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Abstract

Background: Classification using class-imbalanced data is biased in favor of the majority class. The bias is even larger

for high-dimensional data, where the number of variables greatly exceeds the number of samples. The problem can

be attenuated by undersampling or oversampling, which produce class-balanced data. Generally undersampling is

helpful, while random oversampling is not. Synthetic Minority Oversampling TEchnique (SMOTE) is a very popular

oversampling method that was proposed to improve random oversampling but its behavior on high-dimensional

data has not been thoroughly investigated. In this paper we investigate the properties of SMOTE from a theoretical

and empirical point of view, using simulated and real high-dimensional data.

Results: While in most cases SMOTE seems beneficial with low-dimensional data, it does not attenuate the bias

towards the classification in the majority class for most classifiers when data are high-dimensional, and it is less

effective than random undersampling. SMOTE is beneficial for k-NN classifiers for high-dimensional data if the number

of variables is reduced performing some type of variable selection; we explain why, otherwise, the k-NN classification

is biased towards the minority class. Furthermore, we show that on high-dimensional data SMOTE does not change

the class-specific mean values while it decreases the data variability and it introduces correlation between samples.

We explain how our findings impact the class-prediction for high-dimensional data.

Conclusions: In practice, in the high-dimensional setting only k-NN classifiers based on the Euclidean distance seem

to benefit substantially from the use of SMOTE, provided that variable selection is performed before using SMOTE; the

benefit is larger if more neighbors are used. SMOTE for k-NN without variable selection should not be used, because it

strongly biases the classification towards the minority class.

Background
The objective of class prediction (classification) is to

develop a rule based on a group of samples with known

class membership (training set), which can be used to

assign the class membership to new samples. Many differ-

ent classification algorithms (classifiers) exist, and they are

based on the values of the variables (features) measured

for each sample [1].

Very often the training and/or test data are class-

imbalanced: the number of observations belonging to

each class is not the same. The problem of learning from

class-imbalanced data has been receiving a growing atten-

tion in many different fields [2]. The presence of class-

imbalance has important consequences on the learning
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process, usually producing classifiers that have poor pre-

dictive accuracy for the minority class and that tend to

classify most new samples in the majority class; in this set-

ting the assessment of the performance of the classifiers is

also critical [3].

Data are nowadays increasingly often high-dimensional:

the number of variables is very large and greatly exceeds

the number of samples. For example, high-throughput

technologies are popular in the biomedical field, where it

is possible to measure simultaneously the expression of all

the known genes (>20,000) but the number of subjects

included in the study is rarely larger than few hundreds.

Many papers attempted to develop classification rules

using high-dimensional gene expression data that were

class-imbalanced (see for example [4-6]).

Despite the growing number of applications using high-

dimensional class-imbalanced data, this problem has been

seldom addressed from the methodological point of view
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[2]. It was previously shown for many classifiers that

the class-imbalance problem is exacerbated when data

are high-dimensional [7]: the high-dimensionality fur-

ther increases the bias towards the classification into

the majority class, even when there is no real difference

between the classes. The high-dimensionality affects each

type of classifier in a different way. A general remark is that

large discrepancies between training data and true popu-

lation values are more likely to occur in the minority class,

which has a larger sampling variability: therefore, the clas-

sifiers are often trained on data that do not represent well

theminority class. The high-dimensionality contributes to

this problem as extreme values are not exceptional when

thousands of variables are considered.

Some of the solutions proposed in the literature to

attenuate the class-imbalance problem are effective with

high-dimensional data, while others are not. Generally

undersampling techniques, aimed at producing a class-

balanced training set of smaller size, are helpful, while

simple oversampling is not [7]. The reason is that in

most cases simple oversampling does not change the

classification rule. Similar results were obtained also for

low-dimensional data [8].

The Synthetic Minority Over-sampling TEchnique

(SMOTE [9]) is an oversampling approach that creates

synthetic minority class samples. It potentially performs

better than simple oversampling and it is widely used.

For example, SMOTE was used for detecting network

intrusions [10] or sentence boundary in speech [11], for

predicting the distribution of species [12] or for detecting

breast cancer [13]. SMOTE is used also in bioinformatics

for miRNA gene prediction [14,15], for the identification

of the binding specificity of the regulatory proteins [16]

and of photoreceptor-enriched genes based on expression

data [17], and for histopathology annotation [18].

However, it was recently experimentally observed using

low-dimensional data that simple undersampling tends to

outperform SMOTE in most situations [8]. This result

was further confirmed using SMOTE with SVM as a

base classifier [19], extending the observation also to

high-dimensional data: SMOTE with SVM seems ben-

eficial but less effective than simple undersampling for

low-dimensional data, while it performs very similarly to

uncorrected SVM and generally much worse than under-

sampling for high-dimensional data. To our knowledge

this was the first attempt to investigate explicitly the effect

of the high-dimensionality on SMOTE, while the per-

formance of SMOTE on high-dimensional data was not

thoroughly investigated for classifiers other than SVM.

Others evaluated the performance of SMOTE on large

data sets, focusing on problems where the number of

samples, rather than the number of variables was very

large [20,21]. A number of works focused on improv-

ing the original SMOTE algorithm [17,22-24] but these

modifications were mainly not considered in the high-

dimensional context.

