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I. Introduction

Most applications of the multiple regression model are to relatively
unstructured problems in which there is no hard knowledge that the relation
is linear or has some other given functional form. Linearity is thus
assumed for lack of reason to move to a more complicated structure.
Frequently, however, thére is reason to believe that some aspect of the
relation is distinctly nonlinear, and thus certain simple modifications of
the linear regression model are widely used. To take a concrete example,
which serves to remind us of the unstructured sort of problems typically
encountered, suppose one wishes to use the regression model to assess the
impact of a number of variables: (percent industrialized, industry dummies,
and per capita income) on the percent of the labor force unionized by county
in a state. One may think that per capita income might have a positive
association with unionization for low levels of income, and no impact or
even a negative impact for high levels of income. Within the framework of
the standard linear regression model one may allow for a nonlinear effect of
income by including income squared, say, as well as income and the other
variables in a multiple regression with percent unionized as the dependent
variable. Such widely used simple expedients (in this example a
multivariate polynomial regression which allows for a second degree or
parabolic function for income) may seem adequate given the ambiguity
regarding the theoretical framework. There is alﬁays a cost, however, if

our assumptions are arbitrarily restrictive or misrepresent our prior

information, however intangible this prior information may be. 1In this




example, one probably did not want to rule out a function relating
unionization to income which, say, approaches a horizontal asymptote, which
was bell-shaped, etc., but low-order polynomials do rule out such shapes.
Of course, certain alternative parametrizations besides the polynomial
parametrization may seem satisfactory for a given application.

One might prefer instead as a general method to begin with a Bayesian
prior on the functional form which merely represents the notion that the
function ought to be "smooth'" or '"uncomplicated." Such a general method
might then take the place of choosing among parametrizations. Methods are
available which are as simple conceptually as including a squared term in a
regression, but these methods are not widely used. I will develop here, and
illustrate with an example, the use of '"smoothness priors" in practical
regression modelling. The estimators described here are explicitly Bayesian
and in this respect are quite different from other estimators used for
unknown functions such as the nearest neighbor methods (Cover [1968], Stone
[1977]), recursive partitioning method (Breiman and Meisel [1976]) or the
projection pursuit method (Friedman and Stuetzle [1982]).

What we will cali "continuous smoothness priors" have been suggested by
Wahba [1978] (drawing on earlier work of Kimeldorf and Wahba [1970]). She
described her work as offering a Bayesian justification of spline smoothing
for the estimation of an unknown function f(¢) in the simple
nonlinear regression model y; = f(xi) te; i=1,..., n where € is iid
N(0,02). The "spline smoothing" that she justifies does not reduce to
"spline regression'" as it is commonly practiced (as surveyed, for example,
in Poirier [1976]). Spline regression is a parametrization that involves
restricting the function to be a spline with a specified number of knots at

specified points, the restrictions achieved by making the number of knots




less than n. Wahba's prior produces a posterior mean estimate which is a
spline with n knots, one at each observation point. The priors restrict the
function at the observation points instead by urging them to describe a
"smooth" or "uncomplicated" curve. The priors involve a more natural and
simple notion of smoothness than is implicit in spline regression with its
arbitrary designation of knot points.

Wahba's prior effectively assumes that f(t) is a realization of a
stochastic process in "time" t which is the dth integral of a Wiener process
which was started at zero in the infinite past. This prior produces a
posterior mean for f which is a d+2 order spline. The prior is
uninformative on a point of the function by itself. Instead, the priors in
effect assert that the d+l order derivatives with respect to t of the
function are white noise. In the case d=1, if the prior variance of the
white noise is "small" the priors assert that large changes in slope are
unlikely, i.e., that the function is "smooth" or "uncomplicated." The
priors assert nothing else, and their natural simplicity is appealing fot
relatively unstructured problems that are often encountered.

What we will call "discrete smoothness priors' have been used for the

estimation of the parameters 8, k=0,...,A in the distributed lag model Ve =

A
L B.x . +e t=l,..., n, where ¢, is iid N(0,02), Shiller [1973]. These
k=0 kt-k t t

priors asserted that the d+1 order differences of the coefficients ordered
by k have a given "small" variance, and are independently normally
distributed. Equivalently, the function Be is a realization of a stochastic
process in '"time" t which is the d®® sum of a discrete random walk started
at zero in the infinite past. In the usual case d=1 these priors also

assert, if the prior variance is small, that large changes in slope are




unlikely, i.e., that the distributed lag coefficients Bk k=0,..., A lie on a
"smooth" curve; but the priors are uninformative on individual coefficients.
Such a prior also had earlier antecedents in the literature on the
graduation problem (Whittaker and Robinson [1967]). More recently, it has
also been used in a seasonal regression model (Gersovitz and MacKinnon
[1978]).

