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Abstract—We have developed a novel, model-based active con-

tour algorithm, termed “snakules”, for the annotation of spicules

on mammography. At each suspect spiculated mass location that

has been identified by either a radiologist or a computer-aided de-

tection (CADe) algorithm, we deploy snakules that are converging

open-ended active contours also known as snakes. The set of con-

vergent snakules have the ability to deform, grow and adapt to

the true spicules in the image, by an attractive process of curve

evolution and motion that optimizes the local matching energy.

Starting from a natural set of automatically detected candidate

points, snakules are deployed in the region around a suspect spic-

ulated mass location. Statistics of prior physical measurements of

spiculated masses on mammography are used in the process of de-

tecting the set of candidate points. Observer studies with experi-

enced radiologists to evaluate the performance of snakules demon-

strate the potential of the algorithm as an image analysis tech-

nique to improve the specificity of CADe algorithms and as a CADe

prompting tool.

Index Terms—Active contours, computer-aided detection, mam-
mography, snakes, snakules, spicules.

I. INTRODUCTION

B
REAST cancer manifests as various findings on mam-

mography—microcalcifications, masses (spiculated and

nonspiculated), and architectural distortions. Spiculated masses

are characterized by a pattern of radiating lines known as

spicules that emanate from a central mass. Spiculated masses

have a much higher risk of malignancy than nonspiculated
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masses and calcifications and hence it is crucial to detect spicu-

lated masses [1]. CADe systems have been developed to assist

radiologists in detecting signs of early breast cancer [2]–[4].

Studies have shown CADe systems to perform consistently

better on microcalcifications than on masses, and in particular,

the detection performance on spiculated masses is not optimal

[5]–[7]. This has prompted several research groups to develop

CADe systems specifically designed to detect spiculated masses

[8]–[13].

Most CADe systems are comprised of two stages: a high sen-

sitivity stage to detect suspect lesion locations on the mammo-

gram and a high specificity stage to reduce the number of false

positive (FP) candidates that do not correspond to actual lesions.

The final outcome of a CADe system is usually a set of marks

(also referred to as prompts) on the mammogram identifying

suspect lesion locations.

CADe systems designed to detect spiculated masses usually

employ strategies to detect patterns of converging lines. For in-

stance, Karssemeijer and te Brake deployed derivatives of Gaus-

sians at multiple scales to estimate orientations of pixels to-

wards detecting spiculated masses [9]. The pixel orientation

map was used to compute features that were sensitive to pat-

terns of converging lines, and these features were used for clas-

sifying suspect locations as possible spiculated masses. Zwigge-

laar et al. proposed a statistical approach based on factor anal-

ysis to describe oriented patterns of linear structures character-

istic of spiculated masses [13]. The appearance of the central

mass was statistically modeled using local-scale orientation sig-

natures extracted from recursive median filtering and approxi-

mated using principal component analysis. More recently, our

group proposed a model-based framework for the early detec-

tion of spiculated masses on mammography [8]. What makes

our approach novel is that we measured physical properties of

spiculated masses on a number of mammograms and devel-

oped a statistical model from these measurements. The statis-

tical model serves as the basis for determining the parameters

of a novel class of pattern matching filters, which we term spic-

ulated lesion filters that are deployed to aid in the detection of

spiculated masses and architectural distortion. Other methods

for detecting spiculated masses have included the use of direc-

tional wavelets and multiresolution analysis of mammograms

[10], [11].

Most CADe systems for spiculated masses are developed

around the central theme of detecting radial patterns of con-

verging lines. Consequently most of these methods achieve

high sensitivity in detecting suspect spiculated mass locations.

0278-0062/$26.00 © 2010 IEEE
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However, a mammogram invariably contains other normal

linear structures that are superimposed on one another and

resemble a pattern of converging lines. Such locations are rou-

tinely marked as suspect locations by the detection algorithms

resulting in a high FP rate. For example, the oriented pattern

method proposed by Zwiggelaar et al. achieved a sensitivity of

80% at 0.014 false positives per image (FPI) for lesions having

diameters exceeding 16 mm in a data set containing 29 spicu-

lated masses and 100 normals [13]. However, Zwiggelaar et al.

reported that the specificity of their orientation pattern method

fell below acceptable levels on smaller spiculated masses [13].

The method proposed by Karssemeijer and te Brake achieved a

sensitivity of 80 % at 0.4 FPI on a data set containing 19 stellate

distortions (spiculated masses and architectural distortions) and

31 normals [9]. However, the attained FPI rate was 1 at a sen-

sitivity of approximately 90% [9]. Likewise, the model-based

detection of spiculated masses proposed by our group achieved

a sensitivity of 80% at approximately 0.75 FPI on a dataset

comprising 50 spiculated masses and 50 normals [8], but the

FPI rate increased to 2.7 at a sensitivity of 88%. As pointed

out by Zwiggelaar et al., the specificity of CADe systems

designed to detect oriented patterns of converging lines could

be improved if the radiating spicules could be discriminated

from other linear structures in the mammogram [13]. This calls

for methods that could accurately capture the profile of spicules

and other linear structures. Another problem that exists in the

evaluation of these different CAD systems (e.g., [8], [9], and

[13]) is that each system has been evaluated on a different,

limited dataset of spiculated masses and it is hard to judge

how these systems would perform on a single, large dataset of

spiculated masses and normals. Even clinical studies that have

evaluated the performance of commercial CADe systems have

found that the detection performance of these systems on stel-

late distortions is less than acceptable. For example, Baker et

al. [14] found that for detection of architectural distortion, one

commercial system achieved a per-image sensitivity of 38% at

0.70 FPI while another achieved a per-image sensitivity of 21%

at 1.27 FPI. These numbers highlight the need for methods to

improve the overall performance of CADe systems designed to

detect spiculated masses and stellate distortions in general.

