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Abstract 27 

Identification of the cis-regulatory elements controlling cell-type specific gene expression 28 

patterns is essential for understanding the origin of cellular diversity. Conventional assays 29 

to map regulatory elements via open chromatin analysis of primary tissues is hindered by 30 

heterogeneity of the samples. Single cell analysis of transposase-accessible chromatin 31 

(scATAC-seq) can overcome this limitation. However, the high-level noise of each single 32 

cell profile and the large volumes of data could pose unique computational challenges. 33 

Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. 34 

SnapATAC can efficiently dissect cellular heterogeneity in an unbiased manner and map 35 

the trajectories of cellular states. Using the Nyström method, a sampling technique that 36 

generates the low rank embedding for large-scale dataset, SnapATAC can process data 37 

from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a 38 

comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of 39 

its utility, SnapATAC was applied to 55,592 single-nucleus ATAC-seq profiles from the 40 

mouse secondary motor cortex. The analysis revealed ~370,000 candidate regulatory 41 

elements in 31 distinct cell populations in this brain region and inferred candidate 42 

transcriptional regulators in each of the cell types. 43 

  44 
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Introduction 45 

A multicellular organism comprises diverse cell types, each highly specialized to carry out 46 

unique functions. Each cell lineage is established during development as a result of tightly 47 

regulated spatiotemporal gene expression programs1, which are driven in part by 48 

sequence-specific transcription factors that interact with cis-regulatory sequences in a 49 

cell-type specific manner2. Thus, identifying the cis-elements and their cellular specificity 50 

is an essential step towards understanding the developmental programs encoded in the 51 

linear genome sequence. 52 

  53 

Since the cis-regulatory elements are often marked by hypersensitivity to nucleases or 54 

transposases when they are active or poised to act, approaches to detect chromatin 55 

accessibility, such as ATAC-seq (Assay for Transposase-Accessible Chromatin 56 

using sequencing)3 and DNase-seq (DNase I hypersensitive sites sequencing)4 have been 57 

widely used to map candidate cis-regulatory sequences. However, conventional assays 58 

that use bulk tissue samples as input cannot resolve cell-type specific usage of cis elements 59 

and lacks the resolution to study their temporal dynamics. To overcome these limitations, 60 

a number of methods have been developed for measuring chromatin accessibility in 61 

single cells. One approach involves combinatorial indexing to simultaneously analyze 62 

tens of thousands of cells5. This strategy has been successfully applied to embryonic 63 

tissues in D. melanogaster6, developing mouse forebrains7 and adult mouse tissues8. A 64 

related method, scTHS-seq (single-cell transposome hypersensitive site sequencing), 65 

has also been used to study chromatin landscapes at single cell resolution in the adult 66 

human brains9. A third approach relies on isolation of cell using microfluidic devices 67 

(Fluidigm, C1)10 or within individually indexable wells of a nano-well array (Takara Bio, 68 

ICELL8)11. More recently, single cell ATAC-seq analysis has been demonstrated on 69 

droplet-based platforms12,13, enabling profiling of chromatin accessibility from 70 

hundreds of thousands cells in a single experiment13. Hereafter, these methods are 71 

referred to collectively as single cell ATAC-seq (scATAC-seq). 72 

 73 

The growing volume of scATAC-seq datasets coupled with the sparsity of signals in each 74 

individual profile due to low detection efficiency (5-15% of peaks detected per cell)7 75 

present a unique computational challenge. To address this challenge, a number of 76 
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unsupervised algorithms have been developed. One approach, chromVAR14, groups 77 

similar cells together by dissecting the variability of transcription factor (TF) motif 78 

occurrence in the open chromatin regions in each cell. Another approach employs the 79 

natural language processing techniques such as Latent Semantic Analysis (LSA)8 and 80 

Latent Dirichlet Allocation (LDA)15 to group cells together based on the similarity of 81 

chromatin accessibility. A third approach analyzes the variability of chromatin 82 

accessibility in cells based on the k-mer composition of the sequencing reads from each 83 

cell13,16. A fourth approach, Cicero17, infers cell-to-cell similarities based on the gene 84 

activity scores predicted from their putative regulatory elements in each cell.  85 

 86 

Because the current methods often require performing linear dimensionality reduction 87 

such as singular value decomposition (SVD) on a cell matrix of hundreds of thousands of 88 

dimensions, scaling the analysis to millions of cells remains very challenging or nearly 89 

impossible. In addition, the unsupervised identification of cell types or states in complex 90 

tissues using scATAC-seq dataset does not have the same degree of sensitivity as that from 91 

scRNA-seq18. One possibility is that the current methods rely on the use of pre-defined 92 

accessibility peaks based on the aggregate signals. There are several limitations to this 93 

choice. First, the cell type identification could be biased toward the most abundant cell 94 

types in the tissues, and consequently lack the ability to reveal regulatory elements in the 95 

rare cell populations that could be underrepresented in the aggregate dataset. Second, a 96 

sufficient number of single cell profiles would be required to create robust aggregate 97 

signal for creating the peak reference.  98 

 99 

To overcome these limitations, we introduce a software package, Single Nucleus Analysis 100 

Pipeline for ATAC-seq – SnapATAC (https://github.com/r3fang/SnapATAC) - that does 101 

not require population-level peak annotation prior to clustering. Instead, it resolves 102 

cellular heterogeneity by directly comparing the similarity in genome-wide accessibility 103 

profiles between cells. We also adopt a new sampling technique, ensemble Nyström 104 

method19,20, that significantly improves the computational efficiency and enables the 105 

analysis of scATAC-seq from a million cells on typical hardware. SnapATAC also 106 

incorporates  many existing tools, including integration of scATAC-seq and scRNA-seq 107 

dataset18, prediction of enhancer-promoter interaction, discovery of key transcription 108 
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factors21, identification of differentially accessible elements22, construction of trajectories 109 

during cellular differentiation, correction of batch effect23 and classification of new 110 

dataset based on existing cell atlas18, into one single package to maximize its utility and 111 

functionalities. Thus, SnapATAC represents a comprehensive solution for scATAC-seq 112 

analysis. 113 

 114 

Through extensive benchmarking using both simulated and empirical datasets from 115 

diverse tissues and species, we show that SnapATAC outperforms current methods in 116 

accuracy, sensitivity, scalability and reproducibility for cell type identification from 117 

complex tissues. Furthermore, we demonstrate the utility of SnapATAC by building a 118 

high-resolution single cell atlas of the mouse secondary motor cortex. This atlas 119 

comprises of ~370,000 candidate cis-regulatory elements across 31 distinct cell types, 120 

including rare neuronal cell types that account for less than 0.1% of the total population 121 

analyzed. Through motif enrichment analysis, we further infer potential key 122 

transcriptional regulators that control cell type specific gene expression programs in the 123 

mouse brain. 124 

  125 
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Results 126 

Overview of SnapATAC workflow 127 

A schematic overview of SnapATAC workflow is displayed in Fig. 1. SnapATAC first 128 

performs pre-processing of sequencing reads including demultiplexing, reads alignments 129 

and filtering, duplicate removal and barcode selection using SnapTools 130 

(https://github.com/r3fang/SnapTools) (Supplementary Methods). The output of 131 

this pre-processing step is a “snap” (Single-Nucleus Accessibility Profiles) file 132 

(Supplementary Note 1) specially formatted for storing single cell ATAC-seq datasets 133 

(Supplementary Fig. 1a). Users could select high quality single cell ATAC-seq profiles 134 

for subsequent analysis based on numbers of unique fragments detected from the cell and 135 

percentage of promoter-overlapping fragments24.  136 

 137 

Figure 1. Schematic overview of SnapATAC analysis workflow. See main text 138 

for description of each step. 139 

 140 

Next, SnapATAC resolves the heterogeneity of cell population by assessing the similarity 141 

of chromatin accessibility between cells. To achieve this goal, each single cell chromatin 142 

accessibility profile is represented as a binary vector, the length of which corresponds to 143 

the number of uniform-sized bins that segment the genome. Through systematic 144 

benchmarking, a bin size of 5kb is chosen in this study (Supplementary Methods and 145 

Supplementary Fig. 2b). A bin with value “1” indicates that one or more reads fall 146 

within that bin, and the value “0” indicates otherwise. The set of binary vectors from all 147 
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the cells are converted into a Jaccard similarity matrix, with the value of each element 148 

calculated from the fraction of overlapping bins between every pair of cells. Because the 149 

value of Jaccard Index could be influenced by sequencing depth of a cell 150 

(Supplementary Methods), a regression-based normalization method is developed to 151 

remove this confounding factor (Supplementary Methods and Supplementary Fig. 152 

3-4). Using the normalized similarity matrix, eigenvector decomposition is performed for 153 

dimensionality reduction. Finally, in the reduced dimension, SnapATAC uses Harmony23 154 

to remove potential batch effect between samples introduced by technical variability 155 

(Supplementary Methods).  156 

 157 

The computational cost of the algorithm scales quadratically with the number of cells. To 158 

improve the scalability of SnapATAC, a sampling technique - the Nyström method19 – is 159 

used to efficiently generate the low-rank embedding for large-scale datasets 160 

(Supplementary Methods). Nyström method contains two major steps: 1) it computes 161 

the low dimension embedding for a subset of selected cells (also known as landmarks); 2) 162 

it projects the remaining cells to the embedding structure learned from the landmarks. 163 

This achieves significant speedup considering that the number of landmarks could be 164 

substantially smaller than the total number of cells. Through benchmarking, we further 165 

demonstrate that this approach will not sacrifice the performance once the landmarks are 166 

chosen appropriately (Supplementary Methods and Supplementary Fig. 5a-c) as 167 

reported before20.  168 

 169 

Nyström method is stochastic and could yield different clustering results in each sampling. 170 

To overcome this limitation, a consensus approach is used that combines a mixture of 171 

low-dimensional manifolds learned from different sets of sampling (Supplementary 172 

Methods). Through benchmarking, we demonstrate that the ensemble approach can 173 

significantly improve the reproducibility of clustering outcome compared to the standard 174 

Nyström method (Supplementary Fig. 5d). In addition, this consensus algorithm 175 

naturally fits within the distributed computing environments where their computational 176 

costs are roughly the same as that of the standard single sampling method.  177 

 178 
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 179 

Figure 2. SnapATAC integrates single cell ATAC-seq and RNA-seq data to link 180 

enhancers to putative target genes. (a) Joint t-SNE visualization of scATAC-seq and 181 

scRNA-seq datasets from peripheral blood mononuclear cells (PBMC). Cells are colored 182 

by modality (left) and predicted cell types (right). (b) Cell-type specific chromatin 183 

landscapes are shown together with the association score between gene expression of 184 

C3AR1 and accessibility at its putative enhancers. Dash lines highlight the significant 185 

enhancer-promoter pairs. Yellow line represents the SNP (rs2072449) that is associated 186 

with C3AR1 expression25.  187 

 188 

As a standalone software package, SnapATAC also provides a number of commonly used 189 

functions for scATAC-seq analysis by incorporating many existing useful tools, as 190 

described below: 191 
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 192 

First, to facilitate the annotation of resulting cell clusters, SnapATAC provides three 193 

different approaches: i ) SnapATAC annotates the clusters based on the accessibility score 194 

at the canonical marker genes (Supplementary Methods); ii) it infers cell type labels 195 

by integrating with corresponding single cell RNA-seq datasets18 (Supplementary 196 

Methods and Fig. 2a); iii) it allows supervised annotation of new single cell ATAC-seq 197 

dataset based on an existing cell atlas (Supplementary Methods).  198 

 199 

Second, SnapATAC allows identification of the candidate regulatory elements in each 200 

cluster by applying various  peak-calling algorithms26 to the aggregate chromatin profiles. 201 

Differential analysis is then performed to identify cell-type specific regulatory elements22. 202 

Candidate master transcription factors in each cell cluster are discovered through motif 203 

enrichment analysis of the differentially accessible regions in each cluster27. SnapATAC 204 

further conducts Genomic Regions Enrichment of Annotation Tool (GREAT)28 analysis 205 

to identify the biological pathways active in each cell type.  206 

 207 

Third, SnapATAC incorporates a new approach to link candidate regulatory elements to 208 

their putative target genes. In contrast to previous method17 that relies on analysis of co-209 

accessibility of putative enhancers and promoters29, SnapATAC infers the linkage based 210 

on the association between gene expression and chromatin accessibility in single cells 211 

where scRNA-seq data is available (Supplementary Methods). First, SnapATAC 212 

integrates scATAC-seq and scRNA-seq using Canonical Correlation Analysis (CCA) as 213 

described in the previous study30. Second, for each scATAC-seq profile, a corresponding 214 

gene expression profile is imputed based on the weighted average of its k-nearest 215 

neighboring cells (i.e. k=15) in the scRNA-seq dataset. A “pseudo” cell is created that 216 

contains the information of both chromatin accessibility and gene expression. Finally, 217 

logistic regression is performed to quantify the association between the gene expression 218 

and binarized accessibility state at putative enhancers (Supplementary Methods). 219 

This new approach is used to integrate ~15K peripheral blood mononuclear cells (PBMC) 220 

chromatin profiles and ~10K PBMC transcriptomic profiles (Fig. 2a) and represent them 221 

in a joint t-SNE embedding space (Fig. 2a). Over 98% of the single cell ATAC-seq cells 222 

can be confidently assigned to a cell type defined in the scRNA-seq dataset 223 
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(Supplementary Fig. 6a). Enhancer-gene pairs are predicted for 3,000 genes 224 

differentially expressed between cell types in PBMC as determined by scRNA-seq using 225 

Seurat18. The validity of the prediction is supported by two lines of evidence. First, the 226 

association score exhibits a distance decay from the TSS, consistent with the distance 227 

decay of interaction frequency observed in chromatin conformation study31 228 

(Supplementary Fig. 6b). Second, the predictions match well with the expression 229 

quantitative trait loci (cis-eQTLs) derived from interferon-γ and lipopolysaccharide 230 

stimulation of monocytes25 with reasonable prediction power (AUROC=0.66, 231 

AUPRC=0.68; Supplementary Fig. 6c-d and Supplementary Methods). It is 232 

important to note that while statistical association between scATAC-seq and scRNA-seq 233 

provides another approach to symmetrically link enhancers to their putative target genes, 234 

the predictions require further experimental validation.  235 

 236 

 237 

 238 

Figure 3. SnapATAC constructs cellular trajectories for the developing 239 

mouse brain. (a) Two-dimensional visualization of a dataset that contains 4,259 single 240 

cell chromatin profiles from the hippocampus and ventricular zone in embryonic mouse 241 

brain (E18) reveals two-branch differentiation trajectories from progenitor cells to 242 