In this paper, both discrete and continuous smoothness priors will be
developed and an application made to the estimation of simple cost
functions. The application should serve to illustrate the appeal of the
estimators based on such priors. The estimators will be developed in a
simple way and without reference to the reproducing kernel Hilbert space
framework of Wahba. The spline connection for continuous smoothness priors
pointed out by.Wahba will be established in a simple way and an analogous
connection to interpolating polynominals for discrete smoothness priors will
be shown. The estimators will be presented in terms of "dummy observations"
and "dummy variables'" as a natural and simple modification of linear
regression. Attention will be confined to the case d=1 since in this case
the priors have a simple interpretation in terms of change in slope and
since the estimator then approaches linear ordinary least squares as the
prior variance goes to zero.

II The Regression Model and Preliminary Indication of the Estimator

The model to be considered here is nonlinear in the first variable:
1)y, = f(xil) XY e,
where y. is the i'? observation of the dependent variable (a scalar), f(e)
is the unknown function, X is the ith ovservation of the first independent

. . .th .
variable (a scalar), X, is the i~ observation of the g element row vector




of other independent variables, y is a g element column vector of regression
coefficients and €, is the error term. We assume that the vector £ whose
ith element is € is independent of all observations of the independent
variables and is spherically normal, i.e., the density of ¢ is:

(2) f(e) « n*/?

exp(-he'e/2)
where h = precision = l/d2 where 62 is the variance of e,. We are given n

X.

observations of the vector [xi i2°

1’ yi] i=1,..., n ordered in terms of
increasing Xiqe

The analysis here can be extended in obvious ways to the case where
other variables are additively nonlinear. It would be more elegant to
extend the model to allow for a general multivariate function Yi = f(xil’
xiZ) te, however for most actual applications thié simpler model (1) is
probably preferable, in that the model departs only minimally from the
standard multiple linear regression model.

Because the simplicity of the estimators is a prime consideration here
and because the notation below is rather complicated, for the sake of
motivation let us look briefly at a numerical example of the estimator which
will be derived below. The example will also yield a mixed regression
interpretation of the estimator (Theil [1971]).

Let us suppose that X, is a single (scalar) variable, and that we have
four observations on the vector [xil Xy yi] which are, ordered in terms of

increasing x,, [4,1,5], (4,2,6], [5,8,7] and [7,8,6]. The number of

1’
observations in this example is very small since the purpose is illustrative

only. Suppose we wish to evaluate the function at points;(—1 = 3,4,5,6,7.

At two of these points we have one observation, at one point we have two




observations and at two points we have no observations. Defining the vector
B = [£(3), £(4), £(5) £f(6), £(7), y]' we can estimate the posterior mean of
B by first setting up the regression:

(3) ¥=% +7

where: X = %_ s Y = ¥ s = °
KR _0. kn
and
°© 1 0 0 0 17 5
_0 1 0 0 0 2 _ 6
X< 0 0o 1 0o o0 8 YTy
o 0o o0 0 1 8 6
1 -2 1 0 o0 o0
R=0 1 -2 1 0 0 = [R0]
0o 0 1 -2 1 0 :

Here, thewfirst four rows of X ;nd ?, represent the data on the independent
variables and the dependent variable respectively. The first four
observations on u are the realizations of the regression error term g£. The.
next three rows of X and Y are the dummy observations, so that RB is the
vector of second differences of the function and n is the error of the
priors, i.e., the second differences of the actual function. The scalar k
is the ratio of the standard deviation o of the regression error £ to the
prior standard deviation §. 1If k is large, i.e., the priors on the second
differences are tight, then a lot of weight is given to the dummy
observations which represent that the second differences of the function are
probably small, i.e.,, that the function does not have sudden changes in
slope.

The posterior mean estimate of B using discrete smoothness priors is
)—1

just the ordinary least squares estimate'g = X'%) XY = (xX'x +

kzﬁri)_lX'Y. It may be thought of as a sort of ridge estimator except that




the parameters representing points along the curve are not shrunk towards
zero but towards each other. With continuous smoothness priors the
estimator is slightly different, reflecting the fact that second differences
of the integral of a Wiener process are not serially uncorrelated but have
MA(1) serial correlation with correlation coefficients at one lag of 0.25.}

