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Snap Transitions of Pressurized
Graphene Blisters
Blister tests are commonly used to determine the mechanical and interfacial properties of
thin film materials with recent applications for graphene. This paper presents a numeri-
cal study on snap transitions of pressurized graphene blisters. A continuum model is
adopted combining a nonlinear plate theory for monolayer graphene with a nonlinear
traction–separation relation for van der Waals interactions. Three types of blister config-
urations are considered. For graphene bubble blisters, snap-through and snap-back
transitions between pancake-like and dome-like shapes are predicted under pressure-
controlled conditions. For center-island graphene blisters, snap transitions between
donut-like and dome-like shapes are predicted under both pressure and volume control.
Finally, for the center-hole graphene blisters, growth is stable under volume or N-control
but unstable under pressure control. With a finite hole depth, the growth may start with a
snap transition under N-control if the hole is relatively deep. The numerical results pro-
vide a systematic understanding on the mechanics of graphene blisters, consistent with
previously reported experiments. Of particular interest is the relationship between the
van der Waals interactions and measurable quantities in corresponding blister tests, with
which both the adhesion energy of graphene and the equilibrium separation for the van
der Waals interactions may be determined. In comparison with approximate solutions
based on membrane analyses, the numerical method offers more accurate solutions that
may be used in conjunction with experiments for quantitative characterization of the
interfacial properties of graphene and other two-dimensional (2D) membrane materials.
[DOI: 10.1115/1.4033305]
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1 Introduction

Pressurized blister tests are commonly used to measure me-
chanical and adhesion properties of thin films and coatings [1–4].
Several types of blister tests have been developed, including the
standard blister test, island blister test, constrained blister test, and
peninsula blister test. Recently, similar blister tests have been
applied to measure interfacial properties of graphene [5–8]. Using
a center-island blister configuration, Liu et al. [9] observed pull-in
instability of graphene membranes at �10 nm separation.
Although such a separation is considerably larger than typical
ranges of van der Waals forces, it was found to be consistent with
a theoretical model assuming long-range van der Waals interac-
tions. In a subsequent study, Boddeti et al. [10] reported switch-
able shapes of graphene blisters using the same blister
configuration. In this paper, we show by a numerical analysis that
both the pull-in instability and the switchable blister shapes are
results of snap transitions, a structural instability modulated by
adhesive interactions. Moreover, it is suggested that such a blister
test may be used to determine the two key parameters of van der
Waals interactions between graphene and its substrate, including
the adhesion energy and the equilibrium separation (as a length
scale). The latter is typically less than 1 nm and thus difficult to
determine by other experimental methods.

Besides specifically designed graphene blister tests, graphene
bubble blisters are often observed when graphene membranes are
placed on top of solid substrates [11,12]. Such graphene bubble
blisters may form during transfer or growth processes with
trapped gas or hydrocarbon residuals between the graphene mem-
branes and the substrates since graphene is impermeable to most
gases [13]. Irradiation of energetic protons or exposure to hydro-
fluoric acid (HF) and water (H2O) vapors for etching could also
cause formation of graphene bubble blisters due to accumulation

of the chemically released gas from the substrate [11,14]. The
observed graphene bubble blisters have diameters ranging from
tens of nanometers to tens of microns, with a variety of shapes
(circular, triangular, and diamond). Use of graphene nanobubbles
has been suggested as a viable method for strain engineering to
manipulate the electronic properties of graphene [15–18]. Micro-
scale graphene bubble blisters have been used to study the Raman
spectrum of graphene under biaxial strain [19]. In a previous study
[20], analytical methods were developed to deduce the interfacial
adhesion energy from measurements of the bubble blister size
(height and radius). Subsequently, a more accurate solution was
obtained by a numerical method, in comparison with the analyti-
cal solutions and molecular dynamics simulations [21]. The effect
of van der Waals interactions was considered and a snap-back
behavior was predicted for the graphene bubble blisters when the
pressure difference drops to a critical level, similar to the pull-in
instability observed for the center-island blisters [9]. In the present
study, we consider both the graphene bubble blisters and the
center-island blisters, with a focus on the snap transitions. Such
snap transitions depend on the nonlinear interactions between gra-
phene and its substrate, which may be exploited to experimentally
characterize the adhesive properties of graphene and other thin
membrane materials.

The remainder of this paper is organized as follows. Section 2
presents a continuum model combining a nonlinear plate theory
for monolayer graphene and an analytical model for van der
Waals interactions. Section 3 describes a numerical method to
solve the nonlinear problem with snap transitions. Three types of
blister configurations are then considered (Fig. 1): graphene bub-
ble blisters in Sec. 4, center-island blisters in Sec. 5, and center-
hole blisters in Sec. 6. The results are summarized in Sec. 7.

2 A Continuum Model for Graphene Blisters

In this paper, we consider three types of axisymmetric graphene
blisters as illustrated in Fig. 1. The circular bubble blister has a
radius a and height h (Fig. 1(a)). As the pressure inside the bubble
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changes, the height changes and may snap back to a nearly flat
state due to the adhesive interaction with the substrate. The radius
is assumed to be fixed, and the graphene outside the blister (r> a)
is assumed to bond perfectly with the substrate. For the center-
island blister (Fig. 1(b)), the substrate underneath the blister has
been removed in the annular region (b< r< a), leaving behind a
circular island at the center. As a result, the adhesive interaction is
limited to the center region of the membrane (r< b). In this case,
the snap transitions could occur between a dome-shaped blister
and a donut-shaped with a flat center region. Finally, for the
center-hole blister (Fig. 1(c)), the substrate has been removed in
the center region (r< b) so that the adhesive interaction is limited
to the annular region (a> r> b). This is the standard blister test
configuration, which can have either stable or unstable growth of
the blister radius by delamination. In all cases, we model the gra-
phene as a continuum membrane and employ an analytical for-
mula for the adhesive interaction, whereas the substrate is
assumed to be rigid.

