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Abstract

The Internet of Things (IoT) creates value by connecting digital

processes to the physical world using embedded sensors, actua-

tors and wireless networks. The IoT is increasingly intertwined

with critical industrial processes, yet contemporary IoT devices

o�er limited security features, creating a large new attack surface

and inhibiting the adoption of IoT technologies. Hardware security

modules address this problem, however, their use increases the cost

of embedded IoT devices. Furthermore, millions of IoT devices are

already deployed without hardware security support. This paper

addresses this problem by introducing a Security MicroVisor (SµV)

middleware, which provides memory isolation and custom security

operations using software virtualisation and assembly-level code

veri�cation. We showcase SµV by implementing a key security

feature: remote attestation. Evaluation shows extremely low over-

head in terms of memory, performance and battery lifetime for a

representative IoT device.

CCS Concepts · Security and privacy→ Embedded systems

security; Malware and its mitigation; · Computer systems orga-

nization → Sensor networks;

Keywords IoT, security, memory isolation, remote attestation
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1 Introduction

The Internet of Things (IoT) is moving out of the lab and into the

real-world, where it is being applied at large scale in diverse appli-

cation scenarios such as: factory automation, smart lighting and

the city-scale monitoring of human behaviour. Millions of sensors

and actuators already connect intimate aspects of our everyday

lives and critical industrial infrastructure with the Internet.
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Despite the clear security risks, the vast majority of deployed

IoT platforms provide extremely limited security primitives, which

limits the application of security techniques that are common in

mainstream computer systems. This is a critical problem for in-

dustrial IoT systems, where security concerns are seen as a major

barrier to adoption [9].

This paper addresses the problem of poor security support on

contemporary IoT platforms by introducing the concept of a Secu-

rityMicroVisor middleware, which uses selective software virtualisa-

tion and assembly-level code veri�cation to isolate a software-based

Trusted Computing Module (TCM) from untrusted application soft-

ware, which may contain a range of IoT security operations. The

core contribution of SµV is that it is capable of providing security

guarantees that were previously only possible via dedicated hard-

ware. In contrast, SµV works with all standard Micro Controller

Units (MCU) that support global interrupt disabling, are single

threaded and have su�cient memory to support the preinstalled

SµV module. To the best of our knowledge, these features are of-

fered by all MCUs used in contemporary IoT products. By raising

the security level of today’s devices SµV helps to eliminate a key

barrier to adoption of IoT technologies by industry.

We performed a benchmark evaluation of SµV on MicroPnP, a

representative industrial IoT platform [18] created by VersaSense.

MicroPnP has been deployed in a wide range of industrial scenar-

ios, in over 10 countries. We use SµV to implement a case-study

security feature: remote attestation. Our evaluation shows that load-

time software veri�cation feasible on IoT devices. Furthermore,

the runtime overhead of SµV is very reasonable, incurring a de-

crease in battery life of under 1% in realistic application scenarios

and consuming less than 4 KB of �ash. Furthermore, the overhead

of our exemplar security schemes is promising. Hourly software

attestation reduces battery life by a maximum of 6.2%.

The remainder of this paper is structured as follows. Section 2

describes the design rationale and key mechanisms of SµV. Imple-

mentation details are discussed in section 3. Section 4 reports on the

evaluation of SµV. Section 5 reviews related work. Finally, Section 6

concludes the study.

2 Design of SµV

SµV assumes that an adversary has full access to the network, but

cannot physically tamper with the IoT device. The attacker may

communicate with the IoT device over the network or prevent

legitimate communication from occurring. SµV cannot prevent an

attacker from rendering the IoT device unavailable. Furthermore,

we assume that the trusted SµV is bug and exploit free and is

deployed on the device by a trusted party prior to deployment.
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Figure 1. Standard (left) and SµV (right) memory map. In the stan-

dard case, memory is monolithic and operations are unrestricted.

SµV splits application memory into instruction and data memory

and restricts possibly sensitive operations.

2.1 The platform requirements of SµV

MCUs are optimized for low cost and low power operation. Hard-

ware security features and Memory Protection Units (MPUs) are

uncommon on these devices and millions of IoT devices are already

deployed in critical applications without these features. A piece of

malicious software running on such a device can execute arbitrary

instructions and read or modify both data and instruction memory,

including all resident key material.