Granule Cells (DG) and Pyramidal Neurons (CA3) (left). Data source is listed in 243 

Supplementary Table S1. The cellular trajectory is determined by Slingshot32. (b) 244 

Gene accessibility score of canonical marker genes is projected onto the 2D embedding. 245 

 246 

Fourth, SnapATAC has incorporated a function to construct cellular trajectories from 247 

single cell ATAC-seq. As a demonstration of this feature, SnapATAC is used to analyze a 248 

dataset that contains 4,259 cells from the hippocampus in the fetal mouse brain (E18) 249 
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(Supplementary Table S1). Immature granule cells originating in the dentate gyrus 250 

give rise to both mature granule cells (DG) and pyramidal neurons (CA3)33. Analysis of 251 

4,259 cells reveals a clear branching structure in the first two dimensions (Fig. 3a), the 252 

pattern of which is remarkably similar to the result previously obtained from single cell 253 

transcriptomic analysis34. For instance, the DG-specific transcription factor Prox1 is 254 

exclusively accessible in one branch whereas Neurod6 that is known to be specific to CA3 255 

are accessible in the other branch. Markers of progenitors such as Hes5 and Mki67, 256 

however, are differentially accessible before the branching point (Fig. 3b). Further using 257 

lineage inference tool such as Slingshot32, SnapATAC defines the trajectories of cell states 258 

for pseudo-time analysis (Fig. 3a). These results demonstrate that SnapATAC can also 259 

reveal lineage trajectories with high accuracy.  260 

 261 

Performance evaluation 262 

To compare the accuracy of cell clustering between SnapATAC and published scATAC-263 

seq analysis methods, a simulated dataset of scATAC-seq profiles are generated with 264 

varying coverages, from 10,000 (high coverage) to 1,000 reads per cell (low coverage) by 265 

down sampling from 10 previously published bulk ATAC-seq datasets27 266 

(Supplementary Table S2 and Supplementary Methods). Based on a recent 267 

summary of cell ATAC-seq methods35, LSA8 and cisTopic15 outperforms the other 268 

methods in separating cell populations of different coverages and noise levels in both 269 

synthetic and real datasets. Therefore, we choose to compare SnapATAC with these two 270 

methods. 271 

  272 

The performance of each method in identifying the original cell types is measured by both 273 

Adjusted Rank Index (ARI) and Normalized Mutual Index (NMI). The comparison shows 274 

that SnapATAC is the most robust and accurate method across all ranges of data sparsity 275 

(Wilcoxon signed-rank test, P < 0.01; Fig. 4a; Supplementary Fig. 7 and 276 

Supplementary Table S3). Next, a set of 1,423 human cells corresponding to 10 277 

distinct cell types generated using C1 Fluidigm platform, where the ground truth is 278 

known14, is analyzed by SnapATAC and other methods.  Again, SnapATAC correctly 279 

identifies the cell types with high accuracy (Supplementary Fig. 8).  280 

 281 
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To compare the sensitivity of SnapATAC on detecting cell types to that of previously 282 

published methods, we analyzed two scATAC-seq datasets representing different types of 283 

bio-samples. First, to quantify the clustering sensitivity, we applied an existing 284 

integration method to predict the cell type of 4,792 PBMC cells using corresponding 10X 285 

single cell RNA-seq by following the tutorial 286 

(https://satijalab.org/seurat/v3.1/atacseq_integration_vignette.html). To obtain the 287 

most confident prediction, we only kept single cell ATAC-seq profiles whose cell type 288 

prediction score is greater than 0.9. Using the remaining cells, we calculated the 289 

connectivity index (CI; Supplementary Methods) in the low-dimension manifold for 290 

each of the methods (LSA, cisTopic and SnapATAC). Connectivity index estimates the 291 

degree of separation between clusters in an unbiased manner and a lower connectivity 292 

index represents a higher degree of separation between clusters. SnapATAC exhibits 293 

substantially higher sensitivity in distinguishing different cell types compared to the other 294 

two methods (Fig. 4b). The second is a newly produced dataset that contains 9,529 single 295 

nucleus open chromatin profiles generated from the mouse secondary motor cortex. 296 

Based on the gene accessibility score at canonical marker genes (Supplementary Fig. 297 

9), SnapATAC uncovers 22 distinct cell populations (Supplementary Fig. 10) whereas 298 

alternative methods fail to distinguish the rare neuronal subtypes including Sst (Gad2+ 299 

and Sst+), Vip (Gad2+ and Vip+), L6b (Sulf1- and Tl4e+) and L6.CT (Sulf1+ and Foxp2+). 300 

These results suggest that SnapATAC outperforms existing methods in sensitivity of 301 

separating different cell types in both synthetic and real datasets.  302 

 303 

To compare the scalability of SnapATAC to that of existing methods, a previous scATAC-304 

seq dataset that contains over 80k cells from 13 different mouse tissues8 is used 305 

(Supplementary Table S1). This dataset is down sampled to different number of cells, 306 

ranging from 20,000 to 80,000 cells. For each sampling, SnapATAC and other methods 307 

are performed, and the CPU running time of dimensionality reduction is monitored 308 

(Supplementary Methods). The running time of SnapATAC scales linearly and 309 

increases at a significantly lower slope than alternative methods (Fig. 4c). Using the same 310 

computing resource, when applied to 100k cells, SnapATAC is much faster than existing 311 

methods (Fig. 4c). For instance, when applied to 100k cells, SnapATAC is nearly 10 times 312 

faster than LSA and more than 100 times faster than cisTopic. More importantly, because 313 
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SnapATAC avoids the loading of the full cell matrix in the memory and can naturally fit 314 

within the distributed computing environments (Supplementary Methods), the 315 

running time and memory usage for SnapATAC plateau after 20,000 cells, making it 316 

possible for analyzing datasets of even greater volumes. To test this, we simulate one 317 

million cells of the same coverage with the above dataset (Supplementary Methods) 318 

and process it with SnapATAC, LSA and cisTopic. Using the same computing resource, 319 

SnapATAC is the only method that is able to process this dataset (Fig. 4c and 320 

Supplementary Methods). These results demonstrate that SnapATAC provides a 321 

highly scalable approach for analyzing large-scale scATAC-seq dataset.  322 

 323 

To evaluate the clustering reproducibility, the above mouse scATAC-seq dataset is down-324 

sampled to 90% of the original sequencing depth in five different iterations. Each down 325 

sampled dataset is clustered using SnapATAC and other methods. Clustering results are 326 

compared between sampled datasets to estimate the stability. SnapATAC has a 327 

substantially higher reproducibility of clustering results between different down-sampled 328 

datasets than other methods (Fig. 4d).  329 

 330 
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 331 

Figure 4. SnapATAC outperforms current methods in accuracy, sensitivity, 332 

scalability and stability of identifying cell types in complex tissues. (a) A set of 333 

simulated datasets are generated with varying coverage ranging from 1,000 to 10,000 334 

reads per cell cells (Supplementary Methods). For each coverage, n=10 random 335 

replicates are simulated, and clustering accuracy measurement is based on Adjusted Rank 336 

Index (ARI). (b) T-SNE representation of PBMC single cell ATAC-seq profiles analyzed 337 

by LSA (left), cisTopic (middle) and SnapATAC (right). The cell type identification was 338 

predicted by 10X PBMC single cell RNA-seq using recent integration method30. CI = 339 

connectivity index (see Supplementary Methods). (c) A mouse dataset8 is sampled to 340 

different number of cells ranging from 20k to 1M. For each sampling, we compared the 341 

CPU running time of different methods for dimensionality reduction (Supplementary 342 

Methods). SnapATAC is the only method that is able to process a dataset of one million 343 

(1M) cells. (d) A set of perturbations (n=5) are introduced to the mouse atlas dataset by 344 

down sampling to 90% of the original sequencing depth. Clustering outcomes are 345 

compared between different down sampled datasets (n=10) to estimate the 346 

reproducibility. One-tailed t-test was performed to estimate the significance level 347 

between SnapATAC and each of the other two methods (* < 0.05 and ** < 0.01).  348 

 349 

The improved performance of SnapATAC likely results from the fact that it considers all 350 

reads from each cell, not just the fraction of reads within the peaks defined in the 351 
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population. To test this hypothesis, clustering is performed after removing the reads 352 

overlapping the predefined peak regions. Although the outcome is worse than the full 353 

dataset as expected, it still recapitulates the major cell types obtained from the full dataset 354 

(Supplementary Fig. 11). This holds true for all three datasets tested 355 

(Supplementary Fig. 11a-c). One possibility is that the off-peak reads may be enriched 356 

for the euchromatin (or compartment A) that strongly correlates with active genes28 and 357 

varies considerably between cell types29,30. Consistent with this hypothesis, the density of 358 

the non-peak reads in scATAC-seq library is highly enriched for the euchromatin 359 

(compartment A) as defined using genome-wide chromatin conformation capture 360 

analysis (i.e. Hi-C) in the same cell type31 (Supplementary Fig. 12). These observations 361 

suggest that the non-peak reads discarded by existing methods can actually contribute to 362 

distinguish different cell types.  363 

 364 

Including the off-peak reads, however, raises a concern regarding whether SnapATAC is 365 

sensitive to technical variations (also known as batch effect). To test this, SnapATAC is 366 

applied to four datasets generated using different technologies (Supplementary Table 367 

S1). Each dataset contains at least two biological replicates produced by the same 368 

technology. In all cases, the biological replicates are well mixed in the t-SNE embedding 369 

space showing no batch effect (Supplementary Fig. 13), suggesting that SnapATAC is 370 

robust to the technical variations.  371 

 372 

To test whether SnapATAC is robust to technical variation introduced by different 373 

technological platforms, it is used to integrate two mouse brain datasets generated using 374 

plate and droplet-based scATAC-seq technologies (Supplementary Table S1). In the 375 

joint t-TSNE embedding space, these two datasets are separated based on the 376 

technologies (Supplementary Fig. 14a). To remove the platform-to-platform 377 

variations, Harmony23, a single cell batch effect correction tool, is incorporated into the 378 

SnapATAC pipeline (Supplementary Methods). After applying Harmony23, these two 379 

datasets are fully mixed in the joint t-SNE embedding (Supplementary Fig. 14b) and 380 

clusters are fairly represented by both datasets (Supplementary Fig. 14c). 381 

 382 

A high-resolution cis-regulatory atlas of the mouse secondary motor cortex 383 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 16 

To demonstrate the utility of SnapATAC in resolving cellular heterogeneity of complex 384 

tissues and identify candidate cis-regulatory elements in diverse cell type, it is applied to 385 

a new single nucleus ATAC-seq dataset generated from the secondary mouse motor cortex 386 

in the adult mouse brain as part of the BRAIN Initiative Cell Census Consortium36 387 

(Supplementary Fig. 15a). This dataset includes two biological replicates, each pooled 388 

from 15 mice to minimize potential batch effects. The aggregate signals show high 389 

reproducibility between biological replicates (Pearson correlation = 0.99; 390 

Supplementary Fig. 15b-d) and a significant enrichment for transcription start sites 391 

(TSS), indicating a high signal-to-noise ratio (Supplementary Fig. 15e). After filtering 392 

out the low-quality nuclei (Supplementary Fig. 16a) and removing putative doublets 393 

using Scrublet37 (Supplementary Methods; Supplementary Fig. 16b), a total of 394 

55,592 nuclear profiles with an average of ~5,000 unique fragments per nucleus remain 395 

and are used for further analysis (Supplementary Table S4). To our knowledge, this 396 

dataset represents one of the largest single cell chromatin accessibility studies for a single 397 

mammalian brain region to date.  398 

 399 

SnapATAC identifies initially a total of 20 major clusters using the consensus clustering 400 

approach (Supplementary Fig. 17). The clustering result is highly reproducible 401 

between biological replicates (Pearson correlation=0.99; Supplementary Fig. 18a) 402 

and is resistant to sequencing depth effect (Supplementary Fig. 18b). Based on the 403 

gene accessibility score at the canonical marker genes (Supplementary Fig. 19), these 404 

clusters are classified into 10 excitatory neuronal subpopulations (Snap25+, Slc17a7+, 405 

Gad2-; 52% of total nuclei), three inhibitory neuronal subpopulations (Snap25+, Gad2+; 406 

10% of total nuclei), one oligodendrocyte subpopulation (Mog+; 8% of total nuclei), one 407 

oligodendrocyte precursor subpopulation (Pdgfra+; 4% of total nuclei), one microglia 408 

subpopulation (C1qb+; 5% of total nuclei), one astrocyte subpopulation (Apoe+; 12% of 409 

total nuclei), and additional populations of endothelial, and smooth muscle cells 410 

accounting for 6% of total nuclei (Fig. 5a). 411 

 412 
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 413 

Figure 5. A high-resolution cis-regulatory atlas of mouse secondary motor 414 

cortex (MOs). (a) T-SNE visualization of 20 cell types in MOs identified using 415 

SnapATAC. (b) Fourteen GABAergic subtypes revealed by iterative clustering of 5,940 416 

GABAergic neurons (Sst, Pv and CGE). (c) Gene accessibility score of canonical marker 417 

genes for GABAergic subtypes projected onto the t-SNE embedding. Marker genes were 418 

identified from previous scRNA-seq analysis38. (d) k-means clustering of 294,304 419 

differentially accessible elements based on chromatin accessibility. (e) Gene ontology 420 

analysis of each cell type predicted using GREAT analysis39. (f) Transcription factor 421 

motif enriched in each cell group identified using Homer21. 422 

 423 
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In mammalian brain, GABAergic interneurons exhibit spectacular diversity that shapes 424 

the spatiotemporal dynamics of neural circuits underlying cognition40. To examine 425 

whether iterative analysis could help tease out various subtypes of GABAergic neurons, 426 

SnapATAC is applied to the 5,940 GABAergic nuclei (CGE, Sst and Vip) identified above, 427 

finding 17 distinct sub-populations (Supplementary Fig. 20a) that are highly 428 

reproducible between biological replicates (Pearson correlation = 0.99; Supplementary 429 

