
SNAP: Stateful Network-Wide
Abstractions for Packet Processing

Mina Tahmasbi Arashloo1, Yaron Koral1, Michael Greenberg2, Jennifer Rexford1, and David Walker1

1Princeton University , 2Pomona College

ABSTRACT

Early programming languages for software-defined net-
working (SDN) were built on top of the simple match-
action paradigm offered by OpenFlow 1.0. However,
emerging hardware and software switches offer much
more sophisticated support for persistent state in the
data plane, without involving a central controller. Nev-
ertheless, managing stateful, distributed systems effi-
ciently and correctly is known to be one of the most
challenging programming problems. To simplify this
new SDN problem, we introduce SNAP.

SNAP offers a simpler “centralized” stateful program-
ming model, by allowing programmers to develop pro-
grams on top of one big switch rather than many. These
programs may contain reads and writes to global, per-
sistent arrays, and as a result, programmers can im-
plement a broad range of applications, from stateful
firewalls to fine-grained traffic monitoring. The SNAP
compiler relieves programmers of having to worry about
how to distribute, place, and optimize access to these
stateful arrays by doing it all for them. More specif-
ically, the compiler discovers read/write dependencies
between arrays and translates one-big-switch programs
into an efficient internal representation based on a novel
variant of binary decision diagrams. This internal rep-
resentation is used to construct a mixed-integer linear
program, which jointly optimizes the placement of state
and the routing of traffic across the underlying physical
topology. We have implemented a prototype compiler
and applied it to about 20 SNAP programs over various
topologies to demonstrate our techniques’ scalability.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis , Brazil

© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934892

CCS Concepts

•Networks → Programming interfaces; Pro-
grammable networks; Network control algorithms;
In-network processing; Network management;

Keywords

SNAP, Network Programming Language, Stateful
Packet Processing, One Big Switch, Software Defined
Networks, Optimization

1. INTRODUCTION

The first generation of programming languages for
software-defined networks (SDNs) [14, 10, 44, 20, 17]
was built on top of OpenFlow 1.0, which offered simple
match-action processing of packets. As a result, these
systems were partitioned into (1) a stateless packet-
processing part that could be analyzed statically, com-
piled, and installed on OpenFlow switches, and (2) a
general stateful component that ran on the controller.

This “two-tiered” programming model can support
any network functionality by running the stateful por-
tions of the program on the controller and modifying
the stateless packet-processing rules accordingly. How-
ever, simple stateful programs, such as detecting SYN
floods or DNS amplification attacks, cannot be imple-
mented efficiently because packets must go back-and-
forth to the controller, incurring significant delay. Thus,
in practice, stateful controller programs are limited to
those that do not require per-packet stateful processing.

Today, however, SDN technology has advanced con-
siderably: there is a raft of new proposals for switch in-
terfaces that expose persistent state on the data plane,
including those in P4 [6], OpenState [4], POF [38],
Domino [33], and Open vSwitch [25]. Stateful pro-
grammable data planes enable us to offload pro-
grams that require per-packet stateful processing onto
switches, subsuming a variety of functionality normally
relegated to middleboxes. However, the mere existence
of these stateful mechanisms does not make networks
of these devices easy to program. In fact, program-
ming distributed collections of stateful devices is typ-
ically one of the most difficult kinds of programming
problems. We need new languages and abstractions to

http://dx.doi.org/10.1145/2934872.2934892

help us manage the complexity and optimize resource
utilization effectively.

For these reasons, we have developed SNAP, a new
language that allows programmers to mix primitive
stateful operations with pure packet processing. How-
ever, rather than ask programmers to program a large,
distributed collection of independent, stateful devices
manually, we provide the abstraction that the network
is one big switch (OBS). Programmers can allocate per-
sistent arrays on that OBS , and do not have to worry
about where or how such arrays are stored in the phys-
ical network. Such arrays can be indexed by fields in
incoming packets and modified over time as network
conditions change. Moreover, if multiple arrays must
be updated simultaneously, we provide a form of net-
work transaction to ensure such updates occur atomi-
cally. As a result, it is easy to write SNAP programs
that learn about the network environment and record
its state, store per-flow information or statistics, or im-
plement a variety of stateful mechanisms.

While it simplifies programming, the OBS model, to-
gether with the stateful primitives, generates implemen-
tation challenges. In particular, multiple flows may
depend upon the same state. To process these flows
correctly and efficiently, the compiler must simultane-
ously determine which flows depend upon which compo-
nents, how to route those flows, and where to place the
components. Hence, to map OBS programs to concrete
topologies, the SNAP compiler discovers read-write de-
pendencies between statements. It then translates the
program into an xFDD, a variant of forwarding de-
cision diagrams (FDDs) [35] extended to incorporate
stateful operations. Next, the compiler generates a sys-
tem of integer-linear equations that jointly optimizes
array placement and traffic routing. Finally, the com-
piler generates the switch-level configurations from the
xFDD and the optimization results. We assume that
the switches chosen for array placement support persis-
tent programmable state; other switches can still play
a role in routing flows efficiently through the state vari-
ables. Our main contributions are:

• A stateful and compositional SDN programming lan-
guage with persistent global arrays, a one-big-switch
programming model, and network transactions. (See
§2 for an overview and §3 for more technical details.)

• Algorithms for compiling SNAP programs into low-
level switch mechanisms (§4): (i) an algorithm for
compiling SNAP programs into an intermediate rep-
resentation that detects program errors, such as race
conditions introduced by parallel access to stateful
components, using our extended forwarding decision
diagrams (xFDD) and (ii) an algorithm to generate a
mixed integer-linear program, based on the xFDD,
which jointly decides array placement and routing
while minimizing network congestion and satisfying
the constraints necessary for network transactions.

DNS-tunnel-detect

if dstip = 10.0.6.0/24 & srcport = 53 then1
orphan[dstip][dns.rdata] <- True;2
susp-client[dstip]++;3
if susp-client[dstip] = threshold then4

blacklist[dstip] <- True5
else id6

else7
if srcip = 10.0.6.0/24 & orphan[srcip][dstip]8
then orphan[srcip][dstip] <- False;9

susp-client[srcip]--10
else id11

Figure 1: SNAP implementation of DNS-tunnel-detect.

• An implementation and evaluation of our language
and compiler using about 20 applications. (§5, §6).

We discuss various data-plane implementations for
SNAP, how SNAP relates to middleboxes, and possi-
ble extensions in §7, discuss related work in §8, and
conclude in §9.

2. SNAP SYSTEM OVERVIEW

This section overviews the key concepts in our lan-
guage and compilation process using example programs.

2.1 Writing SNAP Programs

DNS tunnel detection. The DNS protocol is de-
signed to resolve information about domain names.
Since it is not intended for general data transfer, DNS
often draws less attention in terms of security monitor-
ing than other protocols, and is used by attackers to
bypass security policies and leak information. Detect-
ing DNS tunnels is one of many real-world scenarios
that require state to track the properties of network
flows [5]. The following steps can be used to detect
DNS tunneling [5]:

1. For each client, keep track of the IP addresses re-
solved by DNS responses.

2. For each DNS response, increment a counter. This
counter tracks the number of resolved IP addresses
that a client does not use.

3. When a client sends a packet to a resolved IP ad-
dress, decrement the counter for the client.

4. Report tunneling for clients that exceed a thresh-
old for resolved, but unused IP addresses.

Figure 1 shows a SNAP implementation of the above
steps that detects DNS tunnels to/from the CS depart-
ment subnet 10.0.6.0/24 (see Figure 2). Intuitively, a
SNAP program can be thought of as a function that
takes in a packet plus the current state of the network
and produces a set of transformed packets as well as up-
dated state. The incoming packet is read and written
by referring to its fields (such as dstip and dns.rdata).
The “state” of the network is read and written by re-
ferring to user-defined, array-based, global variables

(such as orphan or susp-client). Before explaining
the program in detail, note that it does not refer to
specific network device(s) on which it is implemented.
SNAP programs are expressed as if the network was
one-big-switch (OBS) connecting edge ports directly to
each other. Our compiler automatically distributes the
program across network devices, freeing programmers
from such details and making SNAP programs portable
across topologies.