SµV is a pure software solution which allows additional security

features to be added to conventional MCUs, with guarantees that

were previously only possible via dedicated security hardware.

Target MCUs are assumed to have the following characteristics:

1. No memory protection: The MCU is not required to provide

any form of memory protection. Nor is it required that the

MCU provides ROMmemory. The MCU must, at a minimum

provide su�cient �ash memory to store the SµV MicroVisor

(under 4 KB for typical MCU architectures).

2. Single thread of execution: We assume a single thread of

execution. This is to guarantee atomic execution of critical

code without preemption by other threads. This is typical

for conventional MCUs.

3. Interrupts: The MCU must support the disabling of global

interrupts to ensure the atomic execution of code without

preemption by interrupt handlers. To the best of our knowl-

edge this feature is o�ered by all major families of MCU.

2.2 Architecture of SµV

SµV reserves part of the memory for trusted software which we call

the MicroVisor. This software is installed prior to the deployment

of the IoT device using a physical programming device (e.g. SPI or

JTAG). The MicroVisor code is considered immutable and resides

in virtual ROM memory, which is enforced by the MicroVisor it-

self. The remainder of the device memory, from now on referred

to as Application Memory, is available to untrusted applications.

Application memory is further subdivided into Instruction Memory,

which applications may execute but not read or write to and Data

Memory. We visualize this in Figure 1.

The trusted MicroVisor code is subject to no restrictions. Un-

trusted applications on the other hand are strongly restricted in

the following ways:

1. Control transfer : branch and jump operations may only ad-

dress the application instruction memory or the select entry

points of the MicroVisor instruction memory which expose

virtual operations. This allows for controlled interaction

with the MicroVisor.

2. Data memory access: read and write operations may only

address application data memory or Memory Mapped IO

(MMIO) locations.

3. Instruction memory access: read and write operations may

not address the application instruction memory or the Mi-

croVisor memory.

4. Deployment of new applications may only occur through the

MicroVisor. This property is enforced by preventing applica-

tions by the previous restriction that disallows an application

to write in its own instruction memory, only the MicroVisor

is allowed to do so. As a result, all new applications pass

through the MicroVisor during loading.

Restrictions on application code are enforced at the instruction

level through two basic mechanisms: (i) incoming applications are

veri�ed by the MicroVisor at load-time to ensure that they adhere to

the rules listed above, and (ii) certain inherently unsafe instructions

which are nonetheless essential for normal operation are replaced

by safe virtualized instructions.

2.3 The SµV Toolchain

SµV provides a modi�ed toolchain which allows the application

developer to write software for the virtualised SµV architecture

with the same ease-of-use as the underlying MCU architecture, and

without restriction on high level development tools.

In a standard toolchain, the compiler produces human readable

assembly �les, which are processed by the assembler resulting in bi-

nary object �les. Finally, the linker combines all object �les together

with relevant libraries in a single binary image that can be deployed

on the MCU. SµV adds a post-processor which substitutes all unsafe

dynamic assembly instructions with calls to their secure virtualized

equivalents. Since this is performed when the application is in text

ASM form, it can be implemented using simple regular expressions.

Secondly, in the linker stage the addresses of the functions residing

in the SµV are injected in the form of a symbol table. The SµV is

preinstalled on the target MCU, and the application must be linked

against these functions at their well-known addresses.

The security properties of SµV are maintained even when an ad-

versary uses their own tool-chain or writes hand-crafted assembly

by load-time veri�cation as described in the following section.

2.3.1 Load-time veri�cation

As described above, application deploymentmay only occur through

the MicroVisor, which performs veri�cation. Only safe instructions

are allowed, which do not violate the above memory restrictions.

Two types of illegal instructions can be distinguished: (i) instruc-

tions that statically jump to or access restricted memory, and (ii)

instructions that jump to or access any memory dynamically and

cannot be checked statically.

Most control transfer instructions, such as program-counter

relative branches and calls, have their target address encoded in
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the instruction and can be checked statically by the veri�er at

load time. Store operations to static variables also use an immediate

addressingmode and can be checked by the veri�er. Any instruction

of this type that has an illegal memory address as static argument

is detected and this results in the application being rejected by the

veri�er, canceling its deployment.