The variance matrix of the error term u is thus equal to o?Q where Q is
block diagonal with the identity matrix in the upper block and the

tridiagonal matrix H in the lower block:
"1 .25 0

(4) H=% 25 1 .25 “
0 .25 1
The posterior mean of § is then the generalized least squares estimate:

v

g = Xa % %

-1 2
X' Y= (X'X +k

R lxy

One might argue that smoothness priors are a more natural extension to
the regression model of the prior notions of smoothness which gave rise to
the spline or polynomial regression models. For example, if one looks at
the functional minimized by a cubic spline in Schoenberg [1964], one sees a
resemblance to the posterior distribution for continuous smoothness priors
developed below. The original cubic natural spline was developed as an
approximation to the curve an elastic beam (or spline of wood) assumes if it
is subjected to loads at certain points called knots. The curve assumes a
shape which minimizes potential energy. The potential energy in the curve
is approximately proportional to the integral of squared second derivatives
(Sokolnikoff [1956]). Here, we may envision the likelihood function as
pushing the curve at discrete points representing observations and the prior
as representing the elasticity of the beam. It is thus natural to have a

knot at each point where there is an observation.




The principal reason for considering the slightly more complicated
continuous smoothness priors is that such priors produce a sort of time
consistency for the estimate. We shall see that if we used the same data
and procedure to estimate the function at points 3, 3.5, 4, 4.5, 5, 5.5, 6,
6.5, and 7 then, for an appropriately scaled and expanded R matrix of the
same form, the estimates and standard errors at the points 3, 4, 5, 6, and 7
would be the same as in the above regression. We could expand the set of"
points more and estimate the curve at intervals of 0.1 from 2 to 10, say,
and then we would find the estimates unchanged at the points used before.
Thus, in effect, the procedure provides an estimate of a cont inuous
function. In contrast, discrete smoothness priors are most appropriately‘
applied when such expansion is not envisioned, as when x;, takes on integer
values only.

III The Prior and Posterior Distribution

We wish to estimate f(¢) in (1) at N » 3 distinct points x,, i=1,..., N

il

ordered in terms of increasing ;&1, where all‘observed values of X, are
included among-;{-il but ;il # ;51 unless i=j. N may be either greater than,
equal to, or less than n. N could be greater than n if, as in the example
in the previous section, we wish to estimate tﬁe function at pointé where
there are no observations. Below, we shall say that such a point ;}1 (whefe

X:q # le for any j) does not correspond to an observation. N could be less

than n if there are repeated observations of x.,, i.e., x,. = x.. for some

il jl

i#j. Such repeated observations were also represented in the example in

1

the preceding section. Write the n x (N+g) element matrix X = [XI:XZ]'




The n X N element matrix X, has elements X

1 143 equal to zero except where X,

il

. . . .t
= lewhere the element is 1. The n X g element matrix X2 has X, as its 1

row. With the n element vector, Y--whose ith element is yi——and the N+g
element vector B' = [f'ly']' where the ith element of the N element column

vector f is f(;i), we can write the likelihood function:

/

(5) L(Y|B,h,X) « h™ 2exp[-h(Y-XB)' (Y-X8)/2]

We wish to express improper prior distributions for the vector f which
are uninformative on the function at any point or on its slope between any
two points, but which represent the notion that the function is probably
fairly smooth. These will by "cylindrically uniform" priors as in Leamer
[1978]. To derive continuous smoothness priors, let Z(t) be a stochastic
process such that Z(0) = 0, dzZ(0) = 0, where Z(t) is the integral of a unit
Wiener process and dzZ(t) i; the stochastic differential of Z(t). Then the

autocovariance function for Z is the integral of the autocovariance function

s t
of a Wiener process: q(s,t) = E(Z(s)*2(t)) = [ [ min(s',t')ds'dt'. Then:
/ 00
L s2t/2 - 8376 s <t
(6) q(s,t) = 9 3

st™/2 - t7/6 s> t

Let Q, be the N x N matrix whose ijth element is q((x,,+t), (x..+t)).
t 1 jl

1

Clearly, as t approaches infinity all elements of Qt approach infinity.

However, Vt = Qt 1 approaches a finite nonzero limit as t approaches

H

infinity. We will make our prior precision matrix (inverse of prior

. . -2, . . .
variance matrix) for f equal to £ “lim Vt’ where £ is the standard deviation
t>®

of the change in slope (derivative) of the function over a one unit interval

in X] .
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We define the (N-2) x N matrix R by:

-1 .
Ai 1=]
R S| L
(7 Rij = (Ai + Ai+1) i=j-1
-1 L
Ai+1 i= 3-2
.0 otherwise
. s - S -1, -1 -1 _
where A, = (Xi+1,1 - Xil)' Thus, R.f = £.A; fi+1(Ai + Ai+1) +E A

(fi—fi+1)/Ai - (fi+l - fi+2)/Ai+l is the difference in the slope between a
line connecting (xil’fi)’ (xi+1,1’fi+1) and a line connecting (xi+1’1,
fi+l)’ (xi+2,1 ’fi+2)' In the case of the chosen values of X, spaced at

unit intervals, and N = 5, this R matrix reduces to the R matrix shown in
the example in the introduction above. Thus in general R is a matrix of

second differences for (possibly) unequally spaced observations. We define

the N x 2 matrix A by Ai = 1 and Ai =

1 9 X: 1o i=l,..., N. Then RA = 0.