The DNS-tunnel-detect program examines two kinds
of packets: incoming DNS responses (which may lead
to possible DNS tunnels) and outgoing packets to re-
solved IP addresses. Line 1 checks whether the input
packet is a DNS response to the CS department. The
condition in the if statement is an example of a simple
test. Such tests can involve any boolean combination of
packet fields.1 If the test succeeds, the packet could po-
tentially belong to a DNS tunnel, and will go through
the detection steps (Lines 2–6). Lines 2–6 use three
global variables to keep track of DNS queries. Each
variable is a mapping between keys and values, persis-
tent across multiple packets. The orphan variable, for
example, maps each pair of IP addresses to a boolean
value. If orphan[c][s] is True then c has received a DNS
response for IP address s. The variable susp-client

maps the client’s IP to the number of DNS responses it
has received but not accessed yet. If the packet is not a
DNS response, a different test is performed, which in-
cludes a stateful test over orphan (Lines 8). If the test
succeeds, the program updates orphan[srcip][dstip] to
False and decrements susp-client[srcip] (Lines 10–
11). This step changes the global state and thus, affects
the processing of future packets. Otherwise, the packet
is left unmodified — id (Line 12) is a no-op.
Routing. DNS-tunnel-detect cannot stand on its
own—it does not explain where to forward packets. In
SNAP, we can easily compose it with a forwarding pol-
icy. Suppose our target network is the simplified cam-
pus topology depicted in Figure 2. Here, I1 and I2 are
connections to the Internet, and D1–D4 represent edge
switches in the departments, with D4 connected to the
CS building. C1–C6 are core routers connecting the
edges. External ports (marked in red) are numbered
1–6 and IP subnet 10.0.i.0/24 is attached to port i.
The assign-egress program assigns outports to pack-
ets based on their destination IP address:

assign-egress = if dstip = 10.0.1.0/24
then outport <- 1
else if dstip = 10.0.2.0/24 then outport <- 2
else ...
else if dstip = 10.0.6.0/24 then outport <- 6
else drop

Note that the policy is independent of the internal

1 The design of the language is unaffected by the chosen set of
fields. For the purposes of this paper, we assume a rich set of

fields, e.g. DNS response data. New architectures such as P4 [6]
have programmable parsers that allow users to customize their

applications to the set of fields required.

Figure 2: Topology for the running example.

network structure, and recompilation is needed only if
the topology changes. By combining DNS-tunnel-detect

with assign-egress, we have implemented a useful end-
to-end program: DNS-tunnel-detect;assign-egress.
Monitoring. Suppose the operator wants to monitor
packets entering the network at each ingress port (ports
1-6). She might use an array indexed by inport and in-
crement the corresponding element on packet arrival:
count[inport]++. Monitoring should take place along-
side the rest of the program; thus, she might combine
it using parallel composition (+): (DNS-tunnel-detect

+ count[inport]++); assign-egress. Intuitively, p + q

makes a copy of the incoming packet and executes both
p and q on it simultaneously.

Note that it is not always legal to compose two pro-
grams in parallel. For instance, if one writes to the
same global variable that the other reads, there is a
race condition, which leads to ambiguous state in the
final program. Our compiler detects such race condi-
tions and rejects ambiguous programs.
Network Transactions. Suppose that an operator
sets up a honeypot at port 3 with IP subnet 10.0.3.0/25.
The following program records, per inport, the IP and
dstport of the last packet destined to the honeypot:

if dstip = 10.0.3.0/25
then hon-ip[inport] <- srcip;

hon-dstport[inport] <- dstport
else id

Since this program processes many packets simulta-
neously, it has an implicit race condition: if packets
p1 and p2, both destined to the honeypot, enter the
network from port 1 and get reordered, each may visit
hon-ip and hon-dstport in a different order (if the vari-
ables reside in different locations). Therefore, it is pos-
sible that hon-ip[1] contains the source IP of p1 and
hon-dstport[1] the destination port of p2 while the op-
erator’s intention was that both variables refer to the
same packet. To establish such properties for a collec-
tion of state variables, programmers can use network
transactions by simply enclosing a series of statements
in an atomic block. Atomic blocks co-locate their en-
closed state variables so that a series of updates can be
made to appear atomic.

2.2 Realizing Programs on the Data Plane

Consider DNS-tunnel-detect; assign-egress. To dis-
tribute this program across network devices, the SNAP

compiler should decide (i) where to place state vari-
ables (orphan, susp-client, and blacklist), and (ii)
how packets should be routed across the physical net-
work. These decisions should be made in such a way
that each packet passes through devices storing every
state variable it needs, in the correct order. There-
fore, the compiler needs information about which pack-
ets need which state variables. In our example pro-
gram, for instance, packets with dstip = 10.0.6.0/24

and srcport = 53 need to pass all three state variables,
with blacklist accessed after the other two.
Program analysis. To extract the above information,
we transform the program to an intermediate repre-
sentation called extended forwarding decision diagram
(xFDD) (see Figure 3). FDDs were originally intro-
duced in an earlier work [35]. We extended FDDs in
SNAP to support stateful packet processing. An xFDD
is like a binary decision diagram: each intermediate
node is a test on either packet fields or state variables.
The leaf nodes are sets of action sequences, rather than
merely ‘true’ and ‘false’ as in a BDD [1]. Each inte-
rior node has two successors: true (solid line), which
determines the rest of the forwarding decision process
for inputs passing the test, and false (dashed line) for
failed cases. xFDDs are constructed compositionally;
the xFDDs for different parts of the program are com-
bined to construct the final xFDD. Composition is par-
ticularly more involved with stateful operations: the
same state variable may be referenced in two xFDDs
with different header fields, e.g., once as s[srcip] and
then as s[dstip]. How can we know whether or not
those fields are equal in the packet? We add a new kind
of test, over pairs of packet fields (srcip = dstip), and
new ordering requirements on the xFDD structure.

Once the program is transformed to an xFDD, we
analyze the xFDD to extract information about which
groups of packets need which state variables. In Fig-
ure 3, for example, leaf number 10 is on the true branch
of dstip=10.0.6.0/24 and srcport=53, which indicates
that all packets with this property may end up there.
These packets need orphan, because it is modified, and
susp-client, because it is both tested and modified on
the path. We can also deduce these packets can enter
the network from any port and the ones that are not
dropped will exit port 6. Thus, we can use the xFDD to
figure out which packets need which state variables, ag-
gregate this information across OBS ports, and choose
paths for traffic between these ports accordingly.
Joint placement and routing. At this stage, the
compiler has the information it needs to distribute
the program. It uses a mixed-integer linear pro-
gram (MILP) that solves an extension of the multi-
commodity flow problem to jointly decide state place-
ment and routing while minimizing network congestion.
The constraints in the MILP guarantee that the selected
paths for each pair of OBS ports take corresponding
packets through devices storing every state variable that
they need, in the correct order. Note that the xFDD

Figure 3: The equivalent xFDD for
DNS-tunnel-detect; assign-egress

analysis can identify cases in which both directions of a
connection need the same state variable s, so the MILP
ensures they both traverse the device holding s.

In our example program, the MILP places all state
variables on D4, which is the optimal location as all
packets to and from the protected subnet must flow
through D4.2 Note that this is not obvious from the
DNS-tunnel-detect code alone, but rather from its com-
bination with assign-egress. This highlights the fact
that in SNAP, program components can be written in
a modular way, while the compiler makes globally op-
timal decisions using information from all parts. The
optimizer also decides forwarding paths between exter-
nal ports. For instance, traffic from I1 and D1 will go
through C1 and C5 to reach D4. The path from I2 and
D2 to D4 goes through C2 and C6, and D3 uses C5

to reach D4. The paths between the rest of the ports
are also determined by the MILP in a way that mini-
mizes link utilization. The compiler takes state place-
ment and routing results from the MILP, partitions the
program’s intermediate representation (xFDD) among
switches, and generates rules for the controller to push
to all stateless and stateful switches in the network.
Reacting to network events. The above phases only
run if the operator changes the OBS program. Once the
program compiles, and to respond to network events
such as failures or traffic shifts, we use a simpler and
much faster version of the MILP that given the current
state placement, only re-optimizes for routing. More-
over, with state on the data plane, policy changes be-
come considerably less frequent because the policy, and
consequently switch configurations, do not change upon
changes to state. In DNS-tunnel-detect, for instance, at-
tack detection and mitigation are both captured in the
program itself, happen on the data plane, and there-
fore react rapidly to malicious activities in the network.

2 State can be spread out across the network. It just happens

that in this case, one location turns out to be optimal.

This is in contrast to the case where all the state is on
the controller. There, the policy needs to change and
recompile multiple times both during detection and on
mitigation, to reflect the state changes on the controller
in the rules on the data plane.

3. SNAP

SNAP is a high-level language with two key features:
programs are stateful and are written in terms of an
abstract network topology comprising a one-big-switch
(OBS). It has an algebraic structure patterned on the
NetCore/NetKAT family of languages [19, 2], with each
program comprising one or more predicates and policies.
SNAP’s syntax is in Figure 4. Its semantics is defined
through an evaluation function “eval.” eval determines,
in mathematical notation, how an input packet should
be processed by a SNAP program. Note that this is
part of the specification of the language, not the im-
plementation. Any implementation of SNAP, including
ours, should ensure that packets are processed as de-
fined by the eval function: when we talk about “run-
ning” a program on a packet, we mean calling eval on
that program and packet. We discuss eval’s most in-
teresting cases here; see the extended version for a full
definition [42].

eval takes the SNAP term of interest, a packet, and a
starting state and yields a set of packets and an output
state. To properly define the semantics of multiple up-
dates to state when programs are composed, we need to
know the reads and writes to state variables performed
by each program while evaluating the packet. Thus,
eval also returns a log containing this information. It
adds “R s” to the log whenever a read from state vari-
able s occurs, and “W s” on writes. Note that these logs
are part of our formalism, but not our implementation.
We express the program state as a dictionary that maps
state variables to their contents. The contents of each
state variable is itself a mapping from values to values.
Values are defined as packet-related fields (IP address,
TCP ports, MAC addresses, DNS domains) along with
integers, booleans and vectors of such values.
Predicates. Predicates have a constrained semantics:
they never update the state (but may read from it),
and either return the empty set or the singleton set
containing the input packet. That is, they either pass
or drop the input packet. id passes the packet and drop

drops it. The test f = v passes a packet pkt if the field
f of pkt is v. These predicates yield empty logs.