Applications that contain instructions which cannot be statically

checked are rejected outright. Instructions using indirect addressing

belong to this category, such as jumps and stores that use a pointer

register to hold their target address. These are common when using

pointer logic or arrays in C, and in the case of a developer using

the SµV toolchain, will have been transparently replaced by calls

to safe virtual instructions contained within the protected memory

space maintained by SµV.

2.3.2 Secure virtual instructions

The MicroVisor o�ers replacements for all unsafe dynamic instruc-

tions, which can be accessed via a call to a subroutine in the Mi-

croVisor. These virtual instructions check their arguments and will

perform the matching operation, only where it does not break mem-

ory access or control transfer rules. Following the execution of the

virtual instruction, the MicroVisor returns control to the applica-

tion. Any operation which attempts to access an illegal memory

addresses is trapped and causes the MCU to reset. Using this ap-

proach, the security features of the MCU are enhanced, without

sacri�cing functionality. Furthermore e�ciency is maintained as

only inherently unsafe operations are virtualized, allowing all other

operations to execute natively.

3 Implementation

A prototype of SµV has been implemented for the MicroPnP IoT

platform [18], which o�ers an IEEE 802.15.4 radio and an 8-bit

10MHz AVR ATmega 1284p [1] MCU, with 16 KB of SRAM and

128 KB of �ash. This section gives an overview of how SµV is

implemented on the AVR architecture, with adjustments as outlined

below.

Modi�ed Harvard architecture: In section 2, we assumed MCUs

with the common von Neumann architecture, where �ash, RAM and

anyMMIO peripherals are mapped on to a single address space. The

AVR family of MCUs use a modi�ed Harvard architecture, where

the �ash memory holding the instructions and the volatile RAM

containing the data have an isolated address space with separate

instructions to read and modify each memory. Instructions can only

be executed from �ash, and due to this limitation we can simplify

our approach to only protect instruction memory, while data mem-

ory operations remain unmodi�ed and unrestricted. Static SµV data

is placed alongside SµV code in instruction memory. Applications

are not allowed to read the SµV code or data from the instruction

memory, and is only permitted to jump within its own code-base

or the well known entry points of SµV virtual instructions. The

techniques used to restrict these instructions are identical to those

used on a von Neumann architecture. Leaving the data memory

unprotected has the additional advantage that operations on data

memory do not incur any runtime overhead.

Bootloader feature: Instruction memory in the AVR is further

subdivided into an application and a bootloader section. The appli-

cation can only read from instruction memory, while the bootloader

code can read andwrite instructionmemory. Any self-programming

code has to be located in the bootloader. The size of the bootloader

is con�gurable before deployment of the IoT device using a physical

programmer, but may not be modi�ed at runtime. The Loader/Ver-

i�er component of SµV requires write privileges to instruction

memory. Therefore the natural place of the SµV is in the bootloader

section of the instruction memory. The read and write behaviour of

the application still needs to be monitored, as applications should

not be able to read SµV instructions or data from the bootloader

section. Furthermore, by preventing arbitrary jumps into the boot-

loader section, SµV prevents the recent bootjacking exploit [10]

which can be used by applications to claim write self-programming

privileges from outside of the bootloader section.

Initialization of data memory: At boot time, variables with an

initializer should have their value assigned before code executes.

In order to do this, the instruction memory will hold all initial

data memory values in addition to the application instructions.

Bootstrapping code will copy the initial values from instruction

memory to data memory. Special care should be taken that no jumps

from the application code to the initial data stored in instruction

memory are made. The data stored in instruction memory may

include illegal instructions that could be misused by an adversary

to attack SµV. As the compiler always places the initial data in

instruction memory straight after the application’s instructions,

only the address of the last valid instruction should be transmitted

as extra metadata at load time. Any jump after that address is either

invalid or a bootloader entry point.