The variance matrix Bt of [2(t), dZ(t)]' is given by Btll = t3/3,
= = .2 -
Bt12 = Bt21 =t~ /2, and Bt22 t. Hence, Q
as RQtR' equals R(ABtA' + QO)R' which equals RQOR', and hence H does not

- ' 1
¢ ABtA + QO' Thus, Ht defined

depend on t. Multiplying, we find that:

A CNEINYE i=j
AL /6 i=3-1
(8) H = 1+l
I a6 i=j+1
0] otherwise

where the tridiagonal (N-2) x (N-2) matrix H is of full rank. Again, if the
points estimated;il i=1,...N are spaced at unit intervals and N=5, then the

matrix H is as shown in the introduction above.
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Proposition 1:

The limit as t>» of Qt_l is R'H—lR. Proof: Define the matrix & as

[R'"!A]. @ is non-singular since we have chosen the x.

i1 i=l,...,N so that no

two values are the same, i.e., so that A is nonzero for i=1,...,N-1. The
columns of R' are independent and so R' has rank N-2, and then also A has
rank 2. Since ®'® is block diagonal with nonsingular blocks RR' and A'A,
®'® is nonsingular and hence & is nonsingular. Since RQtR' = H and RQ A =
RQOA, only the lower right 2 x 2 block of @'Qf® depends on t. Using the
rule? for the inverse of a partitioned matrix and taking limits as t+o we

find that lim(@'Qgi)—l is block diagonal with upper block equal to H and
>

lower block equal to zero. Premultiplying by & and postmultiplying by &'
yields the proposition.

We now specify the prior distribution based on continuous smoothness
priors of all parameters of the model: the N+g element vector 8§ = [f'iy']"'
and the precision (h) of the regression error term. For simplicity, we
adopt the partially uniformative conjugate prior of the kind discussed in
Raiffa and Schlaifer [1961}, which conveniently: produces a multivatiate
student posterior. Such a prior provides a justification for running a
regression with dummy observations representing the priors and allows
Bayesian interpretations of the estimated coefficients and standard errors.
We thus choose the case of this prior which makes the prior of h
(independent of B);?;(h) « 1/h, i.e., the uninformative prior for a
nonnegative variable proposed by Jeffreys [1961]. The prior of y
(independent of f and h) will be flat: fp(Y) « constant. The prior on the

(N-2) element vector Rf will be multivariate normal with zero mean and

precision kZhH_l. Finally, using flat priors on any two coefficients on f,
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forming the product of these independent priors, we find the prior density

) - p(B,n) = b N2y p(Phg R H1RB /2)

i

where R is the (N-2) x (N+g) matrix [RI0].
The posterior distribution for § and h is by Bayes law proportional to the
product of the prior (9) and the likelihood (5). The marginal posterior for

B is then the multivariate student distribution:

(10) - (B) = [n-g-2 + h(B-8)" (X"x+k"R'H TR0 (p-p) 1N 72)/2

where 8 = (f',y")', and where ﬁ_l = 62 = (?—%B)'Q—l(ﬁ—iﬁ)/(n—g—Z) where Y

2

and X are as defined in (3). The posterior mean is 5 = (X'X + k ﬁ"H_Lﬁ)_

1

~

X'Y which can then be found by regressing Y on X using generalized least
squares with block diagonal variance matrix Q with I in the upper block and
H in the lower block.? The estimate of the variance-covariance matrix of

estimated coefficients that would then be printed out by a standard

generalized least squares regression program is s2(R'X + kzﬁ'H—Lﬁ)-l. The

. . . . .th . . .
marginal distribution of the it" coefficient Bi is student with n-g-2

degrees of freedom (as would be computed by the program) and scale parameter

given by the standard error of the coefficient printed by the program.“

Thus, the standard t statistics have a Bayesian interpretation.

¥

It is now possible to show that any point of the function fi

, f(;il)

where there is no observation (so that the ith row of X'X and X'Y = 0) lies
on a cubic natural spline which interpolates the other coefficients. A
cubic spline v(x) is the third integral of a step function, where the values
of x,'§i11=1,...,N at which the stepé occur are called "knots." It is a
natural spline if the function is linear in x for x < §1’1 and for x > ;ﬁl'

There is a unique cubic natural spline which interpolate any set of N points
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(;}l,yi) i=1,...,N for which ;él # ;51 unless i=j (Greville [1969]).