The novel predicate in SNAP is the state test, written
s[e1] = e2 and read “state variable (array) s at index
e1 equals e2”. Here e1 and e2 are expressions, where an
expression is either a value v (like an IP address or TCP

port), a field f , or a vector of them
⇀
e . For s[e1] = e2,

function eval evaluates e1 and e2 on the input packet to
yield two values v1 and v2. The packet can pass if state
variable s indexed at v1 is equal to v2, and is dropped
otherwise. The returned log will include R s, to record

e ∈ Expr ::= v | f |
⇀
e

x, y ∈ Pred ::= id Identity
| drop Drop
| f = v Test
| ¬x Negation
| x|y Disjunction
| y&x Conjunction
| s[e] = e State Test

p, q ∈ Pol ::= x Filter
| f ← v Modification
| p + q Parallel comp.
| p; q Sequential comp.
| s[e]← e State Modification
| s[e]++ Increment value
| s[e]-- Decrement value
| if a then p else q Conditional
| atomic(p) Atomic blocks

Figure 4: SNAP’s syntax. Highlighted items are not in
NetCore.

that the predicate read from the state variable s.
We evaluate negation ¬x by running eval on x and

then complementing the result, propagating whatever
log x produces. x|y (disjunction) unions the results of
running x and y individually, doing the reads of both
x and y. x&y (conjunction) intersects the results of
running x and y while doing the reads of x and then y.
Policies. Policies can modify packets and the state.
Every predicate is a policy—it simply makes no modifi-
cations. Field modification f ← v takes an input packet
pkt and yields a new packet, pkt′, such that pkt′.f = v

but otherwise pkt′ is the same as pkt. State update
s[e1]← e2 passes the input packet through while (i) up-
dating the state so that s at eval(e1) is set to eval(e2),
and (ii) adding W s to the log. The s[e]++ (resp. --)
operators increment (decrement) the value of s[e] and
add W s to the log.

Parallel composition p + q runs p and q in parallel
and tries to merge the results. If the logs indicate a
state read/write or write/write conflict for p and q then
there is no consistent semantics we can provide, and
we leave the semantics undefined. Take for example
(s[0] ← 1) + (s′[0] ← 2). There is no conflict if s 6= s′.
However, the state updates conflict if s = s′. There is
no good choice here, so we leave the semantics undefined
and raise compile error in the implementation.

Sequential composition p; q runs p and then runs q on
each packet that p returned, merging the final results.
We must ensure the runs of q are pairwise consistent,
or else we will have a read/write or write/write conflict.
For example, let p be (f ← 1 + f ← 2), and pkt[f 7→ v]
denote “update pkt’s f field to v”. Given a packet pkt,
the policy p produces two packets: pkt1 = pkt[f 7→ 1]
and pkt2 = pkt[f 7→ 2]. Let q be s[0]← f , running p; q

fails because running q on pkt1 and pkt2 updates s[0]
differently. However, p; q runs fine for q = g ← 3.

We have an explicit conditional “if a then p else q,”
which indicates either p or q are executed. Hence, both
p and q can perform reads and writes to the same state.

Figure 5: Overview of the compiler phases.

We have a notation for atomic blocks, written atomic(p).
As described in §2, there is a risk of inconsistency be-
tween state variables residing on different switches on
a real network when many packets are in flight concur-
rently. When compiling atomic(p), our compiler ensures
that all the state in p is updated atomically (§4).

4. COMPILATION

To implement a SNAP program specified on one big
switch, we must fill in two critical details: traffic rout-
ing and state placement. The physical topology may
offer many paths between edge ports, and many possi-
ble locations for placing state.3 The routing and place-
ment problems interact: if two flows (with different in-
put and output OBS ports) both need some state vari-
able s, we should select routes for the two flows such
that they pass through a common location where we
place s. Further complicating the situation, the OBS
program may specify that certain flows read/write mul-
tiple state variables in a particular order. The routing
and placement on the physical topology must respect
that order. In DNS-tunnel-detect, for instance, rout-
ing must ensure that packets reach wherever orphan is
placed before susp-client. In some cases, two different
flows may depend on the same state variables, but in
different orders.

We have designed a compiler that translates OBS
programs into forwarding rules and state placements
for a given topology. As shown in Figure 5, the two
key phases are (i) translation to extended forwarding
decision diagrams (xFDDs)—used as the intermediate
representation of the program and to calculate which
flows need which state variables—and (ii) optimization
via mixed integer linear program (MILP)—used to de-
cide routing and state placement. In the rest of this
section, we present the compilation process in phases,
first discussing the analysis of state dependencies, fol-
lowed by the translation to xFDDs and the packet-state
mapping, then the optimization problems, and finally

3 In this work, we assume each state variable resides in one place,

though it is conceivable to distribute it (see §4.4 and §7.3).

d ::= t ? d1 : d2 | {as1, . . . , asn} xFDDs
t ::= f = v | f1 = f2 | s[e1] = e2 tests

as ::= a | a; a action sequences
a ::= id | drop | f ← v | s[e1]← e2 actions

| s[e1]++ | s[e1]--

to-xfdd(a) = {a}
to-xfdd(f = v) = f = v ? {id} : {drop}

to-xfdd(¬x) = ⊖to-xfdd(x)
to-xfdd(s[e1] = e2) = s[e1] = e2 ? {id} : {drop}
to-xfdd(atomic(p)) = to-xfdd(p)

to-xfdd(p + q) = to-xfdd(p)⊕ to-xfdd(q)
to-xfdd(p; q) = to-xfdd(p)⊙ to-xfdd(q)

to-xfdd(if x then p else q) = (to-xfdd(x)⊙ to-xfdd(p))
⊕ (⊖to-xfdd(x)⊙ to-xfdd(q))

Figure 6: xFDD syntax and translation.

the generation of rules sent to the switches.

4.1 State Dependency Analysis

Given a program, the compiler first performs state de-
pendency analysis to determine the ordering constraints
on its state variables. A state variable t depends on a
state variable s if the program writes to t after reading
from s. Any realization of the program on a concrete
network must ensure that t does not come before s.
Parallel composition, p + q, introduces no dependen-
cies: if p reads or writes state, then q can run indepen-
dently of that. Sequential composition p; q, on the other
hand, introduces dependencies: whatever reads are in p

must happen before writes in q. In explicit conditionals
“if a then p else q”, the writes in p and q depend on the
condition a. Finally, atomic sections atomic(p) say that
all state in p is inter-dependent. In DNS-tunnel-detect,
for instance, blacklist is dependent on susp-client, it-
self dependent on orphan. This information is encoded
as a dependency graph on state variables and is used
to order the xFDD structure (§4.2), and in the MILP
(§4.4) to drive state placement.

4.2 Extended Forwarding Decision Dia-
grams

The input to the compiler is a SNAP program, which
can be a composition of several smaller programs. The
output, on the other end, is the distribution of the
original policy across the network. Thus, in between,
we need an intermediate representation for SNAP pro-
grams that is both composable and easily partitioned.
This intermediate representation can help the compiler
compose small program pieces into a unified represen-
tation, which can further be partitioned to get dis-
tributed across the network. Extended forwarding de-
cision diagrams (xFDDs), which are introduced in this
section, are what we use as our internal representation
of SNAP programs and have both desired properties.
They also simplify analysis of SNAP programs for ex-
tracting packet-state mapping, which we discuss in §4.3

Formally (see Figure 6), an xFDD is either a branch
(t ? d1 : d2), where t is a test and d1 and d2 are xFDDs,
or a set of action sequences {as1, . . . , asn}. Each branch

{as11, · · · , as1n} ⊕ {as21, · · · , as2m}= {as11, · · · , as1n} ∪ {as21, · · · , as2m}
(t ? d1 : d2)⊕ {as1, · · · , asn}= (t ? d1 ⊕ {as1, · · · , asn} : d2 ⊕ {as1, · · · , asn})

(t1 ? d11 : d12)⊕ (t2 ? d21 : d22) =

{

(t1 ? d11 ⊕ d21 : d12 ⊕ d22) t1 = t2

(t1 ? d11 ⊕ (t2 ? d21 : d22) : d12 ⊕ (t2 ? d21 : d22) t1 ❁ t2

(t2 ? d21 ⊕ (t1 ? d11 : d12) : d22 ⊕ (t1 ? d11 : d12) t2 ❁ t1

⊖{id}= {drop}
⊖{drop}= {id}

⊖(t?d1 : d2) = (t?⊖ d1 : ⊖d2)

as⊙ {as1, · · · , asn} = {as⊙ as1, · · · , as⊙ asn}
as⊙ (t ? d1 : d2) = (see explanations in §4.2)
{as1, · · · , asn} ⊙ d = (as1 ⊙ d)⊕ · · · ⊕ (asn ⊙ d)
(t ? d1 : d2)⊙ d = (d1 ⊙ d)|t ⊕ (d2 ⊙ d)|∼t