Two-word instructions: The AVR has a variable length instruc-

tion set. A standard AVR instruction is 2 bytes (1 word) long. As a

result, the program counter and all jumps can only point to even

bytes in the �ash. Some instructions however require 2 words, with

the 2nd word being a target address in either data or instruction

memory. There is a possibility that the 2nd word of an two word

instruction unintentionally forms an unsafe normal length instruc-

tion. While these unsafe 2nd words appear inside the application’s

instructions, they should not be jumped to. This is accomplished by

maintaining a list of unsafe 2nd words, which is enforced by both

the load-time veri�cation for static branches and jumps, and by the

run-time virtualized instructions for dynamic jumps. This list is

added as application meta-data at compile-time, and is checked by

the SµV for validity at load-time. Applications with an incomplete

list of unsafe 2nd words are rejected.

3.1 Remote attestation case study

Remote attestation is a protocol designed to detect and cure mal-

ware that is de�ned by Francillon et al. [6] as follows; a protocol P

is comprised of the following components:

• Setup(1κ ): A probabilistic algorithm that, given a security

parameter 1κ , outputs a long-term key k . This key is shared

between both parties, and is preinstalled on the Prover dur-
ing commissioning.

• Attest(k,n, s): A deterministic algorithm used by the Prover
that, given a pre-shared key k , a nonce n (provided by the

Challenger) and internal state s , outputs an attestation token

α .

• Verify(k,n, s,α): A deterministic algorithm used by the Chal-
lenger that, given a pre-shared key k , a nonce n, an internal
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state s , and an attestation token α , outputs 1 i� α re�ects

state s in the Prover (i.e. Attest(k,n, s) = α ), and outputs 0

otherwise.

These components are used in the protocol P between Challenger
and Prover as follows: i) both Prover and Challenger possess a
pre-shared long-term key k generated by Setup(1κ ) prior to de-

ployment, ii) Challenger requests proof of the state of Prover and
generates a noncen, iii) Prover runs Attest(k,n, s)with s its current
state, returning the resulting attestation token α to Challenger, iv)
Challenger runs Verify(k,n, s,α), with s the expected state. The

output of Verify proves state s of Prover.

Applying SµV to support secure remote a�estation Francillon

et al. [6] also de�ne a list of minimal properties that are required to

support remote attestation, for which they argue that specialized

hardware is necessary. We believe that SµV can provide equivalent

support in software. We go over the list and explain howMicroVisor

accomplishes this.

1. Invocation from Start: The Attest routine should only be

invoked from its �rst instruction. This is accomplished by

placing it in the SµV ROM and allowing it to be called from

the application when attestation is required. As with all

other routines residing in the SµV, only a call to the entry

point is allowed, forcing Attest to be run from the very �rst

instruction.

2. Exclusive access to secret k: The secret k should only be acces-

sible by the trusted remote attestation code. This is achieved

by placing it in the SµV ROM alongside the attestation code.

The untrusted application cannot read from this memory

area.

3. Uninterruptibility: Even on a single threaded platform, the

untrusted application may regain control after invoking At-
test using interrupts (e.g. a timer expiring). This can cause

unintended side e�ects such as the leaking of k and false

positives. All major MCU families allow global interrupts

to be temporarily turned o�. This functionality is used to

ensure atomic execution of Attest.
4. Immutability: The Attest code cannot be modi�ed by un-

trusted code before invocation. This is guaranteed by placing

the code in the SµV virtual ROM and executing it in-place.

Untrusted application code is not allowed to modify this

memory area.

5. No leaks: Under no circumstance should invoking Attest
leak the secret k or any by-products except for the �nal

return value α . This is guaranteed by above properties and

additionally implementing the Attest routine in a way that

erases these sensitive values from memory before returning.

Attest and Verify depend on computing a Message Authentica-

tion Code (MAC) of the state to be attested. The contents of �ash,

RAMmemory, registers and any other volatile or non volatile mem-

ory can be considered state. When the Prover receives a request
from the Challenger to attest a region of memory containing state

s with nonce n, Attest is called to compute the MAC α of (s | |n)

using pre-shared key k . The nonce n should be used only once

and is essential to avoid replay attacks. The computed token α is

sent back to the Challenger, where Verify computes the MAC of

(s | |n) once again, this time with s the expected state of the segment

of memory. If the computed MAC matches token α , the Prover

has the expected state. If the MAC di�ers, the Prover’s memory

is compromised and necessary measures should be taken such as

performing secure erasure. Our case-study implementation uses

HMAC-SHA1 implementation in AVR assembly. HMAC-SHA1 re-

turns a 160 bit keyed hash, and the pre-shared cryptographic key

we use is also 160 bits long. It should be noted that, while SHA1 is

no longer collision free [7], HMAC, HMAC-SHA1 remains secure

and not breakable. On the AVR platform, state can be stored in

�ash, SRAM, CPU registers and EEPROM. Our implementation we

focus speci�cally on attesting the �ash memory, as this is the only

location that malware can execute from.

