we see (recalling thatm+ l ≤ k) that

|B1
klm| ≤ C4

klm ||g||L1
2 rk−l−m

||f ||2Hk
rk−l−m

,

with

C4
klm = C3

k−l−m

∫ π/2

−π/2
| sin θ

2
|m |θ|ε−2

| cos θ
2 |k−l−m+2

dθ,

and Lemma 2 is proven. �

We now turn to the case whenm = 0. We have to estimate the term

B1
kl0 =

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v) g(v∗) [Dlf(ṽ) −Dlf(v)]

× Dk−l;v∗ b
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)2
dθdv∗dv.

Lemma 3 : There exists a constantC5
kl > 0 such that,

|B1
kl0| ≤ C5

kl ||g||L1
2 rk−l+1

||f ||2
Hk

rk−l+
1
2

.
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Proof: We first note that

Dlf(ṽ) −Dlf(v) = (ṽ − v) ·
∫ 1

0
∇Dlf((1 − s) v + s ṽ) ds.

Then,

|B1
kl0| =

∣∣∣∣
∫

R2

∫
R2

∫ π/2

−π/2
Dkf(v) g(v∗)

[
(ṽ − v) ·

∫ 1

0
∇Dlf((1 − s) v + s ṽ) ds

]

×Dk−lb
(
cos θ,

v − v∗
cos θ

2

) 1
(cos θ

2)k−l+2
dθdv∗dv

∣∣∣∣
≤

∫
R2

∫
R2

∫ π/2

−π/2
g(v∗)

1
2

[
|Dkf(v)|2 +

∫ 1

0
|∇Dlf((1 − s) v + s ṽ)|2 ds

]

× |ṽ − v|C3
k−l (1 + |v − v∗|2)rk−l |θ|ε−2 1

(cos θ
2)k−l+2

dθdv∗dv.

Using formula (11), we see that

|ṽ − v| = | sin θ
2
| |ṽ − v∗|,

so that

|B1
kl0| ≤

1
2

∫
R2

∫
R2

∫ π/2

−π/2
g(v∗) |Dkf(v)|2 |ṽ − v∗| (1 + |v − v∗|2)rk−l

× C3
k−l | sin

θ

2
| |θ|ε−2 1

(cos θ
2)k−l+2

dθdv∗dv

+
1
2

∫
R2

∫
R2

∫ π/2

−π/2
g(v∗) |ṽ − v∗|

∫ 1

0
|∇Dlf((1 − s) v + s ṽ)|2 ds (26)

× C3
k−l (1 + |v − v∗|2)rk−l | sin θ

2
| |θ|ε−2 1

(cos θ
2 )k−l+2

dθdv∗dv.

We now introduce the variableu = (1 − s) v + s ṽ. Its Jacobian is given by the
formula

du = (1 + s2 (tan
θ

2
)2) dv .
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Then,

|B1
kl0| ≤

1
2

∫
R2

∫
R2

∫ π/2

−π/2
g(v∗) |Dkf(v)|2

((
1 + | tan θ

2
|) |v∗| + 1

cos θ
2

|v|
)

×C3
k−l (1 + |v|2)rk−l (1 + |v∗|2)rk−l

| sin θ
2 | |θ|ε−2

(cos θ
2)k−l+2

dθdv∗dv

+
1
2

∫
R2

∫
R2

∫ π/2

−π/2

∫ 1

0
g(v∗) |∇Dlf(u)|2 |ṽ − v∗| (1 + |v − v∗|2)rk−l

×C3
k−l

| sin θ
2 | |θ|ε−2

(cos θ
2 )k−l+2

ds

1 + s2 (tan θ
2)2

dθdv∗du. (27)

Noticing that

v =
(

(1 − s) Id+
s

cos θ
2

R− θ
2

)−1[
u− s tan

θ

2
Rπ

2
v∗

]
,

we see that

|v|2 ≤ 4
∣∣∣u− s tan

θ

2
Rπ

2
v∗

∣∣∣2
≤ 8 (|u|2 + |v∗|2).