Another problem that exists with CADe systems for spicu-

lated masses is the prompting strategy. As discussed by Astley

[15], in the case of spiculated masses, it is not always clear

where to place the symbolic prompt. A symbolic prompt could

be placed at the center of the mass, or at the point of convergence

(focus) of the spicules [15]. Yet, both these placements of the

symbolic prompt might not be optimal in terms of helping a ra-

diologist’s efficiency in arriving at a diagnostic decision. CADe

systems usually do not explicitly annotate spicules and hence

it is left to the radiologist to determine if the symbolic prompt

corresponds to a spiculated mass or not. While most radiologists

can detect obvious spicules, it would be beneficial if algorithms

were developed to detect and explicitly annotate spicules. Such

algorithms might help improve clinical productivity.

In this paper, we present “Snakules”—a model-based active

contour algorithm for the annotation of spicules on mammog-

raphy. At each suspect spiculated mass location that has been

identified by either a radiologist or a CADe algorithm, we de-

ploy snakules that consist of converging open-ended active con-

tours also known as snakes [16]. The set of convergent snakules

(snakes that seek spicules) have the ability to deform, grow, and

adapt to the true spicules in the image, by an attractive process

of curve evolution and motion that optimizes the local matching

energy. The algorithm is model-based in that statistics of phys-

ical measurements of spiculated masses collected from mam-

mograms are used to detect the candidate snakule points from

where the snakes originate.

It is important to note that other groups have tried to ex-

tract properties specific to spicules to improve specificity of

CADe systems. Zwiggelaar et al. demonstrated the use of

cross-sectional intensity profiles as a basis for classifying linear

structures seen on a mammogram with particular emphasis

on correctly recognizing spicules and ducts [17]. However,

Zwiggelaar et al. do not explicitly seek to capture the path of

linear structures such as spicules (by trying to accurately trace

the path of a linear structure); rather, they collect cross-sec-

tional profile information from each linear structure detected

on a mammogram using line detection operators and classify

them into anatomical types by using a classifier trained on

ground truth and cross-sectional information. Karssemeijer and

te Brake have exploited the property of convergence of linear

structures to detect breast abnormalities (stellate distortions)

without explicitly trying to capture the path of linear struc-

tures [9]. Qian et al. have shown that directional wavelets in

conjunction with contour tracing can be used to trace spicules

explicitly [18]. While the algorithm developed by Qian et al. is

able to detect spicules of different sizes, it suffers from some

drawbacks, most notably translation/rotational dependence of

the decomposition used and ad hoc spicule aggregation rules

with lack of model-based design mechanisms. There are other

groups that have attempted to deploy snake-like devices to

segment solid masses and use feature extraction strategies to

classify the masses (e.g., [19]–[21]); however, to the best of our

knowledge, our approach is the first attempt aimed at explicitly

capturing the path of spicules using deformable active contours

in a bid to use them for distinguishing spiculated masses from

other breast structures.

II. MATERIALS AND METHODS

A. Data Set

The data set for this study consisted of 52 spiculated masses

identified on mediolateral oblique views that were randomly

selected from the digital database for screening mammography

(DDSM) [22], [23]. Cases from two different scanners, LU-

MISYS (scanner resolution 50 m per pixel) and HOWTEK

(scanner resolution 43.5 m per pixel), and a range of density

and subtlety ratings were represented in this cohort. Table I

summarizes the statistics of the dataset. Regions of interest

(ROIs) were extracted from each case and the experiments were

conducted on the ROIs. Each ROI was defined such that the

central mass and all the spicules were clearly included. Out of

the 52 ROIs, 21 ROIs that were digitized using the LUMISYS

scanner were selected and used to collect measurements of

physical properties of spiculated masses from experienced radi-

ologists (measurement set in Table I) [24]. These measurements
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TABLE I
STATISTICS OF THE DATASET FROM DDSM USED IN THIS STUDY (SUBTLETY RATINGS WERE OBTAINED FROM DDSM, WHERE SUBTLE � �, AND OBVIOUS � �)

included the major axis of the central mass region, the width of

a spicule, length of a spicule, and the number of spicules around

the central mass. We have previously shown that experienced

radiologists can reliably measure these physical properties of

spiculated masses with a high degree of interobserver agree-

ment [24]. These measurements on real spiculated masses

provided valuable information when designing the snakules

algorithm. The remaining 31 ROIs were broken down into two

sets: a set of 11 ROIs (development set in Table I) was used for

the development and validation of the snakules algorithm and

a set of 20 ROIs was reserved exclusively for the evaluation of

the algorithm (evaluation set in Table I). The ROIs on which

the snakules were deployed were sub-sampled by a factor of

four (along both the row and the column dimension). This was

done to reduce the computation time. Institutional review board

approval was obtained prior to this study.