The mechanical behavior of a graphene monolayer can be
described by a mixed continuum mechanics formulation mapping
a 2D plane to a surface in the three-dimensional space [22,23].
The general kinematics of deformation is described by an in-plane

Green-Lagrange strain tensor and a curvature tensor, both defined
with respect to a reference state in 2D (i.e., the ground state of
graphene). Under the assumption of small strain and moderately
large deflection, the general formulation is reduced to a form simi-
lar to the nonlinear von Karman plate theory. In the present study,
the axisymmetric formulation is used for circular graphene mem-
branes subjected to axisymmetric loading, with two governing
equations [21]:
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where ur ¼ uðrÞ is the in-plane radial displacement and w ¼ wðrÞ
is the out-of-plane deflection of graphene. The basic elastic prop-
erties of monolayer graphene include the 2D Young’s modulus
E2D, Poisson’s ratio �, and the bending modulus D. Unlike classi-
cal plate theory, the bending modulus of monolayer graphene is
not directly related to the in-plane Young’s modulus and Pois-
son’s ratio. Instead, it is determined from atomistic modeling
as an independent property [24–26]. Here, we use the material
properties obtained from first-principle density functional theory
(DFT) calculations [24]: E2D¼ 349N/m, �¼ 0.149, and
D¼ 1.5 eV.

Previous studies have noted that the graphene membrane is of-
ten subject to a pretension [6–9], and the blister behavior depends
sensitively on the pretension. The effect of pretension (T0) can be
taken into account by including an additional term, �T0ðdw=drÞ,
on the left-hand side of Eq. (2). In the present study, we assume
zero pretension (T0 ¼ 0).

On the right-hand side of Eq. (2), q is the lateral load intensity,
which consists of a constant pressure p (or pressure difference if
the outer pressure is considered) and a normal traction due to van
der Waals interactions between graphene and the substrate, i.e.,
qðrÞ ¼ p� rvdWðrÞ. By a simple analytical model of van der
Waals interactions [27,28], the normal traction can be written as a
function of the deflection

rvdW wð Þ ¼ 9C

2d0

d0

wþ d0

� �4

� d0

wþ d0

� �10
" #

(3)

where d0 is the equilibrium separation and C is the adhesion
energy. The nonlinear traction–separation relation is shown in
Fig. 2, where the separation is normalized by d0 and the traction
is normalized by the maximum traction (strength),
rmax
vdW ¼ 1:466C=d0. Measurements of the adhesion energy C have

reported values from 0.09 to 0.45 J/m2 for monolayer graphene on
silicon oxide [5–7,29], although much larger values (up to 6 J/m2)
were reported for other substrate materials [30,31]. For the equi-
librium separation d0, direct measurements are difficult and typi-
cal values from 0.3 to 0.9 nm were estimated from indirect
measurements [32–34]. In the present study, we take d0 ¼ 0:6 nm
and C ¼ 0:1 J/m2 unless specified otherwise.

3 Numerical Method

In this section, we present a numerical method to solve the
coupled nonlinear equations, (1) and (2), using Riks method.
For convenience, we define an effective length scale,
he ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12ð1� �2ÞD=E2D

p

, and normalize the equations accord-
ingly. In addition, we replace the deflection w with the angle of
rotation, h ¼ dw=dr, and discretize the two equations by a finite
difference method, as presented in a previous paper [21]. As a

Fig. 1 Three types of graphene blisters: (a) a circular bubble
blister with radius a and height h; (b) a center-island blister;
and (c) a center-hole blister
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result, we obtain a set of algebraic equations, fkðh;uÞ ¼ 0 and
gkðh;uÞ ¼ 0, where
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for each internal node (0< r< a) with k¼ 1 to n� 1 and

nk ¼ a=ð2nkÞ Pk�1
m¼1 2mqm þ kqk

� �

. The boundary conditions are

specified for the end nodes with k¼ 0 and n: h0 ¼ hn ¼ 0 and
u0 ¼ un ¼ 0. Moreover, with wn ¼ 0 at the edge of the blister
(r¼ a), we calculate the deflection at each node by numerically
integrating the angle of rotation:

wk ¼ � a

2n

X

n�1

m¼k

hm þ hmþ1ð Þ (6)

for k¼ 0 to n�1, and the center deflection is then obtained as
h ¼ w0.

The effect of the van der Waals force is included in the last
term of Eq. (4), with

qk ¼ p � rvdWðwkÞ (7)

and
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where p ¼ ph3e=D, rvdW ¼ rvdWh3e=D, d0 ¼ d0=he, and
C ¼ 9Ch3e=ð2d0DÞ. For the center-island and center-hole blisters,
the van der Waals forces are included only in the regions interact-
ing with the substrate underneath.