In this article we investigate the theoretical proper-

ties of SMOTE and its performance on high-dimensional

data. For the sake of simplicity we consider only two-class

classification problems, and limit our attention to Classifi-

cation and Regression Trees (CART [25]), k-NN [26] with

k = 1, 3 and 5, linear discriminant analysis methods (diag-

onal - DLDA, and quadratic - DQDA) [27,28], random

forests (RF [29]), support vector machine (SVM [30]), pre-

diction analysis for microarrays (PAM [31] also known

as nearest shrunken centroids classification) and penal-

ized logistic regression (PLR [32]) with the linear (PLR-L1)

and quadratic penalty (PLR-L2). We supplement the theo-

retical results with empirical results, based on simulation

studies and analysis of gene expression microarray data

sets.

The rest of the article is organized as follows. In the

Results Section we present some theoretical results, a

selected series of simulation results and the experimen-

tal results. In the Discussion Section we summarize and

discuss the most important results of our study. In the

Methods Section we briefly describe SMOTE and simple

undersampling, the classification algorithms, the variable

selection method and the performance measures that we

used; we also describe the procedure of data simula-

tion, the breast cancer gene expression data sets and the

classification problems addressed.

Results
In this section we present some theoretical properties of

SMOTE [9], the simulation results and the experimental

data results.

SMOTE is an oversampling technique that generates

synthetic samples from the minority class. It is used

to obtain a synthetically class-balanced or nearly class-

balanced training set, which is then used to train the

classifier. The SMOTE samples are linear combinations of

two similar samples from theminority class (x and xR) and

are defined as

s = x + u · (xR − x), (1)

with 0 ≤ u ≤ 1; xR is randomly chosen among the 5

minority class nearest neighbors of x. We refer the reader

to the Methods section for a more detailed description of

the method and of the notation used in the paper.

Theoretical properties of SMOTE for high-dimensional data

In this section we present some theoretical properties of

SMOTE for high-dimensional data, which are summa-

rized in Table 1.
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Table 1 Summary of the theoretical properties of SMOTE for high-dimensional data

Property Consequence of using SMOTE on high-dimensional data

E(SMOTE) = E(X) Little impact on classifiers that depend on mean values (DLDA);

var(SMOTE) = 2
3 var(X) Minority class variability is underestimated; negative impact on classifiers that use class-

specific variances (DQDA); inflated statistical significance of statistical tests for comparing
classes (t-test);

d(SMOTE, TEST) < d(X , TEST)
d: Euclidean distance

Test samples are classified mostly in the minority class for classifiers based on Euclidean
distance (k-NN); variable selection is helpful in reducing this problem;

cor(SMOTE, X) ≥ 0; cor(SMOTEs , SMOTEt) ≥ 0 Training set samples are no longer independent; independence of samples is assumed by
most classifiers (DLDA, PLR, ...) and variable selection methods (t-test, Mann-Whitney, ...)

Most of the proofs require the assumptions that xR and

x are independent and have the same expected value (E(·))
and variance (var(·)). We conducted a limited set of simu-

lations in which we showed that in practice these assump-

tions are valid for high-dimensional data, while they do

not hold for low-dimensional data (Additional file 1),

where the samples are positively correlated. Similar results

were described by others [33,34].

The proofs and details of the results presented in this

section are given in Additional file 1, where most of the

results are derived also without assuming the indepen-

dence and equal distribution of the original and nearest

neighbor samples.

SMOTE does not change the expected value of the

(SMOTE-augmented)minority class and it decreases its

variability

SMOTE samples have the same expected value as the orig-

inal minority class samples (E(XSMOTE
j ) = E(Xj)), but

smaller variance (var(XSMOTE
j ) = 2

3var(Xj)).

Practical consequences The overall expected value of

the SMOTE-augmented minority class is equal to the

expected value of the original minority class, while its

variance is smaller. Therefore, SMOTE has little impact on

the classifiers that base their classification rules on class-

specific mean values and overall variances (as DLDA),

while it has some (harmful) impact on the classifiers that

use class-specific variances (as DQDA), because they use

biased estimates.

SMOTE impacts also variable selection. For example,

the p-values obtained comparing two classes with a t-

test after SMOTE-augmenting the data are smaller than

those obtained using the original data (SMOTE reduces

the standard error increasing the sample size and decreas-

ing the variance, while the difference between the sample

means does not change much). This can misleadingly

indicate that many variables are differentially expressed

between the classes. SMOTE does not substantially alter

the ranking of the variables by their t statistics: the

overlap between the variables selected using original or

SMOTE-augmented data is substantial when the number

of selected variables is kept fixed.

SMOTE introduces correlation between some samples, but

not between variables

SMOTE does not introduce correlation between differ-

ent variables. The SMOTE samples are strongly posi-

tively correlated with the samples from the minority class

used to generate them (x and xR from Eq. 1) and with

the SMOTE samples obtained using the same original

samples.

Practical consequences SMOTE can be problematic for

the classifiers that assume independence among samples,

as for example penalized logistic regression or discrim-

inant analysis methods. Also, performing variable selec-

tion after using SMOTE should be done with some care

because most variable selection methods assume that the

samples are independent.

SMOTEmodifies the Euclidean distance between test samples

and the (SMOTE-augmented)minority class

When data are high-dimensional and the similarity

between samples is measured using the Euclidean dis-

tance, the test samples are on average more similar to

SMOTE samples than to the original samples from the

minority class.