B. Detecting Candidate Snakule Points

The first step in the snakules algorithm is to detect a set of

points on the image from where spicules originate in the re-

gion around the suspect spiculated mass location identified by

either a CADe algorithm or a radiologist. These candidate points

represent locations on the image where snakules would be de-

ployed. The problem of detecting the candidate snakule points

can be mathematically stated as the problem of finding the set

(1)

where is a candidate snakule point, represents a neigh-

borhood of pixels under consideration around the suspect spic-

ulated mass location, represents another point in the

neighborhood is the dominant pixel orientation at a point

in (e.g., is the dominant pixel orientation at ), is

the direction of a point in with respect to (e.g.,

is the direction of the point with respect to ),

is the radius of a circular disk centered on and towards

which the pixel at a given location is directed, is the Euclidean

distance between a point and (e.g., represents the

Euclidean distance between and ), and repre-

sents the th orientation bin. The direction at a point, (e.g.,

), is computed as .

The condition is the same as defined

by Karssemeijer and te Brake [9], in that we consider pixels in a

neighborhood around the suspect spiculated mass location that

are directed towards a circular disk of radius centered on the

suspect spiculated mass location. However, this condition alone

will not suffice to detect the candidate snakule origin points.

This condition will yield all the points in the neighborhood

that are directed towards the suspect spiculated mass location.

However, we require those pixel points that are not only directed

towards the suspect spiculated mass location, but are also closest

to the mass. This is captured by the condition on the second line

of (1), which ensures that of all the pixels that are directed to-

wards the central mass region and whose directions with respect

to the suspect spiculated mass location fall in the same orienta-

tion bin , only the point that is closest to the suspect spiculated

mass location will be selected. These two conditions yield a set

of pixel locations whose dominant orientations are directed to-

wards the central mass region and are closest to the central mass.

The detection of candidate snakule points is carried out on

steerable filtered-Radon enhanced ROIs rather than on the ROIs

cropped directly from the mammograms. The primary motiva-

tion behind this is to mitigate the effects of noise and clutter

caused due to overlapping out-of-plane tissue structures, which

is a common occurrence in mammography due to the projec-

tion of 3-D breast structures onto a 2-D image plane. Radon en-

hancement of spiculated lesions on mammograms is explained

in detail in [8]. We briefly review the procedure here.

The Radon transform of a continuous function is de-

fined as

(2)

where and are the parameters of the Radon domain and

is the Dirac Delta function. Extending the above definition to

images, the integral denotes that the value of for any

given is the integrated density of the image along

the line . Thus, an -pixel thick

line in the image space maps to -points located along

a column in the Radon domain. It is possible to selectively en-

hance local peaks comprising a certain number of points in the

Radon domain, which corresponds to a linear structure in the

image space of the same thickness as the number of points in the

Radon domain. The enhancement of local peaks was achieved

through a simple linear column filter whose design was based

on the average width of the spicules. Once the peaks had been

enhanced, we used a Hamming window to attenuate the high
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Fig. 1. (a) An ROI from a mammogram depicting a spiculated mass. (b) Radon
enhanced ROI depicting enhanced curvilinear structures.

frequency noise in the Radon projections (the set of line inte-

grals). Then the inverse Radon transform was computed using

the filtered back projection technique to yield a ROI with en-

hanced linear structures and minimum clutter. Fig. 1(a) and (b)

shows a ROI extracted from a mammogram depicting a spic-

ulated mass, and the Radon enhanced ROI. It is evident from

Fig. 1(b) that the Radon enhanced ROI has curvilinear struc-

tures enhanced with suppression of clutter due to overlapping

out-of-plane tissue structures.

The dominant orientation at each pixel of the Radon en-

hanced ROI was computed by filtering the Radon enhanced ROI

with a set of steerable quadrature filter pairs comprised of the

fourth derivative of a Gaussian and its Hilbert transform [25].

The fourth derivative of a Gaussian and its Hilbert transform

provide good angular resolution and can be used for analyzing

multiple oriented structures at a single location as described in

[25]. The dominant orientation energy response at each pixel of

the Radon enhanced ROI was computed as described in [25] and

this was used to find the strongest pixel locations in the neigh-

borhood of a suspect spiculated mass location whose dominant

orientations are directed towards the central mass region. It is

important to note that the steerable filters are applied on the

Radon enhanced ROI and not directly in the Radon domain, and

the processing is carried out at a single scale.

To test the hypothesis that the estimate of the dominant ori-

entation from the Radon enhanced ROI will be more accurate

than from the ROI directly, we simulated linear structures of

different widths, with each linear structure oriented at an angle

90 and superimposed on real mammographic backgrounds of

different densities. The mammographic backgrounds were ROIs

of size 256 256 pixels, and were cropped from the same set

of 21 mammograms used in the measurement study [24], and

from regions of the mammogram that did not contain the mass.