{as1, · · · , asn}|t = (t ? {as1, · · · , asn} : {drop})

(t1 ? d1 : d2)|t2
=

{

(t1 ? d1 : {drop}) t1 = t2

(t2 ? (t1 ? d1 : d2) : {drop}) t2 ❁ t1

(t1 ? d1|t2
: d2|t2

) t1 ❁ t2

Figure 7: Definitions of xFDD composition operators.

can be thought of as a conditional: if the test t holds on
a given packet pkt, then the xFDD continues processing
pkt using d1; if not, processes pkt using d2. There are
three kinds of tests. The field-value test f = v holds
when pkt.f is equal to v. The field-field test f1 = f2

holds when the values in pkt.f1 and pkt.f2 are equal.
Finally, the state test s[e1] = e2 holds when the state
variable s at index e1 is equal to e2. The last two tests
are our extensions to FDDs. The state tests support our
stateful primitives, and as we show later in this section,
the field-field tests are required for correct compilation.
Each leaf in an xFDD is a set of action sequences, with
each action being either the identity, drop, field-update
f ← v, or state update s[e1] ← e2, which is another
extension to the original FDD.

A key property of xFDDs is that the order of their
tests (❁) must be defined in advance. This ordering is
necessary to ensure that each test is present at most
once on any path in the final tree when merging two
xFDDs into one. Thus, xFDD composition can be
done efficiently without creating redundant tests. In
our xFDDs, we ensure that all field-value tests precede
all field-field tests, themselves preceding all state tests.
Field-value tests themselves are ordered by fixing an ar-
bitrary order on fields and values. Field-field tests are
ordered similarly. For state tests, we first define a total
order on state variables by looking at the dependency
graph from §4.1. We break the dependency graph into
strongly connected components (SCCs) and fix an ar-
bitrary order on state variables within each SCC. For
every edge from one SCC to another, i.e., where some
state variable in the second SCC depends on some state
variable in the first, s1 precedes s2 in the order, where
s2 is the minimal element in the second SCC and s1 is
the maximal element in the first SCC. The state tests
are then ordered based on the order of state variables.

We translate a program to an xFDD using the
to-xfdd function (Figure 6), which translates small
parts of a program directly to xFDDs. Composite pro-
grams get recursively translated and then composed us-
ing a corresponding composition operator for xFDDs:
we use ⊕ for p + q, ⊙ for p ; q, and ⊖ for ¬p. Figure 7
gives a high-level definition of the semantics of these
operators. For example, d1 ⊕ d2 tries to merge similar
test nodes recursively by merging their true branches
together and false ones together. If the two tests are

not the same and d1’s test comes first in the total or-
der, both of its subtrees are merged recursively with d2.
The other case is similar. d1 ⊕ d2 for leaf nodes is the
union of their action sets.

The hardest case is surely for ⊙, where we try to
add in an action sequence as to an xFDD (t ? d1 : d2).
Suppose we want to compose f ← v1 with (f = v2 ? d1 :
d2). The result of this xFDD composition should behave
as if we first do the update and then the condition on
f . If v1 = v2, the composition should continue only on
d1, and if not, only on d2. Now let’s look at a similar
example including state, composing s[srcip]← e1 with
(s[dstip] = e2 ? d1 : d2). If srcip and dstip are equal
(rare but not impossible) and e1 and e2 always evaluate
to the same value, then the whole composition reduces
to just d1. The field-field tests are introduced to let us
answer these equality questions, and that is why they
always precede state tests in the tree. The trickiness in
the algorithm comes from generating proper field-field
tests, by keeping track of the information in the xFDD,
to properly answer the equality tests of interest. The
full algorithm is given in the extended version [42].

Inconsistent use of state variables is prohibited by the
language semantics when composing programs (see §3).
We enforce the semantics by looking for these violations
while merging the xFDDs of composed programs and
raising a compile error if the final xFDD contains a leaf
with parallel updates to the same state variable.

4.3 Packet-State Mapping

For a given program p, the corresponding xFDD d

offers an explicit and complete specification of the way
p handles packets. We analyze d, using an algorithm
called packet-state mapping, to determine which flows
use which states. This information is further used in
the optimization problem (§4.4) to decide the correct
routing for each flow. Our default definition of a flow
is those packets that travel between any given pair of
ingress/egress ports in the OBS, though we can use
other notions of flow (see §4.4). Traversing from d’s
root down to the action sets at d’s leaves, we can gather
information associating each flow with the set of state
variables read or written. We omit the full algorithm
due to space constraints.

Furthermore, the operators can give hints to the com-
piler by specifying their network assumptions in a sep-

arate policy:

assumption = (srcip = 10.0.1.0/24 & inport = 1)
+ (srcip = 10.0.2.0/24 & inport = 2)
+ ...
+ (srcip = 10.0.6.0/24 & inport = 6)

We require the assumption policy to be a predicate
over packet header fields, only passing the packets that
match the operator’s assumptions. assumption is then
sequentially composed with the rest of the program,
enforcing the assumption by dropping packets that do
not match the assumption. Such assumptions benefit
the packet-state mapping. Consider our example xFDD
in Figure 3. Following the xFDD’s tree structure, we
can infer that all the packets going to port 6 need all the
three state variables in DNS-tunnel-detect. We can also
infer that all the packets coming from the 10.0.6.0/24
subnet need orphan and susp-client. However, there is
nothing in the program to tell the compiler that these
packets can only enter the network from port 6. Thus,
the above assumption policy can help the compiler to
identify this relation and place state more efficiently.

4.4 State Placement and Routing

At this stage, the compiler has enough information to
fill in the details abstracted away from the programmer:
where and how each state variable should be placed, and
how the traffic should be routed in the network. There
are two general approaches for deciding state placement
and routing. One is to keep each state variable at one
location and route the traffic through the state vari-
ables it needs. The other is to keep multiple copies of
the same state variable on different switches and par-
tition and route the traffic through them. The second
approach requires mechanisms to keep different copies
of the same state variable consistent. However, it is not
possible to provide strong consistency guarantees when
distributed updates are made on a packet-by-packet ba-
sis at line rate. Therefore, we chose the first approach,
which locates each state variable at one physical switch.

To decide state placement and routing, we gener-
ate an optimization problem, a mixed-integer linear
program (MILP) that is an extension of the multi-
commodity flow linear program. The MILP has three
key inputs: the concrete network topology, the state de-
pendency graph G, and the packet-state mapping, and
two key outputs: routing and state placement (Table 1).
Since route selection depends on state placement and
each state variable is constrained to one physical lo-
cation, we need to make sure the MILP picks correct
paths without degrading network performance. Thus,
the MILP minimizes the sum of link utilization in the
network as a measure of congestion. However, other ob-
jectives or constraints are conceivable to customize the
MILP to other kinds of performance requirements.
Inputs. The topology is defined in terms of the fol-
lowing inputs to the MILP: (i) the nodes, some distin-
guished as edges (ports in OBS), (ii) expected traffic

Variable Description

u, v edge nodes (ports in OBS)
n physical switches in the network

i, j all nodes in the network
duv traffic demand between u and v
cij link capacity between i and j
dep state dependencies
tied co-location dependencies
Suv state variables needed for flow uv

Ruvij fraction of duv on link (i, j)
Psn 1 if state s is placed on n, 0 otherwise

Psuvij duv fraction on link (i, j) that has passed s

Table 1: Inputs and outputs of the optimization problem.

duv for every pair of edge nodes u and v, and (iii) link
capacities cij for every pair of nodes i and j. State de-
pendencies in G are translated into input sets dep and
tied. tied contains pairs of state variables which are
in the same SCC in G, and must be co-located. dep

identifies state variables with dependencies that do not
need to be co-located; in particular, (s, t) ∈ dep when
s precedes t in variable ordering, and they are not in
the same SCC in G. The packet-state mapping is used
as the input variables Suv, identifying the set of state
variables needed on flows between nodes u and v.
Outputs and Constraints. The routing outputs are
variables Ruvij , indicating what fraction of the flow
from edge node u to v should traverse the link between
nodes i and j. The constraints on Ruvij (left side of Ta-
ble 2) follow the multi-commodity flow problem closely,
with standard link capacity and flow conservation con-
straints, and edge nodes distinguished as sources and
sinks of traffic.