It is convenient to write the general cubic natural spline with knots

X., i=1,N in terms of N parameters C, i=l,...,N in a form used by Kimeldorf
il 1

and Wahba [1971]:

N N N
(11) v(x) = 0y + 0 x + iil q(x,xil)Ci where ilei = (0 and ii C;x;, = 0.

That such a function is a cubic natural spline with knots at ;;l""’iﬁl’ is

easily seen. q(x,gkl) is a linear function of x for x > ;il and a cubic
function of x‘for x < ;il' Moreover, the zeroth, first and second
derivatives are continuous at ;;l' Clearly, any linear combination of
q(x,;gl) i=1,...,N is a cubic spline. Moreover, the function v(x) is linear
for x > ;ﬁl’ and the two restrictions on the Ci’ i=1,...,N assure that it is
linear for x < ;&’1 and so the spline is a natural spline. We may write the
vector f of estimated function values in terms of the parameters of the
cubic natural spline that interpolates them, f = A§ + QuC, 6 = [90,91]' and

.,C..]'. We then have:

N

Proposition 2: With continuous smoothness priors, if, for a given i,

X1 does not correspond to an observation then Ci = 0. Proof: The two

restrictions on C can be written C = R'C where C is an N-2 element vector of

1 1

Rf Rf =

parameters. Now note that (using RA=0), R'H R'(RQOR')-

R'(RQOR')"IR(A9+QOR'E) = R'(RQOR')'IRQOR“E = R'C = C. From the definition

2

'§'H_L§)ﬁ = X'Y and hence X'XB‘+ K2

of B, (X'X + k C = X'Y, where C' = [C':0].

— . .th ,
Because X1 does not correspond to an observation, the i rows of both X'X
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and X'Y are zero and then Ci = 0. Q.E.D. 1t follows that the knot at ;;1
is superfluous, i.e., f; lies on a natural spline which interpolates the
other estimated points along the function.

We define discrete smoothness priors simply by replacing the matrix H
in the prior density (9) with the identity matrix. Clearly, the posterior

g - (x'x +

mean B is the ordinary least squares estimate B = X'%)
k“R'R) "X'Y. We then have a proposition analogous to proposition 2 above:

Proposition 3: With discrete smoothness priors, and equally spaced

estimated points;il i=l,...,N, if for a given i, 2 < i < N—l,;il does not

correspond to an observation then f; = f(;il) lies along a cubic polynomial

in;il which interpolates the adjacent two points on either side.

Proof: Because the estimated points are equally spaced, Ai= Aj V1i,]

and hence R has rows which produce second differences (i.e. Rif = Ai(fi -

S

2f, + f, )), where R.is the ith row of R. Therefore the ith row of R'R,
i+l i+2 i

2 < i < N-1, produces second differences of second differences or fourth
. . .th v s 2, y ' ;
differences, i.e. the i row or R'RR is A (f., , - &4f. . + 6f. - 4f,

1 71-2 i-1 1 i+l

f;+2), which is proportional to the fourth difference in the estimated

function. As noted above, the fact that X.

i1 does not correspond to an

observation le implies that the ith rows of both X'X and X'Y are zero.
Hence, from the i*" row of the normal equations (X'X + k2§'§)3\= X'y it

follows that the fourth difference of the estimated function at i is zero,
R "o .

f , f. lie on a

which implies that 1f the five points fi- i+l Fieo

2 B &y
cubic polynomial. Q.E.D.
We might elaborate on the differences between these propositions. When

. . 2 = ~l= . ..
we use continuous smoothness priors and k hR'H "R as the prior precision
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matrix for B and ;il does not correspond to an observation, then f} cannot
be determined by the adjacent estimated coefficients alone as in the case
with discrete smoothness priors. The cubic natural spline interpolator at

any point depends on all points interpolated. For discrete smoothness

> .

priors, the first element of R'Rf is fi—Zf2 + £ (the last element is fy-o~

~

ZfN—l+fﬁ)’ which means that if ;i 1 does not correspond to an observation,
3

then fl with discrete smoothness priors will lie on a straight line through

~ N

f, and f~. Thé second element of R'Rf is —2f‘ + 5f, - 4f‘ + f4 (the last

2 3 1 2 3
but one element_ls fN_3 - 4fN—2 + SfN—l - ZfN) which means that if the
likelihood function carries no information about f(;é 1) then fé will lie on
s .

a cubic polynomial through fl’ f3 and fg, which makes "fo,” fl’ and f

2

collinear. Thus, the estimated function lies along a unique interpolating
function for the points where there are observations. Like the cubic
natural spline, segments of the function are cubic polynomials and the
function is linear beyond the range of the observations (where the
likelihood function offers no "reason'" for curvature). However, for the
interior points, continuity of first and second derivatives is replaced by
the requirement that the polynomial interpolate one point fur;her on either
side.