4 Evaluation

We evaluate SµV by implementing reference applications and mea-

suring the overhead imposed by the Security MicroVisor as well

as the remote attestation case-study. We focus on two key per-

formance indicators: (i) application deployment overhead, and (ii)

runtime overhead: execution time, battery life, and memory foot-

print. For every performance metric we �rst consider the overhead

imposed by SµV itself, before analyzing overhead added by remote

attestation.

Four reference applications were selected to benchmark perfor-

mance: (i) a cryptographic application which encrypts and decrypts

a random 8 byte cleartext with a 128-bit key, using a software im-

plementation of the lightweight SPECK block cipher [2], (ii) the

same crypto application, but implemented in a modular fashion

by introducing indirect calls through pointers, (iii) sampling tem-

perature readings from a sensor over the I2C bus, and lastly (iv)

writing and reading a block of 256 bytes to the built-in EEPROM.

We believe that these reference applications provide a good balance

between the more computationally intensive and the more IO in-

tensive tasks that are typical for an IoT device. The pointer version

of cryptographic application is included to provide the worst case

overhead for SµV.

Due to space constraints, we provide only average and worst

case performance data. A full table of our results for all applications

is available online at: https://people.cs.kuleuven.be/~wilfried.
daniels/suv.

4.1 Deployment Overhead

During wireless transmission of the application image, the size

of the binary image impacts energy consumption and network

overhead. During application loading, the time required to load and

verify the image determines the total down-time of the wireless

device.

Over-the-air binary image size For battery powered, wireless

devices, remote software updates have a signi�cant impact on bat-

tery life [8], as sending and receiving data over the radio is an

energy consuming activity. The size of the application image is

linearly correlated to the total energy spent during the software

update, as it determines the time spent actively receiving data over

the radio. We compared the size of the image for a MCU without

SµV, with the size of an image of the same application for a MCU

with SµV. The size overhead for the SµV-enabled application images

averages 1.61%, with a worst case increase of 2.17% in applica-

tion size in the case of the temperature sensing application. This

overhead is caused by two di�erent e�ects: i) on the AVR, unsafe

single word instructions are replaced with a 2 word long instruction
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(a) Crypto pointer application
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(b) Sense temperature application

Figure 2. Plots showing the estimated battery life for a computationally intensive application (Crypto) and an IO intensive application

(Sense temperature), relative to the period at which they perform their tasks (X-axis). Di�erent curves represent battery life without and

with SµV, and of increasing rates of remote attestation.

that calls a safe virtualized version residing in the MicroVisor, and

ii) the SµV-enabled image carries a small amount of extra metadata,

such as a list of unsafe 2nd words and the address of the last valid

application instruction.

Loading/veri�cation time Once the application is transmitted,

the device will go o�ine for the duration of the veri�cation and

installation of the new application. It is important that this time is

minimized in order to maximize device uptime. For a MCU without

SµV, veri�cation is a simple check-sum to verify correct transmis-

sion. On a SµV-enabled MCU, veri�cation additionally includes a

static check of all instructions of the application, and a validity

check of the metadata transmitted with the image (i.e. the address

of last valid instruction and a list of unsafe 2nd words). SµV intro-

duces an average overhead of 4.16%, with a worst-case overhead

of 4.6% in application load times in the case of the temperature

sensing application.

4.2 Runtime Performance:

Execution speed: Execution time is directly correlated with the

battery life of low power MCUs. Typically, after the application is

done with its tasks, the MCU is put into a sleep mode to minimize

current draw. The execution time of the application determines

how much time is spent in the high current active state. We once

again compare the execution time of all reference applications with

and without SµV. On average, execution time overhead amounts

to 2.67%. However, there is a di�erence between the more compu-

tationally intensive tasks (i.e. Crypto), and the more IO intensive

tasks (i.e. temperature sensing and storage read/write). The IO in-

tensive tasks spend a relatively large amount of time busy waiting

for operations to complete, while the computationally intensive

tasks are continually executing instructions. Due to this, relative

overheads for computational tasks are higher than for IO inten-

sive tasks. The worst case overhead occurs in the case of the

modular crypto application at 5.66%.

