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ABSTRACT
It is well-known that there exist rigid frameworks whose physical models can snap between different realizations

due to non-destructive elastic deformations of material. We present a method to measure this snapping capability
based on the total elastic strain energy density of the framework by using the physical concept of Green-Lagrange
strain. As this so-called snappability only depends on the intrinsic framework geometry, it enables a fair compar-
ison of pin-jointed body-bar frameworks, thus it can serve engineers as a criterion within the design process of
multistable mechanisms. Moreover, it turns out that the value obtained from this intrinsic pseudometric also gives
the distance to the closest shaky configuration in the case of isostatic frameworks. Therefore it is suited for the
computation of these singularity-distances for diverse mechanical devices. In more detail we study this problem for
parallel manipulators of Stewart-Gough type.

1 Introduction
In this paper we study frameworks composed of bars and bodies linked by pin-joints, which are rotational joints in the

planar case and spherical joints in the spatial case. Note that all joints are assumed to be without clearance. A body is either
a polyhedron or a polygonal panel1. For both of these cases it is assumed that the body does not possess any unnecessary
vertices; i.e. each of its vertices is pin-jointed. An additional assumption is that the inner graph of each body is globally
rigid, where an inner graph is defined as follows:

Definition 1. Connect all vertices of the polyhedron (polygonal panel) by edges, which are either located on the boundary
of the polyhedron (polygon) or in its interior. The resulting graph is called inner graph.

Note that our studied class of geometric structures known as pin-jointed body-bar frameworks also contains hinge-
jointed frameworks, as a hinge between two bodies can be replaced by two pin-joints.

By defining the combinatorial structure of the framework as well as the lengths of the bars and the shapes of the bodies,
respectively, the intrinsic geometry of the framework is fixed. In general the assignment of the intrinsic metric does not
uniquely determine the embedding of the framework into the Euclidean space, thus such a framework can have different
incongruent realizations.

A realization is called a snapping realization if it is close enough to another incongruent realization such that the physical
model can snap into this neighboring realization due to non-destructive elastic deformations of material. Shakiness can be
seen as the limiting case where two realizations of a framework coincide; e.g. [2, 3].

The open problem in this context is the meaning of closeness, which is tackled in this article. In more detail, we present a
method to measure the snapping capability (shortly called snappability) of a realization. The provided distance is of interest
for practical applications, because it can be used in the early design phase of a framework to avoid snapping phenomena
(e.g. engineering of truss structures) or to utilize them (e.g. multistable mechanisms and materials). The latter approach has
received much attention in the last few years within a wide field of applications; ranging from origami structures (e.g. [4,5,6])
over mechanical metamaterials (e.g. [7, 8, 9]) to metastructures (e.g. [10]).

But the snappability also provides a distance to the next shaky configuration in the case of isostatic frameworks. There-
fore this singularity-distance can also be used in the context of singularity-free path planing of robotic devices.

1A polygonal panel can be seen as a body with coplanar vertices according to [1].
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1.1 Review and outline
In two recent conference articles [11,12] the author already started to investigate this topic. In [11] a first attempt towards

the computation of the snappability of bar-joint frameworks was done based on the definition of Cauchy/Engineering strain.
In [12] the author extended the approach to frameworks composed of bars and triangular panels. For this it was necessary to
switch to the concept of Green-Lagrange strain, as the elastic strain energy of triangular panels using Cauchy/Engineering
strain is not invariant under rotations. In the articles [11, 12] the author restricted to planar examples; namely the trivial case
of a triangular framework and the more sophisticated example of a pinned 3-legged planar parallel manipulator. In the paper
at hand, we render the approach of [12] more precisely and generalize it to polygonal panels and polyhedra, respectively,
and study some spatial frameworks, which already appear in existing literature on this topic reviewed next.

By the well-known technique of deaveraging (e.g. [3], [13, page 1604] and [14]) snapping frameworks can be con-
structed in any dimension Rd . Moreover, for snapping bipartite frameworks in Rd an explicit result in terms of confocal
hyperquadrics is known (cf. [3, page 112] under consideration of [15]). Most results are known for the dimension d = 3,
which are as follows: There is a series of papers by Walter Wunderlich on snapping spatial structures (octahedra [16], closed
4R loops [17], antiprisms [18], icosahedra [19, 20], dodecahedra [21]), which are reviewed in [22]. In this context also the
paper [23] should be cited, where buckling polyhedral surfaces and Siamese dipyramids are introduced. Snapping structures
are also related to so-called model flexors2 (cf. [24]) as in some cases the model flexibility can be reasoned by the snapping
through different realizations. Examples for this phenomenon are the so-called four-horn [25] or the already mentioned
Siamese dipyramid. The latter are studied in more detail in [26], especially how minor relative variations on the edge lengths
produce significant relative variations in the spatial shape. The authors of [26] also suggested estimates to quantify these
intrinsic and extrinsic variations. Recently, a more general approach for estimating these kinds of quantities for arbitrary
bar-joint frameworks was presented in [27], where inter alia also the Siamese dipyramid was studied as an example.

Beside the above reviewed mathematical studies on snapping frameworks, there are also the following application driven
approaches. Their snapping behavior is studied by

(1) numerical simulations based on (a) finite element methods [7, 8, 9] or (b) force method approaches like [28] or a gener-
alized displacement control method [4, 5, 6],

(2) theoretical approaches based on the variation of the total potential energy [9, 10, 29, 30].

In contrast, our approach only relies on the total strain energy of the structure (i.e. no a priori assumptions on external
loads have to be made) paving the way for the definition of the snappability, which only depends on the intrinsic framework
geometry. Finally it should be noted, that a short review on approaches towards the computation of singular-distances is
given in the section dealing with Stewart-Gough (SG) manipulators, which brings us straight to the outline of the paper.

After introducing notations and summarizing fundamentals of rigidity theory in Section 1.2, we present the underlying
physical model of deformation in Section 2, which is used for building up the pseudometric on the space of intrinsic frame-
work geometries in Section 3. Based on some theoretical considerations, we discuss the computation of the snappability and
the singularity-distance in Sections 4 and 5, respectively, and demonstrate the presented methods in two examples. Afterward
we adopt our theoretical results for the singularity-distance computation of SG platforms in Section 6, which is also closed
by a practical example. Finally we conclude the paper in Section 7. Moreover, in Appendix A the Siamese dipyramid and
the four-horn are studied, and the obtained results are compared with existing literature.

1.2 Notations and fundamentals of rigidity theory
A pin-jointed body-bar framework G(K ) consists of a knot set K =

{
V1, . . . ,Vr, Bd1

1 (n1), . . . , Bdq
q (nq)

}
and an 2-edge

colored (green, red) graph G on K . A knot Bdi
i (ni) represents a body, where di ∈ {2,3} gives the additional information

if the body is a polyhedron (⇔ di = 3) or a polygonal panel (⇔ di = 2). Without loss of generality we can assume that
d1 = . . .= dp = 2 and dp+1 = . . .= dq = 3 for 1≤ p≤ q. The number ni gives the number of vertices of the body Bi. A knot
Vi corresponds to rotational/spherical joint linking bars. A green edge connecting two knots corresponds to a bar. A red edge
is only allowed to connect two bodies and represents a pin-joint.

Due to the assumed global rigidity of the inner graph of a body we can replace each body by a globally rigid bar-joint
subframework according to [1, page 437]. Note that the combinatorial characterization of global rigidity is only known for
R2 (cf. [31]), but still open for R3 [1, page 450].

Remark 1. The completeness of an inner graph is a sufficient condition for global rigidity (cf. [32]). This implies that the
body Bdi

i (ni) has to be convex as all ni(ni−1)/2 edges are in the interior of the polyhedron (polygon) or on its boundary.
Note that the globally rigid bar-joint subframework of a polygonal panel B2

i (ni) is not infinitesimal rigid in R3 for ni > 3
because every vertex can be infinitesimally flexed out of the plane spanned by the remaining ni−1 vertices. �

2Mathematically these structures do not posses a continuous flexibility but due to free bendings without visible distortions of materials their physical
models flex.