Practical consequences Figure 1 shows the distribu-

tion of the Euclidean distance of test samples from

SMOTE and from original samples in a setting of

a very moderate class-imbalance (proportion of Class

2 samples k2 = 36/80 = 0.45), in the null case (all

variables from N(0, 1)). As the number of variables

increases, the difference between the two distributions

becomes more marked: the test samples are closer to

the SMOTE samples than to the original samples. There-

fore, when the number of variables is sufficiently large

(p = 300 with these settings, right panel of Figure 1),

the “nearest neighbor” of any test sample is one of

the SMOTE samples, which belongs to the minority

class.
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Figure 1 Effect of SMOTE and the number of variables on the Euclidean distance between test samples and training set samples.

Left panel: distribution of the Euclidean distance between test and training set samples (original or SMOTE); right panel: proportion of SMOTE

samples selected as nearest neighbors of test samples.

This phenomenon is present also when there are

some differences between classes but few variables truly

discriminate the classes. This is often the case for

high-dimensional data and it has important practical

implications. For example, when the number of vari-

ables is large, SMOTE is likely to bias the classification

towards the minority class for k-NN classifiers that mea-

sure the similarity between samples using the Euclidean

distance. Conversely, SMOTE does not bias the classifica-

tion towards the minority class if the number of variables

is small, as the Euclidean distance of new samples from

both classes is similar for the null variables (Figure 1).

For these reasons SMOTE seems useful in reducing the

class-imbalance problem for k-NN when the number of

variables is small or if the number of variables is reduced

using variable selection methods (see simulation results

and the analyses of empirical data for further insights).

Results on simulated data

Simulations were used to systematically explore the

behavior of SMOTE with high-dimensional data and to

show empirically the consequences of the theoretical

results. Under the null case the class membership was

randomly assigned, while in the alternative case the class-

membership depended on some of the variables. If not

stated otherwise, the results refer to simulations where

the variables were correlated (ρ = 0.8), the samples

(but not the variables) were normalized and SMOTE was

used before variable selection. In the alternative case we

present the results where the difference between classes

was moderate (µ(2) = 1).

Classification of low-dimensional data (p=G=5, ntrain = 40,

80, 200, k1 = 0.10)

The (uncorrected) classifiers trained on low-dimensional

class-imbalanced data assigned most of the samples to

the majority class, both in null and in alternative case

(Figure 2); the classifiers with the smallest bias towards

the majority class were DLDA (not biased in the alterna-

tive case) and DQDA, for which the bias decreased as the

sample size increased. SMOTE did not seem to impact

the performance of these classifiers (only marginally for

DQDA, increasing the bias in the alternative case), while

it reduced the bias towards the majority class for k-NN

(most notably for 5-NN), PLR-L1, PLR-L2 and PAM, per-

forming well also when the sample size was small (n =
40) and increasing the overall predictive accuracy (PA)

in the alternative case. A similar but attenuated effect

was observed for the other classifiers (CART, SVM, RF)

where SMOTE decreased the difference between class-

specific PA, most notably for large sample sizes, but did

not remove it. Similar results were obtained using p =
G = 10 variables (data now shown).

Classification of high-dimensional data (p = 1, 000,

G = 1, 000 or 40, ntrain = 80)

Figure 3 (null case) and Figure 4 (alternative case) display

the classification results obtained using high-dimensional

data. All the uncorrected classifiers assigned most of the

test samples to the majority class, whether we used all

variables (G = 1, 000) or only a selected subset (G =
40). The probability of classifying a new sample in the

majority class increased with the level of class-imbalance
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Figure 2 Classification results using low-dimensional data. Predictive accuracy (overall (PA) and class-specific (PA1 , PA2)) achieved with SMOTE

(black symbols) or without any class-imbalance correction (NC gray symbols) for 7 types of classifiers, for different training set sample sizes (40, 80 or

200 samples).

for all classifiers and was larger in the null case, while

variable selection decreased the bias towards the major-

ity class for most classifiers, with the exception of k-NN.

Interestingly, the discrepancy between the class-specific

PA was large also for DLDA and DQDA, which were the

least sensitive to the class-imbalance problem in the low-

dimensional setting. These results are in line with those

reported previously [7].

Adjusting the classification threshold substantially

decreased the class-imbalance bias of 5-NN, RF and

SVM (more effectively when variable selection was not

performed), and was helpful to some extent also for

PAM, provided that variable selection was performed. A

slight improvement was observed also for PLR-L1 (more

obvious when variable selection was not performed) and

PLR-L2, while this strategy was not effective for the other

classifiers. The peculiar behavior of 5-NN with classifica-

tion threshold is expected, as under the null hypothesis

the class specific probabilities are piecewise monotone

functions of class-imbalance with breakpoints at k1 =
1/5, 2/5, 3/5, 4/5.

SMOTE had only a small impact on the class-specific PA

of all the classifiers other than k-NN and PAM: SMOTE

either further increased the probability of classification in

the majority class (DQDA and SVM, and almost imper-

ceptibly for DLDA) or slightly decreased it (RF, PLR-

L1, PLR-L2 and CART). However, the overall effect of

SMOTE was almost negligible.