Each background had one linear structure of length 72 pixels su-

perimposed on it at an angle of 90 . The intensity profile along

the length of the structure was set to a constant value equal to

the maximum intensity of the mammographic background. This

ensured that the linear structure was at least as bright as the

background. We considered three different widths (5, 6, and 7

pixels), and each of these linear structures was superimposed

on all the 21 backgrounds. The backbone of each linear struc-

ture was centered close to the middle column of each mammo-

graphic background ROI. Fig. 2 illustrates examples of sim-

ulated linear structures superimposed on real mammographic

backgrounds and the corresponding Radon-enhanced ROIs. The

column filter used in the Radon-enhancement was designed to

match the width of the linear structure. The dominant orien-

tation was computed from each ROI as well as its Radon en-

hanced version. The error in the estimation of the dominant ori-

entation was computed at each point along the backbone of the

linear structure by comparing the estimated orientation with the

ground truth (90 ) for both the cases. The error was accumu-

lated across all 21 ROIs for each width of the linear structure.

Cumulative distribution curves of the dominant orientation error

were generated (Fig. 3), and the standard deviation of the error

was computed (Fig. 3). The Wilcoxon sign rank (WSR)

[26] test was also performed to assess if the dominant orienta-

tion errors computed from the ROIs and their Radon enhanced

versions were significantly different for each of the three dif-

ferent widths of the linear structure. The resulting p-values are

also summarized in Fig. 3. These results suggest that the esti-

mate of the dominant orientation is more accurate for different

widths of the linear structure when performed on the Radon en-

hanced ROI rather than on the ROIs cropped directly from the

mammograms. We acknowledge that our experimental setup is

fairly simple, in that we have considered only a single orien-

tation and a single synthetic linear structure, with no intersec-

tions or junctions. However, we sought to evaluate the accuracy

in the estimation of dominant orientation on mammographic
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Fig. 2. (a) (L) 5 pixel wide (b) (L) 6 pixel wide (c) (L) 7 pixel wide simu-
lated linear structures, all oriented at angle 90 and superimposed on real mam-
mographic backgrounds. Also shown are the corresponding Radon enhanced
ROIs (R).

Fig. 3. Cumulative distributions curves of dominant orientation error (� �

ROI� � � Radon enhanced ROI). Top row: five pixels wide linear structure
(LS), � � ����� (ROI), � � ���	� (Radon enhanced ROI), WSR p-value
����
; Middle row: six pixels wide LS, � � ����� (ROI), � � ����� (Radon
enhanced ROI), WSR p-value ����
; and Bottom row: seven pixels wide LS,
� � ����� (ROI), � � ����� (Radon enhanced ROI), WSR p-value ����
.

backgrounds in the simplest possible scenario to help us de-

cide whether to estimate dominant orientations from the ROIs

directly or their Radon enhanced versions in the more complex

scenario of real data. In Fig. 9(a) and (b), we also show the re-

sults of the overall snakules algorithm on an ROI when the dom-

inant orientation was estimated from the Radon enhanced ROI

and the ROI cropped directly from the mammogram, respec-

tively. These results also suggest that the quality of the annota-

tions is better when the dominant orientation is estimated from

the Radon enhanced ROI rather than from the ROI directly.

The set of candidate snakule points could contain outliers

in the sense that there are points that are farther away from the

suspect spiculated mass location than the other points are. This

could arise due to the choice of the heuristic for determining the

size of the neighborhood . To eliminate such outliers, we use a

popular distance-based outlier detection technique described in

[27]. According to the definition of a distance-based outlier, an

object in a dataset is an outlier if at least fraction

of the other objects in the data set lie greater than a distance

from the object . This is a simple, yet powerful technique

[27] to detect outliers in a dataset. In our implementation,

represents the 2-D Euclidean distance of a candidate snakule

point from the remaining candidate points and is set to a value

of 50%. In other words, we required at least half the number of

remaining candidate snakule points to lie at a distance greater

than for any given point to be considered an outlier.

C. Parameter Design

The choice of the parameter values used in the detection of the

candidate snakule points, where possible, is based on prior mea-

surements of physical properties of spiculated masses. These

measurements were collected from experienced radiologists on

21 ROIs scanned using the LUMISYS scanner and our previous

study had shown that these measurements could be reliably car-

ried out with a good degree of inter-observer agreement [24].

The design of the linear column filter used to create the Radon

enhanced ROI was based on the average spicule width. An anal-

ysis of the distribution of the spicule width (in pixels) measured

by two experienced radiologists (GJW and TWS) [24] revealed

a lognormal distribution for spicule width as illustrated in Fig. 4.

We used the measurements made by the more senior radiologist

(GJW) for choosing the parameter values. The average spicule

width was found to be m from the spicule

width distribution of the more senior radiologist [Fig. 4(a)].

This value of average spicule width translated to five pixels for

sub-sampled ROIs extracted from mammograms scanned using

LUMISYS and six pixels for sub-sampled ROIs extracted from

mammograms scanned using HOWTEK. We chose to set the

parameter value for the average spicule width to be equal to six

pixels since the snakules algorithm was to be deployed on cases

from both the scanners. Consequently, we used a column filter

to enhance local peaks that are

comprised of six points in the Radon domain. It is important to

note that since the filter coefficients sum to 0, the response of

the filter to slowly varying values in the Radon domain will be

close to 0 or very small.