By replacing the bodies by globally rigid bar-joint subframeworks resulting from the inner graphs, we end up with a bar-
joint framework G∗(K∗) which is equivalent to the given pin-jointed body-bar framework G(K ). This bar-joint framework
G∗(K∗) can be used for defining the intrinsic geometry of the framework G(K ) in a mathematical rigorous way. For doing
this, we introduce the following notation.

By denoting the vertices of the body Bdi
i (ni) by Vsi+1, . . . ,Vsi+ni with si = r+∑

i−1
j=1 n j we get the set K∗ = {V1, . . . ,Vw}

with w = r+∑
q
j=1 n j. Moreover, we denote the edge connecting Vi to Vj by ei j with i < j. Now we can fix the intrinsic metric

of the framework G∗(K∗) (and therefore also of G(K )) by assigning a length Li j ∈ R>0 to each edge ei j. Moreover, we
collect all these lengths in the b-dimensional vector L = (. . . ,Li j, . . .)

T of the space Rb of intrinsic framework metrics, where
b gives the number of edges of the graph G∗. Finally we collect the indices i j of edges ei j of G∗(K∗) which correspond to
green edges of G(K ) in the set G .

We denote a realization of the framework G(K ) and G∗(K∗) by G(V) and G∗(V), respectively, where the configuration
of vertices V = (v1, . . . ,vw) ∈ Rwd is composed by the coordinate vectors vi = (xi,yi,zi)

T for d = 3 and vi = (xi,yi)
T for

d = 2, respectively, of Vi for i = 1, . . . ,w.
Now we consider a realization G∗(V) of the equivalent bar-joint framework G∗(K∗). In the rigidity community (e.g.

[33]) each edge ei j is assigned with a stress (coefficient) ωi j ∈ R. For every knot Vi we can associate a so-called equilibrium
condition

∑
i< j∈Ni

ωi j(vi−v j)+ ∑
i> j∈Ni

ω ji(vi−v j) = o (1)

where o denotes the d-dimensional zero-vector and Ni the knot neighborhood of Vi; i.e. the index set of knots ∈K∗ connected
with Vi by bars. If for all w knots this condition is fulfilled, then the b-dimensional stress-vector ω = (. . . ,ωi j, . . .)

T is referred
as self-stress (or equilibrium stress).

Algebraic approach to rigidity theory. The relation that two elements of the knot set are edge-connected can also be
expressed algebraically. They are either quadratic constraints resulting from the squared distances of vertices (implied by a
green edge) or they are linear conditions, which are stemming from the identification of vertices (implied by a red edge) or
the elimination of isometries3. In total this results in a system of n algebraic equations c1 = 0, . . . ,cn = 0 in m unknowns4,
which constitute an algebraic variety A.

If A(c1, . . . ,cn) is positive-dimensional then the framework is flexible; otherwise rigid. The framework is called mini-
mally rigid (isostatic) if the removal of any algebraic constraint (resulting from an edge) will make the framework flexible.
In this case m = n has to hold. Rigid frameworks, which are not isostatic, are called overbraced or overconstrained (n > m).
Note that there is also a combinatorial characterization of isostaticity for generic frameworks of dimension 2 according to
the work of Laman [34], but for dimension 3 this is still an open problem.

If A(c1, . . . ,cn) is zero-dimensional, then each real solution corresponds to a realization G(Vi) of the framework for
i = 1, . . . ,k. If there is exactly one real solution, then the framework is called globally rigid. But one can also consider
the complex solutions of the set of realization equations c1, . . . ,cn resulting in complex knot configurations Vi with i =
k+1, . . . ,k+2 f and f ∈ N∗ as they always appear in pairs. According to [35] they imply complex realizations G(Vi).

We can compute in a realization the tangent-hyperplane to each of the hypersurfaces ci = 0 in Rm for i = 1, . . . ,n. Note
that this is always possible as all hypersurfaces are either hyperplanes or regular hyperquadrics. The normal vectors of these
tangent-hyperplanes constitute the columns of a m×n matrix RG(V), which is also known as rigidity matrix of the realization
G(V). If its rank is m then the realization is infinitesimal rigid otherwise it is infinitesimal flexible; i.e. the hyperplanes
have a positive-dimensional affine subspace in common. Therefore the intersection multiplicity of the n hypersurfaces is at
least two in a shaky realization. As a consequence shakiness (of order one5) can also be seen as the limiting case where two
realizations of a framework coincide [2, 3, 22].

Clearly, by using the rank condition rk(RG(V))< m one can also characterize all shaky realizations G(V) algebraically
by the affine variety A(J) – which is referred as shakiness variety – where J denotes the ideal generated by all minors of
RG(V) of order m×m. Let us assume that the polynomials g1, . . . ,gγ form the Gröbner basis of the ideal J. Note that for
minimally rigid framework γ = 1 holds, where the infinitesimal flexibility is given by g1 : det(RG(V)) = 0. Another approach
towards this so-called pure condition in terms of brackets is given in [36].

2 Physical model of deformation
The snappability index presented in this paper is based on the physical model of deformation relying on the concept of

Green-Lagrange strain, which is reduced to its geometric core by eliminating the influence of material properties. In order

3This are 6 linear constraints for d = 3 and 3 linear constraints for d = 2.
4Note that for bar-joint frameworks this number equals wd, where w is the number of vertices.
5Each additional coinciding realization raises the order of the infinitesimal flexibility by one [2].



to do so, we make the following assumption.

Assumption 1. All bars and bodies of the framework are made of the same homogeneous isotropic material, which is
non-auxetic; i.e. the Poisson ratio ν ∈ [0,1/2], and has a positive Young modulus E > 0.

2.1 The relation between stress and strain
Due to the fact that the elastic deformations during the process of snapping are expected to be small, we can apply

Hooke’s law. As a consequence, the relation between applied stresses and resulting strains is a linear one, which can be
given for the spatial case by


εx
εy
εz
γxy
γxz
γyz


︸ ︷︷ ︸

e3

=
1
E


1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1+ν) 0 0
0 0 0 0 2(1+ν) 0
0 0 0 0 0 2(1+ν)


︸ ︷︷ ︸

=:D3(ν)


δx
δy
δz
τxy
τxz
τyz

 (2)

where δi denotes the normal stress in i-direction and εi its corresponding normal strain with i ∈ {x,y,z}. Moreover, τi j
denotes the shear stress in the i j-plane and γi j its corresponding shear strain with i 6= j and i, j ∈ {x,y,z}.

In the case of planar stress (xy-plane) the shear stresses τxz and τyz are zero as well as the normal stress δz. Then Eq. (2)
simplifies to:

 εx
εy
γxy


︸ ︷︷ ︸

e2

=
1
E

 1 −ν 0
−ν 1 0
0 0 2(1+ν)


︸ ︷︷ ︸

=:D2(ν)

δx
δy
τxy

 . (3)

In the case of a bar (in x-direction) the relation reduces to εx = D1δx with D1 := 1
E .