SMOTE had the most dramatic effect on k-NN clas-

sifiers but the effectiveness of its use depended on the
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Figure 3 Null case classification results for high-dimensional data. Class-specific predictive accuracies (PA1 , PA2) achieved with SMOTE (blue

symbols), without any class-imbalance correction (small, gray symbols) and with cut-off adjustment (large, gray symbols) for 7 types of classifiers,

varying the proportion of Class 1 samples in the training set (k1).
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Figure 4 Alternative hypothesis classification results for high-dimensional data. Symbols as in Figure 3.
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variable selection strategy. SMOTE classified most of

the new samples in the minority class for any level of

class-imbalance when all the variables were used, while

it reduced the bias observed in the uncorrected analyses

when used with variable selection: the class-specific PA of

the two classes were approximately equal for a wide range

of class-imbalance levels, especially for 3-NN and 5-NN,

both in the null and in the alternative case.

To a lesser extent, SMOTE with variable selection was

beneficial also in reducing the class-imbalance problem of

PAM, decreasing the number of samples classified in the

majority class, both in the null and in the alternative case;

this was not the case when PAM was used without prior

variable selection. A possible explanation of this behavior

is given in the Additional file 2.

Similar conclusions would be obtained using AUC

and G-mean to interpret the results (Additional file 3).

SMOTE without variable selection reduced the G-mean

for k-NN, DQDA and SVM, it increased it for RF, PLR-L1,

PLR-L2 and PAM (when the class-imbalance was large)

and did not change it for DLDA and CART. The AUC

values were very similar using SMOTE or uncorrected

analysis, but SMOTE with variable selection increased

AUC and G-mean values for k-NN and PAM.

Performing variable selection before or after SMOTE

did not significantly impact the performance of the classi-

fication methods (data not shown). In general, the results

observed in the alternative case were similar to those

observed in the null case, suggesting that our theoret-

ical findings are relevant also in the situations where

the class-membership depends on some of the variables.

When the differences between the classes were larger, the

class-imbalance problem was less severe, therefore using

SMOTE was less helpful (data not shown).

Similar conclusions were obtained when all the variables

were differentially expressed (Additional file 4) or were

simulated from the exponential distribution (Additional

file 5). See also Figure 5 for a visual summary of the results.

Results from the experiments on gene expression data sets

We analyzed three high-dimensional gene expression

data sets, performing two prediction tasks on each

of them (Table 2). These experiments were performed

to validate the results from the simulation study and

to show the practical application of our theoreti-

cal results. Uncorrected analysis, analysis with the

adjusted classification threshold (cut-off adjustment),

SMOTE and simple undersampling [2] results were dis-

played presenting average class-specific PA and G-mean

(Figure 6; more detailed results are available in Additional

file 6).

The experimental results were very consistent with the

simulation results. Most uncorrected classifiers seemed

to be sensitive to class-imbalance, even when the class-

imbalance was moderate. With few exceptions, the major-

ity class had a better class-specific PA (most notably for

k-NN, RF, PLR-L1, PLR-L2 and CART); the larger dif-

ferences were seen when the class-imbalance was large

(Miller’s and Pittman’s data) and for harder classifica-

tion tasks (grade). The class-specific PA of DLDA and

DQDAwere about the same for all the classification tasks;

these classifiers, together with PAM, had the largest AUC

and G-mean values and seemed the least sensitive to

class-imbalance. SMOTE, cut-off adjustment and under-

sampling had little or no effect on their classification

results.

Changing the cut-off point decreased the class-

imbalance bias of RF, SVM, PAM, PLR-L1 and PLR-L2 and

5-NN (with the exception of the results obtained on the

Sotiriou’s data) and outperformed undersampling, while it

was inefficient with the other classifiers.

SMOTE with variable selection had the most dra-

matic effect on k-NN classifiers, substantially reducing

the discrepancy between the class-specific PA, generally

increasing the G-mean and, to a lesser extent, the AUC

values (Miller’s data); in this case SMOTE performed sim-

ilarly, but not better, than undersampling. On the other

Figure 5 Summary of results obtained on the simulated data. Green and red color shading denote good and poor performance of the

classifiers, respectively. Upwards and downwards trending arrows and the symbol ≈ denote improved, deteriorated or similar performance of the

classifier when comparing SMOTE or adjusted classification threshold (CO) with the uncorrected analysis (NC).
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Table 2 Experimental data sets

Data set Prediction
task

Number of
features

Number of
samples

nmin kmin Minority class

Sotiriou ER 7,650 99 34 0.34 ER-

Grade 7,650 99 45 0.45 Grade 3

Pittman ER 12,625 158 48 0.30 ER-

Grade 12,625 158 63 0.40 Grade 1 or 2

Miller ER 22,283 247 34 0.14 ER-

Grade 22,283 249 54 0.22 Grade 3

Number of samples, number of samples in the minority class (nmin), level of class-imbalance (kmin) and number of features for the analyzed gene expression data sets

and different classification tasks.

hand, when variable selection was not performed SMOTE

worsened the performance of k-NN: most samples were

classified in the minority class and the AUC and G-

mean values substantially decreased, while undersampling

performed better than uncorrected analysis (Table 3 for

results on Miller’s data and Additional file 6 for Sotiriou’s

and Pittman’s data).

SMOTE reduced the discrepancy in class-specific PA

for the other classifiers (RF, SVM, PAM, PLR-L1, PLR-

L2 and CART), but simple undersampling performed very

similarly (PAM) or better (RF, SVM, PLRL1, PLR-L2 and

CART).