Fig. 20b). Based on the chromatin accessibility at the marker genes (Supplementary 430 

Fig. 21), these 17 clusters are classified into five Sst subtypes (Chodl+, Cbln4+, Igfbp6+, 431 

Myh8+ and C1ql3+), two Pv subtypes (Tac1+ and Ntf3+), two Lamp5 subtypes (Smad3+ 432 

and Ndnf+), four Vip subtypes (Mybpc1+, Chat+, Gpc3+, Crhr2+), Sncg and putative 433 

doublets (Fig. 5b). These clusters include a rare type Sst-Chodl (0.1%) previously 434 

identified in single cell RNA38 and single cell ATAC-seq analysis41. While the identity and 435 

function of these subtypes require further experimental validation, our results 436 

demonstrate the exquisite sensitivity of SnapATAC in resolving distinct neuronal 437 

subtypes with only subtle differences in the chromatin landscape.  438 

 439 

A key utility of single cell chromatin accessibility analysis is to identify regulatory 440 

sequences in the genome. By pooling reads from nuclei in each major cluster (Fig. 5a), 441 

cell-type specific chromatin landscapes can be obtained (Supplementary Fig. 22 and 442 

Supplementary Methods). Peaks are determined in each cell type, resulting in a total 443 

of 373,583 unique candidate cis-regulatory elements. Most notably, 56% 444 

(212,730/373,583) of these open chromatin regions cannot be detected from bulk ATAC-445 

seq data of the same brain region (Supplementary Methods). The validity of these 446 

additional open chromatin regions identified from scATAC-seq data are supported by 447 

several lines of evidence. First, these open chromatin regions are only accessible in minor 448 

cell populations (Supplementary Fig. 23a) that are undetectable in the bulk ATAC-seq 449 

signal. Second, these sequences show significantly higher conservation than randomly 450 

selected genomic sequences with comparable mappability scores (Supplementary Fig. 451 

23c). Third, these open chromatin regions display an enrichment for transcription factor 452 

(TF) binding motifs corresponding to the TFs that play important regulatory roles in the 453 

corresponding cell types. For example, the binding motif for Mef2c is highly enriched in 454 

novel candidate cis-elements identified from Pvalb neuronal subtype (P-value = 1e-363; 455 
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Supplementary Fig. 23d), consistent with previous report that Mef2c is upregulated 456 

in embryonic precursors of Pv interneurons42. Finally, the new open chromatin regions 457 

tend to test positive in transgenic reporter assays. Comparison to the VISTA enhancer 458 

database43 shows that enhancer activities of 256 of the newly identified open chromatin 459 

regions have been previously tested using transgenic reporter assays in e11.5 mouse 460 

embryos. Sixty five percent (167/256; 65%) of them drive reproducible reporter 461 

expression in at least one embryonic tissue, which was substantially higher than 462 

background rates (9.7%) estimated from regions in the VISTA database that lack 463 

canonical enhancer mark44. Four examples are displayed (Supplementary Fig. 23e).  464 

 465 

SnapATAC identifies 294,304 differentially accessible elements between cell types 466 

(Supplementary Methods; Fig. 5d). GREAT analysis (Fig. 5e) and motif inference 467 

(Fig. 5f) identify the master regulators and transcriptional pathways active in each of the 468 

cell types. For instance, the binding motif for ETS-factor PU.1 is highly enriched in 469 

microglia-specific candidate CREs, motifs for SOX proteins are enriched in Ogc-specific 470 

elements, and bHLH motifs are enriched in excitatory neurons-specific CREs (Fig. 5f). 471 

Interestingly, motifs for candidate transcriptional regulators, including NUCLEAR 472 

FACTOR 1 (NF1), are also enriched in candidate CREs detected in two inhibitory neuron 473 

subtypes (Lamp5.Ndnf and Lamp5.Smad3). Motif for CTCF, a multifunctional protein in 474 

genome organization and gene regulation45, is highly enriched in Sst-Chodl, indicating 475 

that CTCF may play a role in neurogenesis. Finally, motifs for different basic-helix-loop-476 

helix (bHLH) family transcription factors, known determinants of neural differentiation46, 477 

show enrichment for distinct Sst subtypes. For instance, E2A motif is enriched in 478 

candidate CREs found in Sst.Myh8 whereas AP4 motif is specifically enriched in peaks 479 

found in Sst.Cbln4, suggesting specific role that different bHLH factors might play in 480 

different neuronal subtypes. 481 

 482 

SnapATAC enables reference-based annotation of new scATAC-seq datasets 483 

Unsupervised clustering of scATAC-seq datasets frequently requires manual annotation, 484 

which is labor-intensive and limited to prior knowledge. To overcome this limitation, 485 

SnapATAC provides a function to project new single cell ATAC-seq datasets to an existing 486 

cell atlas to allow for supervised annotation of cells. First, the Nystrom method is used to 487 
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project the query cells to the low-dimension manifold pre-computed from the reference 488 

cells (Supplementary Methods). In the joint manifold, a neighborhood-based 489 

classifier is used to determine the cell type of each query cell based on the label of its k 490 

nearest neighboring cells in the reference dataset (Supplementary Methods). The 491 

accuracy of this method is determined by five-fold cross validation using the mouse motor 492 

cortex atlas. On average, 98% (±1%) of the cells can be correctly classified, suggesting a 493 

high accuracy of the method (Fig. 6a).  494 

 495 

To demonstrate that SnapATAC could be applied to datasets generated from distinct 496 

technical platforms, it is used to annotate 4,098 scATAC-seq profiles from mouse brain 497 

cells generated using a droplet-based platform (Supplementary Table 2). After 498 

removing batch effect introduced by different platforms using Harmony23, the query cells 499 

are well mixed with the reference cells in the joint embedding space (Supplementary 500 

Fig. 24). The predicted cluster labels are also consistent with the cell types defined using 501 

unbiased clustering analysis (NMI=0.85, ARI=0.68; Fig. 6b).  502 

 503 

 504 
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Figure 6. SnapATAC enables supervised annotation of new scATAC-seq 505 

dataset using reference cell atlas. (a) MOs snATAC-seq dataset is split into 80% and 506 

20% as training and test dataset. A predictive model learned from the training dataset 507 

predicts cell types on the test dataset of high accuracy (error rate = 2%) as compared to 508 

the original cell type labels (right). (b) A predictive model learned from the reference 509 

dataset - MOs (snATAC) – accurately predicts the cell types on a query dataset from 510 

mouse brain generated using a different technological platform, the 10X scATAC-seq. The 511 

t-SNE embedding is inferred from the reference cell atlas (left) or generated by SnapATAC 512 

in an unbiased manner from 10X mouse brain dataset (middle and right). Cells are 513 

visualized using t-SNE and are colored by the cell types predicted by supervised 514 

classification (middle) compared to the cluster labels defined using unsupervised 515 

clustering (right).  516 

 517 

To investigate whether SnapATAC could recognize cell types in the query dataset that are 518 

not present in the reference atlas, multiple query data sets are sampled from the above 519 

mouse motor cortex dataset and a perturbation is introduced to each sampling by 520 

randomly dropping a cell cluster. When this resulting query dataset is analyzed by 521 

SnapATAC against the original cell atlas, the majority of the cells that are left out from the 522 

original atlas are filtered out due to the low prediction score (Supplementary Fig. 25), 523 

again suggesting that our method is not only accurate but also robust to the novel cell 524 

types in the query dataset. 525 

 526 

Discussion 527 

In summary, SnapATAC is a comprehensive bioinformatic solution for single cell ATAC-528 

seq analysis. The open-source software runs on standard hardware, making it accessible 529 

to a broad spectrum of researchers. Through extensive benchmarking, we have 530 

demonstrated that SnapATAC outperforms existing tools in sensitivity, accuracy, 531 

scalability and robustness of identifying cell types in complex tissues.  532 

 533 

SnapATAC differs from previous methods in at least seven aspects. First, SnapATAC 534 

incorporates many useful tools and represents the most comprehensive solution for single 535 

cell ATAC-seq data analysis to date. In addition to clustering analysis, SnapATAC 536 

provides preprocessing, annotation, trajectory analysis, peak calling26, differential 537 

analysis22, batch effect correction23 and motif discovery27 all in one package. Second, 538 
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SnapATAC identifies cell types in an unbiased manner without the need for population-539 

level peak annotation, leading to superior sensitivity for identifying rare cell types in 540 

complex tissues. Third, SnapATAC utilizes a new algorithm for dimensionality reduction 541 

and to identify cell types in heterogeneous tissues and map cellular trajectories. Fourth, 542 

with Nyström sampling method47, SnapATAC significantly reduces both CPU and 543 

memory usage, enabling analysis of large-scale dataset of a million cells or more. Fifth, 544 

SnapATAC not only incorporates existing method to integrate scATAC-seq with scRNA-545 

seq dataset30 but also provides a new method to predict promoter-enhancer pairing 546 

relations based on the statistical association between gene expression and chromatin 547 

accessibility in single cells. Sixth, our method achieves high clustering reproducibility 548 

using a consensus clustering approach. Finally, SnapATAC also enables supervised 549 

annotation of a new scATAC-seq dataset based on an existing reference cell atlas.  550 

 551 

It is important to note that a different strategy has been used to overcome the bias 552 

introduced by population-based peak annotation8. This approach involves iterative 553 

clustering, with the first round defining the “crude” clusters in complex tissues followed 554 

by identifying peaks in these clusters, which are then used in subsequent round(s) of 555 

clustering. However, several limitations still exist. First, the strategy of iterative clustering 556 

requires multiple rounds of clustering, aggregation, and peak calling, thus hindering its 557 

application to large-scale datasets. Second, the “crude” clusters represent the most 558 

dominant cell types in the tissues; therefore, peaks in the rare populations may still be 559 

underrepresented. Finally, peak-based methods hinder multi-sample integrative analysis 560 

where each sample has its own unique peak reference.  561 

 562 

Finally, SnapATAC is applied to a newly generated scATAC-seq dataset including 55,592 563 

high quality single nucleus ATAC-seq profiles from the mouse secondary motor cortex, 564 

resulting in a single cell atlas consisting of >370,000 candidate cis-regulatory elements 565 

across 31 cell types in this mouse brain region. The cellular diversity identified by 566 

chromatin accessibility is at an unprecedented resolution and is consistent with mouse 567 

neurogenesis and taxonomy revealed by single cell transcriptome data38,48. Besides 568 

characterizing the constituent cell types, SnapATAC identifies candidate cis-regulatory 569 

sequences in each of the major cell types and infers the likely transcription factors that 570 
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regulate cell-type specific gene expression programs. Importantly, a large fraction (56%) 571 

of the candidate cis-elements identified from the scATAC-seq data are not detected in 572 

bulk analysis. While further experiments to thoroughly validate the function of these 573 

additional open chromatin regions are needed, the ability for SnapATAC to uncover cis-574 

elements from rare cell types of a complex tissue will certainly help expand the catalog of 575 

cis-regulatory sequences in the genome.  576 

 577 

Data availability 578 
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Outline of the SnapATAC Pipeline 732 

Barcode Demultiplexing  733 

Using a custom python script, we first de-multicomplex FASTQ files by integrating the 734 

cell barcode into the read name in the following format: 735 

 736 

"@"+"barcode"+":"+"original_read_name". 737 

 738 

Alignment & sorting  739 

Demultiplexed reads are aligned to the corresponding reference genome (i.e. mm10 or 740 

hg19) using bwa (0.7.13-r1126) in pair-end mode with default parameter settings. Aligned 741 

reads are then sorted based on the read name using samtools (v1.9) to group together 742 

reads originating from the same barcodes. 743 

 744 

Quality Control & Filtering  745 

Pair-end reads are converted into fragments and only those that meet the following 746 

criteria are kept: 1) properly paired (according to SMA flag value); 2) uniquely mapped 747 

(MAPQ > 30); 3) insert distance within [50-1000bp]. PCR duplicates (fragments sharing 748 

exactly the same genomic coordinates) are removed for each cell separately. Given that 749 

Tn5 introduces a 9 bp staggered, reads mapping to the positive and negative strand were 750 

shifted by +4 / -5bp respectively49. 751 

 752 

We identify the high-quality cells based on two criteria: 1) total number of unique 753 

fragment count [>1,000]; 2) fragments in promoter ratio – the percentage of fragments 754 

overlapping with annotated promoter regions [0.2-0.8]. The promoter regions used in 755 

this study are downloaded from 10X genomics for hg19 and mm10.    756 

 757 

Snap File Generation 758 

Using the remaining fragments, we next generate a snap-format (Single-Nucleus 759 

Accessibility Profiles) file using snaptools (https://github.com/r3fang/SnapTools). A 760 

snap file is a hierarchically structured hdf5 file that contains the following sections: 761 

header (HD), cell-by-bin matrix (BM), cell-by-peak matrix (PM), cell-by-gene matrix 762 

(GM), barcode (BD) and fragment (FM). HD session contains snap-file version, date, 763 
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alignment and reference genome information. BD session contains all unique barcodes 764 

and corresponding meta data. BM session contains cell-by-bin matrices of different 765 

resolutions. PM session contains cell-by-peak count matrix. GM session contains cell-by-766 

gene count matrix. FM session contains all usable fragments for each cell. Fragments are 767 

indexed based on barcodes that enables fast retrieval of reads based on the barcodes. 768 

Detailed information about snap file can be found in Supplementary Note 1. 769 

 770 

Box1. Generating Snap file using snaptools 

snaptools snap-pre 

 --input-file=demo.srt.bed.gz 

 --output-snap=demo.snap 

 --genome-name=mm10     

 --genome-size=mm10.gs 

 --min-mapq=30     

 --min-flen=50          

 --max-flen=1000        

 --keep-single=False    

 --keep-secondary=False 

 --keep-discordant=False 

 --min-cov=0            

 --max-num=20000 

 --keep-chrm=True       

 --overwrite=True 

 771 

One major utility of the snap file and snaptools is to retrieve reads belonging to a certain 772 

group of barcodes. This can be done using snaptools with following command where 773 

“barcodes.sel.txt” is a text file that contains the selected barcodes. 774 

 775 

Box2. Extracting reads using SnapTools 

snaptools dump-fragment 

 --snap-file=demo.snap 
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 --barcode-file=barcodes.sel.txt 