State placement is determined by the variables Psn,
which indicate whether the state variable s should be
placed on the physical switch n. Our constraints here
are more unique to our setting. First, every state vari-
able s can be placed on exactly one switch, a choice we
discussed earlier in this section. Second, we must ensure
that flows that need a given state variable s traverse
that switch. Third, we must ensure that each flow tra-
verses states in the order specified by the dep relation;
this is what the variables Psuvij are for. We require that
Psuvij = Ruvij when the traffic from u to v that goes
over the link (i, j) has already passed the switch with
the state variable s, and zero otherwise. If dep requires
that s should come before some other state variable t—
and if the (u, v) flow needs both s and t—we can use
Psuvij to make sure that the (u, v) flow traverses the
switch with t only after it has traversed the switch with
s (the last state constraint in Table 2). Finally, we must
make sure that state variables (s, t) ∈ tied are located
on the same switch. Note that only state variables that
are inter-dependent are required to be located on the
same switch. Two variables s and t are inter-dependent
if a read from s is required before a write to t and vice
versa. Placing them on different switches will result in
a forwarding loop between the two switches which is not
desirable in most networks. Therefore, in order to syn-

Routing Constraints State Constraints
∑

n
Psn = 1

∑

j
Ruvuj = 1 ∀u, v. ∀s ∈ Suv .

∑

i
Ruvin ≥ Psn

∑

i
Ruviv = 1 ∀(s, t) ∈ tied. Psn = Ptn

∑

u,v
Ruvijduv ≤ cij Psuvij ≤ Ruvij

∑

i
Ruvin =

∑

j
Ruvnj Psn + ΣiPsuvin = ΣjPsuvnj

∑

i
Ruvin ≤ 1 ∀s ∈ Suv . Psv +

∑

i
Psuviv = 1

Psn + ΣiPsuvin ≥ Ptn

Table 2: Constraints of the optimization problem.

chronize reads and writes to inter-dependent variables
correctly, they are always placed on the same switch.

Although the current prototype chooses the same
path for the traffic between the same ports, the MILP
can be configured to decide paths for more fine-grained
notions of flows. Suppose packet-state mapping finds
that only packets with srcip = x need state variable s.
We refine the MILP input to have two edge nodes per
port, one for traffic with srcip = x and one for the rest,
so the MILP can choose different paths for them.

Finally, the MILP makes a joint decision for state
placement and routing. Therefore, path selection is tied
to state placement. To have more freedom in picking
forwarding paths, one option is to first use common traf-
fic engineering techniques to decide routing, and then
optimize the placement of state variables with respect to
the selected paths. However, this approach may require
replicating state variables and maintaining consistency
across multiple copies, which as mentioned earlier, is
not possible at line rate for distributed packet-by-packet
updates to state variables.

4.5 Generating Data-Plane Rules

Rule generation happens in two phases and combines
information from the xFDD and MILP to configure the
network switches. We assume each packet is augmented
with a SNAP-header upon entering the network, which
contains its original OBS inport and future outport, and
the id of the last processed xFDD node, the purpose of
which will be explained shortly. This header is stripped
off by the egress switch when the packet exits the net-
work. We use DNS-tunnel-detect;assign-egress from
§2 as a running example, with its xFDD in Figure 3.
For the sake of the example, we assume that all the
state variables are stored on C6 instead of D4.

In the first phase, we break the xFDD down into
‘per-switch’ xFDDs, since not every switch needs the
entire xFDD to process packets. Splitting the xFDD
is straightforward given placement information: state-
less tests and actions can happen anywhere, but reads
and writes of state variables must happen on switches
storing them. For example, edge switches (I1 and I2,
and D1 to D4) only need to process packets up to the
state tests, e.g., tests 3 and 8, and write the test number
in the packet’s SNAP-header showing how far into the
xFDD they progressed. Then, they send the packets to
C6, which has the corresponding state variables, orphan

and susp-client. C6, on the other hand, does not need

the top part of the xFDD. It just needs the subtrees
containing its state variables to continue processing the
packets sent from the edges. The per-switch xFDDs
are then translated to switch-level configurations, by a
straightforward traversal of the xFDD (See §5).

In the second phase, we generate a set of match-action
rules that take packets through the paths decided by the
MILP. These paths comply with the state ordering used
in the xFDD, thus they get packets to switches with
the right states in the right order. Note that packets
contain the path identifier (the OBS inport and outport,
(u, v) pair in this case) and the “routing” match-action
rules are generated in terms of this identifier to forward
them on the correct path. Additionally, note that it
may not always be possible to decide the egress port v

for a packet upon entry if its outport depends on state.
We observe that in that case, all the paths for possible
outports of the packet pass the state variables it needs.
We load-balance over these paths in proportion to their
capacity and show, in the extended version [42], that
traffic on these paths remains in their capacity limit.

To see an example of how packets are handled by
generated rules, consider a DNS response with source
IP 10.0.1.1 and destination IP 10.0.6.6, entering the net-
work from port 1. The rules on I1 process the packet
up to test 8 in the xFDD, tag the packet with the path
identifier (1, 6) and number 8. The packet is then sent
to C6. There, C6 will process the packet from test 8,
update state variables accordingly, and send the packet
to D4 to exit the network from port 6.

5. IMPLEMENTATION

The compiler is mostly implemented in Python, ex-
cept for the state placement and routing phase (§4.4)
which uses the Gurobi Optimizer [15] to solve the
MILP. The compiler’s output for each switch is a set of
switch-level instructions in a low-level language called
NetASM [32], which comes with a software switch ca-
pable of executing those instructions. NetASM is an
assembly language for programmable data planes de-
signed to serve as the “narrow waist” between high-
level languages such as SNAP, and NetCore[19], and
programmable switching architectures such as RMT [7],
FPGAs, network processors and Open vSwitch.

As described in §4.5, each switch processes the packet
by its customized per-switch xFDD, and then forwards
it based on the fields of the SNAP-header using a
match-action table. To translate the switch’s xFDD to
NetASM instructions, we traverse the xFDD and gener-
ate a branch instruction for each test node, which jumps
to the instruction of either the true or false branch based
on the test’s result. Moreover, we generate instructions
to create two tables for each state variable, one for the
indices and one for the values. In the case of a state test
in the xFDD, we first retrieve the value corresponding
to the index that matches the packet, and then perform
the branch. For xFDD leaf nodes, we generate store

Application

Chimera [5]

domains sharing the same IP address
distinct IP addresses under the same domain
DNS TTL change tracking
DNS tunnel detection
Sidejack detection
Phishing/spam detection

FAST [21]

Stateful firewall
FTP monitoring
Heavy-hitter detection
Super-spreader detection
Sampling based on flow size
Selective packet dropping (MPEG frames)
Connection affinity

Bohatei [8]

SYN flood detection
DNS amplification mitigation
UDP flood mitigation
Elephant flows detection

Others
Bump-on-the-wire TCP state machine
Snort flowbits [36]

Table 3: Applications written in SNAP.

instructions that modify the packet fields and state ta-
bles accordingly. Finally, we use NetASM support for
atomic execution of multiple instructions to guarantee
that operations on state tables happen atomically.

While NetASM was useful for testing our compiler,
any programmable device that supports match-action
tables, branch instructions, and stateful operations can
be a SNAP target. The prioritized rules in match-action
tables, for instance, are effectively branch instructions.
Thus, one can use multiple match-action tables to im-
plement xFDD in the data plane, generating a separate
rule for each path in the xFDD. Several emerging switch
interfaces support stateful operations [6, 4, 38, 25]. We
discuss possible software and hardware implementations
for SNAP stateful operations in §7.

6. EVALUATION

This section evaluates SNAP in terms of language
expressiveness and compiler performance.

6.1 Language Expressiveness

We have implemented several stateful network func-
tions (Table 3) that are typically relegated to mid-
dleboxes in SNAP. Examples were taken from the
Chimera [5], FAST [21], and Bohatei [8] systems. The
code can be found in the extended version [42]. Most
examples use protocol-related fields in fixed packet-
offset locations, which are parsable by emerging pro-
grammable parsers. Some fields require session reassem-
bly. However, this is orthogonal to the language ex-
pressiveness; as long as these fields are available to the
switch, they can be used in SNAP programs. To make
them available, one could extract these fields by placing
a “preprocessor” before the switch pipeline, similar to
middleboxes. For instance, Snort [36] uses preproces-
sors to extract fields for use in the detection engine.

6.2 Compiler Performance

The compiler goes through several phases upon the
system’s cold start, yet most events require only some

ID Phase
Topo/TM

Change

Policy

Change

Cold

Start

P1 State dependency - X X

P2 xFDD generation - X X

P3 Packet-state map - X X

P4 MILP creation - - X

P5
MILP
solving

State placement
and routing (ST)

- X X

Routing (TE) X - -
P6 Rule generation X X X

Table 4: Compiler phases. For each scenario, phases that
get executed are checkmarked.