Whether we use continuous or discrete smoothness priors, i.e., whether

1

Q in B = (i'Q%)—li'Q_ Y is the identity matrix, it can be shown that if

(X'X) is nonsingular, lim B‘='K(X'X'XK)_LX'X'Y and lim 32(§'Q-l§)_l =

k¥ k>

vSZK(X'X'XK)-LX' where A is the (N+g) x (g+2) block diagonal matrix with A in
the upper block and Ig in the lower block and where 52 is the estimated

standard error of regression of Y on XA. If X'X or §'9-1§ is nonsingular
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for any k then X'X and i'Q-Li are nonsingular for all nonzero k. Moreover,
X'X is nonsingular if and only if A'X'XA is nonsingular. The n x (g+2)
matrix XA has 1's in its first column, the X observations in its second
column, and the observations of the remaining variables in succeeding

columns. Thus, 1im‘§ = A5 where the g+2 element vector & is the vector of
k>

linear ordinary least squares regression coefficients of y on a constant, Xx;
and x,.

Proposition 4: With continuous smoothness priors, if we drop some

points from the list of points ;il i=1,...,N where the function is to be
evaluated and then use the same procedure with the same k to estimate, then,
as long as these points dropped do not correspond to observations, the
estimates of the remaining function values and coefficients (and their
estimated standard errors) will be unaffected. Proof: We will show this
for the case g = 0 (only one independent variable in the regression). The
more general result is then easily established, though with rather messy
partitioning of matrices. Call the subset of points (in increasing order)
to be included;Si i=1,...,NS 3< NS < N. Call the NS element vector of
points to be estimated f_ . We can choose an N x N element matrix J = (J')_1
such that B'J = [f;éfé] where the N--NS element vector fé contains the values
of the function that we will drop from estimation. We define Xs, R (5§S),
HS, and QSt as before but with ;;i i=1,..., NS in place of;il i=l,..., N.
It follows that J'X'XJ has X;XS in its upper diagonal NS X NS block and is
zero elsewhere while J'X'Y has XéY as its upper N, element partition and
zero in its lower (N-NS) element partition. To establish the proposition we

2 1

need only show that J'(X'X + klﬁ'H—Lﬁ)_ J has (X;Xs +
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kzﬁg'Hglig)_l in its upper diagonal NS x NS block. To show this, partition
N 11 Y2
U= k“J'R'H RJ into U = [ | where U, is N x N_ and partition V_ =
U21 U22 11 s ] t

kz(J'QtJ)_1 conformably. The matrix U,,, whose order is at most N-3, is

22
nonsingular. By the rule for inverting partitioned matrices, and because of

the special structure of J'X'XJ, the upper NS X NS block of J'(X'X + kzﬁ'H—
=1, . o, “1. -1 . . ~ .
R) "J is (XSXs + U - U0, 21) By proposition 1, lim V_ = U. Since

t>oo

V22 is nonsingular, the rule for inverting partition matrices implies that
t

2 -1 -1
kK°Q, =V -V, ., V.o V.. .
st 11, 12,22 21,

2 .. -1 _ _ -1
Thus, k” lim Qst = U11 U12U22U21.

tro

But by

proposition 1 with Q ., R, and H in place of Q_, R, and H, lim Q_1 =
st s s t froo st
-1

R;Hs Rs. Substituting, we find that the upper NS X Ns block of J'(X'X +

kzﬁ'H—Lﬁ)_lJ has the form indicated.

IIT Illustrative Examples and Discussion

One observation that comes from experimenting with the estimators is
that it often makes very little difference for the general appearance of the
estimated function what k one chooses (over a fairly wide range) or whether
one uses discrete or continuous smoothness priors. The main effect of the
smoothness priors is to entrain the various points along the estimated
function, regardless of the exact variance matrix chosen for the prior. If
there are, say, 25 points spaced at unit intervals estimated along the
function then the prior standard deviation § of the change in slope of the
function over its whole range is 5 times the standard deviation of the

change in slope between successive points. Thus, over a wide range of
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chosen values for £, the prior is essentially uninformative about the over-
all shape of the function while being fairly informative that the curves
should be smooth. By analogy, it may not matter much exactly what the
stiffness is of the flexible curve a draftsman uses to fit a curve through a
scatter of points. A draftsman may own only one such flexible curve!

The illustrative examples presented here use data published in
Nerlove's well-known study of cost curves in the electric utility industry
[1963]. Each of the 25 observations used here represents a firm and applies
to the year 1955. The dependent variable y is the log of cost in millions
of dollars per billion kilowatt hours output. The variable x; is the log of
output measured in billions of kilowatt hours. The vector x, consists of
two variables, the log of the wage rate and the log of the fuel cost.
Further description of the data, as well as a discussion of potential
problems in estimation of cost functions from such data may be found in
Nerlove [1963].