The Riks method is used to study the snap transitions of gra-
phene blisters. The pressure p and the central deflection h are
treated as two additional unknowns. The relationship between the
central deflection and the angle of rotation requires that

uh h; h
� �

¼ a

n

X

n�1

k¼1

hk þ h ¼ 0 (9)

To control the incremental arc length along the pressure-
deflection curve, the pressure p can be related to the central
deflection as

upðp; hÞ ¼ ðp � pi�1Þ2 þ ðh � hi�1Þ2 � D
2 ¼ 0 (10)

where D is specified as the dimensionless increment, and pi�1 and
hi�1 are the normalized pressure and central deflection in the pre-
vious step. For computational efficiency, a regulated arc–length
relation is used (except for the very first step):
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The Newton–Raphson method is employed to solve the system
of nonlinear equations, including the discretized equilibrium
equations and the two constraints in Eqs. (9) and (11). At each

step, we start with a set of values as h
ð0Þ
k , u

ð0Þ
k , pð0Þ, and h

ð0Þ
, calcu-

late the residual and corrections, and then iterate until a conver-
gence condition is satisfied. At each iteration, a correction vector
is calculated as
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where Dh is a vector of n� 1 components (Dhk, k¼ 1 to n� 1)
and the same for Du, f , and g. For the convergence criterion, we
require that the L2-norm of the relative correction vector is
smaller than a specified tolerance, namely,

jRj ¼
X

n�1

k¼1

ðDh2k=h2k þ Du2k=u
2
kÞ

" #1=2

< s � 10�4 (13)

If not satisfied, the iteration procedure repeats with a new approxi-

mation, h
ðiþ1Þ
k ¼ h

ðiÞ
k þ Dhk, u

ðiþ1Þ
k ¼ u

ðiÞ
k þ Duk, pðiþ1Þ ¼ pðiÞ

þDp, and h
ðiþ1Þ ¼ h

ðiÞ þ Dh.

4 Graphene Bubble Blisters

4.1 Nanobubble Blisters. Consider a nanobubble graphene
blister with radius a¼ 10 nm (Fig. 1(a)). Using the numerical
method (Sec. 3) with n¼ 300, we calculate the blister deflection
and central height versus the pressure, as shown in Fig. 3. Start
with zero pressure and zero height. Subjected to increasing pres-
sure, the central height increases until the pressure reaches a local
maximum at point A (branch I). The slope of the pressure–height
curve decreases and becomes zero at A, indicative of an impend-
ing instability under pressure control. Further increasing the pres-
sure, a snap-through occurs from point A to point B along the
horizontal dashed line, after which the height increases continu-
ously (branch II). On the other hand, if the bubble blister starts
with a height greater than point B on branch II and the pressure
decreases, the unloading curve reaches a local minimum at point
C, where the slope is again zero. Further decreasing the pressure
would lead to a snap-back form point C to point D, returning to
branch I. Hence, a snap-through/snap-back transition is predicted
for the graphene bubble blister under the pressure-controlled load-
ing and unloading. Between the two critical points (A and C), an

Fig. 2 Normalized traction–separation relation for van der
Waals interactions between graphene and its substrate
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unstable branch is obtained by the Riks method, where the height
increases with decreasing pressure.

Figure 4 shows the snap-through/snap-back transitions of the
deflection profile and corresponding van der Waals force distribu-
tions. We note that the deflection profiles take different shapes for
the two stable branches: pancake-like at points A and D (branch I)
and dome-like at points B and C (branch II). Correspondingly, the
distributions of the van der Waals forces are different, nearly uni-
form for the pancake-like blister and concentrated near the edge
for the dome-like blister. The two blister shapes can be analyzed
approximately by a linearized model and a membrane model, as

presented in the Appendix. The linearized model treats the van
der Waals force as a linear spring so that the height increases line-
arly with the pressure, with a slope depending solely on the initial
stiffness of the van der Waals interactions (ks ¼ 27C=d20). As
shown in Fig. 3, the linear solution agrees with the numerical
solution when the height is small (branch I). On the other hand,
the approximate membrane solution ignores the van der Waals
forces and compares closely with the numerical solution when the
height is relatively large (branch II). Bound by the two approxi-
mate solutions, the snap transitions in between can be understood
from an energy consideration. As detailed in the Appendix, by
using the two shape functions from the approximate solutions
(Fig. 16) and minimizing the free energy of the system, the snap
transitions can be predicted in good agreement with the numerical
solution (Fig. 17).

The two critical pressures for the snap transitions can be deter-
mined numerically from the pressure–height curve as shown in
Fig. 3, where the slope becomes zero (dp=dh ¼ 0). Between the
two critical pressures, the bubble blister is bistable, with two local
minima for the free energy function. The state with the lower free
energy is thermodynamically stable against any perturbation (not
limited to small perturbations), while the other state is metastable.
At a transition pressure (p ¼ pt), the two states have equal free
energy. When p < pt, the state on branch I (pancake-like blister)
is thermodynamically stable; when p > pt, the state on branch II
(dome-like blister) is thermodynamically stable. Therefore, the
snap transition of the graphene bubble blister is analogous to the
first-order phase transition with a discontinuity in the central
height (and volume). Similar snap transitions have been studied in
other systems [35,36].

4.2 Microbubble Blisters. Next we consider microscale gra-
phene bubble blisters, which are more commonly observed in
experiments [11,12]. With the radius a> 1 lm, the graphene
membrane becomes highly flexible with increased nonlinearity

Fig. 3 Pressure versus height for a nanoscale graphene bub-
ble blister (a5 10nm), showing the snap transitions from A to B
and from C to D. The dotted line is the unstable branch from A
to C. The linear solution and the approximate membrane solu-
tion are shown as dashed lines for comparison.