Ba�ery life: The MicroPnP platform on which we are conduct-

ing the benchmarks consumes 3.54mA when executing a task and

54.5 µAwhen idle. Every MicroPnP device is powered by a standard

3000mAh battery pack. Based upon these values, we plot an estima-

tion of the device battery lifetime for each application against the

rate at which it is scheduled. Note that the network is a constant

in this benchmark as no data is transmitted and only the energy

consumed by the node-local code execution is considered. Figure 2

shows the impact of SµV for the worst-case CPU intensive Crypto

pointer application, and the more IO intensive Sense temperature

application. The baseline battery lifetime if the application when

sleeping constantly is 6.5 years. The Sense temperature application

has worse battery life and due to the busy waiting that is associated

with IO intensive tasks, keeping the MCU in an active state for

a longer time. When comparing identical applications with and

without SµV, we can see that for the CPU intensive Crypto pointer

application there is a marginal overhead (<1%) at high scheduling

rates, which disappears when the application is only scheduled

once every 10 seconds. For the IO intensive Sense temperature ap-

plication, SµV overheads are inperceptable on the graph whether

the application is scheduled every 100ms or every 100s. In most

real world IoT applications, long IO intensive tasks will dominate

over brief CPU intensive tasks, making any measurable reduction

of battery life caused by SµV unlikely.

Remote attestation causes additional active CPU time, and as

a result an increase in energy consumption. Remote attestation

execution times depend on the amount of �ash memory attested.

Attesting the entire 128 KB of �ash memory takes 7.6 seconds, at-

testing just the untrusted application (62 KB) takes 3.7 seconds. The

impact on battery life largely depends on the frequency of remote

attestation. Figure 2 shows the battery lifetime of our reference

applications when remotely attested at rates ranging from once

every minute to once every hour. For both applications, an attes-

tation rate of once every hour incurs a worst-case reduction in

battery lifetime of 6.2%. The e�ect of a higher attestation rate is less

prominent for applications with a higher sampling rate, where the

energy consumption of the primary task overshadows attestation

energy consumption.

Memory overhead: SµV incurs no static RAM overhead as all con-

stants are stored in �ash. The stack is used for short term data
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storage when calling any subroutine in the SµV (i.e. any virtual

instruction, remote attestation, etc). In order for these subroutines

to properly function, the application can not use all available stack

space. For correct basic operation of the MCU, a minimum amount

of 13 bytes of RAM is required for virtual instructions. Re-

mote attestation inherently needs more stack space to temporary

store full pages of �ash andmaintain intermediate states of the cryp-

tographic functions, In total, 1318 bytes of RAM are required

for remote attestation. This overhead could be reduced by load-

ing memory in smaller chunks, at the expense of performance. The

SµV core requires 1070 bytes of �ash, or a marginal 0.82% of the total

�ash memory available. Remote attestation consumes an additional

1538 bytes including the HMAC-SHA1 hash function. Total �ash

used amounts to 2608 bytes or 1.99% of the total 128 KB �ash

available on the platform.

5 Related Work

The design of SµV shares similarities with the Software-based Fault

Isolation (SFI) approach proposed by Wahbe et al. [17]. SFI pre-

vents faults in untrusted software modules from corrupting other

software on processors with a single shared address space and

no memory protection. For each software module, SFI reserves a

logically separate portion of the application’s address space. The

isolation of module address spaces is maintained at runtime by

rewriting unsafe instructions to verify target addresses. SµV also

uses selective software virtualization and assembly-level code ver-

i�cation to ensure full isolation of the trusted software module

(SµV) from untrusted application software.