In the same way,

ṽ =
(
s Id+ (1 − s) cos

θ

2
R θ

2

)−1[
u+ (1 − s) sin

θ

2
R θ

2
+ π

2
v∗

]
,

so that

|ṽ|2 ≤ 4
∣∣∣u+ (1 − s) sin

θ

2
R θ

2
+ π

2
v∗

∣∣∣2 ≤ 8 (|u|2 + |v∗|2). (28)

Then, we obtain the estimate

|B1
kl0| ≤ C5

kl ||g||L1
2 rk−l+1

||f ||2
Hk

rk−l+
1
2

,

with (for example)

C5
kl =

C3
k−l

2

∫ π/2

−π/2

(
1 + | tan θ

2
| + 1

cos θ
2

+ 2
√

8 (18)rk−l

) | sin θ
2 | |θ|ε−2

(cos θ
2)k−l+2

dθ. (29)

This concludes the proof of Lemma 3.

Finally, we estimate the main term (that is, the term
∫
Q(g,Dkf)(v)Dkf(v) dv,

which is crucial for the gain of smoothness). The computations are done here for any
dimensionN , since they are identical for all dimensions.

12



Lemma 4 : LetN ≥ 2. There exists a constantC6 > 0 depending only onfin and a
constantC7 > 0 such that

−
∫

RN

Q(g,Dkf)(v)Dkf(v) dv ≤ −C6 ||Dkf ||2H(γ−1)/2 + C7 ||f ||L1
2
||f ||2

Hk
2
.

Proof: We compute (for allg ≥ 0)

−
∫
Q(g,Dkf)(v)Dkf(v) dv

=
1
2

∫
RN

∫
RN

∫
SN−1

b g(v∗)Dkf(v) (Dkf(v′) −Dkf(v)) dσdv∗dv

= − 1
2

∫
RN

∫
RN

∫
SN−1

b g(v∗)
(
Dkf(v′) −Dkf(v)

)2
dσdv∗dv

+
1
2

∫
RN

∫
RN

∫
SN−1

b g(v∗)
(
(Dkf(v′))2 − (Dkf(v))2

)
dσdv∗dv.

Then we note that thanks to Assumption 2 (more precisely, to eq. (3)), we have

b(cos θ, v − v∗) ≥ 1θ∈]−δ,δ[|θ|−γ ,

so that according to Corollary 2.1 and Proposition 3 of [1],∫
RN

∫
RN

∫
SN−1

b g(v∗)
(
Dkf(v′) −Dkf(v)

)2
dσdv∗dv ≥ Cg ||Dkf ||H(γ−1)/2 ,

with Cg depending only on (an upper bound of) the entropy and on theL1
1norm of g.

But those quantities are controlled by the same quantities forfin wheng = f andf
satisfies the Boltzmann equation under our assumptions.

On the other hand, according to Corollary 1.2 of [1] (cancellation lemma), we know
that

1
2

∣∣∣∣
∫

RN

∫
RN

∫
SN−1

b g(v∗)
(
(Dkf(v′))2 − (Dkf(v))2

)
dσdv∗dv

∣∣∣∣
≤ C7 ||g||L1

2
||(Dkf)2||L1

2
≤ C7 ||g||L1

2
||f ||2

Hk
2
.

This concludes the proof of lemma 4.
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2.3 A differential inequality

In this section, we denote byC any strictly positive constant which can be replaced by
a smaller strictly positive constant, and byD any constant which can be replaced by a
larger one.

Gathering the estimates of the previous section (that is, formula (13) and Lemmas
1 to 4) and summing with respect to all derivatives of orderk, we see that forf solu-
tion of the Boltzmann equation under our assumptions (and supposing without loss of
generality that the sequencerk is nondecreasing and is such thatr0 ≥ 2), we get the
differential inequality :

d

dt
||f ||2Hk ≤ −C ||f ||2

Hk+(γ−1)/2 +D ||f ||2
Hk

rk+1/2
||f ||L1

2 rk+1
.

Using Proposition 1 of the appendix, and supposing thatk ≥ N , we see that for some
δ ∈]0, 1[ and somes > 0,

d

dt
||f ||2Hk ≤ −C ||f ||2

Hk+(γ−1)/2 +D ||f ||2−δ
Hk+(γ−1)/4 ||f ||1+δ

L1
s
.

According to [14], for example, we can suppose that for alls > 1, the quantity||f ||L1
s

is bounded on all compact sets of]0,+∞[ (that is, all moments inL1 are immediately
gained). Then, we obtain

d

dt
||f ||2Hk ≤ −C ||f ||2

Hk+(γ−1)/2 +D ||f ||2−δ
Hk+(γ−1)/4 .