For the later done computation of the elastic strain energies we need the inverse relations, which map the strains to the
stresses. This can be obtained by inverting D1, D2 and D3, respectively. D1 does not depend on Poisson’s ratio ν and its
inverse reads as D−1

1 = E.
As D2 is regular for all possible Poisson ratios ν ∈ [0,1/2], we can always compute

D−1
2 (ν) = E


1

1−ν2
ν

1−ν2 0
ν

1−ν2
1

1−ν2 0
0 0 1

2(1+ν)

 for 0≤ ν ≤ 1
2
. (4)

For the spatial case, D−1
3 (ν) is only not defined if ν equals the upper border of 1

2 , thus we get:

D−1
3 (ν) = E



ν−1
2ν2+ν−1

−ν

2ν2+ν−1
−ν

2ν2+ν−1 0 0 0
−ν

2ν2+ν−1
ν−1

2ν2+ν−1
−ν

2ν2+ν−1 0 0 0
−ν

2ν2+ν−1
−ν

2ν2+ν−1
ν−1

2ν2+ν−1 0 0 0
0 0 0 1

2(1+ν) 0 0
0 0 0 0 1

2(1+ν) 0
0 0 0 0 0 1

2(1+ν)


for 0≤ ν <

1
2
. (5)



For ν = 1
2 we compute the Moore-Penrose pseudo inverse of D3 which yields:

D−1
3 ( 1

2 ) = E



4
9 −

2
9 −

2
9 0 0 0

− 2
9

4
9 −

2
9 0 0 0

− 2
9 −

2
9

4
9 0 0 0

0 0 0 1
3 0 0

0 0 0 0 1
3 0

0 0 0 0 0 1
3

 . (6)

2.2 Strain energy according to Green-Lagrange
The study of the deformation of a polyhedron is based on the deformation of tetrahedra, which also play a central role

in the stress analysis within the finite element method (e.g. see [37, Chapter 6]). The strain computation for 3-simplices
according to Green-Lagrange is outlined next (e.g. see [38, Section 2.4.2]).

Let Va,Vb,Vc,Vd denote the vertices of the tetrahedron in the given undeformed configuration and V ′a,V
′
b,V

′
c ,V

′
d in the

deformed one. Then there exists a uniquely defined 3×3 matrix A which has the property

A(v̂b− v̂a) = v̂′b− v̂′a, A(v̂c− v̂a) = v̂′c− v̂′a, A(v̂d− v̂a) = v̂′d− v̂′a, (7)

where v̂i (resp. v̂′i) is a 3-dimensional vector of Vi (resp. V ′i ) for i ∈ {a,b,c,d} with respect to a Cartesian frame F (resp.
F ′) attached to the undeformed (resp. deformed) tetrahedron. The Cartesian frame F can always be chosen in a way that its
origin equals Va, the vertex Vb is located on its positive x-axis and Vc is located in the xy-plane with a positive y coordinate;
i.e.

v̂a = (0,0,0)T , v̂b = (xb,0,0)T , v̂c = (xc,yc,0)T , v̂d = (xd ,yd ,zd)
T , (8)

with xb > 0 and yc > 0. Similar considerations can be done for the Cartesian frame F ′ with respect to the tetrahedron
V ′a,V

′
b,V

′
c ,V

′
d ending up with exactly the same coordinatization as above but only primed. Then the normal strains and the

shear strains can be computed as

 εx
γxy
2

γxz
2

γxy
2 εy

γyz
2

γxz
2

γyz
2 εz

=
1
2
(
AT A− I

)
. (9)

Reassembling these quantities in the vector e3 (cf. Eq. (2)) the elastic strain energy of the deformation can be calculated as

Uabcd = Volabcd
1
2 eT

3 D−1
3 (ν)e3 (10)

where Volabcd denotes the volume of the undeformed tetrahedron and D−1
3 (ν) the stress/strain matrix (constitutive matrix)

from Eq. (5) and Eq. (6), respectively.
The same procedure can be done for the computation of the elastic strain energy Uabc of a triangular panel with vertices

Va, Vb and Vc, which is outlined in detail in [12]. As final formula we obtain in this case:

Uabc = Volabc
1
2 eT

2 D−1
2 (ν)e2 (11)

where D−1
2 (ν) denotes the stress/strain matrix from Eq. (4) and Volabc the volume of the undeformed panel, which can be

computed as the product of the triangle’s area Areaabc and the panel height habc. For a bar with end-points Va and Vb we end
up with the following simple expression:

Uab =
EVolab

8L4
ab

(L′ab
2−L2

ab)
2 (12)

where Volab denotes the volume of the undeformed bar, which can be computed as the product of the length Lab of the
undeformed bar and its cross-sectional area Areaab. The deformed bar length is given by L′ab.



3 A pseudometric on the space of intrinsic framework metrics
In this section we set up a pseudometric on the space of intrinsic framework metrics, which is based on the total

strain energy density of the framework, because in this way the distance is invariant under scaling (change of unit length).
Moreover, it allows to compare pin-jointed body-bar frameworks differing in the number of knots, the combinatorial structure
and intrinsic metric.

3.1 The strain energy density of a framework
We assume that the intrinsic metric of the framework G(K ) is given by the edge-length vector L = (. . . ,Li j, . . .)

T ∈Rb

of the equivalent framework G∗(K∗). In the same way the intrinsic metric of the deformed framework is determined by L′ =
(. . . ,L′i j, . . .)

T ∈Rb. As the strain energy of a polyhedron (polygonal panel) depends on its tetrahedralization6 (triangulation7)
we compute the strain energy over all tetrahedra of the polyhedron (triangles of the polygonal panel). To do so, we define
the index set Ci containing all index 4-tuple abcd (3-tuple abc) with a < b < c < d (with a < b < c) of non-degenerated8

tetrahedra (triangles) within a polyhedron B3
i (ni) (polygonal panel B2

i (ni)). Using this notation we can formulate the strain
energy density within the next lemma.

Lemma 1. The strain energy density of a pin-jointed body-bar framework given by

u(L′) :=
∑ab∈G Uab(L′)+∑

p
i=1 Vol(B2

i )

[
∑abc∈Ci Uabc(L′)

∑abc∈Ci Volabc

]
+∑

q
j=p+1 Vol(B3

j)

[
∑abcd∈C j Uabcd(L′)

∑abcd∈C j Volabcd

]
∑ab∈G Volab +∑

p
i=1 Vol(B2

i )+∑
q
j=p+1 Vol(B3

j)
(13)

is defined by the intrinsic metric L of the undeformed framework, the cross-sectional areas Areaab of its bars, the panel
heights habc and the material constants E and ν . The argument of the density function is given by the intrinsic metric L′
of the deformed framework. It is a fourth order polynomial with respect to the variables L′i j which only appear with even
powers.

Proof: We prove this lemma by investigating each summand in the numerator of Eq. (13) for the stated properties. As the
energy functions differ for bars, triangular panels and tetrahedra, we have to split up the proof into these three cases:

• Bar: For bars this result follows directly from Eq. (12).
• Triangular panel: We choose a planar Cartesian frame F in a way that the coordinates of the triangle Va,Vb,Vc read as

v̂a = (0,0)T , v̂b = (xb,0)T and v̂c = (xc,yc)
T with

xb = Lab, xc =
L2

ab+L2
ac−L2

bc
2Lab

, yc =

√
(Lab+Lac+Lbc)(Lab−Lac+Lbc)(Lab+Lac−Lbc)(Lac+Lbc−Lab)

2Lab
(14)

where the coordinate yc can have positive or negative sign for planar frameworks depending on the orientation of the
triangle Va,Vb,Vc. For spatial frameworks one can always assume a positive sign. Similar considerations can be done for
the planar Cartesian frame F ′ with respect to the triangle V ′a,V

′
b,V

′
c ending up with exactly the same coordinatization as

above but only primed. Inserting these coordinates of the six vectors v̂a, v̂b, v̂c, v̂′a, v̂′b, v̂
′
c into Eq. (11) shows the result for

triangular panels by taking into account that the area Areaabc of the triangle can be computed by Heron’s formula. Note
that the obtained expression is independent of the signs of the y-coordinates of v̂c and v̂′c.