Fig. 4 Snap transitions of a nanoscale graphene bubble blister (a5 10nm): (a) Snap-
through of the deflection profile from A to B at p5 243MPa; (b) distributions of the
van der Waals force at A and B; (c) snap-back of the deflection profile from C to D at
p5 142MPa; and (d) distributions of the van der Waals force at C and D. The points A–D
refer to those marked in Fig. 3.
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due to relatively large deflections. Nevertheless, the problem can
be solved by the same numerical method (Sec. 3) with a suffi-
ciently large number of nodes (n). For a¼ 1.5 lm, we found that
using n¼ 3000 is sufficient to avoid numerical oscillations and
the numerical results do not change noticeably with more nodes.
Figure 5(a) shows the central height versus pressure, exhibiting
similar snap transitions as the nanobubble blister in Fig. 3. The
snap transitions are shown more clearly for the microbubble blis-
ter in a log–log plot (Fig. 5(b)), where the slope is close to 1 for
branch I and about 3 for branch II, corresponding to the linear
and membrane solutions, respectively. Moreover, we plot the
volume of the blister versus pressure in Fig. 5(c). Interestingly,
for the unstable branch, as the pressure decreases, the volume

underneath the blister first decreases and then increases. Such a
nonmonotonic behavior suggests that the blister would undergo
snap transitions even if the loading/unloading is under strict vol-
ume control.

Figure 6 shows the deflection profiles of the microbubble blis-
ter. In the first stable branch of Fig. 5, the deflection is very small
and almost uniform except near the edge (Figs. 6(a) and 6(b)). In
this case, the pressure is largely balanced by the van der Waals
forces. As the pressure increases, the deflection increases almost
linearly. When the magnitude of the pressure becomes close to the
strength of the van der Waals interactions (rmax

vdW ¼ 1:466C=d0),
the pancake-like blister becomes unstable with impending snap-
through transition to a dome-like blister. Corresponding to the
second stable branch in Fig. 5, the height of the dome-like blister
decreases with decreasing pressure (Fig. 6(f)) until it becomes
unstable and snaps back due to the presence of the attractive van
der Waals forces. Along the unstable branch in Fig. 5, the center
part of graphene membrane starts to bulge up at the point of snap-
through transition, forming a dome-like shape while the rest part
remains flat (Figs. 6(c) and 6(d)). Such a deflection profile may be
considered as a mixture of two states, dome-like center sur-
rounded by a pancake-like annulus. The bulge expands in the ra-
dial direction with increasing central height and decreasing
pressure (Fig. 6(e)), similar to growth of a bubble blister with
interfacial delamination. The unstable branch terminates at the
point of snap-back transition, when the bulge radius reaches the
prescribed bubble radius. In this section, we assume the bubble ra-
dius to be fixed. The growth of the bubble radius is considered in
Sec. 6.

Notably, while the critical pressures for snap-through (from
pancake-like to dome-like) are similar for both nano- and micro-
bubble blisters, the critical pressure for snap-back (from dome-
like to pancake-like) is much lower for the microbubble blister. It
is found that the snap-through pressure approximately equals
the strength of the van der Waals interactions, i.e.,
pst � rmax

vdW ¼ 1:466C=d0, at a height close to 0.165d0 (�0.1 nm),
both insensitive to the blister radius (Fig. 7). On the other hand,
the snap-back pressure depends sensitively on the blister radius,
decreasing with increasing blister radius, as shown in Fig. 7(a).
Meanwhile, the snap-back height increases almost linearly with
increasing blister radius (Fig. 7(b)). The linear dependence may
be expected from the approximate membrane solution [20], which
predicts h / a for a given adhesion energy. Further, by the mem-
brane solution in Eq. (A7), p / a�4h3, and thus the critical pres-
sure for snap-back is inversely proportional to the radius (i.e.,
psb / a�1). Moreover, by an energy consideration, the snap-back
pressure depends on the adhesion energy as psb / C

3=4 and corre-
spondingly the snap-back height, hsb / C

1=4. It should be noted
that the approximate membrane solution becomes less accurate
for nanobubble blisters [21]. With the two critical pressures for
the snap transitions and the corresponding heights, two phase dia-
grams are constructed in Fig. 7 for the graphene bubble blisters.
On the pressure–radius panel (Fig. 7(a)), a bistable region is iden-
tified between the two critical pressures. On the height–radius
panel (Fig. 7(b)), an unstable region is identified between the two
critical heights.

Dome-like graphene bubbles are commonly observed in experi-
ments [11,12], whereas the pancake-like bubbles are difficult to
observe because of very small height (h< 1 nm). For dome-like
microbubbles (a> 1 lm), the approximate membrane solution
may be used to estimate the adhesion energy of graphene from
measurements of the bubble radius and height [20]:
C ¼ 5E2Dh

4=8/ð�Þa4. To determine the other parameter of van
der Waals interactions (i.e., d0), additional measurements are
required. For a fixed graphene bubble radius, measurement of the
critical pressure for the snap-through transition would be suffi-
cient to deduce the second parameter as pst � rmax

vdW ¼ 1:466C=d0.
However, it remains a challenge to design such an experiment.
Instead, the center-island blister test is more suitable for this pur-
pose, as discussed in Sec. 5.

Fig. 5 (a) Pressure versus height for a microscale graphene
bubble blister (a5 1.5lm). (b) Pressure–height in a log–log
plot. (c) Pressure versus volume for the microbubble blister.
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5 Center-Island Graphene Blisters