For all ε > 0, one can findDε > 0 such that the inequality

(1 + |ξ|2)k+(γ−1)/4 ≤ ε (1 + |ξ|2)k+(γ−1)/2 +Dε (1 + |ξ|2)−N−1

holds. Then,

||f ||2−δ
Hk+(γ−1)/4 =

(∫
RN

|f̂(ξ)|2 (1 + |ξ|2)k+(γ−1)/4 dξ

)1− δ
2

≤
(
ε

∫
RN

|f̂(ξ)|2 (1 + |ξ|2)k+ γ−1
2 dξ +Dε

∫
RN

|f̂(ξ)|2 (1 + |ξ|2)−N−1 dξ

)1− δ
2

≤ ε1−
δ
2

(∫
RN

|f̂(ξ)|2 (1 + |ξ|2)k+ γ−1
2 dξ

)1− δ
2

+D
1− δ

2
ε m2−δ,

wherem is the mass
∫
f dv of f . Finally, we obtain the differential inequality

d

dt
||f ||2Hk ≤ −C ||f ||2

Hk+(γ−1)/2 +D ε1−
δ
2 ||f ||2−δ

Hk+(γ−1)/2 +DD
1− δ

2
ε m2−δ,
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so that there existsD′ > 0 such that

d

dt
||f ||2Hk ≤ −C

2
||f ||2

Hk+(γ−1)/2 +D′.

Using (for example) Jensen’s inequality, we see that

||f ||2+
γ−1

k+N+1

Hk =
(∫

RN

|f̂(ξ)|2 (1 + |ξ|2)k dξ
)1+ γ−1

2(k+N+1)

≤
∫

RN

|f̂(ξ)|2 (1 + |ξ|2)k+ γ−1
2 dξ ×

(∫
RN

|f̂(ξ)|2 (1 + |ξ|2)−N−1 dξ

) γ−1
2(k+N+1)

≤ m
γ−1

k+N+1 ||f ||2
Hk+(γ−1)/2 ,

so that the differential inequality can be rewritten

d

dt

(
||f ||2Hk

)
≤ −C

2
m

γ−1
k+N+1

(
||f ||2Hk

)1+ γ−1
2(k+N+1)

+D′.

Using a standard argument (first used by Nash for parabolic equations), we see that
for all k big enough (and consequently for allk), f lies inHk as soon ast > 0. By
interpolation (thanks to Proposition 1 for example), we see that (still whent > 0), f lies
in Hk

s for all k, s > 0, and therefore lies inS.

Note that in the previous computation, one should use approximate solutions of the
Boltzmann equation in order to give a completely rigorous proof. For example, solutions
of the equation

∂tfε = Q(fε, fε) + ε∆vfε,

fε(0, ·) = fin ∗ φε,

whereφε is a sequence of mollifiers, can be used. This point does not lead to any
difficulties.

Thus, we conclude the proof of Theorem 1 (in the particular case whenN = 2 and
when (4) is replaced by (5) in Assumption 2).

3 The general case

In this section, we explain how to modify the proofs described in the previous section
to get Theorem 1 in any dimension and for all cross sections satisfying Assumption 2.
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3.1 Higher Singularity

We briefly explain here how to prove Theorem 1 when the (angular part of) the cross
section has a higher singularity, that is when (4) holds but not necessarily (5).

Note first that the termB2
kl can be treated exactly as before, and the same is true for

the termsB1
klm for m 6= 0, 1.

The two last terms (B1
kl0 andB1

kl1) can be treated simultaneously. Let us concentrate
for example on the case whenm = 0. The quantity that we wish to estimate is

B1
kl0 =

∫
R2

∫
R2

∫ π/2

−π/2
Dkf(v) g(v∗) [Dlf(ṽ) −Dlf(v)] b dθdv∗dv.

Then, the termDlf(ṽ) −Dlf(v) can be bounded by|θ|γ−1+η (with η > 0 small, and
at least small enough forγ − 1 + η < 2 to hold) times a fractional derivative off , of
orderl+ γ − 1 + η ≤ k+ γ − 2 + η. Note that a symmetrisation by parity with respect
to the variableθ is necessary to get such an estimate.

Then, there exists a constant numberC5
kl such that (for somes > 0)

|B1
kl0| ≤ C5

kl ||g||L1
s
||f ||2

Hk+γ−2+η
s

,

and the differential inequality of Section 2.3 becomes

d

dt
||f ||2Hk ≤ −C ||f ||2

Hk+
γ−1

2
+D ||f ||2

Hk+γ−2+η
s

||f ||L1
s
.