Results obtainedmodifying the class-imbalance of

Sotiriou’s data

To get a better insight into the class-imbalance prob-

lem, we obtained different levels of class-imbalance on

Sotiriou’s data set and compared the performance of

SMOTE with uncorrected analysis and undersampling.

Figure 7 displays the average class-specific PA for ER
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Figure 6 Class-specific predictive accuracies (PA1, PA2), AUC and G-mean for experimental data. NC: No correction, original data used;

CUT-OFF: results obtained by changing the classification threshold; UNDER: simple undersampling.
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Table 3 Performance of the classifiers on theMiller data set without feature selection

ER Grade

1-NN 3-NN 5-NN 1-NN 3-NN 5-NN

NC (CUT-OFF) PA 0.838 0.862 0.874 (0.777) 0.779 0.839 0.835 (0.835)

PA1 0.925 0.953 0.972 (0.789) 0.897 0.954 0.949 (0.897)

PA2 0.294 0.294 0.265 (0.706) 0.352 0.426 0.426 (0.611)

AUC 0.610 0.692 0.772 (0.772) 0.625 0.769 0.816 (0.816)

G-mean 0.522 0.529 0.507 (0.746) 0.562 0.637 0.636 (0.741)

SMOTE PA 0.271 0.249 0.249 0.364 0.373 0.384

(0.012) (0.013) (0.012) (0.014) (0.015) (0.016)

PA1 0.156 0.130 0.132 0.194 0.209 0.223

(0.014) (0.014) (0.013) (0.018) (0.020) (0.020)

PA2 0.996 0.992 0.984 0.979 0.966 0.966

(0.010) (0.015) (0.017) (0.012) (0.013) (0.011)

AUC 0.576 0.632 0.671 0.586 0.680 0.736

(0.009) (0.014) (0.013) (0.011) (0.013) (0.010)

G-mean 0.393 0.359 0.360 0.435 0.449 0.464

(0.018) (0.020) (0.019) (0.020) (0.021) (0.021)

UNDER PA 0.625 0.685 0.691 0.766 0.836 0.840

(0.065) (0.056) (0.049) (0.017) (0.012) (0.012)

PA1 0.742 0.841 0.863 0.798 0.871 0.878

(0.017) (0.013) (0.012) (0.016) (0.011) (0.012)

PA2 0.761 0.866 0.890 0.649 0.709 0.700

(0.017) (0.013) (0.010) (0.051) (0.039) (0.028)

AUC 0.693 0.822 0.861 0.723 0.833 0.850

(0.033) (0.021) (0.021) (0.027) (0.015) (0.008)

G-mean 0.689 0.770 0.784 0.719 0.786 0.784

(0.036) (0.031) (0.029) (0.029) (0.022) (0.017)

Overall predictive accuracy (PA), predictive accuracy for Class 1 (PA1), predictive accuracy for Class 2 (PA2), Area under the ROC curve (AUC) and G-mean for 1-NN,

3-NN and 5-NN achieved on the Miller data set with different methods of training set manipulation (no correction - NC (in brackets we report the results obtained by

adjusting the threshold for 5-NN - CUT-OFF), SMOTE and undersampling - UNDER). Prediction of Estrogen receptor status (ER) and Grade of the tumor (Grade).

All variables were considered when training the classifiers.

classification (left panel) and grade (right panel); the left-

most points of each graph show the results from simple

undersampling and the total sample size increases with

class-imbalance.

For the uncorrected classifiers the PA of the minor-

ity class markedly decreased as the class-imbalance

increased, despite of the fact that the sample size of the

training set was larger. This effect was more pronounced

when the differences between classes were smaller (grade

classification) or for smaller sample sizes (n1 = 5).

For most classifiers SMOTE improved the PA of the

minority class, compared to the uncorrected analyses. The

classifiers that benefited the most from the use of SMOTE

were the k-NN classifiers, especially 5-NN (note that vari-

able selection was performed); SMOTE was somehow

beneficial also for PAM, PLR-L1 and PLR-L2, while the

minority class PA improved only moderately for DLDA,

RF, SVM and CART, and decreased for DQDA. However,

SMOTE did not remove the class-imbalance problem and,

even if it was beneficial compared to the uncorrected anal-

ysis, it generally performed worse than undersampling.

The exceptions were PAM and 5-NN for ER classifica-

tion (but not for grade), where the drop in the PA of the

minority class was very moderate. Overall, the classifica-

tion results were in line with the simulation results and

confirmed our theoretical findings.

Discussion
The classifiers that we considered in this study were pre-

viously shown to be sensitive to class-imbalance: the pre-

dictive accuracy of the minority class tends to be poor

and they tend to classify most test samples in the major-

ity class, even when there are no differences between

the classes. The high-dimensionality further increases the
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Figure 7 Class-specific predictive accuracies for Sotiriou’s data, varying class imbalance. Left panels: prediction of ER, ER- is the minority class.

Right panel: prediction of grade, grade 3 is the minority class. The sample size of the minority class is fixed to nmin = 5 (upper panels) or nmin = 10

(lower panels), while it varies for the majority class.
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bias towards the classification in the majority class; under-

sampling techniques seem to be helpful in reducing the

class-imbalance problem for high-dimensional data, while

simple oversampling [2] is not [7].

