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Abstract—In this paper, we describe a novel approach for the 

automatic classification of candidate spiculated mass locations 

on mammography. Our approach is based on “Snakules” – an 

evidence-based active contour algorithm that we have recently 

developed for the annotation of spicules on mammography. We 

use snakules to extract features characteristic of spicules and 

spiculated masses, and use these features to classify whether a 

region of a mammogram contains a spiculated mass or not. 

The results from our initial classification experiment 

demonstrate the strong potential of snakules as an image 

analysis technique to extract features specific to spicules and 

spiculated masses, which can subsequently be used to 

distinguish true spiculated mass locations from non-lesion 

locations on a mammogram and improve the specificity of 

computer-aided detection (CADe) algorithms.  

Keywords- snakules; computer-aided detection; spiculated 

masses; snakes; active contours 

I.  INTRODUCTION  

Breast cancer manifests as various findings on 
mammography – microcalcifications, masses (spiculated and 
non-spiculated), and architectural distortions. Spiculated 
masses are characterized by a pattern of radiating lines 
known as spicules that emanate from a central mass. 
Spiculated masses have a much higher risk of malignancy 
than non-spiculated masses and calcifications and, hence, it 
is crucial to detect spiculated masses [1]. CADe algorithms 
have been developed to assist radiologists in detecting signs 
of breast cancer [2]. Most CADe algorithms are comprised 
of two stages: a high sensitivity stage to detect suspect lesion 
locations on the mammogram and a high specificity stage to 
reduce the number of false positive (FP) candidates that do 
not correspond to actual lesions. The final outcome of a 
CADe algorithm is usually a set of marks (also referred to as 
prompts) on the mammogram identifying suspect lesion 
locations. 

CADe algorithms designed to detect spiculated masses 
usually employ strategies to detect radial patterns of 
converging lines (e.g., [3, 4]). While these algorithms deliver 
high sensitivity in detection of spiculated masses, they 
invariably suffer from a high false positive (FP) rate, which 
reduces the specificity of the algorithm. The high FP rate is 
mainly attributed to the fact that a mammogram contains 
other normal linear structures that are superimposed on one 
another and resemble a pattern of converging lines. Such 
locations are routinely marked as suspect locations by the 

detection algorithms. Consequently, studies have shown that 
the detection performance of most CADe algorithms on 
spiculated masses is not optimal (e.g., [5]).  

The performance of CADe systems on spiculated masses 
can be improved by developing sophisticated image analysis 
techniques to extract physical properties specific to spicules. 
These physical properties can then be used in the reliable 
classification of suspect locations identified on the image as 
lesion or non-lesion. Towards this goal, we have developed 
“snakules” [6], an algorithm that employs parametric open-
ended snakes (active contours) to annotate spicules on 
mammography. The main contribution of this paper lies in 
demonstrating the potential of snakules to extract features 
characteristic of spicules and spiculated masses that can be 
used for automatic classification of candidate spiculated 
mass locations on mammography.  

It is important to note that other groups have tried to 
extract properties specific to spicules to improve specificity 
of CADe algorithms. Zwiggelaar et al. demonstrated the use 
of cross-sectional intensity profiles as a basis for classifying 
linear structures seen on a mammogram with particular 
emphasis on correctly recognizing spicules and ducts [7]. 
However, Zwiggelaar et al. do not explicitly seek to capture 
the spicules; rather, they collect cross-sectional profile 
information from each linear structure detected on a 
mammogram using line detection operators and classify 
them into anatomical types by using a classifier trained on 
ground truth and cross-sectional information. A few other 
studies have attempted to deploy snake-like devices to 
segment solid masses and use feature extraction strategies to 
classify the masses (e.g., [8]); however, our approach is the 
first attempt to explicitly capture spicules in a bid to model 
their physical properties and use them for classification of 
putative spiculated masses. 

The remainder of this paper is organized as follows: In 
Section II, we provide a brief description of the snakules 
algorithm. This is then followed by a detailed description of 
our feature extraction process and experimental 
methodology. In Section III, we discuss our results, and this 
is followed by conclusion and pointers to future work in 
Section IV. 

II. PROPOSED METHOD 

A. Snakules Algorithm 

We provide a brief description of the snakules algorithm 
[6] in this section. Snakules is a set of parametric open-ended 
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snakes [9] that seek spicules on mammography. These 
snakes are automatically initialized in the region around a 
suspect spiculated mass location identified by a CADe 
algorithm or a radiologist. The points in this region from 
where the snakes originate represent the points in the region 
from where the spicules most likely originate. A set C of 
such candidate points is determined using the following 
equation – 
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is the same as defined in [3], in that we 

consider pixels in a neighborhood around the suspect 
spiculated mass location that are directed towards a circular 
disk of radius R  centered on the suspect spiculated mass 
location. The condition on the second line of (1), ensures that 
of all the pixels that are directed towards the central mass 
region and whose directions with respect to the suspect 

spiculated mass location fall in the same orientation bin  k , 
only the point that is closest to the suspect spiculated mass 
location will be selected as a candidate point.  