 --output-file=demo.sel.bed.gz 

 776 

Creating Cell-by-Bin Count Matrix 777 

Using the resulting snap file, we next create cell-by-bin count matrix. The genome is 778 

segmented into uniform-sized bins and single cell ATAC-seq profiles are represented as 779 

cell-by-bin matrix with each element indicating number of sequencing fragments 780 

overlapping with a given bin in a certain cell. In the below example, a cell-by-bin matrix 781 

of 5kb resolution is added to demo.snap file. 782 

 783 

Box 3. Generating cell-by-bin matrix using SnapTools 

snaptools snap-add-bmat --snap-file=demo.snap --bin-size-list 5000 

 784 

Optimizing the Bin Size  785 

To evaluate the effect of bin size to clustering performance, we apply SnapATAC to three 786 

datasets namely 5K PBMC (10X), Mouse Brain (10X) and MOs-M1 (snATAC). These 787 

datasets are generated by both plate and droplet platforms using either cell or nuclei with 788 

considerably different depth, allowing us to systematically evaluate the effect of bin size. 789 

 790 

For each dataset, we first define the “landmark” cell types in a supervised manner. First, 791 

we perform cisTopic15 for dimensionality reduction and identify cell clusters using graph-792 

based algorithm Louvain50 with k=15. Second, we manually define the major cell types in 793 

each dataset by examining the gene accessibility score at the canonical marker genes (see 794 

Supplementary Fig. 9 as an example for MOs-M1). Third, clusters sharing the same 795 

marker genes are manually merged and those failing to show unique signatures are 796 

discarded. In total, we define nine cell types in PBMC 5K (10X), 14 types in Mouse Brain 797 

5K (10X) and 14 types in MOs M1 (snATAC). Among these cell types, 14 cell populations 798 

that account for less than 2% of the total population are considered as rare cell 799 

populations (Supplementary Fig. 2a). 800 

 801 
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We next evaluate the performance of each bin size selection using three metrics: 1) cluster 802 

connectivity index (CI) which estimate the degree of connectedness of the landmark cell 803 

types; a lower CI represents a better separation. The connectivity index is computed in 804 

the following manner. For each cell i, the K (K=15) nearest neighbors are found and sorted 805 

from the closest to furthest. The algorithm checks if those neighbors are assigned to the 806 

same cluster with cell i. At the beginning connectivity value is equal 0 and increase with 807 

value 1/i when the i-th nearest neighbors is not assigned to the same cluster with cell i. 808 

This procedure is repeated for all cells in the dataset. In general, the higher the 809 

connectivity index is, the less separated the defined landmarks are. The connectivity index 810 

is computed using “connectivity” function implemented in R package clv. 2) coverage bias 811 

which estimates the read depth distribution in the two-dimensional embedding space; 3) 812 

sensitivity to identify rare populations. Through systematic benchmarking, we found that 813 

bin size in the range from 1kb to 10kb appeared to work well on the three benchmarks, we 814 

selected 5kb as the default bin width for all the analysis in this work (Supplementary 815 

Methods and Supplementary Fig. 2). 816 

 817 

Matrix Binarization  818 

We found that the vast majority of the elements in the cell-by-bin count matrix is “0”, 819 

indicating either closed chromatin or missing value. Among the non-zero elements, some 820 

has abnormally high coverage (> 200) perhaps due to the alignment errors. These items 821 

usually account for less than 0.1% of total non-zero items in the matrix. Thus, we change 822 

the top 0.1% elements in the matrix to “0” to eliminate potential alignment errors. We 823 

next convert the remaining non-zero elements to “1”. 824 

 825 

Bin Filtering 826 

We next filter out any bins overlapping with the ENCODE blacklist downloaded from 827 

http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/. Second, we remove 828 

reads mapped to the X/Y chromosomes and mitochondrial DNA. We sort the bins based 829 

on the coverage and filter out the top 5% to remove the invariant features. Please note 830 

that we do not perform coverage-based bin filtering for a dataset that has low coverage 831 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 35 

(average fragment number less than 5,000) where the ranking of bin may be fluctuated 832 

by the noise.  833 

 834 

Dimensionality Reduction 835 

We next apply the following dimensionality reduction method to project the high-836 

dimension data to a low-dimension manifold for clustering and visualization. Now, let us 837 

express the algorithm in matrix notation. Let 𝐗 ∈ 𝓡𝒏×𝒎 be a dataset with 𝒏 cells and 𝒎 838 

bins and 𝑿 = {𝟎, 𝟏}. The first step is to compute a similarity matrix between the 𝒎 high-839 

dimensional data points to construct the 𝒏-by-𝒏 pairwise similarity matrix using a kernel 840 

function 𝒌 that is an appropriate similarity metric. A popular choice is gaussian kernel: 841 

 842 

𝒌0𝒙𝒊, 𝒙𝒋2 = 𝒆𝒙𝒑(−||𝒙𝒊(𝒙𝒋||

𝝐
) 843 

 844 

where ||. || is a square root of Euclidean distance between observations 𝒊 and 𝒋.  845 

 846 

Due the binarization nature of single cell ATAC-seq dataset, in this case, we replace the 847 

Gaussian kernel with Jaccard coefficient which estimates the similarity between cells 848 

simply based on ratio of overlap over the total union: 849 

 850 

𝒋𝒂𝒄𝒄𝒂𝒓𝒅0𝒙𝒊, 𝒙𝒋2 =
@𝒙𝒊 ∩ 𝒙𝒋@
@𝒙𝒊 ∪ 𝒙𝒋@ 851 

 852 

 853 

For instance, given two cells 𝒙𝒊 = {𝟎, 𝟏, 𝟏, 𝟎} and 𝒙𝒋 = {𝟏, 𝟎, 𝟏, 𝟏}, the Jaccard coefficient is  854 

𝒋𝒂𝒄𝒄𝒂𝒓𝒅0𝒙𝒊, 𝒙𝒋2 = 𝟏/𝟒. The Jaccard coefficient has the following properties that meet the 855 

requirement of being a kernel function: 856 

 857 

𝒋𝒂𝒄𝒄𝒂𝒓𝒅0𝒙𝒊, 𝒙𝒋2 = 𝒋𝒂𝒄𝒄𝒂𝒓𝒅(𝒙𝒋, 𝒙𝒊) (symmetric) 858 

𝒋𝒂𝒄𝒄𝒂𝒓𝒅0𝒙𝒊, 𝒙𝒋2 ≥ 𝟎 (positivity preserving) 859 

 860 
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Using 𝒋𝒂𝒄𝒄𝒂𝒓𝒅 as a kernel function, we next form a symmetric kernel matrix 𝑱 ∈ 𝓡𝒏×𝒏  861 

where each entry is obtained as 𝑱𝒊,𝒋 = 𝒋𝒂𝒄𝒄𝒂𝒓𝒅(𝒙𝒊, 𝒙𝒋)  862 

 863 

Theoretically, the similarity 𝑱𝒊,𝒋 would reflect the true similarity between cell 𝒙𝒊 and 𝒙𝒋. 864 

Unfortunately, due to the high-dropout rate, this is not the case. If there is a high 865 

sequencing depth for cell 𝒙𝒊 or 𝒙𝒋, then 𝑱𝒊,𝒋 tend to have higher values, regardless whether 866 

cell 𝒙𝒊 and 𝒙𝒋 is actually similar or not.  867 

 868 

This can be proved theoretically. Given 2 cells 𝒙𝒊  and 𝒙𝒋  and corresponding coverage 869 

(number of “1”s) 𝑪𝒊 = ∑ 𝒙𝒊𝒌𝒎
𝒌  and 𝑪𝒋 = ∑ 𝒙𝒋𝒌𝒎

𝒌 , let 𝑷𝒊 = 𝑪𝒊/𝒎  and 𝑷𝒋 = 𝑪𝒋/𝒎  be the 870 

probability of observing a signal in cell 𝒙𝒊  and 𝒙𝒋  where 𝒎 is the length of the vector. 871 

Assuming 𝒙𝒊 and 𝒙𝒋 are two “random” cells without any biological relevance, in another 872 

word, the “1”s in 𝒙𝒊  and 𝒙𝒋  are randomly distributed, then the expected Jaccard index 873 

between cell 𝒙𝒊 and 𝒙𝒋 can be calculated simply as: 874 

 875 

𝑬𝒊𝒋 =
𝑷𝒊𝑷𝒋

𝑷𝒊 + 𝑷𝒋 − 𝑷𝒊𝑷𝒋 876 

 877 

Because 𝑷𝒊 ×	𝑷𝒋 > 𝟎 (no empty cells allowed), then 878 

 879 

𝑬𝒊𝒋 = 𝟏
(𝟏/𝑷𝒊 + 𝟏/𝑷𝒋 − 𝟏) 880 

 881 

The increase of either 𝑷𝒊 or 𝑷𝒋 will result in an increase of 𝑬𝒊𝒋 which suggests the Jaccard 882 

similarity between cells is highly affected by the read depth. Such observation prompts us 883 

to develop an ad hoc normalization method to eliminate the read depth effect.  884 

 885 

To learn the relationship between the 𝑬𝒊𝒋  and 𝑱𝒊𝒋  from the data, we next fit a curve to 886 

predict the observed Jaccard coefficient 𝑱𝒊𝒋 as a function of its expected value 𝑬𝒊𝒋 by fitting 887 

a polynomials regression of degree 2 using R function lm. Theoretically, 𝑬𝒊𝒋 should be 888 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 37 

linear with 𝑱𝒊𝒋 if cells are completely random, but in real dataset, we have observed a non-889 

linearity between 𝑬𝒊𝒋  and 𝑱𝒊𝒋  especially among the high-coverage cells. We suspect, to 890 

some extent, the degree of randomness of fragment distribution in a single cell is 891 

associated with the coverage. To better model the non-linearity, we include a second order 892 

polynomial in our model: 893 

 894 

𝑱𝒊𝒋 = 𝜷𝟎 + 𝜷𝟏𝑬𝒊𝒋 + 𝜷𝟐𝑬𝒊𝒋𝟐  895 

 896 

This fitting provided estimators of parameters {𝜷𝟎P ,𝜷𝟏P ,𝜷𝟐P }. As such, we next use it to 897 

normalize the observed Jaccard coefficient by: 898 

 899 

𝑵𝒊𝒋= 𝑱𝒊𝒋/(𝜷𝟎P +𝜷𝟏P𝑬𝒊𝒋 + 𝜷𝟐P𝑬𝒊𝒋𝟐 ) 900 

The fitting of the linear regression, however, can be very time consuming with a large 901 

matrix. Here we test the possibility of performing this step on a random subset of 𝒚 cells 902 

in lieu of the full matrix. When selecting a subset of 𝒚 cells to speed up the first step, we 903 

do not select cells at random with a uniform sampling probability. Instead, we set the 904 

probability of selecting a cell 𝒊 to  905 

 906 

𝟏
𝒅(𝒍𝒐𝒈𝟏𝟎(𝑪𝒊)) 907 

 908 

where 𝒅 is the density estimate of all log10-transformed cell fragment count and 𝑪𝒊 is the 909 

number of fragments in cell 𝒊 and 𝑪𝒊 = ∑ 𝒙𝒊𝒌𝒎
𝒌 . Similar approach was first introduced in 910 

SCTranscform51 to speed up the normalization of single cell RNA-seq. 911 

 912 

We then proceed to normalize the full Jaccard coefficient matrix 𝑱 ∈ 𝓡𝒏×𝒏  using the 913 

regression model learned from 𝒚  cells and compared the results to the case where all cells 914 

are used in the initial estimation step as well. We use the correlation of normalized 915 

Jaccard coefficient to compare this partial analysis to the full analysis. We observe that 916 
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using as few as 2000 cells in the estimation gave rise to virtually identical estimates. We 917 

therefore use 2,000 cells in the initial model-fitting step. To remove outliers in the 918 

normalized similarity, we use the 0.99 quantile to cap the maximum value of the 919 

normalized matrix. 920 

 921 

Next, using normalized Jaccard coefficient matrix 𝑵 , we next normalize the matrix by: 922 

 923 

𝑨 = 𝑫(𝟏/𝟐𝑵𝑫(𝟏/𝟐 924 

 925 

where 𝑫 ∈ 𝓡𝒏×𝒏 is a diagonal matrix which is composed as 𝑫𝒊,𝒊 = ∑ 𝑵𝒊,𝒋𝒋 . We next perform 926 

eigenvector decomposition against 𝑨.  927 

 928 

𝑨 = 𝑼𝜦𝑼𝑻 929 

 930 

The columns 𝝋𝒊 ∈ 𝓡𝒏  of 𝑼 ∈ 𝓡𝒏×𝒏  are the eigenvectors. The diagonal matrix 𝜦 ∈ 𝓡𝒏×𝒏 931 

has the eigenvalues 𝝀𝟏 ≥ 𝝀𝟐 ≥ ⋯ ≥ 𝟎  in descending order as its entries. Finally, we report 932 

the first 𝒓 eigenvectors as the final low-dimension manifold.  933 

 934 

Evaluation of Ad Hoc Normalization Method 935 

To assess the performance of normalization of SnapATAC we processed three datasets. 936 

As shown in Supplementary Fig. 3, before normalization, SnapATAC exhibits a strong 937 

gradient that is correlated with sequencing depth within the cluster (Supplementary 938 

Fig. 3a). Although the sequencing depth effect is still observed in some of the small 939 

clusters, it is clear that the normalization method has largely eliminated the read depth 940 

effect as compared to the unnormalized ones (Supplementary Fig. 3b). 941 

 942 

To better quality the coverage bias, we next computed the Shannon entropy that estimates 943 

the “uniformness” of the distribution of cell coverage in the UMAP embedding space. In 944 

detail, we first chose the top 10% cells of the highest coverage as “high-coverage” cells. 945 

Second, in the 2D UMAP embedding space, we discretize “high-coverage” cells from a 946 

continuous random coordinate (umap1, umap2) into bins (n=50) and returns the 947 
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corresponding vector of counts. This is done using a function called “discretize2d” in the 948 

“entropy” R package. Third, we estimated the Shannon entropy of the random variable 949 

from the corresponding observed counts. This is done using function “entropy” in the 950 

“entropy” R package. A higher entropy indicates that the “high-coverage” cells are more 951 

uniformly distributed in the UMAP embedding space, overall suggesting a better 952 

normalization performance.   953 

 954 

We next examine another eight possible sources of biases by projecting to the UMAP 955 

embedding space, some metrics show cluster specificity for all three methods perhaps due 956 

to biological relevance, but all three methods can reveal significant biological 957 

heterogeneity without exhibiting substantial intra-cluster bias for any metrics examined 958 