In this article we focused on high-dimensional data and

investigated the performance of SMOTE, an oversampling

approach that creates synthetic samples. We explored the

properties of SMOTE on high-dimensional data from a

theoretical and empirical point of view, using simula-

tion studies and breast cancer gene expression microarray

data. The performance of the classifiers was evaluated

with overall and class specific predictive accuracies, area

under the ROC curve (AUC) and G-mean.

Most of the classifiers that we considered benefit from

SMOTE if data are low-dimensional: SMOTE reduces the

bias towards the classification in the majority class for k-

NN, SVM, PAM, PLR-L1, PLR-L2, CART and, to some

extent, for RF, while it hardly affects the discriminant anal-

ysis classifiers (DLDA and DQDA). On the other hand,

for high-dimensional data SMOTE is not beneficial in

most circumstances: it performs similarly to uncorrected

class-imbalanced classification and worse than cut-off

adjustment or simple undersampling.

In practice, only k-NN classifiers seem to benefit sub-

stantially from the use of SMOTE in the high-dimensional

setting, provided that variable selection is performed

before using SMOTE; the benefit is larger if more neigh-

bors are used. SMOTE for k-NN without variable selec-

tion should not be used, because it surprisingly biases the

classification towards the minority class: we showed that

the reason lies in the way SMOTE modifies the Euclidean

distance between the new samples and the minority class.

Our theoretical proofs made many assumptions; however,

analyzing the simulated and real data, where the assump-

tions were violated, we observed that our results were

valid in practice.

We showed that for high-dimensional data SMOTE

does not change the mean value of the SMOTE-

augmented minority class, while it reduces its variance;

the practical consequence of these results is that SMOTE

hardly affects the classifiers that base their classification

rules on class specific means and overall variances; such

classifiers include the widely used DLDA. Additionally,

SMOTE harms the classifiers that use class-specific vari-

ances (as DQDA), as it produces biased estimates: our

experimental data confirmed these finding, showing that

SMOTE further increased the bias towards the majority

class. SMOTE should therefore not be used with these

types of classifiers.

For the other classifiers it is more difficult to isolate the

reasons why SMOTE might or might not work on high-

dimensional data. SMOTE has a very limited impact on

SVM and CART. PLR-L1, PLR-L2 and RF seem to ben-

efit from SMOTE in some circumstances, however the

improvements in the predictive accuracy of the minor-

ity class seem moderate when compared to the results

obtained using the original data and can be probably

attributed to the balancing of the training set. The appar-

ent benefit of SMOTE for PAM is limited to situations

where variable selection is performed before using PAM,

which is not a normally used procedure, and can be

explained as the effect of removing the PAM-embedded

class-imbalance correction, which increases the probabil-

ity of classifying a sample in the majority class.

Using the gene expression data we compared SMOTE

with simple undersampling, the method that obtains a

balanced training set by removing some of the sam-

ples from the majority class. Our results show that for

RF, SVM, PLR, CART and DQDA simple undersampling

seems to be more useful than SMOTE in improving the

predictive accuracy of the minority class without largely

decreasing the predictive accuracy of the majority class.

SMOTE and simple undersampling perform similarly for

PAM (with variable selection) and DLDA; similar results

were obtained by others also for low-dimensional data [8].

Sometimes SMOTE performs better than simple under-

sampling for k-NN (with variable selection). Our results

are in agreement with the finding that SMOTE had little or

no effect on SVM when data were high-dimensional [19].

The results showing that simple undersampling ourper-

forms SMOTEmight seem surprising, as this method uses

only a small subset of the data. In practice undersampling

is effective in removing the gap between the class-specific

predictive accuracies for high-dimensional data [7] and

it is often used as a reasonable baseline for algorithmic

comparison [35]. One of its shortcomings is the large

variability of its estimates, which can be reduced by bag-

ging techniques that use multiple undersampled training

sets. We previously observed that bagged undersampling

techniques outperform simple undersampling for high-

dimensional data, especially when the class-imbalance is

extreme [7]. Others showed that bagged undersampling

techniques outperformed SMOTE for SVM with high-

dimensional data [19]. Therefore, we expect that the clas-

sification results presented in this paper could be further

improved by the use of bagged undersampling methods.

We devoted a lot of attention to studying the perfor-

mance of SMOTE in the situation where there was no

difference between the classes or where most of the vari-

ables did not differ between classes. We believe that in

this context these situations are extremely relevant. It is

well known that most of the problems arising from learn-

ing on class-imbalanced data arise in the region where

the two class-specific densities overlap. When the differ-

ence between the class-specific densities is large enough,

the class-imbalance does not cause biased classification

for the classifiers that we considered, even in the high-

dimensional setting [7]. The other reason is that when
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a very large number of variables is measured for each

subject, in most situations the vast majority of variables

do not differentiate the classes and the signal-to-noise

ratio can be extreme. For example, Sotiriou et al. [36]

identified 606 out of the 7, 650 measured genes as dis-

criminating ER+ from ER- samples in their gene expres-

sion study; at the same time ER status was the known

clinico-pathological breast cancer phenotype for which

the largest number of variables was identified (137 out of

the 7, 650 genes discriminated grade, 11 out of the 7, 650

node positivity, 3 out of the 7, 650 tumor size and 13 out

of the 7, 650 menopausal status). Similar results can be

found in most gene expression microarray studies, where

rarely more than few hundreds of genes differentiate the

classes of interest. Furthermore, the results from the sim-

ulation studies where all the variables were differentially

expressed were consistent with those obtained when only

few variables differentiated the classes, indicating that our

conclusions are not limited to sparse high-dimensional

data.