The choice of the parameter , the radius of the circular disk

as defined in (1), was based on physical measurements of the

major axis of 21 spiculated masses. The median radius of a spic-

ulated mass was found to be mm from the measure-
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Fig. 4. (a) Spicule width distribution (GJW), average spicule width
� ������ � ������ �m, mean squared error (MSE) of lognormal
	
 � ����. (b) Spicule width distribution (TWS), average spicule width
� ������� ������ �m, MSE of lognormal fit � ����.

ments of the major axis performed by the more senior radiol-

ogist. This value of median radius translated to 35 pixels for

sub-sampled ROIs extracted from mammograms scanned using

LUMISYS and 40 pixels for sub-sampled ROIs extracted from

mammograms scanned using HOWTEK. We chose to set the

parameter to be equal to 40 pixels since the snakules algo-

rithm was to be deployed on cases from both the scanners.
The space around the suspect spiculated mass location

as defined in (1) was divided into 24 orientation bins with a bin
width of 15 . From the measurements of the physical properties
of spiculated masses, we found the average number of spicules to
be equal to . Our choice for the number of orienta-
tion bins (24) was based on this finding from the measurements
of physical properties of spiculated masses. Finally, the neigh-
borhood in (1) was defined as a circular torus whose inner ra-
dius was set to a value of 31 pixels and the outer radius was set to
a value of 99 pixels. These numbers, though somewhat arbitrary,
were set to account for the variation in the mass sizes of different
spiculated masses and the varying lengths of their spicules. Fig. 5
illustrates the detection of candidate snakule points with the pa-
rameters set as described in this section.

Fig. 5. Detection of candidate snakule points (each candidate point identified
on the ROI is denoted by a “
”).

D. Snakule Evolution and Growth

Once the candidate snakule points are identified, we deploy

open-ended, parametric snakes, originating from these points.

A parametric snake or active contour [16] is a parametric curve

that evolves through the image

to minimize the energy functional

(3)

where and are the first and second derivatives of

, representing continuity and curvature of the contour re-

spectively. The weighting parameters and represent the rel-

ative importance of the continuity and curvature of the contour.

The external energy, , typically arises from the image

and draws the contour towards features of interest such as edges.

A snake that minimizes the net energy has to satisfy the

Euler–Lagrange equation , which

can be expressed as the force-balanced equation ,

where is the internal force that controls

the contour’s continuity and curvature, and

is the external force arising from the image that draws the

contours towards edges or lines. Many groups have focused

on developing new formulations for the external force

(e.g., [28], [29]) and these formulations are primarily geared

at improving the capture range of the contour and reducing

the impact of image noise on the contour evolution. We use

one such formulation for the external force called vector field

convolution (VFC) for the evolution of snakules [29]. The VFC

force is computed as the convolution of a user-defined vector

field kernel with a feature map (e.g., edge map) generated from

the image [29]. The vector field kernel is defined such that all
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vectors in the field point towards the kernel origin [29]. Hence,

when the kernel origin is a feature of interest such as an object

boundary, then all the vectors in the vector field point towards

the object boundary, thereby causing the evolving contour to

move towards the object boundary. A significant advantage in

using the VFC force as opposed to standard formulations of

external forces or more sophisticated formulations such as the

gradient vector flow field (GVF) [28] is that the VFC force is

robust to spurious edges and noise in the image and provides

a large capture range. This is particularly important when

evolving snakes on images such as mammograms, due to the

large amount of clutter present in these images. Additionally, it

is possible to show that the standard edge-based external force

and the GVF force can be expressed as special cases of the

VFC force [29].

Instead of using a standard edge map as a feature map, we

use the Radon enhanced ROI as the feature map. The Radon en-

hanced ROI has the nice property that the linear structures are

enhanced and clutter from spurious edges in the mammogram is

reduced, which would otherwise manifest on a traditional edge

map. Further, the Radon enhanced ROI has the property that it

is nonnegative and has a larger value near the enhanced curvi-

linear structures [Fig. 1(b)], and hence these curvilinear struc-

tures contribute more to the VFC force than the homogeneous

regions of the ROI. This property will cause the VFC external

force to attract the evolving contour close to the curvilinear

structures of interest. The VFC force replaces the standard ex-

ternal force in the force balance equation

. The snake update equations remain

the same and are as given in [29].

We adopted an approach that lets the snakules grow and sub-

sequently evolve to trace the spicules. This was motivated by the

fact that the true length of a spicule is not known beforehand.