Finally, we chooseη > 0 such that

γ − 2 + η <
γ − 1

2
.

Note that this is possible sinceγ < 3.
The rest of the computation is similar to what has been done in Section 2.

3.2 Higher dimensions

It remains to prove that Theorem 1 also holds whenN > 2. Most of the ideas used in the
two-dimensional computation carry over unchanged in higher dimensions. However, in
two dimensions, the representation of the pre- and postcollisional velocities by rotations
in a fixed plane makes the consequent calculations much easier. The new difficulties that
arise in higher dimensions come from the difficulty in finding smooth representations
of the parameter space (R3 × S2 in dimension3) in terms of pre- and post-collisional
velocities.
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We show here how to carry out the partial integrations in the expressionBkl (see
eq. (15)); this shows all the essential differences. We restrict ourselves to dimension3
for the sake of simplicity.

The corresponding expression in three dimensions is∫
R3

Dkf(v)Q(Dk−lg,Dlf)(v) dv (30)

=
∫

R3

∫
R3

∫
S2

Dkf(v′)Dlf(v)Dk−lg(v∗)b(cos θ, v − v∗) dvdv∗dσ

−
∫

R3

∫
R3

∫
S2

Dkf(v)Dlf(v)Dk−lg(v∗)b(cos θ, v − v∗) dvdv∗dσ.

The first term in (30) can be rewritten using the transformation of the “cancellation
lemma” (see [1]). Ifv∗ andσ are kept fixed, we make the change of variablesv′ 7→ v;

the Jacobian for this transformation isdet
(

∂v′
∂v

)
= 1

4 cos2 θ
2 . In higher dimensions, this

changes toC cosN−1 θ
2 .

N.B. The angleθ alwaysdenotes the angle between the relative velocities before and
after a collision, exactly as defined in the introduction. Here the expression is computed
for a fixedσ, which is slightly at variance with the expression (16) – (19), where the
change of variable is carried out for a fixed angle of rotation. This explains the factor
cos2 θ

2 .
In this way we obtain∫

R3

∫
R3

∫
S2

Dkf(v′)Dlf(v)Dk−lg(v∗)b(cos θ, v − v∗) dvdv∗dσ =∫
R3

∫
R3

∫
S2

Dkf(v′)Dlf(v)Dk−lg(v∗)
4

(cos(θ/2))2
b

(
cos θ,

v′ − v∗
cos(θ/2)

)
dv′dv∗dσ .

(31)

We can now change names of the variables, writingv instead ofv′, and instead ofv
writing ṽ = v + z, where

z = |v − v∗| tan(θ/2)Ω , (32)

and whereΩ is a unit vector which is orthogonal tov−v∗ ≡ w, and in the plane spanned
by v − v∗ andσ (this is well defined, modulo a sign, whenθ 6= 0). The result is∫

R3

∫
R3

∫
S2

Dkf(v′)Dlf(v)Dk−lg(v∗)b(cos θ,w) dvdv∗dσ =∫
R3

∫
R3

∫
S2

Dkf(v)Dlf(ṽ)Dk−lg(v∗)
4

(cos(θ/2))2
b
(
cos θ,

w

cos(θ/2)
)
dvdv∗dσ .

(33)
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To simplify the notation, write

b̃(cos θ,w) =
4

(cos(θ/2))2
b
(
cos θ,

w

cos(θ/2)
)

(34)

and hence (30) becomes∫
R3

Dkf(v)Q(Dk−lg,Dlf)(v) dv

=
∫

R3

∫
R3

∫
S2

Dkf(v)Dk−lg(v∗)
(
Dlf(ṽ) −Dlf(v)

)
b̃(cos θ,w) dvdv∗dσ

+
∫

R3

∫
R3

∫
S2

Dkf(v)Dk−lg(v∗)Dlf(v)

×
(
b̃(cos θ,w) − b(cos θ,w)

)
dvdv∗dσ. (35)

SettingDlf = F , the inner integral in the first term of (35) can be written∫
S2

(
Dlf(ṽ) −Dlf(v)

)
b̃(cos θ, v − v∗) dvdv∗dσ =

=
∫ π/2

0

(∫
S1

(
F (v + z(θ, ϕ,w)) − F (v)

)
dϕ

)
b̃(cos θ,w) sin θ dθ. (36)