• Tetrahedron: We choose the same Cartesian frame F as in Section 2.2 which implies the coordinatization of the tetrahe-
dron Va,Vb,Vc,Vd given in Eq. (8) with xb, xc and yc from Eq. (14) and

xd =
L2

ab+L2
ad−L2

bd
2Lab

, yd =
L2

abL2
ac+L2

abL2
ad+L2

abL2
bc+L2

abL2
bd−2L2

abL2
cd−L2

acL2
ad+L2

acL2
bd+L2

adL2
bc−L2

bcL2
bd−L4

ab
2Lab
√

(Lab+Lac+Lbc)(Lab−Lac+Lbc)(Lab+Lac−Lbc)(Lac+Lbc−Lab)

zd =(−L4
abL2

cd−L2
abL2

acL2
bc+L2

abL2
acL2

bd+L2
abL2

acL2
cd+L2

abL2
adL2

bc−L2
abL2

adL2
bd+L2

abL2
adL2

cd+L2
abL2

bcL2
cd+L2

abL2
bdL2

cd−L2
abL4

cd−L4
acL2

bd+

L2
acL2

adL2
bc+L2

acL2
adL2

bd−L2
acL2

adL2
cd+L2

acL2
bcL2

bd−L2
acL4

bd+L2
acL2

bdL2
cd−L4

adL2
bc−L2

adL4
bc+L2

adL2
bcL2

bd+L2
adL2

bcL2
cd−L2

bcL2
bdL2

cd)
1/2/

√
(Lab+Lac+Lbc)(Lab−Lac+Lbc)(Lab+Lac−Lbc)(Lac+Lbc−Lab)

(15)

where the coordinate zd can have positive or negative sign depending on the orientation of the tetrahedron Va,Vb,Vc,Vd .
We get the same coordinatization for the tetrahedron V ′a,V

′
b,V

′
c ,V

′
d as above but only primed. Inserting these eight vectors

6Decomposition into a set of disjoint tetrahedra without adding new vertices.
7Decomposition into a set of disjoint triangles without adding new vertices.
8The tetrahedron (triangle) does not degenerate into a plane (line). Note that #Ci = (ni−3)(ni−2)(ni−1)ni/24 (#Ci = (ni−2)(ni−1)ni/6) holds if

the polyhedron (polygonal panel) is strictly convex.



v̂a, v̂b, v̂c, v̂d , v̂′a, v̂′b, v̂
′
c, v̂′d into Eq. (10) under consideration that Volabcd can be computed by the Cayley-Menger determi-

nant shows the stated result. Note that the obtained expression is independent of the sign of the z-coordinate of v̂d and v̂′d .
Moreover, it should be mentioned that the obtained polynomial is homogenous of degree 4 in L′i j for ν = 1/2. �

Remark 2. Concerning Lemma 1 the following should be noted:

? The expressions given in the square brackets of Eq. (13) can be seen as the mean densities of the polygonal panels and
polyhedra, respectively.

? Note that the height habc of each triangular panel belonging to B2
i (ni) equals the height hi of B2

i (ni).
? Due to Lemma 1 the formula for u(L′) can be written in matrix formulation as u(Q′) = Q′T MQ′ where M is a symmetric
(b+1)-matrix and Q′ := (1, . . . ,Q′i j, . . .)

T is composed of the b squared edge lengths Q′i j := L′2i j and the number 1. �

3.2 Definition of the pseudometric
The pseudometric on the space Rb of intrinsic framework metrics is defined within the next lemma:

Lemma 2. The following function

d : Rb×Rb→ R≥0 with (L′,L′′) 7→ d(L′,L′′) :=
|u(L′)−u(L′′)|

E
(16)

is a pseudometric on the b-dimensional space of intrinsic framework metrics given by L′ and L′′, respectively. Moreover, the
pseudometric does not depend on the choice of E.

Proof: One has to check the axioms for a pseudometric

(1) d(L′,L′′)≥ 0, (2) d(L′,L′) = 0, (3) d(L′,L′′) = d(L′′,L′), (4) d(L′,L′′′)≤ d(L′,L′′)+d(L′′,L′′′), (17)

which is a trivial task and remains to the reader.
Due to Assumption 1, Young’s modulus E factors out of the density u(L′). Therefore it factors out of the numerator of

the distance function and cancels with the numerator. �

From Lemma 1 it is clear that the pseudodistance of Eq. (16) does not only depend on the intrinsic metric L of the
undeformed framework but also on the cross-sectional areas of the bars and the heights of the panels, which are needed for
the computation of their volumes. In the following section we fix these parameters by relating them to the intrinsic geometry
of the undeformed framework.

3.2.1 Geometric motivated volumetric dimensioning of bars and panels
As mentioned in Section 1.2 each pin-jointed body-bar framework G(K ) can be replaced by an equivalent bar-joint

framework G∗(K∗). In order to ensure a fair comparability of both frameworks, we came up with the following assumption.

Assumption 2. The frameworks G(K ) and G∗(K∗) have the same volume; i.e. they are built from the same amount of
material. Moreover, we assume that all bars have the same cross-sectional area noted by Area�.

We start with the volumes of the polyhedra Vol
(

B3
j(n j)

)
, which are already determined by L, and compute Area� as

Area� :=
∑

q
j=p+1 Vol

(
B3

j(n j)
)

∑
q
j=p+1 ∑ab∈I j WabLab

(18)

where I j is the index set of all pairs of vertices belonging to an edge of the inner graph of the polyhedron B3
j(n j). Moreover,

the weight factor Wab is one over the number of bodies hinged along the corresponding bar9.
Now having Area� one can also compute the height hi of the polygonal panel B2

i (ni) over the bar-joint subframework
equivalent to B2

i (ni) as:

hi :=
Area�∑ab∈Ii WabLab

Area
(
B2

i (ni)
) (19)

9If the bar does not hinge bodies, then the weight factor is one.



where Ii is the index set of all pairs of vertices belonging to an edge of the inner graph of the polygonal panel B2
i (ni). In

the case that the framework does not contain any polyhedra, then we can compute hi in the same way but depending on the
unknown Area�. In this case it can easily be seen that Area� factors out in the numerator as well as in the denominator
of Eq. (13). Therefore Eq. (16) does not depend on Area�. This also holds if the given framework is already a bar-joint
framework.

3.2.2 Geometric motivated choice of Poisson’s ratio
Under consideration of Section 3.2.1 the pseudometric d only depends on Poisson’s ratio ν beside the intrinsic metric

L of the undeformed framework. From the geometric point of view the most satisfying choice is ν = 1/2 as in this case the
framework deforms at constant volume, which is also known as an isochoric deformation. This does not pose any problems
for a bar or triangular panel, as one can always define the cross-sectional area Area′ab of the deformed bar by Volab/L′ab and
a height h′abc of the deformed panel by Volabc/Area′abc, respectively, where Area′abc is the area of the deformed triangle V ′a,
V ′b, V ′c . But for each tetrahedron we get the additional condition that Volabcd = Vol′abcd holds, which fits very well into our
theory for the following reason: The Moore-Penrose pseudo inverse of D−1

3 ( 1
2 ) of Eq. (6) would imply that there exists a

1-dimensional set of strains (α,α,α,0,0,0) with α ∈ R yielding zero stresses, which cannot be the case10. Plugging the
entries of this strain vector into Eq. (9) shows that it results from an equiform motion (Euclidean motion plus a scaling). But
an equiform motion keeping the volume fixed has to be an Euclidean motion (⇔ α = 0), which does not imply any stress.
Hence, the condition Volabcd = Vol′abcd resolves also the problem arising from the singularity of the stress/strain matrix given
in Eq. (6). Therefore one is only allowed to compute the pseudodistance of Eq. (16) for ν = 1/2 if Volabcd = Vol′abcd holds
for all abcd ∈ C j for j = p+1, . . . ,q.

Clearly, theoretically one can also use another Poisson ratio 0 ≤ ν < 1/2 but in this paper we focus on the more
sophisticated problem assuming constant volume under the deformation. A consequence of the constant volume deformation
is that Eq. (13) cannot only be seen as the energy per volume, which has to be applied to the given framework to reach the
deformed configuration but as the energy per volume which is stored in the deformed framework.