Island blister tests have been used to measure the adhesion
properties of thin films or membrane materials to their substrates
[1,3]. As illustrated in Fig. 1(b), we consider a circular hole of
radius a¼ 1.5lm with a circular island of radius b¼ 0.25lm at
the center. This configuration is similar to those used in experi-
ments for graphene [9,10]. Here, the van der Waals forces are con-
sidered only for the center part of the graphene with 0< r< b.
Figure 8 shows the numerical results in terms of the center height
versus pressure and the blister volume versus pressure. The blister
volume is calculated by integrating the deflection profile, without
including the volume of the hole. Similar to the graphene bubble
blisters, three branches are obtained, two stable branches and an
unstable branch in between. Hence, snap transitions between the
two stable branches are predicted during both pressurization and
depressurization. The deflection profiles are presented in Fig. 9.
For a relative low pressure, the center deflection is nearly zero due

to the presence of van der Waals forces between graphene and the
island, whereas the graphene around the island deflects, forming a
donut-like shape (Fig. 9(a)). The central height increases linearly
with increasing pressure until it reaches the point of snap-through
transition. Along the unstable branch, the deflection profiles in
Figs. 9(b) and 9(c) show an unstable delamination and popping
process: starting from the edge of the island, the graphene delami-
nates progressively from the substrate and pops up as the pressure
continues decreasing. The center deflection remains nearly zero
before the graphene is fully delaminated from the island, thus
making this part of the unstable branch indistinguishable from the
first stable branch in Fig. 8(a). However, the volume underneath
the blister is distinguishable, as shown in Fig. 8(b). The unstable
branch terminates at the point of snap-back transition, beyond
which the central height increases with increasing pressure and
the blister takes a dome-like shape (Fig. 9(d)). Therefore, in this
case, the snap-through transition is from a donut-like blister to a
dome-like blister and vice versa for the snap-back transition.

Fig. 6 Evolution of deflection profile for a microscale graphene bubble blister (a51.5 lm): (a)
and (b) for increasing pressure along branch I (stable), with (b) showing the deflection near
the edge; (c)–(e) for decreasing pressure along the unstable branch, with (c) showing the
deflection near the center and (d) showing the deflection near the edge; (f) for increasing pres-
sure along branch II (stable)
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Moreover, Fig. 8(b) shows that the snap transitions are expected
under both pressure and volume control.

With the center-island configuration, it is possible to determine
both parameters (adhesion energy C and equilibrium separation
d0) for the van der Waals interactions between graphene and the
substrate by measuring the critical pressures for the snap-through
and snap-back transitions [9,10]. For a fixed blister size (a and b),
the critical pressure for snap-through depends primarily on the
adhesion energy, while the critical pressure for snap-back depends
on a combination of the two parameters. First, for the snap-back
transition, we note in Fig. 9(d) that the separation between gra-
phene and the surface of the center island is over 10 nm, much
larger than the typically expected range for van der Waals interac-
tions (<3 nm). At such a large separation, the van der Waals inter-
actions can be simplified by ignoring the second term in Eq. (3),
which is for the short-ranged repulsion. With w� d0, the traction
is approximately

rvdWðwÞ � bw�4 (14)

where b ¼ ð9=2ÞCd30 is the single parameter combining the effects
of C and d0. As a result, the critical pressure for the snap-back
transition depends on the interactions through the combined

parameter b. The corresponding pull-in distance (i.e., the central
height at the point of snap-back) also depends on b. As shown in
Fig. 10, by varying both C and d0, we obtain the critical pressure
and pull-in distance as functions of b. The results for different val-
ues of C collapse onto a master curve with only dependence on b.
Therefore, a measurement of the critical pressure or the pull-in
distance would determine the value of b as a combination of the
two parameters (C and d0).

The snap-through transition occurs as the graphene delaminates
from the center island. As shown in Fig. 9(b), the delamination
starts from the edge of the island and grows toward the center.
Under pressure control, the delamination growth is unstable and
snaps through upon initiation. By a fracture mechanics considera-
tion, assuming small-scale bridging, the critical pressure for the
snap-through transition would depend on the adhesion energy C

only. As outlined in the Appendix, an approximate membrane
analysis predicts the critical pressure as pc ¼ gE

1=4
2D C

3=4a�1, which
is compared to the numerical results in Fig. 11. The numerical
results for three different values of d0 are nearly identical, in very
good agreement with the membrane analysis. Therefore, the adhe-
sion energy C can be determined by measuring the critical pres-
sure for snap-through transition using the center-island blister
configuration. Together with measurement of the critical pressure

Fig. 7 Phase diagrams for graphene bubble blisters: (a) pres-
sure versus radius and (b) height versus radius

Fig. 8 (a) Central height versus pressure and (b) volume ver-
sus pressure for a center-island graphene blister (a5 1.5lm
and b5 0.25lm)
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for snap-back or the pull-in distance, both parameters (C and d0)
for the van der Waals interactions can be determined.

In their experiments, Liu et al. [9] measured pull-in distances
for center-island graphene blisters, ranging from 8 nm to 10 nm
for monolayer graphene. Taking 9.2 nm as the pull-in distance, we
obtain from Fig. 10(b) b¼ 0.0083 nN nm2. In subsequent experi-
ments, Boddeti et al. [10] measured the critical pressure for snap-
through to be around 1MPa, although the island dimension is
slightly different (b¼ 0.35 nm). Based on these two measure-
ments, we obtain C¼ 0.2 J/m2 and d0¼ 0.21 nm. Both of these
values appear to be lower than expected. As noted by Liu et al.
[9], the graphene membranes may have been subjected to a pre-
tension (�0.07N/m), and the effects of pretension could be signif-
icant for both snap-back and snap-through transitions.

An analytical model was presented by Liu et al. [9] for the
snap-back transition, assuming uniform attraction and negligible
bending stiffness of graphene. As shown in Fig. 10, the analytical
model (with zero pretension) overestimates the pull-in distance
compared to the numerical results, while the critical pressure
agrees closely with the numerical results. For the snap-through
transition, an analytical model was also presented by Boddeti
et al. [10], assuming a uniform radial tension and negligible cir-
cumferential strain in graphene. The predicted critical pressure
has the same scaling as our analysis, i.e., pc � E

1=4
2D C

3=4a�1, but
slightly lower than the numerical results as shown in Fig. 11.