Dropping snakes much longer than the actual spicule brings

about instability as the snakes evolve towards structures that

are not spicules. The idea of growing snakes was first described

by Berger [30] as a robust alternative to dropping long snakes

to trace open-ended curvilinear structures in images and we

adopted a similar strategy. The initial snakule segment is de-

ployed as a short straight line of pixels at the

detected candidate snakule point. This choice of snakule seg-

ment length was arbitrary, and the only consideration was to

prevent instability in the snake evolution process by keeping the

segment relatively short. The initial orientation of this straight

line is the same as the dominant pixel orientation computed

from steerable filter analysis. This short snakule segment then

deforms towards the enhanced spicule under the influence of

the VFC force. Once the deformation is complete, the deformed

curve is extended in the tangent direction by introducing an-

other short snakule segment, which is a straight line of length

pixels. The new segment then deforms and the iterative

process of snakule growth and deformation continues until a

stopping criterion is met. We used a curvature-based stopping

criterion, in which the growth of a snakule was stopped at a

point where the curvature of the snake exceeded a 30 limit. We

used a measure of curvature described in [31] that is bounded,

with values in the interval . The 30 curvature limit was

based on excitatory-inhibitory models of human perception of

contour grouping [32]. The values of and in (3) have been

set to 0 and 1, respectively. A zero value of at a point along

the snake could result in a discontinuity at that point. However,

since each snakule segment that deforms is a relatively short

segment (length pixels), discontinuities are rare. A value

of 1 for places an emphasis on the segment being free of cor-

ners, which is a desirable property for tracking curvilinear seg-

ments. Fig. 6 illustrates three iterations of a growing snakule.

It is important to note that our strategy of growing snakules

is similar to how a radiologist would annotate a spicule on a

mammogram using an electronic interface such as a stylus or a

mouse. Finally, once the evolution and the growth of a snakule

has stopped, we perform a simple postprocessing operation to

check if the current snakule has annotated a linear structure that

has already been annotated by any of the other snakules. This

could happen if two snakules originate from relatively close

points, and end up being attracted towards the same linear struc-

ture. To prevent this redundancy, at every point on the current

snakule, we check if there is at least one point in any of the other

snakules that lies within a square window of size 3 3 centered

at the point on the current snakule. If there exists one such point

in the 3 3 window, then the current snakule is discarded. The

size of the window is kept deliberately small and we end up

only discarding snakules that are very close to any of the other

snakules.

E. Evaluation of Snakule Annotations

To evaluate the performance of snakules for annotating

spicules, we conducted an observer study with three experi-

enced radiologists (GJW, TMH, TWS) who judged the quality

of the annotations. Two randomly chosen sets of 10 distinct

spiculated masses were used for this study. Each set consisted

of ROIs manually centered on a spiculated mass that was

cropped from the mammogram, and neither of these sets had

been previously used during the development and the initial

qualitative validation of the algorithm. The evaluation of the

snakules algorithm was performed in two phases. In the first

phase, the snakules algorithm was used to annotate one set of

ROIs, while the other set was annotated by an experienced,

nonclinical observer (GSM) using the NIH ImageJ freehand

annotation tool. The images were not edited prior to annotating

using the free hand annotation tool and were annotated sequen-

tially. No magnification was used on any of the images and

the annotations were performed in one sitting. The two sets

of annotations were then presented to the three radiologists in

a randomized order. The three radiologists have a collective

experience of more than 40 years in interpreting mammograms.

In the second phase, which was conducted six months later, the

set of 10 ROIs that were previously annotated using snakules,

were manually annotated by the nonclinical observer (GSM),

and the set of ROIs that were previously manually annotated

were annotated using snakules. The two sets of ROIs were

again presented to the three radiologists in a randomized order.

Having the two phases six months apart ensured that the radi-

ologists did not remember the cases, and the annotations. Thus,

at the end of the two-phase study, there were 20 ROIs, each

of which was annotated using both the methods (snakules and

manual). The two phases of the study were blinded in that the
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Fig. 6. (a)–(c) Three iterations of a growing snakule illustrating the growth of
a snakule until a stopping criterion is met.

radiologists did not know anything about the techniques used

to annotate the ROIs, and the radiologists were not allowed

to discuss with one another. The main goal of the study was

to judge if the quality of the annotations performed by the

snakules method on a set of spiculated masses was equivalent

to the quality of annotations performed by an experienced

observer.

In each phase, the radiologists were presented with a ques-

tionnaire in which they were asked to report the following quan-

tities for each of the 20 annotations that were presented in a

randomized order. 1) The number of linear structures that were

annotated but did not correspond to actual spicules (i.e., the

number of FP annotations) 2) The number of obvious spicules

that were missed (i.e., the number of false negatives (FN)) 3) Of

the obvious spicules correctly annotated (in other words, the true

positives (TP)), the number of spicules that had their lengths cor-

rectly identified. The radiologists were specifically instructed to

focus on obvious spicules, since it is nearly an impossible task

for either a human or a computer vision algorithm to identify all

the spicules around a spiculated mass.

For each radiologist, we computed the following measures

from the three quantities reported by them:

(4)

where is the precision of the annotation method defined as the

fraction of all the annotations accumulated from the 20 cases

that correspond to a true spicule, is the recall of the anno-

tation method defined as the fraction of obvious spicules cor-

rectly identified and annotated across all 20 cases, and is

the fraction of correctly annotated spicules whose length was

correctly identified across all 20 cases by the annotation method

(in other words, the accuracy of correctly identifying the true

spicule length). For a good annotation method, all the three mea-

sures described above in (4) should be close to 1.