(Supplementary Fig. 4). 959 

 960 

Removing batch effects using Harmony  961 

When the technical variability is at a larger scale than the biological variability, we apply 962 

batch effect corrector - Harmony23 - to eliminate such confounding factor. Given two 963 

datasets 𝐗 = {𝐗𝟏, 𝐗𝟐} generated using different technologies, we first calculate the joint 964 

low-dimension manifold 𝑼 = {𝐔𝟏, 𝐔𝟐} as described above. We next apply Harmony to 𝑼 965 

to regress out batch effect, resulting in a new harmonized embedding 𝑼𝑯 . This is 966 

implemented as a function “runHarmony” in SnapATAC package.  967 

 968 

Selection of Eigenvector and Eigenvalues 969 

We next determine how many eigenvectors to include for the downstream analysis. Here 970 

we use an ad hoc approach for choosing the optimal number of components. We look at 971 

the scatter plot between every two pairs of eigenvectors and choose the number of 972 

eigenvectors that start exhibiting “blob”-like structure in which no obvious biological 973 

structure is revealed.  974 

 975 

Nyström Landmark-Extension 976 

The computational cost of the dimensionality reduction scales quadratically with the 977 

increase of number of cells. For instance, calculating and normalizing the pair-wise kernel 978 

Matrix 𝑵 becomes computationally infeasible for large-scale dataset. To overcome this 979 
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limitation, here we combine the Nyström method19,52 (a sampling technique) and our 980 

dimensionality reduction method to present Nyström landmark-extension method.  981 

 982 

A Nyström landmark-extension algorithm includes three major steps: i) sampling 𝑶(𝑲): 983 

sample a subset of 𝑲 (𝑲 ≪ 𝑵) cells from 𝑵 total cells as “landmarks”. Instead of random 984 

sampling, here we adopt a density-based sampling approach developed in SCTransform51 985 

to preserve the density distribution of the 𝑵  original points; ii) embedding 𝑶(𝑲𝟐) : 986 

compute the low-dimension embedding for 𝑲  landmarks; iii) extension 𝑶(𝑵 − 𝑲) : 987 

project the remaining 𝑵−𝑲 cells onto the low-dimensional embedding as learned from 988 

the landmarks to create a joint embedding space for all cells.  989 

 990 

This approach significantly reduces the computational complexity and memory usage 991 

given that 𝑲 is considerably smaller than 𝑵. The out-of-sample extension (step iii) further 992 

enables projection of new single cell ATAC-seq datasets to the existing reference single 993 

cell atlas. This allows us to further develop a supervised approach to predict cell types of 994 

a new single cell ATAC-seq dataset based on an existing reference atlas. 995 

 996 

A key aspect of this method is the procedure according to which cells are sampled as 997 

landmark cells, because different sampled landmark cells give different approximations 998 

of the original embedding using full matrix. Here we employ the density-based sampling 999 

as described above which preserves the density distribution of the original points. 1000 

 1001 

Let 𝑿 ∈ 𝓡𝒏×𝒎  be a dataset with 𝒏  cells and 𝒎  variables (bins) and 𝑵 ∈ 𝓡𝒏×𝒏  be a 1002 

symmetric kernel matrix calculated using normalized Jaccard coefficient. To avoid 1003 

calculating the pairwise kernel matrix and performing eigen-decomposition against a big 1004 

matrix 𝑵 ∈ 𝓡𝒏×𝒏, we first sample 𝒌	(𝒌 ≪ 𝒏) landmarks without replacement. This breaks 1005 

down the original kernel matrix 𝑵 ∈ 𝓡𝒏×𝒏 into four components. 1006 

 1007 

𝑵 = a𝑵𝒌𝒌 𝑵𝒌𝒗

𝑵𝒗𝒌 𝑵𝒗𝒗
b 1008 

 1009 
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in which 𝑵𝒌𝒌 ∈ 𝓡𝒌×𝒌  is the pairwise kernel matrix between 𝒌  landmarks and 𝑵𝒗𝒌 ∈1010 

𝓡(𝒏(𝒌)×𝒌 is the similarity matrix between (𝒏 − 𝒌) cells and 𝒌 landmarks. Using 𝑵𝒌𝒌, we 1011 

perform dimensionality reduction to obtain the 𝒓-rank manifold 𝑼𝒌𝒌 ∈ 𝓡𝒌×𝒓 as described 1012 

above. 1013 

 1014 

Using 	𝑵𝒗𝒌 which estimates the similarity between 𝒏 − 𝒌 cells and 𝒌 landmark cells, we 1015 

project the rest of 𝒏 − 𝒌 cells to the embedding previously obtained using 𝒌 landmark: 1016 

 1017 

𝑨𝒗𝒌 = (𝑫𝒗𝒗)(𝟏𝟐(𝑵𝒗𝒌)(𝑫𝒌𝒌)(𝟏𝟐 1018 

 1019 

where 𝑫𝒗𝒗 ∈ 𝓡(𝒏(𝒌)×(𝒏(𝒌) is a diagonal matrix which is composed as 𝑫𝒊,𝒊
𝒗𝒌 = ∑ 𝑵𝒊,𝒋

𝒗𝒌
𝒋 . The 1020 

projected coordinates of the new points onto the r-dimensional intrinsic manifold defined by the 1021 

landmarks are then given by, 1022 

 1023 

 1024 

𝑼𝒗𝒌 = 𝑨𝒗𝒌𝑼𝒌𝒌/𝜦𝒌𝒌 1025 

 1026 

The resulting 𝑼𝒗𝒌 ∈ 𝓡(𝒏(𝒌)×𝒓 is the approximate 𝒓-rank low dimension representation of 1027 

the rest 𝒏 − 𝒌 cells. Combing 𝑼𝒌𝒌 and 𝑼𝒗𝒌creates a joint embedding space for all cells: 1028 

 1029 

𝑼c = [𝑼𝒌𝒌𝑼𝒗𝒌] 1030 

 1031 

In the approximate joint 𝒓-rank embedding space 𝑼c, we next create a k-nearest neighbor 1032 

(KNN) graph in which every cell is represented as a node and edges are drawn between 1033 

cells within k nearest neighbors defined using Euclidean distance. Finally, we apply 1034 

community finding algorithm such as Louvain (implemented by igraph package in R) to 1035 

identify the ‘communities’ in the resulting graph which represents groups of cells sharing 1036 

similar profiles, potentially originating from the same cell type.  1037 

 1038 

Optimizing the Number of Landmarks 1039 
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To evaluate the effect of the number of landmarks, we apply our method to a complex 1040 

dataset that contains over 80k cells from 13 different mouse tissues. We employ the 1041 

following three metrics to evaluate the performance. First, using different number of 1042 

landmarks (k) ranging from 1,000 to 10,000, we compare the clustering outcome to the 1043 

cell type label defined in the original study. The goal of this is to identify the “elbow” point 1044 

that performance drops abruptly. Second, for each sampling, we repeat for five times 1045 

using different set of landmarks to evaluate stability between sampling. Third, we spiked 1046 

in 1% Patski cells to assess the sensitivity of identifying rare cell types. We choose Patski 1047 

cells because these cells were profiled using the same protocol by the same group (Data 1048 

source listed in Supplementary Table S1) to minimize the batch effect. 1049 

 1050 

We observe that using as few as 5,000 landmarks can largely recapitulate the result 1051 

obtained using 10,000 landmarks (Supplementary Fig. 5a), and 10,000 landmarks 1052 

can achieve highly robust embedding between sampling (Supplementary Fig. 5b) and 1053 

successfully recover spiked-in rare populations (Supplementary Fig. 5c). To obtain a 1054 

reliable low-dimensional embedding, we use 10,000 landmarks for all the analysis 1055 

performed in this study.  1056 

 1057 

Ensemble Nyström Method 1058 

Nyström method is stochastic in its nature, different sampling will result in different 1059 

embedding and clustering outcome. To improve the robustness of the clustering method, 1060 

we next employ Ensemble Nyström Algorithm which combines a mixture of Nyström 1061 

approximation to create an ensemble representation53. Supported by theoretical analysis, 1062 

this Ensemble approach has been demonstrated to guarantee a convergence and in a 1063 

faster rate in comparison to standard Nyström method53. Moreover, this ensemble 1064 

algorithm naturally fits within distributed computing environments, where their 1065 

computational costs are roughly the same as that of the standard Nyström single sampling 1066 

method.  1067 

 1068 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 43 

We treat each approximation generated by the Nyström method using 𝒌 landmarks as an 1069 

expert and combined 𝒑 ≥ 1 such experts to derive an improved approximation, typically 1070 

more accurate than any of the original experts53.  1071 

 1072 

The ensemble set-up is defined as follows. Given a dataset 𝑿 ∈ 𝓡𝒏×𝒎  of 𝒏 cells. Each 1073 

expert 𝑺𝒋  receives 𝒌  landmarks randomly selected from matrix 𝑿  using density-based 1074 

sampling approach without replacement. Each expert 𝑺𝒓,	𝒓 ∈ [𝟏, 𝒑] is then used to define 1075 

the low dimension embedding 𝑼c 𝒋 ∈ 𝓡𝒏×𝒓  as described above. For each low-dimension 1076 

embedding 𝑼c𝒋 ∈ 𝓡𝒏×𝒓 , we create a KNN-graph as 𝑮c𝒋 . Thus, the general form of the 1077 

approximation, 𝑮c𝒆𝒏, generated by the ensemble Nyström method is 1078 

 1079 

𝑮c𝒆𝒏 =h 𝝁𝒋𝑮c𝒋
𝒑

𝒋8𝟏

 1080 

 1081 

where 𝝁𝒋 is the mixture weights that can be defined in many ways. Here we choose to use 1082 

the most straightforward method by assigning an equal weight to each of the KNN-graph 1083 

obtained from different samplings, 𝝁𝒋 = 𝟏/𝒑, 𝒓 ∈ [𝟏, 𝒑] . While this choice ignores the 1084 

relative quality of each Nyström approximation, it is computational efficient and already 1085 

generates a solution superior to any one of the approximations used in the combination. 1086 

Using the ensemble weighted KNN graph 𝑮c𝒆𝒏 , we next apply community finding 1087 

algorithm to identify cell clusters. By testing on the mouse atlas dataset8, we demonstrate 1088 

that the clustering stability of the ensemble approach is significantly higher than the 1089 

standard Nystrom method (Supplementary Fig. 5d).  1090 

 1091 

Visualization  1092 

We use the t-SNE implemented by FI-tsne, Rtsne or UMAP (umap_0.2.0.0) to visualize 1093 

and explore the dataset. 1094 

 1095 

Gene Accessibility Score  1096 

To annotate the identified clusters, SnapATAC calculated the gene-body accessibility 1097 

matrix 𝑮  using “calGmatFromMat” function in SnapATAC packge where 𝑮𝒊,𝒋  is the 1098 
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number of fragments overlapping with j-th genes in i-th cell. 𝑮𝒊,𝒋 is then normalized to 1099 

CPM (count-per-million reads) as 𝑮c. The normalized accessibility score is then smoothed 1100 

using Markov affinity-graph based method: 1101 

 1102 

𝑮j=𝑮c𝑨𝒕 1103 

 1104 

where 𝑨 is the adjacent matrix obtained from K nearest neighbor graph and 𝒕 is number 1105 

of steps taken for Markov diffusion process. We set 𝒕 = 𝟑 in this study. Please note that 1106 

the gene accessibility score is only used to guide the annotation of cell clusters identified 1107 

using cell-by-bin matrix. The clusters are identified using cell-by-bin matrix in prior.  1108 

 1109 

Read Aggregation & Peak Calling  1110 

After annotation, cells from the same cluster are pooled to create aggregated signal for 1111 

each of the identified cell types. This allows for identifying cis-elements from each cluster. 1112 

MACS2 (version 2.1.2) is used for generating signal tracks and peak calling with the 1113 

following parameters: --nomodel --shift 100 --ext 200 --qval 1e-2 -B –SPMR. This can be 1114 

done by “runMACS” function in SnapATAC package. 1115 

 1116 

Motif Analysis  1117 

SnapATAC incorporates chromVAR14 to estimate the motif variability and Homer21 for de 1118 

novo motif discovery. This is implemented as function “runChromVAR” and “runHomer” 1119 

in SnapATAC package. 1120 

 1121 

Identification of differentially accessible peaks 1122 

For a given group of cells 𝐶:, we first look for their neighboring cells 𝐶; (|𝐶:| = |𝐶;|) in 1123 

the low-dimension manifold as “background” cells to compare to. If  𝐶: 	accounts for 1124 

more than half of the total cells, we use the remaining cells as local background. Next, 1125 

we aggregate 𝐶: and 𝐶; to create two raw-count vectors as 𝑉<: and 𝑉<; .We then perform 1126 

differential analysis between 𝑉<: and 𝑉<; using exact test as implemented in R package 1127 

edgeR (v3.18.1) with BCV=0.1. P-value is then adjusted into False Discovery Rate (FDR) 1128 

using Benjamini-Hochberg correction. Peaks with FDR less than 0.01 are selected as 1129 
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significant DARs. However, the statically significance is under powered for small 1130 

clusters.  1131 

 1132 

GREAT analysis 1133 

SnapATAC incorporates GREAT analysis39 to infer the candidate biological pathway 1134 

active in each cell populations. This is implemented as function “runGREAT” SnapATAC 1135 

package. 1136 

 1137 

Integration with single cell RNA-seq 1138 

We use canonical correlation analysis (CCA) embedded in Seurat V318 to integrate 1139 

single cell RNA-seq and single cell ATAC-seq. We first calculate the gene accessibility 1140 

account at variable genes identified using single cell RNA-seq dataset. This can be done 1141 

using a function called “createGmatFromMat” in SnapATAC package. Next, SnapATAC 1142 

converts the snap object to a Seurat v3 object using a function called “SnapToSeurat” 1143 

in preparation for integration. Different from integration method in Seurat, we use the 1144 

our low-dimension manifold as the dimensionality reduction method in the Seurat 1145 

object. We next follow the vignette in Seurat website 1146 

(https://satijalab.org/seurat/v3.0/atacseq_integration_vignette.html) to integrate 1147 

these two modalities. The cell type for scATAC-seq is predicted using function 1148 