6 Center-Hole Graphene Blisters

Center-hole blisters are the standard configuration commonly
used in experiments under either pressure- or volume-controlled
condition [4,8]. The gas impermeability of graphene allowed blis-
ter tests under the condition of N-control [6,7], where N refers to
the number of trapped gas molecules. As illustrated in Fig. 1(c),
we consider a circular hole of radius b¼ 0.25lm, with which the
graphene blister is pressurized and the radius of the blister may

grow by delamination from the substrate. The outer radius a is set
to be 1.5 lm to stop the delamination. In this case, van der Waals
interactions are considered only for the annular region (a> r> b).
Figure 12(a) shows the calculated pressure–volume curve for the
graphene blister. For the first segment (A to B), the blister radius
remains constant and the pressure increases with volume. The
approximate membrane analysis predicts that p / V3 for a fixed
blister radius [20], in good agreement with the numerical results.
For the second segment (B to C), the pressure decreases and the
volume increases, due to increasing blister radius. Again, by the
membrane analysis, p / V�1=3 is predicted for a constant energy
release rate (equal to the adhesion energy). Finally, for the third
segment (C to D), the blister radius is fixed at the prescribed outer
radius a, and the pressure increases with volume as p / V3. Evi-
dently, the p–V curve of the graphene blister confirms that the
growth of the blister is unstable under a pressure control but stable
under a volume control. Under the N-control, we assume pV ¼
NkT by the ideal gas law, where k is the Boltzmann constant and
T is temperature. As shown in Fig. 12(a), the p–V curve of the
ideal gas intersects the p–V curve of the graphene blister, giving
the equilibrium solution under the condition of N-control. Nota-
bly, for each value of N, only one intersection can be found, indi-
cating stable growth of the graphene blister under the
N-controlled condition.

The equilibrium deflection profiles of the center-hole graphene
blister are shown in Fig. 12(b) for increasing N. The central
height, the pressure, and the blister radius are shown in Fig. 13 as
functions of N. The numerical results are compared to the predic-
tions by the approximate membrane analysis [20]. First, for the
blister with a fixed radius (b), the central height can be obtained
from Eq. (A7) in conjunction with the ideal gas law:

h ¼ 2/ �ð Þ
p

	 
1=4

E
�1=4
2D b1=2 NkTð Þ1=4 (15)

Fig. 9 Deflection profiles of a center-island graphene blister (a5 1.5lm and b5 0.25lm): (a)
donut-like profiles (stable branch I), (b) and (c) delamination and popping (unstable branch),
and (d) dome-like profiles (stable branch II)
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Correspondingly, the pressure is

p ¼ 8

p3/ �ð Þ

	 
1=4

E
1=4
2D b�5=2 NkTð Þ3=4 (16)

Next, for a constant energy release rate (equal to the adhesion
energy C), we obtain by the membrane analysis:

h ¼ 5/ �ð Þ
2p2

� �1=4

E2DCð Þ�1=4
NkTð Þ1=2 (17)

and

p ¼ 213p2

55/ �ð Þ

" #1=4

E
1=4
2D C

5=4 NkTð Þ�1=2
(18)

The growth of the blister radius is predicted as

Db ¼ 5

4p

� �1=2

C
�1=2 NkTð Þ1=2 � b (19)

where N is assumed to be greater than the critical value,
NC ¼ 4pb2C=ð5kTÞ. These predictions are in reasonable agree-
ment with the numerical results. The discrepancy is most likely

Fig. 10 Snap-back transition for a center-island graphene blister
(a51.5 lm and b50.25 lm): (a) critical pressure and (b) pull-in dis-
tance. The analytical solutions from Liu et al. [9] are shown for
comparison.
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due to the approximate shape function used in the membrane anal-
ysis. A more accurate (also more complicated) shape function was
used in Hencky’s membrane analysis [37], which would lead to
similar predictions except for the coefficient /ð�Þ and a constant
shape factor for the volume. As noted in the previous studies
[20,21], the difference between the two membrane analyses is
fairly small.

The presence of van der Waals interactions leads to a cohesive
zone near the edge of the graphene blister. It is found that the size
of the cohesive zone is relatively small (�5 nm), but depending
on the two parameters (C and d0) used for the van der Waals inter-
actions. In experiments, the two parameters may be determined by
measuring the delamination resistance curve (R-curve) of the
center-hole blister [29]. By measuring the blister height and
radius, the energy release rate for delamination may be calculated
based on the approximate membrane analysis [20]:
G¼ 5E2Dh

4=½8/ð�Þa4�. Alternatively, if the pressure can be meas-
ured, we may calculate the energy release rate as G¼ 5ph=8. By

Fig. 11 Critical pressure for snap-through transition of a
center-island graphene blister (a5 1.5lm and b50.25lm), as a
function of the adhesion energy C. The predictions by the mem-
brane analysis in the Appendix and the analytical model in
Boddeti et al. [10] are shown in comparison with the numerical
results (symbols).

Fig. 12 (a) Pressure–volume curve for a center-hole graphene
blister (a5 1.5 lm and b5 0.25lm). The dashed lines corre-
spond to the ideal gas law, pV 5NkT , with different values of N
as indicated (T5 300K). (b) Deflection profiles for increasing
number of gas molecules. The dashed lines correspond to the
critical points B and C in (a).

Fig. 13 (a) Central height, (b) pressure, and (c) the change of
radius for a center-hole graphene blister (a5 1.5lm and
b5 0.25lm). Dashed lines show the predictions by the approxi-
mate membrane analysis.
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the numerical method, we calculate the R-curve as shown in
Fig. 14. Using the height–pressure formula, the R-curve saturates
at the prescribed adhesion energy (C¼0.1J/m2) for Db> 5 nm.
The height–radius formula, however, overestimates the adhesion
energy. The shape of the R-curve depends on the
traction–separation relation, which in this case depends on the
equilibrium separation d0.Hence, both parameters (Cand d0) may
be determined from the R-curve if it can be measured with suffi-
cient accuracy.