An equivalence test for binomial random variables [33] was

performed on each of the three measures described above in (4)

to statistically assess the quality of annotations performed by the

snakules method against the quality of annotations performed

by the manual method. An equivalence test was the appropriate

choice since we were primarily interested in establishing equiv-

alence of the two methods rather than the difference between

the two methods. We made a few assumptions regarding our

experimental design in order to perform the equivalence test

for binomial random variables. Firstly, for assessing the equiv-

alence of precision score of the two methods, we made an as-

sumption that each annotation in the set of all annotations accu-

mulated from the 20 ROIs was an independent and identically

distributed (i.i.d) Bernoulli trial. The outcome of each trial was

a true spicule (success) or a false spicule (failure) as judged by

the radiologist. Secondly, for assessing the equivalence of re-

call score of the two methods, we made an assumption that each

spicule in the set of all obvious spicules (spicules that were ev-

ident to a radiologist) that were accumulated from the 20 ROIs

was an i.i.d Bernoulli trial. The outcome of each trial was a suc-

cessful annotation (success) or a missed annotation (failure). Fi-

nally, a similar assumption of a set of i.i.d Bernoulli trials was
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made to statistically assess the equivalence of the accuracy of

length of true spicules identified by the two methods. We ac-

knowledge that these were simplifying assumptions as the de-

tection of a spicule from a dense mammographic background

might not be an i.i.d Bernoulli trial and might depend on fac-

tors such as presence of other spicules, and the mammographic

background in itself. Given these assumptions, it was possible

to express the three performance measures of the two methods

as probabilities of success of two binomial random variables

and the effectiveness of the snakules method was judged by an

equivalence test for binomial random variables.

For testing equivalence of the quality of annotations per-

formed by snakules against the quality of annotations per-

formed by an experienced observer, the null hypothesis is

that the quality of annotations performed by snakules is not

equivalent to the quality of annotations performed by an expe-

rienced observer. The alternate hypothesis is that the quality of

annotations performed by the two methods is equivalent to one

another. The null and alternate hypothesis can be mathemati-

cally defined as [33]

(5)

where and denote the null and alternate hypotheses, re-

spectively, and represent the population binomial proba-

bilities of success [could be one of the three measures described

in (4)] of the snakules and manual methods, respectively, is

a positive quantity specified by the experimenter, and is used

to denote the absolute difference.

A confidence interval approach was used to decide if the null

hypothesis could be rejected [33]. There are many variants of the

confidence interval approach and these are based on considera-

tions of prior knowledge of the population binomial probabili-

ties, sample size and statistical power (the probability of finding

a statistically significant result when there exists one) [33]. We

used the continuity corrected simple asymptotic interval (SAIC)

to decide if the null hypothesis of no equivalence has to be re-

jected or not. According to SAIC, the null hypothesis is re-

jected if

(6)

is completely contained in the interval [33]. In (6)

, and are the sample binomial probabilities of

success and the sample sizes of the snakules and the manual an-

notation methods respectively, is 100th percentile

of the standard normal distribution, and is the nominal signif-

icance level. We used the SAIC confidence interval since when

there is no prior knowledge of the population probabilities and

when the sample sizes are moderate (50—a few hundreds), the

SAIC test runs a lesser risk of being anti-conservative, and of-

fers reasonable statistical power. The decision to use SAIC was

based on the recommendations made in [33]. In our analysis,

the value of was set to 0.05 and we considered three values

for : 0.25, 0.35, and 0.45. The choice of the parameter

affects the outcome of the test. For example, if were set to

0.25, then the snakule and manual annotation methods are con-

sidered equivalent if their probabilities of success were within

0.25 of each other, and not equivalent for a larger difference in

the probabilities. Consequently, a smaller value for makes the

interval tighter and represents a strict criterion for rejecting the

null hypothesis of no equivalence, while a larger value for

represents a more lenient criterion for rejecting the null hypoth-

esis. The three values we used for , i.e., 0.25, 0.35, and 0.45

represented a strict, moderately lenient, and lenient criterion,

respectively. For assessing inter and intraobserver variability in

clinical tasks such as radiographic measurements, a value of

0.25 is considered to be a strict criterion, while a value of 0.30

is considered to be a more lenient criterion, and if the variability

is within these values, it is considered acceptable [24]. However,

to the best of our knowledge, no prior literature exists on com-

paring effectiveness of spicule annotation algorithms, and hence

we used three values for to represent a strict, moderately le-

nient, and lenient criterion. Further, our choice of might seem

liberal, for instance if and the two methods turned out

to be equivalent, then the methods are equivalent even if their

probabilities of success are within 0.45 of each other. However,

it is important to note that we are comparing the annotations

performed by an automated algorithm against those performed

by an experienced observer. The manual annotations made by

an experienced observer and evaluated by three radiologists can

be treated as the gold standard and they provide a high bar for

assessing the effectiveness of an automated algorithm.

III. RESULTS

Fig. 7 and Fig. 9(a) illustrate examples of ROIs annotated

using snakules, while Fig. 8 illustrates examples of ROIs an-

notated manually. Qualitatively speaking, the snakule annota-

tions look encouraging on the ROIs illustrated in Fig. 7, and

Fig. 9(a). The snakule annotations also suggest that the method

is fairly robust to variation in the size of the central mass. Fig. 10

illustrates the variation in annotations with the initial location

as defined in (1). The choice of initial location does

affect the quality of annotations by generating some false posi-

tives, but as evident in Fig. 10, the prominent spicules are usu-

ally annotated.