Then we writev−v∗ = w = (w1, w2, w3)t. If we suppose thatw3, the third component
of w, is positive, one possible representation ofz = z(θ, ϕ,w) is

z =
tan(θ/2)√
w2

2 + w2
3




(
w2

2 + w2
3

)
cos(ϕ)

−w3

√
w2

1 + w2
2 +w2

3 sin(ϕ) +w1w2 cos(ϕ)
w2

√
w2

1 + w2
2 + w2

3 sin(ϕ) + w1w3 cos(ϕ)


 . (37)

Differentiating the innermost integral of (36) under the integral signk− l times with
respect tow gives integrands of the form

D1;wF (v − z) =D1;wz D1;zF (v − z) , (38)

D2;wF (v − z) =D2;wz D1;zF (v − z) + (D1;wz)
2 D2;zF (v − z) , (39)

D3;wF (v − z) =D3;wzD1;z F (v − z) +D2;wzD1;wzD2;z F (v − z)

+ (D1;wz)
3D3;z F (v − z) , (40)

and so on (recall thatDj;z denotes a genericj-th order derivative with respect to the
(components of)z). The problem comes from the factors deriving from the chain rule:
Dj;wz is homogeneous of degree1−j in the variablesw, and so this seems to introduce
new singularities into the problem. Of course this is a problem only for smallw, and so
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now we assume that the equation has already been split into a part with|w| < 1, which
we go on to study, and a remaining part where this is no problem. We write

F (v + z) = G(v, z) + Pj−1(v, z) ,

wherePj−1(v, z) is the Taylor polynomial of degreej − 1, defined as

Pj−1(v, z) =
∑

0≤j1+j2+j3<j

[
j!

j1!j2!j3!
∂j1

v1
∂j2

v2
∂j3

v3
F (v)

]
zj1
1 z

j2
2 z

j3
3 .

Now,Dj′,zG(v, z) involves derivatives ofF up to orderj′, and vanishes at least to order
j − j′ at z = 0. That means that ifF (v + z) is replaced byG(v, z) in terms like (40),
then the singularities emerging from the chain rule are cancelled, and

Dj,w

∫
S1

G(v, z) dϕ (41)

involves only derivatives ofF (v − z) up to orderj, multiplied by bounded functions of
w. It also has a factor(tan(θ/2))j , which helps in cancelling the singularity ofb̃ near
θ = 0.

But the inner integral of (36) also has a term

Dj,w

∫
S1

P (v, z) dϕ . (42)

It is clear that after the integration overϕ only terms wherej1 + j2 + j3 ≡ 2m is
even remain, becausez(θ, φ,w1, w2, w3) = −z(θ, φ + π,w1, w2, w3). Moreover, any
monomial zj1

1 z
j2
2 z

j3
3 can be written as a sum of terms of the form(a1z1 + a2z2 +

a3z3)j1+j2+j3, where theai are suitably chosen real numbers. Using formulas like
A cos(ϕ) + B sin(ϕ) =

√
A2 +B2 sin(ϕ + ψ), whereψ = ψ(A,B), we can take the

expressions from (37) and write

a1z1 + a2z2 + a3z3 = tan(θ/2)

× sin(ϕ+ ψ)
√

a2
1(w

2
2 + w2

3) + a2
2(w

2
1 + w2

3) + a2
3(w

2
1 + w2

2)
−2a1w1a3w3 − 2a1w1a2w2 − 2a2w2a3w3

,

whereψ is a rather complicated expression ofw and theai. This expression, which can
be verified by straightforward calculations, shows that the singularities that come from
the parametrisation are just apparent, and that∫

S1

(a1z1 + a2z2 + a3z3)2m dϕ = (tan(θ/2))2m

×
(
a2

1(w
2
2 + w2

3) + a2
2(w

2
1 + w2

3) + a2
3(w

2
1 +w2

2)
−2a1w1a3w3 − 2a1w1a2w2 − 2a2w2a3w3

)m ∫ 2π

0
sin2m(ϕ) dϕ ,
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i.e. a polynomial of order2m in the components ofw, and at this point the choice of
parametrisation in (37) is no longer visible. We can conclude that (42) is zero, because
it is a j-th order derivative of a polynomial of order at mostj − 1.

Thus we see that the proof of Lemma 2 can be translated to this case, with very
little change. Of course all the calculations done here assume that the functionF is
sufficiently regular, but this can be achieved by a density argument, just because the
involved operations do no introduce any unnecessarily high order of differentiation.