In their experiments, Koenig et al. [6] measured the height and
radius of pressurized graphene blisters in a center-hole configura-
tion. They calculated the equilibrium pressure by assuming the
ideal gas law for a constant number of trapped gas molecules,
with which they determined the adhesion energy of graphene
based on Hencky’s membrane analysis. More interestingly, in a
subsequent study, Boddeti et al. [7] noticed that the initial growth
of the graphene blister may be either stable or unstable, depending
on the depth of the hole. The stability of the blister growth may be
understood based on the p–V curves (Fig. 12(a)). With a finite
depth (d) for the hole and a constant outer pressure (pout), the ideal
gas law may be written as

ðpþ poutÞðV þ pb2dÞ ¼ NkT (20)

Taking pout ¼ 0:1 MPa as the outer pressure, we plot the p–V
curves for two different depths in Fig. 15. The p–V curve for the
blister is the same as that in Fig. 12(a), but the p–V curves for the
trapped gas depend on the hole depth (d). For a relatively deep
hole (d ¼ 1 lm in Fig. 15(a)), multiple intersections become pos-
sible for some values of N, giving multiple solutions. This is simi-
lar to the pressure-controlled scenario, which may be considered
as an extreme case with d ! 1. In particular, as illustrated in
Fig. 15(a), a snap transition from point B to point C is predicted
for the graphene blister subjected to increasing N. On the other
hand, for a shallow hole (d ¼ 0:01 lm in Fig. 15(b)), each p–V
curve of the trapped gas has only one intersection with the p–V
curve of the blister, similar to the case in Fig. 12(a) where d ¼ 0
is implied. In this case, the blister would grow stably and continu-
ously from B to C. Therefore, by varying the hole depth, both sta-
ble and unstable growth may be achieved with the center-hole
blister configuration.

7 Summary

This paper presents a numerical study on snap transitions of
pressurized graphene blisters. A continuum model is adopted
combining a nonlinear plate theory for monolayer graphene with a
nonlinear traction–separation relation for van der Waals interac-
tions between graphene and the substrate. A numerical method is
developed to solve the nonlinear problem with snap transitions.
Three types of blister configurations are considered. For graphene
bubble blisters, snap-through and snap-back transitions between
pancake-like and dome-like shapes are predicted under the
pressure-controlled condition. Phase diagrams are constructed for
nano- to microscale bubble blisters, with bistable and unstable
regions identified for the pressure and height, respectively. For
center-island graphene blisters, snap transitions between donut-
like and dome-like shapes are predicted under both pressure and
volume control. Finally, for the center-hole graphene blisters,
unstable growth is expected under pressure control, but stable
growth is predicted under the volume or N-control. With a finite
hole depth, however, the growth may start with a snap transition
(unstable growth) under N-control if the hole is relatively deep.

The numerical results provide a systematic understanding on
the mechanics of graphene blisters, consistent with previously
reported experiments. Of particular interest is the relationship
between the van der Waals interactions and measurable quantities
in corresponding blister tests. As a result, the adhesion energy of
graphene may be determined from measurements of the radius
and height of graphene bubble blisters. Both the adhesion energy

Fig. 14 Calculated delamination resistance curves for a center-
hole graphene blister (a51.5lm and b5 0.25lm) using two dif-
ferent formulas based on the approximate membrane analysis

Fig. 15 Pressure–volume curves, (a) for unstable growth of a
center-hole graphene blister (d5 1.0lm) and (b) for stable
growth with d5 0.01lm, both under N-control. The dashed
lines correspond to the ideal gas law with different values of N
as indicated (T5 300K).
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and the equilibrium separation for the van der Waals interactions
can be determined from measurements of the critical pressures (or
critical separation) for snap-back and snap-through transitions of the
center-island graphene blisters. With the standard center-hole blister
configuration, measurement of the delamination resistance curve
could provide sufficient information for the traction–separation rela-
tion of the interface. It is noted that, while an approximate mem-
brane analysis may be used in most cases (especially for relatively
large blisters), some quantitative discrepancies between the analyti-
cal and numerical results do exist. The more accurate numerical sol-
utions may be used in conjunction with experiments for quantitative
characterization of the interfacial properties of graphene as well as
other 2D membrane materials. Moreover, the numerical method
may also be used to explore potential applications of the graphene
blisters such as strain engineering and nano-electromechanical
devices.

Appendix

A Linear Solution for Graphene Bubble Blisters. For very
small deflection, we linearize the van der Waals force in Eq. (3) as

rvdW � ksw (A1)

where ks ¼ 27C=d20 is the initial stiffness. Moreover, the equilib-
rium equations are linearized to recover the linear plate equation
for the deflection:

D

r

d

dr
r
d3w

dr3
þ d2w

dr2
� 1

r

dw

dr

� �

¼ p� ksw (A2)

which is identical to the problem of a linear plate resting on an
elastic foundation. Solving Eq. (A2), the deflection profile is
obtained as

w rð Þ ¼ p

ks
N1 rð Þ (A3)

where the shape function is

N1 rð Þ ¼ 1� n2J1 n2að ÞJ0 n1rð Þ � n1J1 n1að ÞJ0 n2rð Þ
n2J1 n2að ÞJ0 n1að Þ � n1J1 n1að ÞJ0 n2að Þ (A4)

with n1 ¼
ffiffiffi

2
p

ð1þ iÞ=2ðks=DÞ1=4 and n2 ¼
ffiffiffi

2
p

ð1� iÞ=2ðks=DÞ1=4.
A length scale for the shape function emerges: L1 ¼ ðD=ksÞ1=4,
which is about 0.4 nm for monolayer graphene. As shown in

Fig. 16, this shape function is a constant except in the annular
region near the edge of the blister. In this case, the shape of the
blister is pancake-like and the central height depends on the pres-
sure linearly as h ¼ p=ks. Hence, the initial slope of the
pressure–height curve (Fig. 3) is directly related to the stiffness of
van der Waals interactions.