Nerlove used a piecewise linear function for f(x;), and concluded that
there was no evidence for the U-shaped cost curve hypothesized by theorists.
He concluded that costs per unit of output were declining with output for
small firms and were essentially constant for large firms. When the
discrete smoothness priors with k = 1.5 were applied to these data, the
estimated function is as shown in figure 1-A.5> The estimated curve indeed
shows declining costs at first, then a region of essentially constant costs.

Figure 1-B shows the estimated function using second order polynomial
regression. In this case , polynomial regression does fairly well in
capturing the shape seen in figure 1-A. 1If one is particular, however, one
notes that the estimated curve does have a U shape and suggests a cost

minimizing level of output. Obviously, the U shape is due to the fact that




19

parabolas are U-shaped! Of course, the estimation procedures might have
given a parabola which does not turn up over the relevant range, but such a
parabola apparently couid not fit the other points of the function well.
The appearance of the estimated function could be improved in this instance
by moving to a cubic polynomial. 1In the cubic and quartic cases the
estimated curve is not quite flat either in the high output range, but
"oscillates" in the region. This is of course due to the fact that such
polynomials cannot represent asymptotes. Also, the extra parameters may be
"used up" to some extent in improving the fit of the estimated function in
other regions. A fifth degree polynomial estimate showed a sharp upturn in
cost in the highest region of x; reflecting the indifference of high degree
polynomials to sudden changes in slope.

In this example the observations were chosen so as to be more or less
equally spaced in terms of x;. It often happens that observations of x| are
relatively clustered in certain regions. In that case, the estimators based
'on smoothness priors will tend to give a more detailed estimated curve in
those regions. This ought to be considered an advantage of the estimators.
For example, McCulloch [1975] who wished to estimate the yield curve (yield
as a function of time to maturity) on U.S. Treasury Securities found that
most observations were at the low end of the maturity scale. He observed
that when polynomial regression was used to fit the curve the detaii
apparent in the scatter diagram at low maturities was lost in the estimated
polynomial. He therefore used spline regression and chose more knot
positions at the low end of the maturity scale. Smoothness priors, it has

already been noted, automatically place knots at each observation point.
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The advantages of the smoothness priors might be made more obvious if
we show an example where the true curve is known and where the average cost
curve has a more interesting shape. For this purpose, artificial data y'
were created equal to a function of x; (shown in figure 2-A), plus the
vector X, times a vector of constants, plus an error term. The cost
function created for this purpose has a region of constant costs for small
firms, a region of declining then rising costs, then a lower region of
constant costs for large firms. The normal error term was given a standard
deviation of .05, much smaller than the estimated standard error of
regression of .52 in the regression whose coefficients are shown in figure
1-A. The smaller error was chosen so that the data would contain a lot of
information about the true curve,.

An estimate of the function using continuous smoothness priors and k=.1
is shown in figure 2-B. The actual shape is captured quite well. The flat
region at the beginning and at the end are captured fairly well, and the
point of minimized cost is right on the mark. In constrast, a fourth degree
polynomial regression (figure 2-C) gives no indication of either flat
region, displaces the entire function upward, and substantially misses the
point of minimized cost. A fifth degree polynomial looked only a little
better, and a sixth degree could not be run due to an ill-conditioned X'X

matrix. In general, very high degree polynomials will allow 'unsmooth"

erratic behavior of the estimated function. Figure 2-D shows the estimted
function from a cubic natural spline regression with 4 equally spaced knots,

at the Sth, IOth, lSth, and ZOth observations. The appearance of the curve
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might be improved by a better choice of knot locations, but in general one
cannot expect to place knots in the right place.

How does one arrive at a value of k? One should not use a default
option k=1 since k is not unit free. According to the assumptions of the
Bayesian estimation k (=0/£) is known in advance. One must judge how large
o (the standard error of the regression error term) is relative to § (with
continuous smoothness priors, the standard deviation of the change in slope
over a unit interval). 1In the example with continuous smoothness priors
shown in figure 2, o was known to equal .05. The assumed k of .1 therefore
implies that & was .5. This means that a one prior standard deviation
change in the slope (derivative) of the function (or one might say, in the
"coefficient'" of Xl) when x; , the log of output, increases one unit, was .5.
The derivative of the true curve in figure la ranges from -1.92 to +.49, or
just under 5 prior standard deviations over or range where x; varies over a
range of 9 units. These priors are therefore a little on the tight side to
capture this curve, as evidenced by the rounding off in the estimate of the
two "corners'" of the true curve at the eight and eighteeﬁth observations
where slope changes rapidly. With discrete smoothness priors, the parameter
E is the prior standard deviation of the chénge in slope (or '"coefficient"
of xl) between successive observations of Xy . In the example shown in
figure 1, k=1.5 and if 0=1/2 then £=1/3. Since the average space between
observations is .36, we might say that the prior standard deviation of the
change in slope over a unit interval is (1/3)//.36 = 5/9, or just a little

more than with prior in figure 2. The estimated curve shows slope which
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ranges from -.63 to 0, substantially less variation than the prior would
allow.