Remark 3. If one does not want to use the Poisson ratio ν = 1/2, then one is confronted to make a choice within the
interval [0;1/2[. One can circumvent the arbitrariness in the choice by determining ν within a constrained optimization
(0≤ ν < 1/2) in such a way that the distance of Eq. (16) is minimal. The disadvantage of this approach is that the triangular
inequality of Eq. (17) cannot longer be guaranteed thus the pseudometric degenerates to a so-called premetric. �

Finally, it should be noted that the results of the next sections are general ones; i.e. the assumptions done in Section
3.2.1 and 3.2.2 are not necessary for their validity.

4 Local and global snappability
If we want to compute the distance between L and L′ then the pseudometric d(L,L′) simplifies to u(L′)/E as this func-

tion is positive-definite, which is clear from the underlying physical interpretation but one can also prove this mathematically
by decomposing it into a sum of squares (see e.g. [39]).

As we can replace L′i j in u(L′) by ‖v′i−v′j‖ the function u can be computed in dependence of V′; i.e. u(V′).

Theorem 1. For 0 ≤ ν < 1/2 the critical points of the total elastic strain energy density u(V′) of a pin-jointed body-bar
framework correspond to realizations G∗(V′) of the equivalent bar-joint framework that are either undeformed or deformed
with a non-zero self-stress. This also holds for ν = 1/2 under the side conditions of constant tetrahedral volumes.

Proof: The system of equations characterizing the critical points of u(V′) reads as follows:

∇i u(V′) = o with

∇i u(V′) =
(

∂u
∂x′i

, ∂u
∂y′i

)
for d = 2

∇i u(V′) =
(

∂u
∂x′i

, ∂u
∂y′i

, ∂u
∂ z′i

)
for d = 3

(20)

with i = 1, . . . ,w, where (x′i,y
′
i)

T and (x′i,y
′
i,z
′
i)

T is the coordinate vector of v′i for the planar and spatial case, respectively.
Due to the sum rule for derivatives we only have to investigate ∇i of the following three functions: Uab(v′a,v′b) of Eq. (12),
Uabc(v′a,v′b,v

′
c) given in Eq. (11) and Uabcd(v′a, . . . ,v′d) of Eq. (10), respectively.

1. Due to ∇a Uab(v′a,v′b) =
Areaab(L′2ab−L2

ab)

2L3
ab

(v′a − v′b) Theorem 1 is valid for frameworks, which only consist of bars, as

∇a u(V′) can be written in the form of Eq. (1) with ωab =
Areaab(L′2ab−L2

ab)

2L3
ab

.

10In fact the converse is true, that for ν = 1
2 there is no strain for uniform stresses.



2. If polygonal panels are involved we consider a representative triangular panel with vertices Va,Vb,Vc and compute
∇a Uabc(v′a,v′b,v

′
c), ∇b Uabc(v′a,v′b,v

′
c) and ∇c Uabc(v′a,v′b,v

′
c). Straight forward symbolic computations (e.g. using Maple)

show that the following system of equations

ωab(v′a−v′b)+ωac(v′a−v′c)−∇a Uabc(v′a,v
′
b,v
′
c) = o

ωab(v′b−v′a)+ωbc(v′b−v′c)−∇b Uabc(v′a,v
′
b,v
′
c) = o

ωac(v′c−v′a)+ωbc(v′c−v′b)−∇c Uabc(v′a,v
′
b,v
′
c) = o

(21)

which is overdetermined11, has a unique solution for ωab, ωac and ωbc if V ′a,V
′
b,V

′
c generate a triangle. If these points

are collinear we even get a positive dimensional solution set. Hence, one can replace ∇a Uabc(v′a,v′b,v
′
c) by a linear

combination ωab(v′a−v′b)+ωac(v′a−v′c) where the coefficients ωab and ωac are compatible with the other equations of
(21).

3. If bodies are involved we consider a representative tetrahedron with vertices Va,Vb,Vc,Vd and compute ∇a Uabcd(v′a, . . . ,v′d),
∇b Uabcd(v′a, . . . ,v′d), ∇c Uabcd(v′a, . . . ,v′d) and ∇d Uabcd(v′a, . . . ,v′d). Now we are faced with the system of equations

ωab(v′a−v′b)+ωac(v′a−v′c)+ωad(v′a−v′d)−∇a Uabcd(v′a, . . . ,v
′
d) = o

ωab(v′b−v′a)+ωbc(v′b−v′c)+ωbd(v′b−v′d)−∇b Uabcd(v′a, . . . ,v
′
d) = o

ωac(v′c−v′a)+ωbc(v′c−v′b)+ωcd(v′c−v′d)−∇c Uabcd(v′a, . . . ,v
′
d) = o

ωad(v′d−v′a)+ωbd(v′d−v′b)+ωcd(v′d−v′c)−∇d Uabcd(v′a, . . . ,v
′
d) = o

(22)

which is again overdetermined (12 equations in six unknowns ωab,ωac,ωad ,ωbc,ωbd and ωcd). Again direct computations
show that there exists a unique solution if V ′a,V

′
b,V

′
c ,V

′
d span a 3-space; otherwise even a positive dimensional solution set

exists. Thus one can substitute ∇a Uabcd(v′a, . . . ,v′d) by a linear combination ωab(v′a−v′b)+ωac(v′a−v′c)+ωad(v′a−v′d)
where the coefficients ωab, ωac and ωad are compatible with the other equations of (22).

Summing up the results of the three items shows that ∇a u(V′) can be written in the form of Eq. (1) which proves the theorem
for ν < 1/2.

For ν = 1/2 we have to compute the critical points of the Lagrange function

F(V′,λ ) = u(V′)−λ1 f1− . . .−λϕ fϕ with λ := (λ1, . . . ,λϕ), (23)

where f1, . . . , fϕ are the isochoric constraints of the form Vol′abcd
2−Vol2abcd = 0 for abcd ∈ C j for all j = p+ 1, . . . ,q; i.e

ϕ = ∑
q
j=p+1 #C j. Due to the Cayley-Menger determinant we get the squared volume V ′abcd

2 of the tetrahedron spanned
by V ′a, . . . ,V

′
d , as a polynomial in the squared distances of these vertices. Now one can replace in Eq. (22) the function

Uabcd(v′a, . . . ,v′d) by V ′abcd
2(v′a, . . . ,v′d) and do the analogous computation ending up with the same conclusion. Therefore

∇a F(V′,λ ) is again of the form of Eq. (1) which proves the theorem for ν = 1/2. �

Remark 4. One can also ask for the critical points of the elastic strain energy density u(L′); i.e. we have to consider the
partial derivatives with respect to the edge lengths L′i j. It can easily be seen that there is only one valid critical point namely
L′ = L as all other solutions of the resulting system imply at least one edge of zero length. These invalid solutions can be
avoided by considering u(Q′) of Remark 2 and its partial derivatives with respect to Q′i j ending up in a linear system. �

For the formulation of the next theorem we also need the notation of stability. A realization G(V′) is called stable if it
corresponds to a local minimum of the total elastic strain energy of the framework, which is also a minimum of the strain
energy density u(V′).

Theorem 2. If a pin-jointed body-bar framework snaps out of a stable realization G(V) by applying the minimum strain
energy needed to it, then the corresponding deformation passes a realization G(V′) at the maximum state of deformation,
where the equivalent bar-joint framework G∗(V′) has a non-zero self-stress.

Proof: We think of u as a graph function over the space Rwd of knot configurations. In order to get out of the valley of the
local minimum (V,u(V)), which corresponds to the given stable realization G(V), with a minimum of energy needed, one
has to pass a saddle point (V′,u(V′)) of the graph, which corresponds to a realization G(V′). As local extrema as well as
saddle points of the graph function are given by the critical points of u we can use Theorem 1, which implies that these points
correspond with self-stressed realizations of the equivalent bar-joint framework. As u(V′) > 0 holds the realization G∗(V′)
is deformed which has to imply a non-zero self-stress; i.e. the stress-vector ω differs from the b-dimensional zero vector. �

11As a triangle is planar, we get in total 6 equations in three unknowns from Eq. (21).