Variable selection is generally advisable for high-

dimensional data, as it removes some of the noise from

the data [37]. SMOTE does not affect the ranking of

variables if the variable selection method is based on

class-specific means and variances. For example, when

variable selection is based on a two-sample t-test and a

fixed number of variables are selected, as in our simu-

lations, the same results are obtained if variable selec-

tion is performed before or after using SMOTE. How-

ever, the results obtained by performing variable selection

on SMOTE-augmented data must be interpreted with

great care. For example, the p-values of a two-sample t-

test are underestimated and should not be interpreted

other than for ranking purposes: if the number of vari-

ables to select depends on a threshold on the p-values

it will appear that many variables are significantly dif-

ferent between the classes. Another reason of concern

is that SMOTE introduces some correlation between the

samples and most variable selection methods (as well

as some classifiers) assume the independence among

samples.

Many variants of the original version of SMOTE exist,

however in this paper we only considered the original

version of SMOTE. The variants of SMOTE are very sim-

ilar in terms of the expected value and variance of the

SMOTE samples, as well as the expected value and vari-

ance of the Euclidean distance between new samples and

samples from the SMOTE-augmented data set. Under

the null hypothesis all the theoretical results presented

in this paper would apply also for Borderline-SMOTE

[22] and Safe-Level-SMOTE [23]. Further research would

be needed to assess the performance of these algorithms

for high-dimensional data when there is some difference

between the classes.

We considered only a limited number of simple clas-

sification methods, which are known to perform well in

the high-dimensional setting, where the use of simple

classifiers is generally recommended [37]. Our theoretical

and empirical results suggest that many different types of

classifiers do not benefit from SMOTE if data are high-

dimensional; the only exception that we identified are the

k-NN classifiers. It is however possible that also in the

high-dimensional setting SMOTE might be more bene-

ficial for some classifiers that were not included in our

study.

Conclusions
SMOTE is a very popular method for generating synthetic

samples that can potentially diminish the class-imbalance

problem. We applied SMOTE to high-dimensional class-

imbalanced data (both simulated and real) and used

also some theoretical results to explain the behavior of

SMOTE. The main findings of our analysis are:

• in the low-dimensional setting SMOTE is efficient in

reducing the class-imbalance problem for most

classifiers;
• SMOTE has hardly any effect on most classifiers

trained on high-dimensional data;
• when data are high-dimensional SMOTE is beneficial

for k-NN classifiers if variable selection is performed

before SMOTE;
• SMOTE is not beneficial for discriminant analysis

classifiers even in the low-dimensional setting;
• undersampling or, for some classifiers, cut-off

adjustment are preferable to SMOTE for

high-dimensional class-prediction tasks.

Even though SMOTE performs well on low-dimensional

data it is not effective in the high-dimensional setting

for the classifiers considered in this paper, especially in

the situations where signal-to-noise ratio in the data

is small.

Methods
Notation

Let xij be the value of jth variable (j = 1, ..., p) for the ith

sample (i = 1, ..., n) that belongs to Class c (c = 1 or 2),

kc = nc/n is the proportion of samples from Class c

and nc is the number of samples in class c. Let the sam-

ple size of the minority class be denoted by nmin. Let us

say we limit our attention to G ≤ p variables that are

the most informative about the class distinction. Capital

letters (asX) denote random variables while lowercase let-

ters (as x) denote observations; bold letters (x) indicate set

of variables. The Gaussian distribution with mean µ and

standard deviation σ is indicated with N(µ, σ) and the

uniform distribution defined on [0, 1] with U(0, 1).
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SMOTE

SMOTE [9] is an oversampling technique that generates

synthetic samples from the minority class using the infor-

mation available in the data. For each sample from the

minority class (x) 5 (or nmin − 1 if nmin ≤ 5) samples from

the minority class with the smallest Euclidean distance

from the original sample were identified (nearest neigh-

bors), and one of them was randomly chosen (xR). The

new synthetic SMOTE sample was defined as

S = x + u · (xR − x), (2)

where u was randomly chosen from U(0, 1). u was the

same for all variables, but differed for each SMOTE sam-

ple; this choice guarantees that the SMOTE sample lies

on the line joining the two original samples used to gen-

erate it [2,9]. By SMOTE-augmenting the minority class

we obtained a class-balanced training set, as suggested

in [8].

Simple undersampling

Simple undersampling (down-sizing) consists of obtain-

ing a class-balanced training set by removing a subset of

randomly selected samples from the larger class [2]. The

undersampled training set can be considerably smaller

than the original training set if the class-imbalance is

large. Simple undersampling was used only for the analysis

of the experimental data sets.

Cut-off adjustment

We attempted to adjust for the class-imbalance by chang-

ing the classification threshold of the classifiers. For each

classifier we estimated the posterior probability of classi-

fication in Class 1 for the new samples (̂p(c = 1|x∗)). The
classification rule was then defined as: classify at random

if p(c = 1|x∗) = k1, classify to Class 1 when p̂(c = 1|x∗) >

k1 and to Class 2 otherwise. (Note that the uncorrected

classifiers use the threshold value of 0.5 for any level of

class imbalance.)