To conclude, we also comment on the changes of variables as in (25), (26) and (27).
We have already seen that forN = 3,

dv =
1
4

cos2 θ

2
dṽ,

though it was then expressed inv′ andv. The variableu in (27) is simply a convex
combination ofv andṽ. With notation (32), we get

u = (1 − s) v + s ṽ = v∗ + w + s |v − v∗| tan(θ/2)Ω
= v + s |v − v∗| tan(θ/2)Ω .

It is hence easy to compute the Jacobian corresponding to the one in (27), and also to
verify that (28) holds.

This concludes the proof of Theorem 1 in all cases.

Appendix : Interpolations

Definition 2 : Let k ∈ R+ andp ∈ N. We denote byHk
p (RN ) the weighted Sobolev

space of functionsf such that

||f ||2Hk
p (RN ) =

∑
|α|≤p

∫
ξ∈RN

(1 + |ξ|2)k |(̂·)α f(ξ)|2 dξ < +∞.

The quantity||f ||Hk
p (RN ) defines the natural norm onHk

p (RN ), and endows it with a
structure of Hilbert space.

Note that whenk ∈ N, thenHk
p is nothing else than the space defined in (21),

endowed with an equivalent norm.

We prove here the following result of interpolation, used in Section 2.3.
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Proposition 1 : Let k ∈ R+, p ∈ N andε > 0. Then, there exists a constant number
Kk,p,ε,N > 0 such that for allf ∈ D(RN ),

||f ||Hk
p (RN ) ≤ Kk,p,ε,N ||f ||2−

1
2− 1

2 J

L1

2p ( k
ε +1)+ N

4 +1

||f ||2−
1
2− 1

2 J

HN
0 (RN )

||f ||1−2−1−J

Hk+ε
0 (RN )

,

where

J = b(log(kε−1 + 1)
)
/ log 2c

and wherebxc denotes the largest integer smaller thanx.

We begin by the proof of the following result:

Lemma 5 : Let k ∈ R+, p ∈ N andε > 0. Then, there exists a constantK ′
k,p > 0 such

that for all f ∈ D(RN ),

||f ||2Hk
p (RN ) ≤ K ′

k,p ||f ||Hk−ε
2p (RN ) ||f ||Hk+ε

0 (RN ).

Proof: We write down

||f ||2Hk
p (RN ) =

∑
|α|≤p

∫
ξ∈RN

(1 + |ξ|2)k |(̂·)α f(ξ)|2 dξ

≤
∑
|α|≤p

∣∣∣∣
∫

ξ∈RN

(1 + |ξ|2)k (∂αf̂)(ξ) (∂α
¯̂
f)(ξ) dξ

∣∣∣∣
≤

∑
|α|≤p

∣∣∣∣
∫

ξ∈RN

∂α

(
(1 + | · |2)k ∂αf̂

)
(ξ) ¯̂

f(ξ) dξ
∣∣∣∣.

Then, we notice that

∂α((1 + |ξ|2)k g(ξ)) =
∑
β≤α

Pα−β(ξ) (1 + |ξ|2)k+|β|−|α| ∂βg(ξ),

where thePα−β are polynomials of degree|α| − |β|.
Introducing constantsKα,β > 0 such that

Pα−β(ξ) (1 + |ξ|2)−|α|+|β| ≤ Kα,β,
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we obtain the estimate

||f ||2Hk
p (RN ) ≤

∑
|α|≤p

∑
β≤α

∣∣∣∣
∫

ξ∈RN

Pα−β(ξ) (1 + |ξ|2)k−|α|+|β| ∂α+β f̂(ξ) ¯̂
f(ξ) dξ

∣∣∣∣
≤

∑
|α|≤p

∑
β≤α

∫
ξ∈RN

∣∣∣∣Pα−β(ξ) (1 + |ξ|2)k−|α|+|β|−ε

∣∣∣∣
1/2

|∂α+β f̂(ξ)|

×
∣∣∣∣Pα−β(ξ) (1 + |ξ|2)k−|α|+|β|+ε

∣∣∣∣
1/2

|f̂(ξ)| dξ

≤
∑
|α|≤p

∑
β≤α

K2
k,α,β

(∫
ξ∈RN

(1 + |ξ|2)k+ε |f̂(ξ)|2 dξ
)1/2

×
(∫

ξ∈RN

(1 + |ξ|2)k−ε | ̂(·)α+β f(ξ)|2 dξ
)1/2

,

and the lemma is proven. �

Proof of proposition 1: We apply Lemma 5 to get

||f ||Hk
p (RN ) ≤ (K ′

k,p)
1/2 ||f ||1/2

Hk−ε
2p (RN )

||f ||1/2

Hk+ε
0 (RN )