The detection of candidate snakule points is carried out 
on steerable filtered-Radon enhanced regions of interest 
(ROIs) rather than on the ROIs cropped directly from the 
mammograms. Radon enhancement of spiculated lesions on 
mammograms is explained in detail in [4]. Radon 
enhancement is performed to enhance linear structures in the 
mammogram and to reduce the effects of noise and clutter 
caused due to overlapping out-of-plane tissue structures. The 
dominant orientation  at each pixel of the Radon enhanced 

ROI is computed by filtering the Radon enhanced ROI with 
a set of steerable quadrature filter pairs comprised of the 
fourth derivative of a Gaussian and its Hilbert transform 
[10]. The choice of the parameters R  and N , and the 
number of orientations bins considered around the suspect 
spiculated mass location are based on the average mass 
radius, range of spicule length, and the number of spicules 
respectively that have been computed from measurements of 
spiculated masses collected on mammograms [11]. 

 

Once the candidate points are identified, snakules are 
initialized at these points. We adopt an approach in which 
the snakes evolve and grow iteratively until a stopping 
criterion is met. This is motivated by the fact that the true 
length of a spicule is not known beforehand. The idea of 
growing snakes was first described by Berger [12] as a 
robust alternative to dropping long snakes to trace open-
ended curvilinear structures in images and we adopt a similar 
strategy with a curvature-based stopping criterion. The 
evolution of the snakes is governed by the standard Euler-
Lagrange force balance equation [13] and the vector field 
convolution (VFC) force [13] is used as the external force. 
The VFC force is computed as the convolution of a user-
defined vector field kernel with a feature map (e.g., edge 
map) generated from the image and is shown to be robust to 
spurious edges and noise in the image and provides a large 
capture range. Instead of using a standard edge map as a 
feature map, we use the Radon enhanced ROI as the feature 
map. The Radon enhanced ROI has the property that it is 
non-negative and has a larger value near the enhanced 
curvilinear structures and hence these curvilinear structures 
contribute more to the VFC force than the homogeneous 
regions of the ROI. Fig. 1 illustrates an example of a 
spiculated mass ROI annotated using snakules. 

B. Feature Extraction Process 

The goal of the feature extraction process is to identify 
the best discriminatory features that characterize spicules and 
spiculated masses. Towards this goal, we have investigated 
the following features – 

1) Average Snakule Contrast (f1): We define snakule 
contrast CS as follows – 
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Figure 1.  Example of a spiculated mass ROI annotated using snakules. 
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. The two background 

trajectories are computed at a distance marginally greater 
than (by approximately 4 pixels) half the width of the 
structure annotated by the snakule in the directions of the 
inward and outward normal at every point on the snakule. 
Fig. 2 illustrates the snakule and background trajectories. 
The average snakule contrast is computed as the average 
contrast over all snakules identified on the ROI. The intuition 
behind using average snakule contrast as a feature is that 
visually perceivable spicules are normally perceived as 
bright structures with good contrast relative to the 
background.  

2) Median Distance from Point of Convergence (f2): 
Convergence of spicules is a characteristic feature of 
spiculated masses. We seek to estimate a point of 
convergence (Pc) in the ROI space and subsequently 
compute the median distance of all linear structures 
annotated by snakules from Pc. Our hypothesis is that when 
an ROI actually contains a spiculated mass, then the median 
distance of linear structures from the point of convergence 
will be lower than the median distance from the point of 
convergence of linear structures annotated on an ROI not 
containing a spiculated mass. The problem of finding Pc can 
be posed as an optimization problem in which a point that is 
at a minimum median distance from all linear structures 
annotated in the ROI space is sought. We employ a greedy 
search strategy over the entire ROI space to find the point of 
convergence. Essentially, for every integer pixel location of 
the ROI, we compute the distance between the pixel location 
and a linear fit of each snakule. The point whose median 
distance from all lines is minimum is designated as the point 
of convergence and the minimum median distance is used as 
a feature for classification. It is important to note that the 
point of convergence can be computed when there are at 
least two linear structures annotated by snakules. If this is 
not the case, then the median distance is assigned a 
bookkeeping value of -1 for that particular ROI. Fig. 3 
illustrates the point of convergence (denoted by a red ‘+’) on 
a spiculated mass ROI annotated using snakules. 