Topology # Switches # Edges # Demands

Stanford 26 92 20736
Berkeley 25 96 34225
Purdue 98 232 24336
AS 1755 87 322 3600
AS 1221 104 302 5184
AS 6461 138 744 9216
AS 3257 161 656 12544

Table 5: Statistics of evaluated enterprise/ISP topologies.

of them. Table 4 summarizes these phases and their
sensitivity to network and policy changes.
Cold Start. When the very first program is compiled,
the compiler goes through all phases, including MILP
model creation, which happens only once in the lifetime
of the network. Once created, the model supports in-
cremental additions and modifications of variables and
constraints in a few milliseconds.
Policy Changes. Compiling a new program requires
executing the three program analysis phases and rule
generation as well as both state placement and rout-
ing, which are decided using the MILP in §4.4, denoted
by “ST”. Policy changes become considerably less fre-
quent (§2.2) since most dynamic changes are captured
by the state variables that reside on the data plane.
The policy, and consequently switch configurations, do
not change upon state changes. Thus, we expect pol-
icy changes to happen infrequently, and be planned in
advance. The Snort rule set, for instance, gets updated
every few days [37].
Topology/TM Changes. Once the policy is com-
piled, we fix the decided state placement, and only re-
optimize routing in response to network events such as
failures. For that, we formulated a variant of ST, de-
noted as “TE” (traffic engineering), that receives state
placement as input, and decides forwarding paths while
satisfying state requirement constraints. We expect TE
to run every few minutes since in a typical network,
the traffic matrix is fairly stable and traffic engineering
happens on the timescale of minutes [16, 43, 22, 41].

6.2.1 Experiments

We evaluated performance based on applications
listed in Table 3. Traffic matrices are synthesized using
a gravity model [31]. We used an Intel Xeon E3, 3.4
GHz, 32GB server, and PyPy compiler [27].
Topologies. We used a set of three campus networks
and four inferred ISP topologies from RocketFuel [40]

 0

 50

 100

 150

 200

 250

 300

Stanford

B
erkley

Purdue

ISP 1755

ISP 1221

ISP 6461

ISP 3257

T
im

e
 (

s
e
c
.)

Topology/TM Change
Policy Change

Cold Start

Figure 8: Compilation time of
DNS-tunnel-detect with routing on

enterprise/ISP networks.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 40 60 80 100 120 140 160 180

T
im

e
(s

e
c
.)

Number of Switches

Cold Start
Policy Change

Topology/TM Change

Figure 9: Compilation time of
DNS-tunnel-detect with routing on IGen

topologies.

 0

 10

 20

 30

 40

 50

 4 6 8 10 12 14 16 18 20

T
im

e
(s

e
c
.)

Number of Composed Policies

Cold Start
Policy Change

Topology-TM Change

Figure 10: Compilation time for policies
from Table 3 incrementally composed on a

50-switch network.

Figure 11: Compiler runtimes for scenarios in Table 4 on various policies and topologies. Once compiled for the first time
(cold start, policy change), a policy reacts to traffic using its state variables. Topology/TM changes result in reoptimizing

forwarding paths.

P1-P2-P3 (s)
P5 (s)

P6(s) P4 (s)
ST TE

Stanford 1.1 29 10 0.1 75
Berkeley 1.5 47 18 0.1 150
Purdue 1.2 67 27 0.1 169
AS 1755 0.6 19 6 0.04 22
AS 1221 0.7 21 7 0.04 32
AS 6461 0.8 116 47 0.1 120
AS 3257 0.9 142 74 0.2 163

Table 6: Runtime of compiler phases when compiling
DNS-tunnel-detect with routing on enterprise/ISP

topologies.

(Table 5).4 For ISP networks, we considered 70% of
the switches with the lowest degrees as edge switches
to form OBS external ports. The “# Demands” col-
umn shows the number of distinct OBS ingress/egress
pairs. We assume directed links. Table 6 shows com-
pilation time for the DNS tunneling example (§2) on
each network, broken down by compiler phase. Figure 8
compares the compiler runtime for different scenarios,
combining the runtimes of phases relevant for each.
Scaling with topology size. We synthesize networks
with 10–180 switches using IGen [29]. In each network,
70% of the switches with the lowest degrees are chosen
as edges and the DNS tunnel policy is compiled with
that network as a target. Figure 9 shows the compila-
tion time for different scenarios, combining the runtimes
of phases relevant for each. Note that by increasing
the topology size, the policy size also increases in the
assign-egress and assumption parts.
Scaling with number of policies. The performance
of several phases of the compiler, specially xFDD gener-
ation, is a function of the size and complexity of the in-
put policy. Therefore, we evaluated how the compiler’s
performance scales with policy size using the example
programs from Table 3. Given that these programs are
taken from recent papers and tools in the literature [5,
21, 8, 36], we believe they form a fair benchmark for our

4 The publicly available Mininet instance of Stanford campus
topology has 10 extra dummy switches to implement multiple

links between two routers.

evaluation. Except for TCP state machine, the example
programs are similar in size and complexity to the DNS
tunnel example (§2). We use the 50-switch network
from the previous experiment and start with the first
program in Table 3. We then gradually increase the size
of the final policy by combining this program with more
programs from Table 3 using the parallel composition
operator. Each additional component program affects
traffic destined to a separate egress port.

Figure 10 depicts the compilation time as a function
of the number of components from Table 3 that form
the final policy. The 10-second jump from 18 to 19 takes
place when the TCP state machine policy is added,
which is considerably more complex than others. The
increase in the compilation time mostly comes from the
xFDD generation phase. In this phase, the composed
programs are transformed into separate xFDDs, which
are then combined to form the xFDD for the whole pol-
icy (§4.2). The cost of xFDD composition depends on
the size of the operands, so as more components are
put together, the cost grows. The cost may also de-
pend on the order of xFDD composition. Our current
prototype composes xFDDs in the same order as the
programs themselves are composed and leaves finding
the optimal order to compose xFDDs to future work.

The last data point in Figure 10 shows the compila-
tion time of a policy composed of all the 20 examples
in Table 3, with a total of 35 state variables. These
policies are composed using parallel composition, which
does not introduce read/write dependencies between
state variables. Thus, the dependency graph for the
final policy is a collection of the dependency graphs of
the composed policies. Each of the composed policies
affects the traffic to a separate egress port, which is
detected by the compiler in the packet-state mapping
phase. Thus, when compiled to the 50-switch network,
state variables for each policy are placed on the switch
closest to the egress port whose traffic the policy affects.
If a policy were to affect a larger portion of traffic, e.g.,
the traffic of a set of ingress/egress ports, SNAP would
place state variables in an optimal location where the

aggregated traffic of interest is passing through.

6.2.2 Analysis of Experimental Results

Creating the MILP takes longer than solving it, in
most cases, and much longer than other phases. For-
tunately, this is a one-time cost. After creating the
MILP instance, incrementally adding or removing vari-
ables and constraints (as the topology and/or state re-
quirements change) takes just a few milliseconds.

Solving the ST MILP unsurprisingly takes longer as
compared to the rest of the phases when topology grows.
It takes ∼ 2.5 minutes for the biggest synthesized topol-
ogy and ∼ 2.3 minutes for the biggest RocketFuel topol-
ogy. The curve is close to exponential as the problem is
inherently computationally hard. However, this phase
takes place only in cold start or upon a policy change,
which are infrequent and planned in advance.

Re-optimizing routing with fixed state placement is
much faster. In response to network events (e.g., link
failures), TE MILP can recompute paths in around
a minute across all our experiments, which is the
timescale we initially expected for this phase as it runs
in the topology/TM change scenarios. Moreover, it can
be used even on policy changes, if the user settles for
a sub-optimal state placement using heuristics rather
than ST MILP. We plan to explore such heuristics.

Given the kinds of events that require complete (pol-
icy change) or partial (network events) recompilation,
we believe that our compilation techniques meet the
requirements of enterprise networks and medium-size
ISPs. Moreover, if needed, our compilation procedure
could be combined with traffic-engineering techniques
once the state placement is decided, to avoid re-solving
the original or even TE MILP on small timescales.

7. DISCUSSION

This section discusses data-plane implementation
strategies for SNAP’s stateful operations, how SNAP
relates to middleboxes, and possible extensions to our
techniques to enable a broader range of applications.

7.1 Stateful Operations in the Data Plane

A state variable (array) in SNAP is a key-value map-
ping, or a dictionary, on header fields, persistent across
multiple packets. When the key (index) range is small,
it is feasible to pre-allocate all the memory the dictio-
nary needs and implement it using an array. A large
but sparse dictionary can be implemented using a reac-
tively-populated table, similar to a MAC learner table.
It contains a single default entry in the beginning, and
as packets fly by and change the state variable, it reac-
tively adds/updates the corresponding entries.

In software, there are efficient techniques to imple-
ment a dictionary in either approach, and some software
switches already support similar reactive “learning” op-
erations, either atomically [32] or with small periods of
inconsistency [25]. The options for current hardware

are: (i) arrays of registers, which are already supported
in emerging switch interfaces [6]. They can be used to
implement small dictionaries, as well as Bloom Filters
and hash tables as sparse dictionaries. In the latter case,
it is possible for two different keys to hash to the same
dictionary entry. However, there are applications such
as load balancing and flow-size-based sampling that can
tolerate such collisions [21]. (ii) Content Addressable
Memories (CAMs) are typically present in today’s hard-
ware switches and can be modified by a software agent
running on the switch. Since CAM updates triggered
by a packet are not immediately available to the fol-
lowing packets, it may be used for applications that
tolerate small periods of state inconsistency, such as a
MAC learner, DNS tunnel detection, and others from
Table 3. Our NetASM implementation (§5) takes the
CAM-based approach. NetASM’s software switch sup-
ports atomic updates to the tables in the data plane and
therefore can perform consistent stateful operations.