≤ (K ′
k,p)

1/2 (K ′
k−ε,2p)

1/4 ||f ||1/4

Hk−3ε
4p (RN )

||f ||3/4

Hk+ε
0 (RN )

,

and then, by induction, for allJ ∈ N,

||f ||Hk
p (RN ) ≤

J∏
j=0

(K ′
k−(2j−1) ε,2j p)

2−j−1 ||f ||2−J−1

H
k−(2J+1−1) ε

2J+1 p
(RN )

||f ||1−2−J−1

Hk+ε
0 (RN )

.

We then consider the smallestJ ∈ N such that2J+1 ≥ k
ε + 1, that is,

Ĵ = b(log(kε−1 + 1)
)
/ log 2c .

Denoting

K ′′
k,p,ε =

Ĵ∏
j=0

(K ′
k−(2j−1) ε,2j p)

2−j−1
,

we obtain the inequality

||f ||Hk
p (RN ) ≤ K ′′

k,p,ε ||f ||2
−1−Ĵ

L2

2p ( k
ε +1)

||f ||1−2−1−Ĵ

Hk+ε
0 (RN )

. (43)

We now use the following lemma :
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Lemma 6 : Let r ∈ R+. Then, there exists a constantK ′′′
r,N > 0 such that for all

f ∈ D(RN ),
||f ||2L2

r(RN ) ≤ K ′′′
r,N ||f ||L1

r+ N
4 +1

||f ||HN
0 (RN ).

Proof of lemma 6: We writex = (x1, .., xN ), t = (t1, .., tN ). For allα > 0,∫
(1 + |x|2)r |f(x)|2 dx =

∫
(1 + |x|2)r+αf(x)

f(x)
(1 + |x|2)α dx

=
∫

(1 + |x|2)r+αf(x)
∫ x1

−∞
..

∫ xN

−∞
∂1..N

(
f(t)

(1 + |t|2)α
)
dt1..dtN dx

≤
∫

RN

(1 + |x|2)r+α|f(x)| dx
∫

RN

∣∣∣∣∂1..N

(
f(t)

(1 + |t|2)α
)∣∣∣∣ dt.

But ∣∣∣∣∂1..N

(
f(t)

(1 + |t|2)α
)∣∣∣∣ ≤ ∑

|β|≤N

|∂βf(t)| |Pβ(t)| (1 + |t|2)−α−(N−|β|),

wherePβ is a polynomial of degree of orderN−|β|. We introduce a constantK(4)
β > 0

such that
|Pβ(t)| (1 + |t|2)−α−(N−|β|) ≤ Kβ (1 + |t|2)−α−(N−β)/2,

we see that∫
(1 + |x|2)r |f(x)|2 dx ≤

∫
RN

(1 + |x|2)r+α|f(x)| dx

×
∑

|β|≤N

K
(4)
β

∫
RN

|∂βf(t)| (1 + |t|2)−α−(N−β)/2 dt

≤
∑

|β|≤N

K
(4)
β

( ∫
RN

(1 + |u|2)−2α du

)1/2

×
∫

RN

(1 + |x|2)r+α|f(x)| dx
( ∫

RN

|∂βf(t)|2 dt
)1/2

.

The first integral is finite for all4α > N . We conclude by takingα = N/4 + 1.

We now end the proof of Proposition 1. We use eq. (43). We get

||f ||Hk
p (RN ) ≤ K ′′

k,p,ε (K ′′′
2p (k

ε
+1),N

)2
− 1

2− 1
2 Ĵ ||f ||2−

1
2−1

2 Ĵ

L1

2p ( k
ε +1)+ N

4 +1
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× ||f ||2−
1
2− 1

2 Ĵ

HN
0 (RN )

||f ||1−2−1−Ĵ

Hk+ε
0 (RN )

.

We get proposition 1 by denoting

Kk,p,ε,N = K ′′
k,p,ε (K ′′′

2p (k
ε
+1),N

)2
− 1

2− 1
2 Ĵ

.

�
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