3) Histogram of Normalized Squared-Intensity Deviation 
(f3): Features f1 and f2 are global features, in that a single 
value is assigned to a set of snakule annotations. We 
hypothesize that the discriminatory power of a classifier will 
be increased if the entire histogram of a feature is included 
along with the global features. This intuition is based on 
numerous studies in computer vision that utilize histograms 
of features of interest for the tasks of object recognition and 
classification (e.g.,[14]). Going by the intuition that visually 
perceivable spicules have good contrast relative to the 
background, we build a histogram of the normalized 
squared-deviation of the interpolated image intensity from 
the average intensity μ (defined earlier) at every point on the 

trajectory of the snakule. For every snakule, the squared-
intensity deviation is normalized with respect to the 
maximum squared-intensity deviation for that snakule. We 
build the histogram using the k-means vector quantization 
technique (VQ) in which the centers of the VQ codebook are 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 2.  Snakule trajectory (red) and background trajectories (blue and 

green) on a spiculated mass ROI. 

 

 

 

 

 

 

Figure 3.  Point of convergence (red ‘+’) illustrated on a spiculated mass 

ROI. 

computed using k-means clustering of squared-intensity 
deviation values accumulated from a training set of ROIs 
containing both positive (ROIs with spiculated mass) and 
negative (ROIs with no spiculated mass) instances. 

C. Experimental Methodology 

The dataset for our study consisted of a total of 36 
mediolateral view spiculated mass mammograms retrieved 
from the Digital Database for Screening Mammography 
(DDSM) [15]. A CADe algorithm previously developed in 
our group [4] was used to screen these mammograms and a 
set of true lesion and FP locations for each mammogram was 
output by the algorithm. Out of the true lesion locations, we 
only considered those locations deemed as most probable 
lesion locations by the CADe algorithm. An ROI was 
centered on each of these locations and was cropped from 
the mammogram. The final dataset consisted of a total of 312 
ROIs with 36 positive instances and 276 negative instances. 
Out of the 36 mammograms, we reserved 18 randomly 
chosen mammograms for training the classifier and the 
remaining 18 mammograms for testing the classifier. This 
resulted in our training set comprising of 149 ROIs (18 
positive instances, 131 negative instances) and testing set 
comprising of 163 ROIs (18 positive instances, 145 negative 
instances) to yield a total of 312 ROIs. Snakules were 
deployed and the features f1, f2, and f3 were extracted from 
each ROI. For the feature f3, the number of k-means clusters 
to build a histogram was varied between 3-10. We trained a  
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Figure 4.  ROC curve of classification experiment. 

a logistic regression classifier using the features extracted 

from each ROI in the training set. Since the ratio of the 

number of positive instances to the number of negative 

instances in our training set was much lower than 0.5, we 

sampled the positive instances with replacement to increase 

the ratio to 0.5 prior to training the classifier. The classifier 

was then tested using the features extracted from each ROI 

in the testing set and the performance of the classifier was 

evaluated using the area under curve (AUC) metric of the 

Receiver Operating Characteristic (ROC) curve. 

III. RESULTS 

The best classification performance on the testing set was 
obtained when the number of k-means clusters to build the 
histogram (f3) was set to 7. Fig. 4 illustrates the 
corresponding ROC curve obtained for the classification 
experiment (AUC = 0.79 ± 0.05 ). The results of the 

classification experiment are promising and suggest that 
snakules can be used to extract features specific to spicules 
for the automatic classification of putative spiculated masses. 

IV. CONCLUSION AND FUTURE WORK 

Reliable classification of spiculated masses is an 
important problem in the context of improving the specificity 
of CADe algorithms. To address this problem, we have 
developed a novel algorithm called snakules that explicitly 
tries to seek spicules on mammography. Snakules could 
prove to be a valuable device for extracting features specific 
to spicules for the classification of candidate spiculated mass 
locations. In this paper, we have presented our initial work 
on extraction of features specific to spicules for the 
classification of putative spiculated masses. Our results 
demonstrate the strong potential of snakules as a device that 
can be used for classifying candidate spiculated mass 
locations.  

As part of future work we plan to investigate the use of 
snakules to extract other physical properties specific to 
spicules such as spicule length and width. Our ultimate goal 
is to use snakules to construct reliable statistical models of 
spicule properties that can be used for classifying candidate 
spiculated mass locations. Finally, we intend to integrate 

snakules with a CADe algorithm previously developed in our 
group [4] and test the performance of the algorithm on a 
larger dataset of spiculated masses.  
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