At the time of writing this paper, we are not aware
of any hardware switch that can implement an arbi-
trary number of SNAP’s stateful operations both at
line rate and with strong consistency. Therefore, we use
NetASM’s low-level primitives as the compiler’s back-
end so that we can specify data-plane primitives that
are required for an efficient and consistent implementa-
tion of SNAP’s operations. If one is willing to relax one
of the above constraints for a specific application, i.e.,
operating at line rate or strong consistency, it would
be possible to implement SNAP on today’s switches.
If strong consistency is relaxed, CAMs/TCAMs can be
programmed using languages such as P4 [6] to imple-
ment SNAP’s stateful operations as described above.
If line-rate processing is relaxed, one can use software
switches, or programmable hardware switching devices
such as ones in the OpenNFP project that allow inser-
tion of Micro-C code extensions to P4 programs at the
expense of processing speed [23] or FPGAs.

7.2 SNAP and Middleboxes

Networks traditionally rely on middleboxes for ad-
vanced packet processing, including stateful functional-
ities. However, advances in switch technology enable
stateful packet processing in the data plane, which nat-
urally makes the switches capable of subsuming a subset
of middlebox functionality. SNAP provides a high-level
programming framework to exploit this ability, hence, it
is able to express a wide range of stateful programs that
are typically relegated to middleboxes (see Table 3 for
examples). This helps the programmer to think about
a single, explicit network policy, as opposed to a dis-
aggregated, implicit network policy using middleboxes,
and therefore, get more control and customization over
a variety of simpler stateful functionalities.

This also makes SNAP subject to similar challenges
as managing stateful middleboxes. For example, many
network functions must observe all traffic pertaining
to a connection in both directions. In SNAP, if traf-

fic in both directions uses a shared state variable, the
MILP optimizer forces traffic in both directions through
the same node. Moreover, previous work such as
Split/Merge [30] and OpenNF [13] show how to migrate
internal state from one network function to another,
and Gember-Jacobson et al. [12] manage to migrate
state without buffering packets at the controller. SNAP
currently focuses on static state placement. However,
since SNAP’s state variables are explicitly declared as
part of the policy, rather than hidden inside blackbox
software, SNAP is well situated to adopt these algo-
rithms to support smooth transitions of state variables
in dynamic state placement. Additionally, the SNAP
compiler can easily analyze a program to determine
whether a switch modifies packet fields to ensure cor-
rect traffic steering—something that is challenging to-
day with blackbox middleboxes [9, 28].

While SNAP goes a step beyond previous high-level
languages to incorporate stateful programming into
SDN, we neither claim that it is as expressive as all
stateful middleboxes, nor that it can replace them. To
interact with middleboxes, SNAP may adopt techniques
such as FlowTags [9] or SIMPLE [28] to direct traffic
through middleboxs chains by tagging packets to mark
their progress. Since SNAP has its own tagging and
steering to keep track of the progress of packets through
the policy’s xFDD, this adoption may require integrat-
ing tags in the middlebox framework with SNAP’s tags.
As an example, we will describe below how SNAP and
FlowTags can be used together on the same network.

In FlowTags, users specify which class of traffic
should pass which chain of middleboxes under what con-
ditions. For instance, they can ask for web traffic to go
to an intrusion detection system (IDS) after a firewall
if the firewall marks the traffic as suspicious. The con-
troller keeps a mapping between the tags and the flow’s
original five tuple plus the contextual information of the
last middlebox, e.g., suspicious vs. benign in the case
of a firewall. The tags are used for steering the traffic
through the right chain of middleboxes and preserving
the original information of the flow in case it is changed
by middleboxes. To use FlowTags with SNAP, we can
treat middlebox contexts as state variables and trans-
form FlowTags policies to SNAP programs. Thus, they
can be easily composed with other SNAP policies. Next,
we can fix the placement of middlebox state variables
to the actual location of the middlebox in the network
in SNAP’s MILP. This way, SNAP’s compiler can de-
cide state placement and routing for SNAP’s own poli-
cies while making sure that the paths between different
middleboxes in the FlowTags policies exist in the net-
work. Thus, steering happens using SNAP-generated
tags. Middleboxes can still use tags from FlowTags to
learn about flow’s original information or the context of
the previous middlebox.

Finally, we focus on programming networks but if ver-
ification is of interest in future work, one might adopt
techniques such as RONO [24] to verify isolation prop-

erties in the presence of stateful middleboxes. In sum-
mary, interacting with existing middleboxes is no harder
or easier in SNAP than it is in other global SDN lan-
guages, stateless or stateful, such as NetKAT [2] or
Stateful NetKAT [18].

7.3 Extending SNAP

Sharding state variables. The MILP assigns each
state variable to one physical switch to avoid the over-
head of synchronizing multiple instances of the same
variable. Still, distributing a state variable remains a
valid option. For instance, the compiler can partition
s[inport] into k disjoint state variables, each storing s

for one port. The MILP can decide placement and rout-
ing as before, this time with the option of distributing
partitions of s with no concerns for synchronization.
Fault-Tolerance. SNAP’s current prototype does not
implement any particular fault tolerance mechanism in
case a switch holding a state variable fails. Therefore,
the state on the failed switch will be lost. However,
this problem is not inherent or unique to SNAP and
will happen in existing solutions with middleboxes too
if the state of the middlebox is not replicated. Apply-
ing common fault tolerance techniques to switches with
state to avoid state loss in case of failure can be an
interesting direction for future work.
Modifying fields with state variables. An inter-
esting extension to SNAP is allowing a packet field to
be directly modified with the value of a state variable
at a specific index: f <- s[e]. This action can be used
in applications such as NATs and proxies, which can
store connection mappings in state variables and mod-
ify packets accordingly as they fly by. Moreover, this
action would enable SNAP programs to modify a field
by the output of an arbitrary function on a set of packet
fields, such as a hash function. Such a function is noth-
ing but a fixed mapping between input header fields and
output values. Thus, when analyzing the program, the
compiler can treat these functions as fixed state vari-
ables with the function’s input fields as index for the
state variable and place them on switches with proper
capabilities when distributing the program across the
network. However, adding this action results in compli-
cated dependencies between program statements, which
is interesting to explore as future work.
Deep packet inspection (DPI). Several applica-
tions such as intrusion detection require searching the
packet’s payload for specific patterns. SNAP can be
extended with an extra field called content, containing
the packet’s payload. Moreover, the semantics of tests
on the content field can be extended to match on reg-
ular expressions. The compiler can also be modified to
assign content tests to switches with DPI capabilities.
Resource constraints. SNAP’s compiler optimizes
state placement and routing for link utilization. How-
ever, other resources such as switch memory and pro-
cessing power in terms of maximum number of compli-
cated operations on packets (such as stateful updates,

increments, or decrements) may limit the possible com-
putations on a switch. An interesting direction for fu-
ture work would be to augment the SNAP compiler with
the ability to optimize for these additional resources.
Cross-packet fields. Layer 4-7 fields are useful for
classifying flows in stateful applications, but are often
scattered across multiple physical packets. Middleboxes
typically perform session reconstruction to extract these
fields. Although SNAP language is agnostic to the cho-
sen set of fields, the compiler currently supports fields
stored in the packet itself and the state associated with
them. However, it may be interesting to explore ab-
stractions for expressing how multiple packets (e.g., in
a session) can form “one big packet” and use its fields.
The compiler can further place sub-programs that use
cross-packet fields on devices that are capable of recon-
structing the “one big packet”.
Queue-based policies. SNAP currently has no no-
tion of queues and therefore, cannot be used to express
queue-based performance-oriented policies such as ac-
tive queue management, queue-based load balancing,
and packet scheduling. There is ongoing research on
finding the right set of primitives for expressing such
policies [34], which is largely orthogonal and comple-
mentary to SNAP’s current goals.