The software fault isolation [17] techniques upon which the

memory isolation of SµV is built have previously also been ap-

plied to low-power MCUs in Harbor [11]. Harbor focuses purely

on providing a software-based Memory Protection Unit (MPU) to

resource-constrained embedded devices by applying SFI sandbox-

ing techniques, and adds no additional security operations. Harbor

provides a hypervisor that is deeply tied to the SOS operating sys-

tem to enforce memory isolation, whereas, SµV targets bare-metal

devices and can be used as a foundation to build embedded operat-

ing systems on top of. Harbor is composed of four components: (i)

a binary rewriter, which is a desktop application that takes a binary

image generated by the cross compiler and inserts run-time checks

before the potentially unsafe instructions, (ii) a binary veri�er run-

ning on the mote itself, ensuring that the incoming binary image

is correctly sandboxed, (iii) the Memory Map Manager, which is

an abstraction layer incorporated in the SOS operating system that

aims to store and retrieve access permissions for a given address,

and lastly (iv), a Control Flow Manager, which ensures that control

can never �ow out of the dedicated domain except when permitted

by the rules in the Memory Map Manager. The complexity of the

Harbor software stack is much higher when compared with SµV,

both in terms of toolchain modi�cations as on the device itself.

Furthermore, the codebase of Harbor is six times larger than SµV.

The average execution time overhead is twice as high than SµV

running on the same family of MCUs.

Existing remote attestation approaches can be further classi�ed

as hardware or software-based depending on how they enforce the

security properties, or elements thereof, that are required by re-

mote attestation. The most relevant are SMART [5] and TyTAN [3].

SMART is a hybrid hardware/software approach that requires hard-

ware modi�cations to the memory bus access logic of the MCU.

SMART isolates and secures remote attestation code by storing

it in a secure ROM inside the �ash memory. SMART relies on a

challenge-response protocol for verifying the internal state of the

prover by computing the HMAC of the entire memory. During

the execution of the attestation process, interrupts are disabled in

order to guarantee atomic execution and avoid TOCTTOU attacks.

If an error is detected, a hardware reset of the MCU is performed

enforcing memory cleanup. TyTAN is based on an Execution-aware

Memory Protection Unit (EA-MPU), a hardware component that

provides memory access control enforcement based on the iden-

tity of code that attempts to access a data region. TyTAN adds

interruptibility of the attestation process to support hard real-time

applications. While SMART and TyTAN have much lower hardware

requirements than a TPM, they are still di�cult to provide in the

lowest-end class of MCUs (e.g., Atmel AVR). More importantly, mil-

lions of devices are already deployed that would require hardware

modi�cation or replacement to implement these solutions.

Software-only attestation approaches based on timing techniques [12–

15] rely on the estimated upper-bound time required by a given

con�guration of the prover device to freshly compute the correct

answer for the veri�er. If the computation takes longer, then the

presence of an attacker can be inferred. The inherent limitation of

time-based assumptions have been discussed in the literature [16]

and several concrete attacks have been also published [4]. We there-

fore do not consider these approaches to be secure.

6 Conclusions and Future Work

This paper introduced SµV, the Security MicroVisor middleware.

SµV tackles the problem of limited security features on contempo-

rary IoT devices through a three-fold approach: (i) selective software

virtualisation of the MCU architecture, (ii) deployment-time veri-

�cation of incoming code at the assembly level and (iii) toolchain

modi�cations which allow developers to transparently compile

their software for the virtual SµV architecture.

SµV is compatible with the vast majority of IoT MCUs and, cru-

cially, as SµV does not require additional hardware security features,

the approach may be applied to improve the security of millions of

IoT devices that are already in the �eld. VersaSense is now in the

process of rolling out SµV in their MicroPnP platform.

In our view, the overhead of SµV is extremely reasonable. Our

evaluation on the ATmega 1284p shows a modest increase in the

size of deployable code at 3.58%. The execution time of application

code also increases minimally at 2.67%, and has little e�ect (<1%) on

battery life. Code veri�cation overheads during software updates

are likewise feasible for embedded IoT devices, adding an average

local overhead of just 4.16%. Our case study shows that SµV can

be used to securely implement remote attestation, which was pre-

viously believed to be impossible in pure software. Furthermore,

hourly software attestation reduces battery life by a maximum of

6.2%, while providing rapid detection of malware.

Our future work will proceed along two fronts (i) focus on devel-

oping SµV into a framework which allows a wide range of security

features to be easily added using the same techniques and (ii) for-

mal veri�cation of SµV to ensure implementation correctness and

thereby guarantee the described security properties.
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