Corollary 1. If the equivalent bar-joint framework of Theorem 2 is minimally rigid, then “non-zero self-stress” can be
replaced by “shakiness”.

Proof: If the equivalent bar-joint framework is minimally rigid then the existence of a non-zero self-stress implies a rank
defect of the square rigidity matrix (cf. end of Section 1.2), which results in an infinitesimal flexibility. �

But also without the assumption of minimal rigidity used in Corollary 1, one can give the following connection between
shakiness and snapping.

Theorem 3. One can replace “non-zero self-stress” by “shakiness” in Theorem 2 if there exists a deformation such that
the path from G∗(V) to G∗(V′) is identical to the path of G∗(V′′) to G∗(V′) in the space of intrinsic framework metrics Rb,
where G∗(V) and G∗(V′′) are not related by a direct isometry.

Proof: Let us assume that there exists a path (Vt ,u(Vt)) on the graph with parameter t ∈ [0,1] such that for t = 0 we are at
(V,u(V)) and for t = 1 at the saddle (V′,u(V′)). This deformation implies a path Lt in the space Rb of intrinsic metrics with
Lt
∣∣
t=1 = L′ and Lt

∣∣
t=0 = L.

But vice versa the path Lt corresponds to several 1-parametric deformations in Rd , where one of these deformations
(Vt ,u(Vt)) has to lead towards (V′′,u(V′′)) according to our assumption. Moreover, tracking the realizations of the path Lt
with t ∈ [0,1] shows that in G∗(V′) two realizations coincide, which implies that G∗(V′) is shaky. �

Remark 5. Note that G(V′′) can also be a complex realization. In this case the deformation (Vt ,u(Vt)) towards (V′′,u(V′′))
get stuck on the border of reality. Therefore the snap ends up in a realization of the equivalent bar-joint framework, which is
shaky as a real solution of an algebraic set of equations can only change over into a complex one through a double root. �

If the two realizations G∗(V) and G∗(V′′) of Theorem 3 are thought infinitesimal close to G∗(V′) then we get the
following characterization of shakiness:

Corollary 2. G∗(V′) is shaky, if three exist two instantaneous snapping deformations (6= infinitesimal isometric deforma-
tions) out of G∗(V′) represented by two non-zero vectors in Rwd pointing into distinct directions, whose corresponding two
vectors of instantaneous changes of the intrinsic metric in Rb are identical.

Remark 6. Note that within the set of pairs of vectors fulfilling Corollary 2, there exists at least one pair of oppositely
directed vectors in Rwd , which both correspond to the zero-vector in Rb. �

Based on Theorem 2 we can evaluate the snappability of the pin-jointed body-bar framework G(K ) in the undeformed
realization G(V) by the value s(V) := d(L,L′) = u(L′)/E, which we call local snappability. As in general a framework has
several undeformed realizations G(V1), . . . , G(Vk) we can define a global snappability by s(L) := min{s(V1), . . . ,s(Vk)}.

4.1 Computation of the local snappability
We compute the critical points of the Lagrange function of Eq. (23) by using the homotopy continuation method (e.g.

Bertini; cf. [40]) as other approaches (e.g. Gröbner base, resultant based elimination) are not promising due to the number
of unknowns and degree of equations. By choosing a suitable reference frame we can reduce the number of unknowns by 6
for d = 3 and by 3 for d = 2, respectively, which also eliminates isometries (cf. footnote 3).

Remark 7. The computation of the critical points, which depends heavily on the number of unknowns, can be a time
consuming task in the first run of the homotopy. But if one changes the inner metric of the framework within the design
process the critical points of the resulting new system of equations can be computed from the already known critical points
of the initial system more efficiently by means of parameter homotopy [40]. �

First of all we can restrict to the obtained real critical points as only these correspond to realizations. This resulting set
R of realizations is split into a set E , whose elements correspond to local extrema of u(V′), and its absolute complement
S = R \ E of so-called saddle realizations. This separation can be done by the second partial derivative test based on
the Hessian matrix of the function u(V′) or in the case of side conditions one has to use the bordered Hessian [41] of the
Lagrangian F(V′,λ ). Let us denote the set of stable realizations by M ⊂ E , which correspond to local minima.

One way for computing the local snappability is to start at saddle points and apply gradient descent algorithms to find
neighboring local minima. This was done in the following example of a full quad.

Example 1. We consider a full quad with vertices A,B,C,D. Its intrinsic metric is given by:

AB = 6, CD =
√

8, AC = BD =
√

17, AD = BC =
√

5. (24)
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Fig. 1. Directed graph relating the stable realizations (undeformed green and deformed yellow) and saddle relations (red), where the orien-
tation points towards local minima. The number i beside an arrow refers to the gradient flow in direction of the i-th smallest main curvature.
If this number is missing, then there is only one negative main curvature direction. The two blue/violet dotted arrows indicate that these two
flows end up in a realization obtained from G(V3/4) by reflecting it at the y-axis (⇒ x1 < 0 which contradicts our assumption). The edge
and arrow between G(V12) and G(V9) are dotted as under this gradient flow all points move along the x-axis, which imply that some edge
lengths become zero during the deformation. But taking small perturbations into account these zeros can be avoided. As this arrow appears
between two saddle realizations, it means that G(V12) can also be deformed into G(V3) and G(V4), respectively. The second black dotted
arrow pointing upwards indicate that this flow ends up in the mirrored realization of G(V9) (⇒ x1 < 0 which contradicts our assumption).
Finally it should be noted that the transition between the undeformed realizations G(V1) and G(V2) can not only be done by snaps over the
shaky realizations G(V9) and G(V12), respectively, but also by two subsequent snaps from G(V1) over G(V5/7) to G(V3/4) and further
over G(V8/6) to G(V2), without passing a shaky realization.

For the computation we coordinatize the vertices as follows:

A = (−x1,0), B = (x1,0), C = (x2,y2), D = (x3,y3). (25)

In this way the bar from A to B is attached to the x-axis of the reference frame. Due to the fact that a bar cannot have zero
length, we restrict ourselves to realizations of M and S where no points coincide. Moreover, we can assume without loss of
generality that x1 > 0 holds, as a continuous deformation between a realization with x1 < 0 and a realization with x1 > 0 has
to pass x1 = 0 (⇔ A = B). A in-depth analysis of the remaining critical points results in Fig. 1, which shows a directed graph
relating the local minima and saddle points, where the orientation points towards local minima. The stable realizations are
illustrated in Fig. 2 and the saddle realizations in Figs. 3 and 4, respectively. Representative snaps (transitions) between
stable realizations are illustrated in Fig. 5.

Even though this framework is globally rigid we get two undeformed realizations G(V1) and G(V2), which are mirror-
symmetric with respect to the x-axis (Fig. 2). Moreover, it is possible to snap from G(V1) into G(V2) (cf. Figs. 1 and 5).
Thus the property of being globally rigid cannot save the framework from the snapping phenomenon.

The values for u(Vi)/E as well as x1,x2,y2,x3,y3 of the stable/saddle realizations are given in Table 1. From these
values and the graph given in Fig. 1 one sees that the two local snappabilities are equal; thus s(L) = s(V1) = s(V2) =
0.017411595327 holds.

Fig. 2. Local minima: The two undeformed realizations G(V1) and G(V2) and the two deformed stable realizations G(V3) and G(V4)
(from left to right). The point A is colored red, B green, C blue and D yellow, respectively. This color-coding is also used in the Figs. 3–5.