8. RELATED WORK

Stateful languages. Stateful NetKAT [18], devel-
oped concurrently with SNAP, is a stateful language for
“event-driven” network programming, which guarantees
consistent update when transitioning between configu-
rations in response to events. SNAP source language
is richer and exponentially more compact than stateful
NetKAT as it contains multiple arrays (as opposed to
one) that can be indexed and updated by contents of
packet headers (as opposed to constant integers only).
Moreover, they place multiple copies of state at the
edge, proactively generate rules for all configurations,
and optimize for rule space, while we distribute state
and optimize for congestion. Kinetic [17] provides a per-
flow state machine abstraction, and NetEgg [45] synthe-
sizes stateful programs from user’s examples. However,
they both keep the state at the controller.
Compositional languages. NetCore [19], and other
similar languages [20, 10, 2], have primitives for tests
and modifications on packet fields as well as composi-
tion operators to combine programs. SNAP builds on
these languages by adding primitives for stateful pro-
gramming (§3). To capture the joint intent of two poli-
cies, sometimes the programmer needs to decompose
them into their constituent pieces, and then reassem-
ble them using ; and +. PGA [26] allows programmers
to specify access control and service chain policies using
graphs as the basic building block, and tackles this chal-
lenge by defining a new type of composition. However,
PGA does not have linguistic primitives for stateful pro-
gramming, such as those that read and write the con-

tents of global arrays. Thus, we view SNAP and PGA
as complementary research projects, with each treating
different aspects of the language design space.
Stateful switch-level mechanisms. FAST [21] and
OpenState [4] propose flow-level state machines as a
primitive for a single switch. SNAP offers a network-
wide OBS programming model, with a compiler to dis-
tribute the programs across the network. Thus, al-
though SNAP is exponentially more compact than a
state machine in cases where state is indexed by con-
tents of packet header fields, both FAST and OpenState
can be used as a target for a subset of SNAP programs.
Optimizing placement and routing. Several
projects have explored optimizing placement of mid-
dleboxes and/or routing traffic through them. These
projects and SNAP share the mathematical problem of
placement and routing on a graph. Merlin programs
specify service chains as well as optimization objec-
tives [39], and the compiler uses an MILP to choose
paths for traffic with respect to specification. How-
ever, it does not decide the placement of service boxes
itself. Rather, it chooses the paths to pass through
the existing instances of the services in the physical
network. Stratos [11] explores middlebox placement
and distributing flows amongst them to minimize inter-
rack traffic, and Slick [3] breaks middleboxes into fine-
grained elements and distributes them across the net-
work while minimizing congestion. However, they both
have a separate algorithm for placement. In Stratos,
placement results is used in an ILP to decide distribu-
tion of flows. Slick uses a virtual topology on the placed
elements with heuristic link weights, and finds shortest
paths between traffic endpoints.

9. CONCLUSION

In this paper, we introduced a stateful SDN program-
ming model with a one-big-switch abstraction, persis-
tent global arrays, and network transactions. We devel-
oped algorithms for analyzing and compiling programs,
and distributing their state across the network. Based
on these ideas, we prototyped and evaluated the SNAP
language and compiler on numerous sample programs.
We also explore several possible extensions to SNAP to
support a wider range of stateful applications. Each
of these extensions introduces new and interesting re-
search problems to extend our language, compilation
algorithms, and prototype.

Acknowledgments

This work was supported by NSF CNS-1111520 and
gifts from Huawei, Intel, and Cisco. We thank our
shepherd, Sujata Banerjee, and the anonymous review-
ers for their thoughtful feedback; Changhoon Kim,
Nick McKeown, Arjun Guha, and Anirudh Sivaraman
for helpful discussions; and Nick Feamster, Ronaldo
Ferreira, Srinivas Narayana, and Jennifer Gossels for
feedback on earlier drafts.

10. REFERENCES
[1] S. Akers. Binary decision diagrams. IEEE Transactions on

Computers, C-27(6):509–516, 1978.
[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,

D. Kozen, C. Schlesinger, and D. Walker. NetKAT:
Semantic foundations for networks. In POPL, 2014.

[3] B. Anwer, T. Benson, N. Feamster, and D. Levin.
Programming slick network functions. In SOSR, 2015.

[4] G. Bianchi, M. Bonola, A. Capone, and C. Cascone.
OpenState: Programming platform-independent stateful
OpenFlow applications inside the switch. ACM SIGCOMM
Computer Communication Review, 44(2):44–51, 2014.

[5] K. Borders, J. Springer, and M. Burnside. Chimera: A
declarative language for streaming network traffic analysis.
In USENIX Security Symposium, 2012.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review, 44(3):87–95, 2014.

[7] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,
N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In
SIGCOMM, 2013.

[8] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey. Bohatei:
Flexible and elastic ddos defense. In USENIX Security
Symposium, 2015.

[9] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul. Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags. In NSDI, 2014.

[10] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A network
programming language. In ICFP, 2011.

[11] A. Gember, R. Grandl, A. Anand, T. Benson, and
A. Akella. Stratos: Virtual middleboxes as first-class
entities. UW-Madison TR1771, 2012.

[12] A. Gember-Jacobson and A. Akella. Improving the safety,
scalability, and efficiency of network function state
transfers. In HotMiddlebox, 2015.

[13] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:
Enabling innovation in network function control. In
SIGCOMM, 2014.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an operating
system for networks. ACM SIGCOMM Computer
Communications Review, 38(3), 2008.

[15] Gurobi optimizer. http://www.gurobi.com. Accessed: June
2016.

[16] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al.
B4: Experience with a globally-deployed software defined
WAN. In ACM SIGCOMM Computer Communication
Review, volume 43, pages 3–14. ACM, 2013.

[17] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and
R. Clark. Kinetic: Verifiable dynamic network control. In
NSDI, 2015.

[18] J. McClurg, H. Hojjat, N. Foster, and P. Cerný.
Event-driven network programming. In PLDI, 2016.

[19] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A
compiler and run-time system for network programming
languages. In POPL, 2012.

[20] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing software defined networks. In NSDI,
2013.

[21] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and
R. Govindan. Flow-level state transition as a new switch
primitive for SDN. In HotSDN, 2014.

[22] A. Nucci, A. Sridharan, and N. Taft. The problem of
synthetically generating IP traffic matrices: Initial

recommendations. ACM SIGCOMM Computer
Communication Review, 35(3):19–32, 2005.

[23] OpenNFP. http://open-nfp.org. Accessed: June 2016.
[24] A. Panda, O. Lahav, K. J. Argyraki, M. Sagiv, and

S. Shenker. Verifying isolation properties in the presence of
middleboxes. CoRR, abs/1409.7687, 2014.

[25] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado. The design and
implementation of Open vSwitch. In NSDI, 2015.

[26] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella,
S. Banerjee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang.
PGA: Using graphs to express and automatically reconcile
network policies. In SIGCOMM, 2015.

[27] Pypy. http://pypy.org. Accessed: September 2015.
[28] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and

M. Yu. Simple-fying middlebox policy enforcement using
sdn. In SIGCOMM, 2013.

[29] B. Quoitin, V. Van den Schrieck, P. François, and
O. Bonaventure. IGen: Generation of router-level Internet
topologies through network design heuristics. In
International Teletraffic Congress, pages 1–8. IEEE, 2009.

[30] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/Merge: System support for elastic
execution in virtual middleboxes. In NSDI, 2013.

[31] M. Roughan. Simplifying the synthesis of Internet traffic
matrices. ACM SIGCOMM Computer Communication
Review, 35(5):93–96, 2005.

[32] M. Shahbaz and N. Feamster. The case for an intermediate
representation for programmable data planes. In SOSR,
2015.

[33] A. Sivaraman, M. Budiu, A. Cheung, C. Kim, S. Licking,
G. Varghese, H. Balakrishnan, M. Alizadeh, and
N. McKeown. Packet transactions: High-level programming
for line-rate switches. In SIGCOMM, 2016.

[34] A. Sivaraman, S. Subramanian, A. Agrawal, S. Chole, S.-T.
Chuang, T. Edsall, M. Alizadeh, S. Katti, N. McKeown,
and H. Balakrishnan. Programmable packet scheduling. In
SIGCOMM, 2016.

[35] S. Smolka, S. A. Eliopoulos, N. Foster, and A. Guha. A fast
compiler for NetKAT. In ICFP, 2015.

[36] Snort. http://www.snort.org.
[37] Snort blog. http://blog.snort.org. Accessed: June 2016.
[38] H. Song. Protocol-oblivious forwarding: Unleash the power

of SDN through a future-proof forwarding plane. In
HotSDN, 2013.

[39] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg,
E. G. Sirer, and N. Foster. Merlin: A language for
provisioning network resources. In CoNEXT, 2014.

[40] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson.
Measuring ISP topologies with Rocketfuel. IEEE/ACM
Transactions on Networking, 12(1):2–16, 2004.

[41] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and
J. Rexford. Network architecture for joint failure recovery
and traffic engineering. In SIGMETRICS, 2011.

[42] SNAP: Stateful network-wide abstractions for packet
processing, technical report.
http://www.cs.princeton.edu/~arashloo/SNAP.pdf, 2016.

[43] R. Teixeira, N. Duffield, J. Rexford, and M. Roughan.
Traffic matrix reloaded: Impact of routing changes. In
Passive and Active Network Measurement, pages 251–264.
Springer, 2005.

[44] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak.
Maple: Simplifying SDN programming using algorithmic
policies. In SIGCOMM, 2013.

[45] Y. Yuan, R. Alur, and B. T. Loo. NetEgg: Programming
network policies by examples. In HotNets, 2014.

http://www.gurobi.com
http://open-nfp.org
http://pypy.org
http://www.snort.org
http://blog.snort.org
http://www.cs.princeton.edu/~arashloo/SNAP.pdf

	Introduction
	SNAP System Overview
	Writing SNAP Programs
	Realizing Programs on the Data Plane

	SNAP
	Compilation
	State Dependency Analysis
	Extended Forwarding Decision Diagrams
	Packet-State Mapping
	State Placement and Routing
	Generating Data-Plane Rules

	Implementation
	Evaluation
	Language Expressiveness
	Compiler Performance
	Experiments
	Analysis of Experimental Results

	Discussion
	Stateful Operations in the Data Plane
	SNAP and Middleboxes
	Extending SNAP

	Related Work
	Conclusion
	References