Table II summarizes the three performance measures

described in (4) and the results of the statistical tests for

equivalence. The following conclusions can be made from

Table II: 1) Firstly, when an obvious spicule is present on

the mammogram, the snakules method annotates the spicule

with a high probability of success as evident from the recall

scores (maximum recall ). This was consistent across

the evaluations by all the three radiologists. Further, the recall

scores of the snakule and manual annotations were found to be

statistically equivalent at a strict criterion for all

the three radiologists, which was encouraging. 2) Secondly, as

evident from Table II, the snakules method annotates spicules

with a reasonably good precision (maximum precision )

and this was again consistent across the evaluations by all the

three radiologists. When compared to the recall, the precision

of the snakules method is lower, suggesting that the method

annotates a few curvilinear structures such as blood vessels that

are directed towards the central mass region. Fig. 11 illustrates
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Fig. 7. (a)–(c) Examples of ROIs annotated using snakules (central mass an-
notated manually by GSM).

an example of one such ROI in which the radiologists reckoned

that blood vessels had been annotated. The precision scores of

Fig. 8. (a)–(c) Examples of ROIs annotated manually by GSM.

the snakules and manual methods were found to be statistically

equivalent at a lenient criterion ( is
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Fig. 9. (a) Snakule annotations when dominant orientation is computed from
Radon enhanced ROI (b) Snakule annotations when dominant orientation is
computed from the ROI cropped directly from the mammogram. Central mass
was annotated manually by GSM.

Fig. 10. (a)–(d) Variation in snakule annotations with the initial location indi-
cated by a “�” (central mass annotated manually by GSM).

reported in Table II) for all the three radiologists. 3) Finally,

the maximum accuracy of correctly identifying the true spicule

length was 0.95 for the snakules method. However, the length

accuracy value was most variable across the three radiologists

(0.50, 0.79, and 0.95). Further, for one radiologist (TWS) the

length accuracy scores of the snakules and manual methods

were found to be statistically equivalent at a strict criterion

, while for the other radiologist (TMH) the length

accuracy scores were found to be statistically equivalent at

( is reported in Table II). However, for the

third radiologist (GJW), the length accuracy scores of the two

methods were not found to be statistically equivalent at any of

the three chosen values. This suggests that while the radiol-

ogists are fairly consistent in identifying the obvious spicules

and the false positive annotations, they are not very consistent

in identifying the true length of the spicule. However, for two

Fig. 11. Example of an ROI in which the snakules method has annotated quite
a few curvilinear structures that are non-spicules but directed towards the central
mass.

out of the three radiologists (TWS and TH), the length accuracy

scores of the snakules and manual methods were found to be

statistically equivalent at , which was encouraging

from the point of view of extracting meaningful physical prop-

erties of spicules such as length that can subsequently be used

as a feature in the classification of linear structures evident on

a mammogram.

IV. CONCLUSION

In this paper, we have presented a novel algorithm termed

snakules for the annotation of spicules on mammography. The

algorithm is model-based in that its design is guided by statistics

of physical measurements of real spiculated masses on mam-

mography. Certain generic aspects of the design such as the

use of Radon transform to enhance linear structures and com-

pute dominant orientation, and the VFC force field computed

from the Radon enhanced ROI for active contour deformation

could be useful for other medical image segmentations tasks.

We foresee snakules being useful for a variety of tasks. Firstly,

the results of our observer study demonstrate the reliability of

snakules in annotating obvious spicules, and also suggest that

snakules can be used for extracting features (e.g., length) spe-

cific to spicules, which can be subsequently used to distinguish

true spiculated mass locations from nonlesion locations on a

mammogram and improve the specificity of CADe systems. We

have conducted a preliminary study that explores the potential

of snakules for classifying candidate spiculated mass locations

on mammography. The results from this study are promising

[34] and we plan to carry out further analysis of snakules for

the task of CADe FP reduction. Secondly, snakules can be used

as a CADe prompting tool that explicitly marks spicules on a

mammogram. Lastly, snakules can be used in conjunction with
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TABLE II
PRECISION, RECALL, AND SPICULE LENGTH ACCURACY SCORES COMPUTED FROM RADIOLOGISTS’ EVALUATIONS OF SNAKULES AND MANUAL ANNOTATIONS.

ALSO SHOWN ARE THE CONCLUSIONS OF THE STATISTICAL TEST FOR EQUIVALENCE FOR ALL THREE MEASURES

online annotation tools (e.g., [35]) to annotate spiculated masses

on mammograms that can be used for training radiology per-

sonnel (such as residents).

One aspect of the snakules method that needs improvement

is the annotation of curvilinear structures that are non-spicules

but are directed towards the central mass, as evident from the

precision scores in Table II. One possible approach that could

be adopted to address this issue is to use multiscale processing

by varying the radius of the circular disk in (1) during the de-

tection of candidate snakule points. Another possible approach

would be to annotate the central mass and restrict the detec-

tion of candidate snakule points to the annotated boundary of

the central mass. However, as pointed out by Zwiggelaar et al.

in [13], not all spiculated masses have a well-defined central

mass boundary, which makes it hard to accurately estimate the

boundary of the central mass. Alternate approaches could also

include probabilistic inference of candidate snakule points using

multiple initialization locations, and the use of multiscale curvi-

linear structure detection strategies (e.g., [36]) with prior in-

formation of spicule properties to filter false spicule candidate

points.
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