A Membrane Solution for Graphene Bubble Blisters. By
neglecting the van der Waals forces (rvdW � 0), an approximate
membrane solution was obtained in a previous study [20], with a
deflection profile

wðrÞ ¼ hN2ðrÞ (A5)

where the shape function is

N2 rð Þ ¼ 1� r2

a2
(A6)

and the central deflection is related to the pressure as

h ¼ ½/ð�Þpa4=E2D�1=3 (A7)

with /ð�Þ ¼ 75ð1� �2Þ=½8ð23þ 18� � 3�2Þ�. As shown in
Fig. 16, the shape of the blister in this case is dome-like.

A Two-State Solution for Graphene Bubble Blisters. By
combining the two shape functions from the linear solution and
the membrane solution, an approximate deflection profile may be
written as

wðrÞ ¼ h1N1ðrÞ þ h2N2ðrÞ (A8)

where h1 and h2 are to be determined. Correspondingly, the radial
displacement is

u rð Þ ¼ 2 3� �ð Þh22
5a

r

a
1� r

a

� �

(A9)

which is part of the membrane solution [20].
The total free energy of the blister includes the elastic strain

energy of graphene, the van der Waals interaction energy, and the
potential energy associated with the pressure, namely,

Uðh1; h2; p; aÞ ¼ 2p

ða

0

½UbðrÞ þ UsðrÞ þ UvdwðrÞ�rdr

� 2pp

ða

0

wðrÞrdr (A10)

where the van der Waals interaction energy is [27]

Uvdw rð Þ ¼ �C
3

2

d0

d0 þ w

� �3

� 1

2

d0

d0 þ w

� �9
" #

(A11)

and the elastic energy due to stretching and bending of graphene
are, respectively,

Ub rð Þ ¼ D

2

d2w

dr2

� �2

þ 1

r2
dw

dr

� �2

þ 2

r

D� DG

D

dw

dr

d2w

dr2

 !

(A12)

Us rð Þ ¼ E2D

2 1� �2ð Þ e2r þ 2�ereh þ e2h
� �

(A13)

Note that the bending energy in Eq. (A12) includes a term related
to Gaussian curvature with a Gaussian curvature modulus DG.
However, it can be shown that the Gaussian curvature term drops
out after integration over the area with the clamped boundaryFig. 16 Shape functions for graphene bubble blisters
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condition and hence has no influence on the result. In Eq. (A13),
the strain components are related to the displacements as usual:
er ¼ du=dr þ 1=2ðdw=drÞ2 and eh ¼ u=r.

For a given radius a and pressure p, we minimize the free
energy in Eq. (A10) to determine the coefficients h1 and h2. The
central height of the blister is then simply h ¼ h1 þ h2. For
a¼ 10 nm, as shown in Fig. 17, the result from energy minimiza-
tion is in reasonable agreement with the numerical solution. Under
a small pressure (e.g., p¼ 100MPa), the free energy has only one
minimum corresponding to a state of small deflection with a
pancake-like shape. As the pressure increases (e.g., p¼ 200MPa),
two local minima appear in the energy landscape along with a sad-
dle point in between. The two minima correspond to the two sta-
ble branches in the pressure–height curve, while the saddle point
corresponds to the unstable branch. When p increases further
(e.g., p¼ 300MPa), the first local minimum disappears and the
remaining minimum corresponds to branch II with a dome-like
deflection profile. Thus, the snap transitions of the bubble blister
can be understood as a result of energy minimization. In particu-
lar, the competition between the van der Waals interaction energy
and the elastic energy of graphene leads to the two states with dif-
ferent blister shapes.

A Membrane Analysis for Center-Island Graphene
Blisters. For the center-island blister, we assume a deflection pro-
file (before snap-through)

w rð Þ ¼

0; 0 � r < b

h 1�
r � aþ b

2
a� b

2

0

B

B

@

1

C

C

A

2
2

6

6

6

4

3

7

7

7

5

; b � r � a

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(A14)

where h is the maximum deflection. In addition, for the deforma-
tion to be kinematically admissible, a radial displacement is
assumed

u rð Þ ¼
0; 0 � r < b

u0
r � b

a� b
1� r � b

a� b

	 


; b � r � a

8

>

<

>

:

(A15)

where u0 is a parameter to be determined.
Following the energy minimization method in Ref. [20], the

total potential energy of the graphene blister is written as a func-
tion of the kinematic parameters: P ¼ Pðh; u0; a; b; pÞ. Then, for

given a, b, and p, the equilibrium values of h and u0 are obtained
by minimizing the potential energy: @P=@h ¼ @P=@u0 ¼ 0. It is
found that the height scales with the pressure as h � p1=3.

For the graphene to delaminate from the center island, the
release of the potential energy must exceed the adhesion energy.
Therefore, the critical condition is set up as

@P

@b

� �

p

¼ 2pbC (A16)

which predicts a critical pressure as a function of the adhesion
energy as pc ¼ gE

1=4
2D C

3=4a�1 and g is a dimensionless coefficient
depending on the ratio b/a. For a¼ 1.5lm and b¼ 0.25lm, we
obtain g ¼ 1:392.
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