Fig. 3. Saddle points: These four realizations G(V5), . . . ,G(V8) (from left to right) correspond to saddle points. Three points look to be
collinear but they are not (cf. values given in Table 1).

Fig. 4. Saddle points: These four realizations G(V9), . . . ,G(V12) (from left to right) correspond to saddle points. Moreover, the realizations
G(V9) and G(V12) are shaky realizations.

Fig. 5. The gradient flows starting at some saddle realizations in direction of negative main curvature. In one direction the paths of the
points are plotted solid and in the opposite direction dotted. Upper left: Saddle realization G(V5) and the corresponding paths of the points
towards the realizations G(V1) and G(V3). Lower left: Following the gradient flow starting at the saddle realization G(V11) in direction of
the second-smallest main curvature shows that both paths end up in the realization G(V3). Therefore this realization can snap into itself over
the saddle realization G(V11). Upper (center) right: Saddle realization G(V9) and the gradient flow in direction of the smallest (second-
smallest) main curvature. This shows the snapping between G(V1) and G(V2) (G(V3) and G(V4)) over the shaky realization G(V9). By
combining the different gradient flows G(V1) can also snap into G(V3) over G(V9), but one needs more deformation energy compared to
the snap over the saddle realization G(V5) illustrated in the upper left corner (cf. Table 1). Lower right: Saddle realization G(V12) and the
gradient flow in direction of the third-smallest main curvature. This shows an alternative snapping between G(V1) and G(V2), which also
needs more deformation energy as the one over G(V12) illustrated in the upper right corner (cf. Table 1). Finally note that the three snaps
illustrated in the right column also demonstrate Theorem 3 and on the infinitesimal level Corollary 2.

In practice one starts with the saddle realization G(Vi) with the lowest value for u(Vi)/E and compute gradient flows
towards the stable realizations, hoping that one ends up in the undeformed realization under consideration. If one does not
find such a descent path, then one repeats the procedure for the saddle realization with the next higher value for u(Vi)/E.
The problem of this approach is that one has no guarantee to detected all local minima which can be reached from a saddle
point by a descent path. With guarantee one can only give a lower bound12 for the global snappability by the following value:

Lemma 3. Let us assume that G(V−) ∈ S implies the minimal value for d(L,L−) for all elements of S . As a result
o(L) := d(L,L−)≤ s(L) has to hold. �

Therefore we want to present a more sophisticated approach, which allows us to check directly if a saddle realization and

12Note that o(L) can be seen as a kind of separation bound [42] of the real roots of the polynomial u(V′) in terms of the intrinsic metric of framework
inducing this polynomial.



x1 x2 y2 x3 y3 u(Vi)/E

V1 3 1 1 -1 -1 0

V2 3 1 -1 -1 1 0

V3 2.873803815106 1.264482434547 1.435718952668 -1.264482434547 1.435718952668 0.014510412969

V4 2.873803815106 1.264482434547 -1.435718952668 -1.264482434547 -1.435718952668 0.014510412969

V5 2.984971064849 1.262815500919 1.420716567414 -1.110499467187 0.662434022361 0.017411595327

V6 2.984971064849 1.262815500919 -1.420716567414 -1.110499467187 -0.662434022361 0.017411595327

V7 2.984971064849 1.110499467187 -0.662434022361 -1.262815500919 -1.420716567414 0.017411595327

V8 2.984971064849 1.110499467187 0.662434022361 -1.262815500919 1.420716567414 0.017411595327

V9 3.139661485127 1.152372944387 0 -1.152372944387 0 0.029190294037

V10 1.023109368578 -0.801485412727 -1.942382880068 0.801485412727 -1.942382880068 0.544598068230

V11 1.023109368578 -0.801485412727 1.942382880068 0.801485412727 1.942382880068 0.544598068230

V12 0.377904764722 -1.656968246848 0 1.656968246848 0 0.606663470611

Table 1. Coordinates of stable/saddle realizations and their corresponding u(Vi)/E value.

a stable realization can be deformed continuously into each other, whereby the deformation energy density has to decrease
monotonically. The minor drawback of this method is that it only works for pin-jointed body-bar framework, which are
isostatic.

4.2 Pin-jointed body-bar frameworks with minimal rigidity under affine deformations
We assume that the given pin-jointed body-bar framework G(K ) is isostatic13. By replacing the bodies by the cor-

responding globally rigid subframeworks, the equivalent body-bar framework G∗(K∗) is also isostatic, if all polyhedra
(polygonal panels) are tetrahedral (triangular). But in the general case the subframeworks are overbraced.

The edges of the overbraced subframeworks are involved in the computation of the density function given in Lemma
1. One can get rid of this property by allowing only affine (homogeneous) deformations of the bodies. In this way every
polyhedron (polygonal panel) can be represented by a tetrahedron Va,Vb,Vc,Vd (triangle Va,Vb,Vc) and the remaining vertices
of the deformed polyhedron (polygonal panel) can then be obtained by the affine transformation determined by Vi 7→V ′i for
i ∈ {a,b,c,d} (resp. i ∈ {a,b,c}).

As a consequence we can consider a minimal set of lengths Li j which contains the lengths of the bars ∈ G plus for
each polyhedron (polygonal panel) we get six (three) additional lengths. We collect these lengths within the vectors L̃ :=
(. . . ,Li j, . . .)

T ∈ Ra and Q̃ := (1, . . . ,Qi j, . . .)
T ∈ Ra+1 with a≤ b. Using this notation the density function can be rewritten

as follows:

u(L̃′) :=
∑ab∈G Uab(L̃′)+∑

p
i=1 Vol(B2

i )
[

Uabc(L̃′)
Volabc

]
+∑

q
j=p+1 Vol(B3

j)
[

Uabcd(L̃′)
Volabcd

]
∑ab∈G Volab +∑

p
i=1 Vol(B2

i )+∑
q
j=p+1 Vol(B3

j)
(26)

for an arbitrary abc ∈ Ci and abcd ∈ C j, respectively. As we can replace L′i j in u(L̃′) by ‖v′i− v′j‖ the function u can be
computed in dependence of Ṽ′ ∈ Rw̃d with w̃ = r+ 3p+ 4(q− p), where Ṽ′ contains the vectors of the vertices V1, . . . ,Vr
as well as three vertices of each polygonal panel and four vertices of each polyhedron, respectively. With respect to the
resulting density function u(Ṽ′) we compute the set M of stable realizations and the set S of saddle realizations. Moreover,
the following theorem holds true:

Theorem 4. If an isostatic pin-jointed body-bar framework snaps out of a stable realization G(V) by applying the minimum
strain energy needed to it, then the framework passes a realization G(V′) at the maximum state of deformation (under the
assumption that each body is deformed affinely), which is either shaky or contains at least a body of reduced dimension.

Proof: For the analysis of the equations ∇a u(Ṽ′) = 0 we use the sum rule for derivatives to study each summand separately.

13Note that the isostaticity of a spatial framework is a problem for its own and not treated within this article (see e.g. [43, 44])



Let us assume that the vertex Va ∈ Bi is a vertex of a tetrahedron (triangle) representing a polyhedron (polygonal panel).
From Theorem 1 it is already known that ∇a Uabcd(v′a,v′b,v

′
c,v′d) (resp. ∇a Uabc(v′a,v′b,v

′
c)) can be written as a linear combi-

nation of the involved vectors (cf. Eq. (21) and Eq. (22), respectively). Therefore we are only left with the partial derivative
of the elastic strain energy of a bar ex ∈ G with Ve ∈ Bi, i.e.

ve = va +ξ (vb−va)+υ(vc−va)+ζ (vd−va) (27)

where ζ = 0 holds for a polygonal panel. We get:

∇a Uex(v′a,v
′
b,v
′
c,v
′
d ,v
′
x) =

Areaex(L′2ex−L2
ex)

2L3
ex

[
ξ (v′b−v′a)+υ(v′c−v′a)+ζ (v′d−v′a)+v′a−v′x

]
(1−ξ −υ−ζ ). (28)

This shows that ∇a u(Ṽ′) can be written as a linear combination of the partial derivatives of the squared distances of vertices
linked by tetrahedral (triangular) edges or green edges (edges ∈ G ).