“TransferData” in Seurat V3. 1149 

 1150 

Finally, for each single cell ATAC profile, we infer its gene expression profile by 1151 

calculating the weighted average expression profile of its nearest neighboring cells in 1152 

the single cell RNA-seq dataset18. By doing so, we create pseudo-cells that contain 1153 

information of both chromatin accessibility and gene expression profiles. The 1154 

imputation of gene expression profile is done by “TransferData” function in Seurat V3.  1155 

 1156 

Linking enhancers to putative target genes 1157 

Using the “pseudo” cells, we next sought to predict the putative target genes for regulatory 1158 

elements based on the association between expression of a gene and chromatin 1159 

accessibility at its enhancer elements. Given a gene 𝑮, we first identify its surrounding 1160 
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regulatory elements within 1MB window flanking 𝑮 . Let 𝒀𝑮  be the imputed gene 1161 

expression value for gene 𝑮 among 𝒏 cells. We perform logistic regression using 𝒀𝑮  as 1162 

variable to predict the binary state for each of peaks surrounding 𝑮. The idea behind using 1163 

logistic regression is that if there is a relationship between the gene expression (continuous 1164 

variable) and chromatin accessibility (categorical variable), we should be able to predict 1165 

chromatin accessibility from the gene expression. Logistic regression does not make many 1166 

of the key assumptions such as normality of the continuous variables. In addition, since 1167 

we only have one variable (gene expression) for prediction every time, there is no problem 1168 

of multicollinearity. 1169 

 1170 

We next fit logistic regression between each of flanking peak and gene expression using 1171 

“glm” function in R with binomial(link='logit') as the family function. By doing so, we 1172 

obtain the regression coefficient 𝜷𝟏  and its corresponding P-value for each peak 1173 

separately. Here we used 5e-8, a standard P-value cutoff for human genome-wise 1174 

association study to determine the significant association. While this cutoff is less sample 1175 

or gene specific compared to more complicated methods such as permutation test, it is 1176 

computational efficient and already generates a reasonable set of gene-enhancer pairings. 1177 

 1178 

To evaluate the performance of our methods, we compare our prediction with cis-eQTL 1179 

derived from interferon-γ and lipopolysaccharide stimulation of monocytes25. Significant 1180 

cis-eQTL associations are downloaded from supplementary material (Table S2) in Fairfax 1181 

(2014)25. We filter cis-eQTL based on two criteria: 1) only cis-eQTLs that overlap with the 1182 

peaks identified in PBMC dataset are considered; 2) In addition, we only keep the cis-1183 

eQTLs whose genes overlap with the variable genes determined by scRNA-seq. This 1184 

filtering reduced the cis-eQTL list to 456 candidates.  1185 

 1186 

Next, we estimate the association for each of cis-eQTLs by preforming logistic regression 1187 

test as described above. To make a comparison, we derive a set of negative pairs matched 1188 

for the distance. The negative control pairs for cis-eQTL are chosen in the following 1189 

manner to control for both distance and chromatin accessibility: for each positive eQTL 1190 

pair 𝑝:;  which connects gene 𝑖  and enhancer 𝑗  with a distance of 𝑑:; , we look for the 1191 
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enhancer 𝑘 on the opposite direction of the gene 𝑖 that minimizes |𝑑:; − 𝑑:>|. By doing so, 1192 

the negative sets are controlled for distance, chromatin accessibility level and gene 1193 

expression level.  1194 

 1195 

Simulation of scATAC-seq datasets 1196 

First, we download the alignment files (bam files) for ten bulk ATAC-seq experiment from 1197 

ENCODE (data source listed in Supplementary Table S2). From each bam file, we 1198 

simulate 1,000 single cell ATAC-seq datasets by randomly down sampling to a variety of 1199 

coverages ranging from 1,000 to 10,000 reads per cells. We next create a cell-by-bin 1200 

matrix of 5kb which is used for SnapATAC clustering. Merging peaks identified from each 1201 

bulk experiment, we create cell-by-peak matrix used for LSA, Cis-Topic, Cicero and 1202 

chromVAR for clustering. We repeat the sampling for n=10 times to estimate the 1203 

variability of the clustering. 1204 

 1205 

Comparison of scalability 1206 

To compare the scalability between SnapATAC to other methods, we next simulate 1207 

multiple datasets of different number of cells ranging from 20k to 1M. We simulate these 1208 

datasets in the following manner. Using the 80k mouse atlas dataset, we randomly sample 1209 

this dataset to different number of cells ranging from 20k t0 1M cells. For the sampling 1210 

that has cells more than 80K, we sample with replacement and introduce perturbation to 1211 

each cell by randomly removing 1% of the “1”s in each of the cells. This removes the 1212 

duplicate cells and largely maintains the density of the matrix.  1213 

 1214 

For each sampling, we then perform dimensionality reduction using LSA and cisTopic 1215 

and compare their CPU running time. Specifically, we monitor the running time for 1) TF-1216 

IDF transformation and Singular Value Decomposition (SVD) for LSA, 2) function 1217 

“runModels” with topics = c(2, 5, 10, 15, 20, 25, 30, 35, 40) and “selectModel” function in 1218 

cisTopic. The time for matrix loading is not counted.  1219 

 1220 

All the comparisons were tested on a machine with 5 AMD Operon (TM) Processor 6276 1221 

CPUs. 1222 
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Doublets Detection Using Scrublet 1223 

To identify doublets from secondary motor cortex single nucleus ATAC-seq datasets, we 1224 

use single cell RNA-seq doublets detection algorithm Scrublet37. Briefly, Scrublet 1225 

identifies doublets in the following manner: 1) Scrublet performs normalization, gene 1226 

filtering, and principal components analysis (PCA) to project the high-dimension data to 1227 

a low-dimension space; 2) Scrublet simulates doublets by adding the unnormalized 1228 

counts from randomly sampled observed transcriptomes; 3) the simulated doublets are 1229 

projected to the low dimension embedding computed in step 1. The more neighbors of a 1230 

cell are the simulated doublets, the more likely this cell is a “doublet”. Based on this idea, 1231 

a KNN classifier was then used to estimate the doublet score for each cell. 1232 

 1233 

Since Scrublet was designed for detecting doublets in single cell RNA-seq, it is unclear 1234 

whether it can be used for single cell ATAC-seq. To examine this, we applied Scrublet to 1235 

a single cell ATAC-seq dataset of mixed human and mouse cells where the “ground-truth” 1236 

doublets can be identified based on the alignment ratio to human and mouse genome. 1237 

Compared to the ground truth, Scrubet can identify over 90% of the doublets in this 1238 

dataset with ~90% accuracy (Supplementary Fig. 26). This result suggests that 1239 

although Scrubet was not developed for detecting doublets in single cell ATAC-seq, it can 1240 

find the doublets in scATAC-seq dataset with reasonable accuracy and sensitivity. 1241 

 1242 

Projection of single cell ATAC-seq datasets to reference atlas 1243 

We reason that landmark-extension algorithm can also be extended to project new single 1244 

cell ATAC-seq datasets to a reference atlas. Given a query dataset 𝐘 ∈ 𝓡𝒍×𝒎 that contains 1245 

𝒍 query cells with 𝒎 bins and a reference dataset 𝐗 ∈ 𝓡𝒏×𝒎  with 𝒏 reference cells of 𝒎 1246 

bins. We first randomly sample 𝒌 =10,000 landmarks from 𝐗  using density-based 1247 

sampling as described above. Next, we compute the pairwise similarity using normalized 1248 

jaccard coefficient for 𝒌  landmarks as 𝑵𝒌𝒌 ∈ 𝓡𝒌×𝒌  and obtain the low-dimension 1249 

manifold 𝑼𝒌 ∈ 𝓡𝒌×𝒓 . We then compute 𝑵𝒍𝒌 ∈ 𝓡𝒍×𝒌  which estimates the similarity 1250 

between 𝒍  query cells and 𝒌  landmark cells, and then project the 𝒍  query cells to the 1251 

embedding pre-computed for 𝒌 landmark cells as following: 1252 

 1253 
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𝑨𝒍 = (𝑫𝒍)(𝟏𝟐(𝑼𝒌)(𝑫𝒌)(𝟏𝟐 1254 

 1255 

where 𝑫𝒍 ∈ 𝓡𝒍×𝒍 is a diagonal matrix which is composed as 𝑫𝒊,𝒊
𝒍 = ∑ 𝑵𝒊,𝒋

𝒍
𝒋  and  𝑫𝒌 ∈ 𝓡𝒌×𝒌 1256 

is a diagonal matrix which is composed as 𝑫𝒊,𝒊
𝒌 = ∑ 𝑵𝒊,𝒋

𝒌
𝒋  1257 

 1258 

𝑼𝒍 = 𝑨𝒍𝑼𝒌/𝜦𝒌 1259 

 1260 

The resulting 𝑼𝒍 ∈ 𝓡𝒍×𝒓 is the predicted low-dimension manifold for 𝒍 query cells. 1261 

  1262 

In the joint embedding space [𝑼𝒌, 𝑼𝒍], we next identify the mutual nearest neighbors 1263 

between query and landmark cells. For each cell 𝑖@ ∈ 𝐗𝒌 belonging to the landmarks, we 1264 

find the 𝒌. 𝒏𝒆𝒂𝒓𝒆𝒔𝒕 (5) cells in the query dataset with the smallest distances to 𝒊𝟏. We do 1265 

the same for each cell in query cell dataset to find its 𝒌. 𝒏𝒆𝒂𝒓𝒆𝒔𝒕 (5) neighbors in the 1266 

landmark dataset. If a pair of cells from each dataset is contained in each other’s nearest 1267 

neighbors, those cells are considered to be mutual nearest neighbors or MNN pairs (or 1268 

“anchors”). We interpret these pairs as containing cells that belong to the same cell type 1269 

or state despite being generated in both landmark and query cells. Thus, any differences 1270 

between cells in MNN pairs should theoretically represent the non-overlapping cell types. 1271 

Here we removed any query cells that failed to identify an MNN pair correspondence in 1272 

the reference dataset.  1273 

  1274 

To make a classification of the remaining query cells according to the reference dataset, 1275 

we next apply the neighborhood-based classifier and wish to highlight the pioneering 1276 

work by Seurat V318. First, we score each anchor (or MNN pair) using shared nearest 1277 

neighbor (SNN) graph by examining the consistency of edges between cells in the same 1278 

local neighborhood as described in the original study18. Second, we define a weight matrix 1279 

that estimates the strength of association between each query cell 𝒄, and each landmark 1280 

𝒊. For each query cell 𝒄, we identify the nearest 𝒔 landmarks in the reference dataset in the 1281 

joint embedding space. Nearest anchors are then weighted based on their distance to the 1282 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 50 

cell 𝒄 over the distance to the 𝒔-th anchor cell. For each cell 𝒄 and anchor 𝒊, we compute 1283 

the weighted similarities as: 1284 

 1285 

𝑫𝒄,𝒊 = (𝟏 − 𝒅𝒊𝒔𝒕(𝒄, 𝒂𝒊)
𝒅𝒊𝒔𝒕(𝒄, 𝒂𝒔))𝑺𝒂𝒊 1286 

 1287 

Where 𝒅𝒊𝒔𝒕(𝒄, 𝒊) is the Euclidean distance in the joint embedding space and 𝑆D:  is the 1288 

weight for the corresponding MNN pair (anchor). We then normalize the similarity using 1289 

exponential function: 1290 

 1291 

𝑫𝒄,E
x = 𝟏 − 𝒆

(𝑫𝒄,𝒊

(
𝟐
𝒔𝒅
)𝟐 1292 

 1293 

where sd is set to 1 by default. Finally, we normalize across all 𝒔 anchors: 1294 

 1295 

𝑾𝒄,𝒊 = 𝑫𝒄,E
x

∑ 𝑫𝒄,H
x𝒋8𝒔

𝟏

 1296 

Here we set 𝒔 = 𝟓𝟎. Please note that the similarity to cells beyond the 𝒔𝒕𝒉 anchor neighbor 1297 

is set to be zero. 1298 

 1299 

Let 𝑳 ∈ 𝓡𝒌×𝒕 be the binary label matrix for 𝒌 landmarks with 𝒕 clusters. 𝑳𝒊,𝒋 = 𝟏 indicates 1300 

the class label for 𝒊 -th landmark cell is 𝒋 -th cluster. The row sum of  𝑳  must be 1, 1301 

suggesting each landmark cell can only be assigned to one cluster label. We then compute 1302 

label predictions for query cells as 𝑷𝒍: 1303 

 1304 

𝑷𝒍 = 𝑾𝑳 1305 

 1306 

The resulting 𝑷𝒍 is a probability matrix within 0 and 1, 𝑷𝒊,𝒋𝒍  indicates the probability of a 1307 

cell 𝒊 belong to 𝒋 cluster. Similarly, we infer the t-SNE position of query cells by replacing 1308 

𝑳 with t-SNE coordinates of reference points. It is important to note that the distance 1309 
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between cells in the inferred t-SNE coordinate does not neccessarily reflect the cell-to-cell 1310 

relationship.  1311 

 1312 

Tissue collection & nuclei isolation 1313 

Adult C57BL/6J male mice were purchased from Jackson Laboratories. Brains were 1314 

extracted from P56-63 old mice and immediately sectioned into 0.6 mm coronal sections, 1315 

starting at the frontal pole, in ice-cold dissection media. The secondary motor cortex 1316 

(MOs) region was dissected from the first three slices along the anterior-posterior axis 1317 

according to the Allen Brain reference Atlas (http://mouse.brain-map.org/, see 1318 

Supplementary Fig. 15a for depiction of posterior view of each coronal slice; dashed 1319 

line highlights the MOs regions on each slice). Slices were kept in ice-cold dissection 1320 

media during dissection and immediately frozen in dry ice for posterior pooling and 1321 

nuclei production. For nuclei isolation, the MOs dissected regions from 15-23 animals 1322 

were pooled, and two biological replicates were processed for each slice. Nuclei were 1323 

isolated as described in previous studies54,55, except no sucrose gradient purification was 1324 

performed. Flow cytometry analysis of brain nuclei was performed as described in Luo et 1325 

al54.  1326 

  1327 

Tn5 transposase purification & loading 1328 

Tn5 transposase was expressed as an intein chitin-binding domain fusion and purified 1329 

using an improved version of the method first described by Picelli et al56. T7 Express 1330 

lysY/I (C3013I, NEB) cells were transformed with the plasmid pTXB1-ecTn5 E54K L372P 1331 