Data simulation of high-dimensional data

We simulated p = 1, 000 variables for each of n =
100 samples. The variables were simulated under a block

exchangeable correlation structure, in which the 10 vari-

ables within each block had a pairwise correlation of

ρ = 0.8, 0.5, 0.2 or 0 (independence case), while the vari-

ables from different blocks were independent [38]. The

data set was split into a training set (ntrain = 80) and a

balanced test set (ntest = 20). Different levels of class-

imbalance were considered for the training sets, varying

the proportion of samples from Class 1 from k1 = 0.05

to 0.95.

Under the null case the class membership was randomly

assigned and all the variables were simulated fromN(0, 1).

Under the alternative case, the class membership was

dependent on the values of pDE = 20 non-null variables,

generated from N(0, 1) in Class 1 and from N(µ(2), 1) in

Class 2 (µ(2) = 0.5, 0.7, 1, 2); the remaining variables

were simulated as in the null case. We considered also a

situation where all variables were differentially expressed.

In this setting we used µ(2) = 0.2, which assured a sim-

ilar predictive power as in the situation where we used

sparse data and moderate differences between the classes

(pDE = 20 and µ(2) = 1).

We performed also a limited set of simulations where

all the variables were simulated from the exponential

distribution with rate equal to one. In the alterna-

tive case a number randomly generated from U(1, 1.5)

was added to the pDE = 20 non-null variables in

Class 2.

Each simulation was repeated 1, 000 times and overall

more than 11 million classifiers were trained.

Data simulation of low-dimensional data

We performed also a limited number of simulations where

data were low-dimensional. We simulated and used p =
G = 5 or 10 variables and varied the size of the training

set (ntrain = 40, 80 and 200), keeping the level of class-

imbalance fixed (k1 = 0.10). The test sets were balanced

(ntest = 40). All the variables were correlated (ρ = 0.8)

and simulated as described for the high-dimensional data

(µ(2) = 1 for the alternative case).

Data normalization, variable selection and derivation of

the classifiers

We evaluated the effect of data normalization, devel-

oping classification rules (i) using raw data (xij), (ii)

normalizing the samples (xsij = xij − 1
p

∑p
k=1 xik) and

(iii) normalizing the variables (xvij = xij − 1
n

∑n
k=1 xkj).

Normalization was performed separately on the train-

ing and test set, before variable selection or augmen-

tation of the training set. Data normalizatoin was not

performed when all the variables were differentially

expressed.

We used all the variables (p = G) or selected G =
40 variables with the largest absolute t-statistics derived

from the two sample t-test with assumed equal vari-

ances; variable selection was performed on the training

set, either before or after using SMOTE but only after

using undersampling (this strategy outperforms variable

selection before undersampling [7]).

The classification rules were derived completely on the

training set, using seven types of classification methods:

k-NN with k = 1, 3 or 5, discriminant analysis (DLDA

and DQDA), RF, SVM, PAM, penalized logistic regres-

sion (PLR) with linear penalty (PLR-L1) and quadratic

penalty (PLR-L2) and CART. For CART we used prun-

ing, the maximum depth of any node of the final tree
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was set to 5 and the complexity parameter was 0.01. We

used the penalized package to fit PLR; the penaliza-

tion coefficient was optimized based on cross-validated

likelihood. The parameters used for the other classifiers

were the same as in [7], where the classifiers are shortly

described.

Evaluation of the performance of the classifiers

The classifiers were evaluated on the independent test

sets, using five performance measures: (i) overall pre-

dictive accuracy (PA, the number of correctly classified

samples from the test set divided by the total number of

samples in the test set), (ii) predictive accuracy of Class

1 (PA1), (iii) predictive accuracy of Class 2 (PA2), (iv)

Area Under the Receiver-Characteristic-Operating Curve

(AUC [39]) and (v) G-mean (
√
PA1 · PA2). We used the

function sommers2 in the Hmisc package to compute the

AUC.

Experimental data sets

We considered three breast cancer gene expression data

sets [36,40,41] and two classification tasks for each of

them: prediction of estrogen receptor status (ER+ or ER-)

and prediction of grade of tumors (grade 1 and 2 or grade

3). Data were pre-processed as described in the original

publications. The number of variables varied from 7, 650

to 22, 283, the number of samples from 99 to 249, and

the proportion of minority class samples from 0.14 to 0.45

(Table 2).

The classifiers were trained with G = 40 variables,

using SMOTE, simple undersampling, the uncorrected

classifiers or adjusted classification threshold. Their

performance was assessed with leave-one-out cross val-

idation. To take the sampling variability into account,

each classifier was trained using 50 different SMOTE-

augmented or undersampled training sets. Overall,

10,878 classifiers were trained, and their performance

was assessed training about one million classifiers on

cross-validated training sets.

Additionally, to isolate the effect of class-imbalance,

we used the Sotiriou data and obtained different lev-

els of class-imbalance in the training set by including a

randomly chosen subset of the samples in the analyses.

The training sets contained a fixed number of samples

in the minority class (5 or 10 ER- or grade 3 samples),

while the number of samples of the majority class var-

ied; the class-imbalance of the training sets ranged from

k1 = 0.50 to 0.90 at most, while the test sets were class-

balanced. The analysis was replicated 500 times for each

level of class-imbalance, randomly selecting the samples

to include in the training and test set and using SMOTE

or no correction; G = 40 variables were selected at each

iteration. The results were presented as average overall

and class-specific PA.

Analysis

Analyses and simulations were carried out using R 2.8.1

[42].
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