It may be helpful, if for no more reason than to check that one has the
units straight, to compare one's k with a rule of thumb. For continuous
smoothness priors a useful rule of thumb is k = /;S/I4b|.6 Here, s is the
estimated standard error of the regression based on a prelimihary linear
ordinary least squares regression of y on a constant, x; and x,, and b is
the coefficient of x; in the same regression. The symbol r denotes the
sample range of x;, i.e. its maximum value minus its minimum value. The
rule of thumb'ﬁ is equal to an estimate s of o divided by an "estimate"

g (=|4b|//;) of £. The "estimate" £ is suggested by noting that, since the
slope (derivative) of the function is a Wiener process or random walk, the
standard deviation of the change in slope over the range r is /r §. If we
want to be fairly uninformative about the shape of the function, we might
want to allow this standard deviation to be |4b|, hence the "estimate" of

£ . One may wish to decrease the rule of thumb value k if one thinks that.
the function has such a shape that b will be small even though the function
varies a lot. One might in that case use a preliminary polynomial
regression and use for b the "representative'" slope of the curve. For
discrete smoothness priors with roughly equally spaced observations one will
want to consider the above’ﬁ divided by the square root of the usugl space A

.

. In this

between two adjacent observations of x;, i.e. k = /;E/|4bﬁ§

example of figure 1 this rule of thumb gave k=2.4.

'X matrix which,

Too small or too large a value of k may result in an X
while technically nonsingular, may be close enough to singularity that a

computer program will not invert it. The rule of thumb does not guarantee
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that the X'X matrix won't be ill-conditioned. Indeed, the k that would

'Y in a particular application does not

minimize the condition number of X
depend on the standard error of the regression, while the rule of thumb
does. An ill-conditioned X'X matrix may also occur if two observations of
x| are very close together but not equal. One may wish to deal with this
problem by rounding the data so that the two observations become identical.
In some applications, one must clearly correct for serial correlation
of error terms. One might assume a first order autoregressive structure for
the error term and put an uninformative prior on the autoregressive
coefficient p. The posterior distribution can be described along lines
shown in Tiao and Zellner [1964]. One can also justify a sort of Cochrane-
Orcutt [1949] procedure (Shiller [1973]). Starting from an initial guess,
0, this procedure will entail transforming the X matrix (not the underlying
x variables nor the X matrix!) by subtracting from each observation p times
the lagged observation (remembering that the x variables have been sorted in
terms of x; so that the preceding observation may not be the lagged
observation). One may then find the vector of residuals e = y—xg and
regress residuals on their lagged values to get a new estimate p. One
repeats the procedure, and when it converges one will have estimates'é and é

which simultaneously satisfy first order conditions for maximum of the

posterior distribution.
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Footnotes

*Yale University and National Bureau of Economic Research. I am
grateful for discussions with Robert Engle, Jerry Hausman, and Dale Poirier.
Danny Quah and Nigel Wilson provided research assistance and computing was
done on the TROLL System. This research was supported by the National
Science Foundation, under grant #SES-8105837.
lRecall the well-known fallacy of testing for the random walk character of
stock prices by testing with annual data for serial correlation of changes-
in annual average stock market prices.

n Y12

2For a nonsingular matrix ¥ partitioned as ¥ = if ¥ is
YZl Y22 22

nonsingular and T = Y-l is partitioned conformably then T
_ _ -1 |
Fll = Yll W12Y22Y21 and Pz ¥, .Y, T The analogous rule holds for

1 227217 11°
T and P12 1if ¥

11 is nonsingular,

11 is nonsingular.
31f g = 0 and if X = I, this expression for'B is implicit in
expressions (4.2) to (4.4) in Wahba [1978]

YThese results regarding the student posterior can all be found in
Raiffa and Schlaifer [1964].

SEstimation was performed using TROLL Macros &SMP, for discrete
smoothness priors, and &GLSSMP, for continuous smoothness priors. Both were
written by Nigel Wilson.

6The rule of thumb here has not been justified formally. The choice of
k with smoothness priors in the context of the distributed lag estimation

problem has been discussed by Fomby [1979], Maddala [1974], Ullah and Raj

[1979], and Thurman and Swamy [1980].
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