(#60240, Addgene)56. An LB Ampicillin culture was inoculated with three colonies and 1332 

grown overnight at 37°C. The starter culture was diluted to an OD of 0.02 with fresh 1333 

media and shaken at 37°C until it reached an OD of 0.9. The culture was then immediately 1334 

chilled on ice to 10°C and expression was induced by adding 250 µM IPTG (Dioxane Free, 1335 

CI8280-13, Denville Scientific). The culture was shaken for 4 hours at 23°C after which 1336 

cells were harvested in  2 L batches by centrifugation, flash frozen in liquid nitrogen and 1337 

stored at -80°C. Cell pellets were resuspended in 20 ml of ice cold lysis buffer (20 mM 1338 

HEPES 7.2-KOH, 0.8 M NaCl, 1 mM EDTA, 10% Glycerol, 0.2% Triton X-100) with 1339 

protease inhibitors (Complete, EDTA-free Protease Inhibitor Cocktail Tablets, 1340 

11873580001, Roche Diagnostics) and passed three times through a Microfluidizer (lining 1341 
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covered with ice water, Model 110L, Microfluidics) with a 5 minute cool down interval in 1342 

between each pass. Any remaining sample was purged from the Microfluidizer with an 1343 

additional 25 ml of ice-cold lysis buffer with protease inhibitors (total lysate volume 1344 

~50ml). Samples were spun down for 20 min in an ultracentrifuge at 40K rpm (L-80XP, 1345 

45 Ti Rotor, Beckman Coulter) at 4°C. ~45 ml of supernatant was combined with 115 ml 1346 

ice cold lysis buffer with protease inhibitors in a cold beaker (total volume = 160 ml) and 1347 

stirred at 4°C. 4.2ml of 10% neutralized polyethyleneimine-HCl (pH 7.0) was then added 1348 

dropwise. Samples were spun down again for 20 min in an ultracentrifuge at 40K rpm (L-1349 

80XP, 45 Ti Rotor, Beckman Coulter) at 4°C. The pooled supernatant was loaded onto 1350 

~10ml of fresh Chitin resin (S6651L, NEB) in a chromatography column (Econo-Column 1351 

(1.5 × 15 cm), Flow Adapter: 7380015, Bio-Rad). The column was then washed with 50-1352 

100 ml lysis buffer. Cleavage of the fusion protein was initiated by flowing ~20ml of 1353 

freshly made elution buffer (20 mM HEPES 7.2-KOH, 0.5 M NaCl, 1 mM EDTA, 10% 1354 

glycerol, 0.02% Triton X-100, 100mM DTT) onto the column at a speed of 0.8ml/min for 1355 

25 min. After the column was incubated for 63 hrs at 4°C, the protein was recovered from 1356 

the initial elution volume and a subsequent 30 ml wash with elution buffer. Protein-1357 

containing fractions were pooled and diluted 1:1 with buffer [20 mM HEPES 7.2-KOH,1 1358 

mM EDTA, 10% glycerol, 0.5mM TCEP) to reduce the NaCl concentration to 250mM. For 1359 

cation exchange, the sample was loaded onto a 1ml column HiTrap S HP (17115101, GE), 1360 

washed with Buffer A (10mM Tris 7.5, 280 mM NaCl, 10% glycerol, 0.5mM TCEP) and 1361 

then eluted using a gradient formed using Buffer A and Buffer B (10mM Tris 7.5, 1M NaCl, 1362 

10% glycerol, 0.5mM TCEP) (0% Buffer B over 5 column volumes, 0-100% Buffer B over 1363 

50 column volumes, 100% Buffer B over 10 column volumes). Next, the protein-1364 

containing fractions were combined, concentrated via ultrafiltration to ~1.5 mg/mL and 1365 

further purified via gel filtration (HiLoad 16/600 Superdex 75 pg column (28989333, 1366 

GE)) in Buffer GF (100mM HEPES-KOH at pH 7.2, 0.5 M NaCl, 0.2 mM EDTA, 2mM 1367 

DTT, 20% glycerol). The purest Tn5 transposase-containing fractions were pooled and 1 1368 

volume 100% glycerol was added to the preparation. Tn5 transposase was stored at -20°C.  1369 

 1370 

To generate Tn5 transposomes for combinatorial barcoding assisted single nuclei 1371 

ATAC-seq, barcoded oligos were first annealed to pMENTs oligos (95 °C for 5 min, 1372 

cooled to 14 °C at a cooling rate of 0.1 °C/s) separately. Next, 1 µl barcoded transposon 1373 
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(50 µM) was mixed with 7 ul Tn5 (~7 µM). The mixture was incubated on the lab bench 1374 

at room temperature for 30 min. Finally, T5 and T7 transposomes were mixed in a 1:1 1375 

ratio and diluted 1:10 with dilution buffer (50 % Glycerol, 50 mM Tris-HCl (pH=7.5), 1376 

100 mM NaCl, 0.1 mM EDTA, 0.1 % Triton X-100, 1 mM DTT). For combinatorial 1377 

barcoding, we used eight different T5 transposomes and 12 distinct T7 transposomes, 1378 

which eventually resulted in 96 Tn5 barcode combinations per sample7 1379 

(Supplementary Table S6).  1380 

 1381 

Bulk ATAC-seq data generation 1382 

ATAC-seq was performed on 30,000-50,000 nuclei as described previously with 1383 

modifications3. Nuclei were thawed on ice and pelleted for 5 min at 500 x g at 4 °C. Nuclei 1384 

pellets were resuspended in 30 µl tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 1385 

72.6 mM K-acetate, 11 mM Mg-acetate, 17.6 % DMF) and counted on a hemocytometer.  1386 

30,000-50,000 nuclei were used for tagmentation and the reaction volume was adjusted 1387 

to 19 µl using tagmentation buffer. After addition of 1 µl TDE1 (Illumina FC-121-1030), 1388 

tagmentation was performed at 37°C for 60 min with shaking (500 rpm). Tagmented 1389 

DNA was purified using MinElute columns (Qiagen), PCR-amplified for 8 cycles with 1390 

NEBNext® High-Fidelity 2X PCR Master Mix (NEB, 72°C 5 min, 98°C 30 s, [98°C 10 s, 1391 

63°C 30 s, 72°C 60 s] x 8 cycles, 12°C held). Amplified libraries were purified using 1392 

MinElute columns (Qiagen) and SPRI Beads (Beckmann Coulter). Sequencing was 1393 

carried out on a NextSeq500 using a 150-cycle kit (75 bp PE, Illumina). 1394 

 1395 

Bulk ATAC-seq data analysis 1396 

ATAC-seq reads were mapped to reference genome mm10 using BWA and samtools 1397 

version 1.2 to eliminate PCR duplicates and mitochondrial reads. The paired-end read 1398 

ends were converted to fragments. Using fragments, MACS257 version 2.1.2 was used for 1399 

generating signal tracks and peak calling with the following parameters: --nomodel --shift 1400 

100 --ext 200 --qval 1e-2 -B –SPMR. Library quality control for bulk ATAC-seq can be 1401 

found in Supplementary Table S7. 1402 

 1403 

Single-nucleus ATAC-seq data generation 1404 
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Combinatorial ATAC-seq was performed as described previously with modifications5,7. 1405 

For each sample two biological replicates were processed. Nuclei were pelleted with a 1406 

swinging bucket centrifuge (500 x g, 5 min, 4°C; 5920R, Eppendorf). Nuclei pellets were 1407 

resuspended in 1 ml nuclei permeabilization buffer (5 % BSA, 0.2 % IGEPAL-CA630, 1mM 1408 

DTT and cOmpleteTM, EDTA-free protease inhibitor cocktail (Roche) in PBS) and 1409 

pelleted again (500 x g, 5 min, 4°C; 5920R, Eppendorf). Nuclei were resuspended in 1410 

500 µL high salt tagmentation buffer (36.3 mM Tris-acetate (pH = 7.8), 72.6 mM 1411 

potassium-acetate, 11 mM Mg-acetate, 17.6% DMF) and counted using a hemocytometer. 1412 

Concentration was adjusted to 4500 nuclei/9 µl, and 4,500 nuclei were dispensed into 1413 

each well of a 96-well plate. Glycerol was added to the leftover nuclei suspension for a 1414 

final concentration of 25 % and nuclei were stored at -80°C. For tagmentation, 1 µL 1415 

barcoded Tn5 transposomes7,56 (Supplementary Table S6) were added using a 1416 

BenchSmart™ 96 (Mettler Toledo), mixed five times and incubated for 60 min at 37 °C 1417 

with shaking (500 rpm). To inhibit the Tn5 reaction, 10 µL of 40 mM EDTA were added 1418 

to each well with a BenchSmart™ 96 (Mettler Toledo) and the plate was incubated at 37 1419 

°C for 15 min with shaking (500 rpm). Next, 20 µL 2 x sort buffer (2 % BSA, 2 mM EDTA 1420 

in PBS) were added using a BenchSmart™ 96 (Mettler Toledo). All wells were combined 1421 

into a FACS tube and stained with 3 µM Draq7 (Cell Signaling). Using a SH800 (Sony), 1422 

20 nuclei were sorted per well into eight 96-well plates (total of 768 wells) containing 1423 

10.5 µL EB (25 pmol primer i7, 25 pmol primer i5, 200 ng BSA (Sigma)7. Preparation of 1424 

sort plates and all downstream pipetting steps were performed on a Biomek i7 Automated 1425 

Workstation (Beckman Coulter). After addition of 1 µL 0.2% SDS, samples were 1426 

incubated at 55 °C for 7 min with shaking (500 rpm). We added 1 µL 12.5% Triton-X to 1427 

each well to quench the SDS and 12.5 µL NEBNext High-Fidelity 2× PCR Master Mix 1428 

(NEB). Samples were PCR-amplified (72 °C 5 min, 98 °C 30 s, (98 °C 10 s, 63 °C 30 s, 72 1429 

°C 60 s) × 12 cycles, held at 12 °C). After PCR, all wells were combined. Libraries were 1430 

purified according to the MinElute PCR Purification Kit manual (Qiagen) using a vacuum 1431 

manifold (QIAvac 24 plus, Qiagen) and size selection was performed with SPRI Beads 1432 

(Beckmann Coulter, 0.55x and 1.5x). Libraries were purified one more time with SPRI 1433 

Beads (Beckmann Coulter, 1.5x). Libraries were quantified using a Qubit fluorimeter (Life 1434 

technologies) and the nucleosomal pattern was verified using a Tapestation (High 1435 
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Sensitivity D1000, Agilent). The library was sequenced on a HiSeq2500 sequencer 1436 

(Illumina) using custom sequencing primers, 25% spike-in library and following read 1437 

lengths: 50 + 43 + 40 + 50 (Read1 + Index1 + Index2 + Read2)7.  1438 

 1439 

  1440 
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 1441 

 1442 

Figure S1. Overview of SnapTools workflow. (a) Demultiplexing: SnapTools first 1443 

demultiplexed the fastq files by adding the cell barcodes to the beginning of each read 1444 

name; Pre-processing: raw sequencing reads were aligned to the reference genome using 1445 

BWA followed by filtration of erroneous alignments. A snap file was generated to store 1446 

indexed reads and multiple cell matrices including cell-by-peak, cell-by-gene and cell-by-1447 

bin matrix.  1448 

  1449 
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Figure S2. Choosing the optimal bin size. (a) UMAP visualization of landmark cell 1451 

types identified in three benchmarking datasets. UMAP embedding was computed using 1452 

cisTopic and cell types were manually annotated based on the gene accessibility score at 1453 

canonical marker genes (Supplementary Methods). Blue dash line highlights the rare 1454 

cell populations that account for less than 2% of the total population. (b) Relationship 1455 

between connectivity index (CI) and bin sizes. Connectivity index were calculated 1456 

between landmark cell types in the reduced dimension using function “connectivity” in R 1457 

package “clv”. A lower CI indicates a better separation of landmark cell types. (c) UMAP 1458 

representation of three benchmarking datasets generated using SnapATAC using 5kb bin 1459 

size. Cells colored by read depth to illustrate the sequencing depth effect. (d) Cells are 1460 

colored by cluster labels identified by SnapATAC. Data source are listed in 1461 

Supplementary Table S1. Note that blue circles highlight rare cell populations account 1462 

for less than 2% of total population.  1463 

 1464 
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Figure S3. SnapATAC is robust to sequencing depth. Two dimensional UMAP 1471 

representation of three benchmarking datasets analyzed by four methods (a) SnapATAC 1472 

without normalization; (b) SnapATAC with normalization; (c) cisTopic and (d) Latent 1473 

Sematic Analysis (LSA). Cells are color by log-scaled read depth. Read depth bias is 1474 

quantified by entropy as described in the Supplementary Methods. Data source is 1475 

listed in Supplementary Table S1.  1476 
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1478 
Figure S4. SnapATAC is robust to other biases. Potential bias in single cell ATAC-1479 

seq dataset projected onto the UMAP visualization generated using different analysis 1480 

methods (a) SnapATAC (b) cisTopic and (c) LSA. Duplicate: percentage of fragments that 1481 

are PCR duplicates. TSS: percentage of fragments overlapping or are within 1kb of a TSS. 1482 

TSS position is based on the GENECODE V28 (Ensemble 92). DNase: the percentage of 1483 

fragments overlapping a master DNase peak list. The DNase peak list is created by 1484 

combining all ENCODE1 DNase peaks from hg19. Blacklist: the percentage of fragments 1485 

overlapping with the ENCODE blacklist. FRiP: the percentage of fragments overlapping 1486 

with the peaks defined from the aggregate signal. Mapping: the percentage of fragments 1487 

that are uniquely mapped. chrM: the percentage of fragments mapped to mitochondria 1488 

DNA. Dataset used in this plot is 5k PBMC (10X) as listed in Supplementary Table S1. 1489 
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Figure S5. Ensemble Nyström sampling improves the scalability and stability 1492 

without sacrificing the performance. (a) A line plot comparing the performance of 1493 

clustering using various sampling parameters.  The performance is evaluated using 1494 

Adjusted Rank Index (ARI). SnapATAC was applied to the mouse atlas dataset that 1495 

contained over 80k cells using different number of landmark cells (k) ranging from 1k to 1496 

10k. For each k, we performed clustering for n=5 times using different sets of randomly 1497 

selected landmarks. (b) A line plot comparing the stability of clustering results between 1498 

five samplings (pairwise comparison n=10). (c) To evaluate the sensitivity of identifying 1499 

rare cell types, we spiked in 1% mouse Pastki cells generated using the same protocol in 1500 

Cusanovich 20155 and this rare cell population was recapitulated using 10,000 landmarks 1501 

(right). (d) To compare the clustering reproducibility between standard and ensemble 1502 

Nystrom sampling method, we performed clustering using both methods on Cusanovich 1503 

20188 for five times with different randomly selected landmark cells. The clustering 1504 

reproducibility quantified by ARI (adjusted rank index) between random trails is 1505 

significantly higher for the ensemble Nystrom method than the standard Nystrom 1506 

method (two-tailed t-test P < 0.01).  1507 
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Figure S6. SnapATAC predicts gene and enhancer pairing by integrating 1516 

scATAC-seq and scRNA-seq. (a) Prediction score distribution for single cell ATAC-1517 

seq (5K PBMC 10X) by SnapATAC. When predicting the cell type for scATAC-seq using 1518 

corresponding scRNA-seq dataset (10X PBMC scRNA-seq), each cell in scATAC-seq was 1519 

assigned with a prediction score indicating the confidence of the prediction. It ranges 1520 

from 0 to 1, a higher score indicates a higher confidence. Using 0.5 as cutoff as suggested 1521 

in Seurat, over 98% of cells in scATAC-seq are confidently assigned to a cell type defined 1522 

in scRNA-seq. (b) Distance decay curve for the association (-logPvalue) between 1523 

regulatory elements and the TSS of their putative target genes. (c-d) AUROC and AUPRC 1524 

between cis-eQTL pairs and negative control sets. See Supplementary Methods for 1525 

how the control sets selected.   1526 
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Figure S7. Evaluation of clustering accuracy of SnapATAC relative to 1532 

alternative methods on simulated datasets. T-SNE visualization of clustering 1533 

results on 1,000 simulated cells sampled from 10 bulk ATAC-seq datasets (see 1534 

Supplementary Methods for the simulation) analyzed by five different methods – 1535 

chromVAR14, LSA8, Cicero17, Cis-Topic15 and SnapATAC. Clustering results are compared 1536 

to the original cell type label and the accuracy is estimated using Normalized Mutual 1537 

Index (nmi). Mono: monocyte; Mega: megakaryocyte; GMPC: granulocyte monocyte 1538 

progenitor cell; MPC: megakaryocyte progenitor cell; NPT: neutrophil; G1E: G1E; T cell: 1539 

regulatory T cell; MEPC: megakaryocyte-erythroid progenitor cell; HSC: hematopoietic 1540 

stem cell.  1541 
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 1543 

Figure S8. Evaluation of clustering accuracy relative to alternative methods 1544 

on published single cell ATAC-seq datasets. SnapATAC (left), CisTopic (middle) 1545 

and LSA (right) clustering performance on single cell ATAC-seq dataset from ten human 1546 

cell lines generated using Fluidigm C1 platform10,14. (a) Clustering results are visualized 1547 

using t-SNE and cells are colored by cluster labels identified by each of analysis methods. 1548 

(b) T-SNE visualization of the human cells colored by the cell type labels. Clustering 1549 

accuracy of each method is estimated by comparing the predicted clustering labels to the 1550 

cell type labels. Blast: acute myeloid leukemia blast cells; LSC: acute myeloid leukemia 1551 

leukemic stem cells; LMPP: lymphoid-primed multipotent progenitors; Mono: monocyte; 1552 

HL60: HL-60 promyeloblast cell line; TF1: TF-1 erythroblast cell line; GM: GM12878 1553 

lymphoblastoid cell line; BJ: human fibroblast cell line; H1: H1 human embryonic stem 1554 

cell line.  1555 
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Figure S9. Gene accessibility score of canonical marker genes projected onto 1559 

t-SNE embedding for snATAC-seq dataset from mouse secondary motor 1560 

cortex. T-SNE is generated using SnapATAC; cell type specific marker genes were 1561 

defined from previous single cell transcriptomic analysis in the adult mouse brain38; gene 1562 

accessibility score is calculated using SnapATAC (Supplementary Methods). Data 1563 

source is listed in Supplementary Table S1. 1564 
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 1567 

Figure S10. Evaluation of clustering sensitivity of SnapATAC relative to 1568 

alternative methods on mouse secondary motor cortex snATAC-seq. Three 1569 

methods (cisTopic, LSA and SnapATAC) were used to analyze a dataset that contained 1570 

~10k single nucleus ATAC-seq profiles from the mouse secondary motor cortex. Pairwise 1571 

comparison of the clustering results is shown by projecting the cluster label identified 1572 

using one method onto the t-SNE visualization generated by another method (cluster vs. 1573 

visualization). Black dash line circles highlight the rare pollutions (Sst, Pv, L6b and L6.CT) 1574 

that were only identified by SnapATAC. Data source is listed in Supplementary Table 1575 

S1. 1576 

  1577 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 72 

 1578 

 1579 

 1580 

 1581 
Figure S11. Off-peak reads distinguish major cell types in heterogenous 1582 

samples. (a-c) SnapATAC clustering result on three benchmarking datasets using all 1583 

bins versus clustering result only using bins that are not overlapped with peaks. Data 1584 

source is listed in Supplementary Table S1. 1585 
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 1588 
 1589 

Figure S12. Off-peak reads reflect higher-order chromatin structure. At 500kb 1590 

bin resolution, profile of compartments identified using Hi-C58 in GM12878 overlaid the 1591 

density of “off-peak” reads for 314 cells from GM12878 10X scATAC-seq library. Data 1592 

source is listed in Supplementary Table S1.  1593 
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 1595 

1596 
Figure S13. SnapATAC is robust to technical variation. Two-dimensional t-SNE 1597 

visualization of four benchmarking datasets generated using SnapATAC. Cells are color 1598 

by cluster label (left) and sample label (right). (a) 15k PBMC (10X) – a combination of 1599 

two datasets (PBMC 5k and 10k) publicly available from 10X genomics. (b) MOs (snATAC) 1600 

– an in-house dataset that contains two biological replicates from secondary motor cortex 1601 

in the adult mouse brain generated using single nucleus ATAC-seq. (c) Mouse Atlas 1602 

(Cusanovich 2018) – a published dataset that contains over 80K cells from 13 different 1603 

mouse tissues generated using multiplexing single cell ATAC-seq. (d) Mouse Brain 1604 

(Lareau dscATAC) – a published dataset that contains 46,652 cells from 8 samples in the 1605 

adult mouse brain generated using BioRad droplet-based single cell ATAC-seq. Data 1606 

source is listed in Supplementary Table S1.  1607 
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 1609 

Figure S14. SnapATAC eliminates batch effect using Harmony23. The joint 1610 

UMAP visualization of two datasets of mouse brain generated using combinatorial 1611 

indexing single nucleus ATAC-seq (MOs-M1 snATAC) and droplet-based platform 1612 

(Mouse Brain 10X) before (a) and after (b) performing batch effect correction using 1613 

Harmony. Data source is listed in Supplementary Table S1. 1614 
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 1617 

 1618 

 1619 

 1620 

 1621 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 17, 2020. ; https://doi.org/10.1101/615179doi: bioRxiv preprint 

https://doi.org/10.1101/615179


 77 

Figure S15. Single nucleus ATAC-seq datasets are reproducible between 1622 

biological replicates. (a) Illustration of dissection. Posterior view of three 0.6 mm 1623 

coronal slices from which the secondary motor cortex (MOs) was dissected. The right side 1624 

on each image depicts the corresponding view from the Allen Brain Atlas. The left side 1625 

correspond to the Nissl staining of the posterior side of each slice. The MOs region was 1626 

manually dissected according to the dashed lines on each slice and following the MOs as 1627 

depicted in plates 27, 33, and 39 of the Allen Brain Atlas (left side images in figure). Each 1628 

slice contains two biological replicates named as A1, A2, M1, M2, P1 and P2 (A: Anterior; 1629 

M: Middle; P: Posterior). In this study, A1, M1 and P1 is combined as replicate 1 and A2, 1630 

M2 and P2 are combined as replicate 2. (b) Genome-browser view of aggregate signal for 1631 

two biological replicates. (c) Pearson correlation of count per million (CPM) at peaks 1632 

between two replicates. (d) Insert size distribution and (e) TSS enrichment score for two 1633 

biological replicates. 1634 
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 1636 
 1637 

Figure S16. Barcode selection of MOs. (a) Cells of unique fragments within the 1638 

range of 1,000-100,000 and fragments in promoter ratio within the range of 0.2-0.7 were 1639 

selected. This resulted in 30,409 and 30,205 nuclei for two replicates. (b) With 5kb cell-1640 

by-bin matrix as input matrix, putative doublets were identified using Scrublets37, which 1641 

predicted 2,555 (8.4%) and 2,467 (8.9%) nuclei to be doublets for each replicate. The 1642 

predicted doublet ratio is similar to the theoretical calculation of doublet ratio for 1643 

multiplexing single cell ATAC-seq experiment5,7. 1644 
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1646 
Figure S17. Consensus clustering of MOs. (a) Five clustering results were generated 1647 

using SnapATAC with different set of landmarks (10,000). (b) These five clustering 1648 

solutions were combined to create a consensus clustering which identified 20 clusters in 1649 

MOs (Supplementary Methods). 1650 
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 1652 
 1653 

Figure S18. MOs clustering result is reproducible between biological 1654 

replicates. (a-b) T-SNE visualization of cells from two biological replicates. (c) The 1655 

cluster composition is highly reproducible between two biological replicates (r=0.99; P-1656 

value = 1.6e-23); (d) T-SNE visualization of cells with color scaled by sequencing depth.  1657 
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 1659 

Figure S19. Gene accessibility score of canonical marker genes projected 1660 

onto MOs t-SNE embedding to guide the cluster annotation. T-SNE is generated 1661 

using SnapATAC for MOs; cell type specific marker genes was defined from previous 1662 

single cell transcriptomic analysis in adult mouse brain38; gene accessibility score is 1663 

calculated using SnapATAC (Supplementary Methods) and projected to the t-SNE 1664 

embedding.  1665 

 1666 
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 1668 
 1669 

Figure S20. Iterative clustering identifies 17 GABAergic neuronal subtypes. 1670 

(a) Sub-clustering of 5,940 GABAergic neurons identified 17 distinct cell clusters. (b) 1671 

Cluster composition was highly reproducible between two biological replicates. (c) TSNE 1672 

visualization of 5,940 GABAergic neurons colored by cell types identified in the initial 1673 

clustering (shown in Fig. 5a). Black circles mark clusters that are potential doublets, a 1674 

mixture of multiple cell types. (d) TSNE plot of GABAergic neurons colored by sequencing 1675 

depth. 1676 
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Figure S21. Gene accessibility score of marker genes projected onto t-SNE 1680 

embedding from GABAergic neurons to guide the cluster annotation. Iterative 1681 

clustering is performed against GABAergic neurons to identify subtypes. Twenty eight cell 1682 

type specific marker genes were defined from previous single cell transcriptomic analysis 1683 

in adult mouse brain38; gene accessibility score is calculated using SnapATAC 1684 

(Supplementary Methods).  1685 
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 1688 
Figure S22.  Genome browser view of aggregate signal for each of the major 1689 

cell populations identified in the adult mouse brain (Fig. 5a).   1690 
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 1691 
Figure S23. SnapATAC uncovers novel candidate cis-regulatory elements in 1692 

rare cell types. (a) Genome browser view of 20Mb region flanking gene Vip. Dash line 1693 

highlight five regulatory elements specific to Vip subtypes that are under-represented in 1694 

the conventional bulk ATAC-seq signal. (b) Over fifty percent of the regulatory elements 1695 

identified from 20 major cell populations are not detected from bulk ATAC-seq data. (c) 1696 

Sequence conservation comparison between the new elements and randomly chosen 1697 

genomic regions. (d) Top seven motifs enriched in Pv-specific new elements. (e) 1698 

Examples of four new elements that were previously tested positive in transgenic mouse 1699 

assays (from VISTA database). Bulk: Bulk ATAC-seq; Asc: aggregated signal from 1700 

astrocyte population (ASC) in the adult mouse brain as shown in Fig. 5a. 1701 
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 1702 
Figure S24. Joint embedding for query (Mouse Brain 10X) and reference 1703 

dataset (MOs snATAC). The query dataset (10X) is projected onto the low dimension 1704 

embedding space precomputed for the reference dataset (snATAC). Batch effect is 1705 

corrected using Harmony. Pairwise plot of the first four dimentions in which cells are 1706 

colored by dataset - red for query cells (Mouse Brain 10X) and black for reference cells 1707 

(MOs snATAC). Data source as listed in Supplementary Table S1.  1708 
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 1710 
 1711 

Figure S25. SnapATAC is robust for supervised annotation of datasets 1712 

containing cell types missing in the reference atlas. (a) Two-dimensional t-SNE 1713 

visualization of the reference dataset MOs (snATAC). (b) A five-fold cross validation is 1714 

performed to this reference dataset. For each fold, we introduce perturbation to the 80% 1715 

training dataset by randomly dropping one cell type (Asc, Mgc, L2/3b, CGE and L6.IT). 1716 

We then predict on the 20% test dataset using the model learned from the perturbed 1717 

training dataset. The prediction accuracy for each fold is shown in (b) and cell type 1718 

removed from the training dataset are highlighted by the dash-line circles. 1719 
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1723 
Figure S26. Doublets detection using Scrublet. (a) T-SNE representation of a 1724 

dataset (hgmm_1k 10X) that contained 1,000 human (GM12878) and mouse (A20) cells.  1725 

Cells are colored by species determined based on the alignment ratio between human and 1726 

mouse genome. Orange: A20; blue: GM12878; green: putative doublets. (b) Distribution 1727 

of doublet score for putative doublets and simulated doublets estimated using Scrublet37. 1728 

(c) Doublets are predicted using cell-by-peak and cell-by-bin matrix separately. Venn 1729 

diagram show the overlap between Scrublet-predicted doublets using peak or bin matrix 1730 

and doublets identified based on alignment ratio. (d) Doublets scores projected onto the 1731 

UMAP embedding. 1732 
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