As a consequence, each solution of the w̃ equations of the form ∇i u(Ṽ′) = 0 can be associated with a w̃d-dimensional
stress-vector ω . If this vector differs from the zero vector then the solution has to imply a rank defect of the square matrix,
whose columns are the gradient vectors of the realization equations c1, . . . ,cw̃d . This rank defect either corresponds with a
shaky configuration of the framework G(V′) or arises from the shakiness of a substructure (i.e. a tetrahedron or a triangle)
substituting a body. A tetrahedron (triangle) can only become infinitesimal flexible if its dimension is reduced to at least a
plane (line). �

An advantage of Theorem 4 over Theorem 2 is that the property of the realization G(V′) concerns the pin-jointed body-
bar framework and not the equivalent bar-joint framework (assumed that the given pin-jointed body-bar framework is not a
bar-joint framework).

Is the assumption of affine deformations really a restriction? For our preferred choice of ν = 1/2 the volume has to be
constant. This has the following consequences for the deformation of polyhedra and polygonal panels, respectively.

• Assume a polyhedron B3
j(n j) with n j > 4 is given. Moreover, we assume that (b,c,d,e), (a,c,d,e), (a,b,d,e) and

(a,b,c,e) belong to the index set C j of non-degenerated tetrahedra. Therefore one can compute the barycentric coor-
dinates of Ve with respect to the tetrahedron Va, . . . ,Vd , which equal the ratio of the oriented volumes (Volbcde : Volacde :
Volabde : Volabce) according to [45].
Now we assume that the tetrahedron Va, . . . ,Vd was deformed isochoricly into V ′1, . . . ,V

′
4. Therefore not only the volume

remains constant under the deformation, but also its orientation14. As a consequence the mapping from V1, . . . ,V4 to
V ′1, . . . ,V

′
4 can be written as

v′i = Avi +a with det(A) = 1 for i = a,b,c,d. (29)

Then V ′e is uniquely determined by its barycentric coordinates (Vol′bcde : Vol′acde : Vol′abde : Vol′abce) with respect to the
tetrahedron V ′a, . . . ,V

′
d which have to equal the above given homogenous 4-tuple. This already implies that V ′e and Ve are

also in the affine correspondence of Eq. (29) (e.g. [46, page 61]).
• Assume a polygonal panel B2

i (ni) with ni > 3 is given. Moreover, we assume that (b,c,d), (a,c,d) and (a,b,d) belong to
the index set Ci of non-degenerated triangles. According to Section 3.2.2 the panel height h′abc of the deformed triangular
subpanel can be computed as Volabc/Area′abc. According to the second item of Remark 2 this height can be identified with
the height h′i of the deformed panel. In order that the heights h′bcd , h′acd and h′abd of the other three triangular subpanels are
equal to h′i the following ratio has to hold:

Area′abc : Area′bcd : Area′acd : Area′abd = Areaabc : Areabcd : Areaacd : Areaabd . (30)

By means of planar barycentric coordinates it can be seen that all four points have to be mapped by an affine transforma-
tion:

v′i = Avi +a for i = a,b,c,d. (31)

Note that in this case the matrix A is not restricted to det(A) = 1 but one only has to assume that Area′abc 6= 0. For d = 2
the condition Area′abc 6= 0 is equivalent with det(A) 6= 0.

14A change in orientation can only happen in a flat pose of the tetrahedron, which has zero volume.



These considerations show that the assumption of affine deformations is no restriction in the case where the inner graph of
the polyhedron (polygonal panel) is a complete graph on at most four (three) vertices. In the more general case of global
rigidity, which is only known for R2 (and still open for R3; cf. Section 1.2) and characterized by 3-connectivity and redundant
rigidity of the graph [31], this assumption is maybe15 restrictive. Taking these possible minor restrictions into account, we
can compute the local snappability in an efficient way as follows.

Algorithm for computing the local snappability. Given is an undeformed realization G(Ṽ)∈M and we want to determine
s(Ṽ). To do so, we consider the saddle realization G(Ṽ′) ∈ S which has the minimal value for d(L̃, L̃′) and define the
transformation

Q̃t := Q̃+ t(Q̃′− Q̃) with t ∈ [0,1]. (32)

This gradient flow in the space of squared leg lengths (cf. Remark 4) implies a path L̃t in Ra between L̃ and L̃′. Along this
path the deformation energy of each tetrahedron Uabcd , triangular panel Uabc as well as bar Uab is monotonic increasing with
respect to the path parameter t. This ensures that only the minimum mechanical work needed is applied on the framework to
reach G(Ṽ′). This results from Lemma 1, as Uabcd(L̃t), Uabc(L̃t) as well as Uab(L̃t) are quadratic functions in t, which are at
their minima for t = 0. The path L̃t corresponds to different 1-parametric deformations of realizations in Rd . If among these
a deformation G(Ṽt) with the property

G(Ṽt)
∣∣
t=0 = G(Ṽ), G(Ṽt)

∣∣
t=1 = G(Ṽ′) (33)

exists, then the given realization G(Ṽ) is deformed into G(Ṽ′) under L̃t . Computationally the property (33) can easily be
checked as follows: We consider the set of algebraic realization equations c1, . . . ,cn implied by the framework (cf. Section
1.2). Due to Eq. (32) the equations, which correspond to bar constraints, depend linearly on t. We have to track the path
of the solution Ṽ of this algebraic system while t is increasing from zero to one. This is a homotopy continuation problem
which can be solved efficiently e.g. by the software Bertini [40, Section 2.3].

Remark 8. Note that this approach has to be adapted in the special case that the undeformed realization G(Ṽ) ∈M is
shaky, as Ṽ is a singular solution of the algebraic system for t = 0. In this case one has to solve the set of algebraic equations
c1, . . . ,cn for a random value t∗ ∈ (0,1). The resulting solutions are then tracked by homotopy continuation back to the value
t = 0. At least two paths have to lead down to Ṽ. The corresponding solutions at t = t∗ of these paths are then tracked by
homotopy continuation up to the value t = 1 to check if one of them ends up at Ṽ′. �

If no deformation with the property (33) exists then we redefine S as S \
{

G(Ṽ′)
}

and run again the procedure

explained in this paragraph until we get the sought-after realization implying s(Ṽ). If we end up with S = {} then we set
s(Ṽ) = ∞.

Remark 9. Even if G(Ṽ) and G(Ṽ′) have the same volume, the deformation implied by Eq. (32) is in general not isochoric.
�

5 Local and global singularity-distance
In the following we want to determine the real point V′′′ of the shakiness variety V (J) (cf. end of Section 1.2) minimizing

the value d(L,L′′′), where G(V) is the given undeformed realization of a pin-jointed body-bar framework G(K ). In addition
there should again exist a 1-parametric deformation of G(V) into G(V′′′) such that the deformation energy density has to
increase monotonically. If this is the case we call ς(V) = d(L,L′′′) = u(L′′′)/E the local singularity-distance. By taking the
minimum of all local singularity-distances of possible undeformed realizations of a framework we get the global singularity-
distance ς(L); i.e. ς(L) := min{ς(V1), . . . ,ς(Vk)}.

In the general case one has to compute the local minima of the Lagrangian

F(V′,λ ) = u(V′)−λ1 f1− . . .−λϕ fϕ −λϕ+1g1− . . .−λϕ+γ gγ with λ := (λ1, . . . ,λϕ+γ), (34)

where we recall that g1, . . . ,gγ are the generators of the ideal J of the shakiness variety A(J) and f1, . . . , fϕ denote the side
conditions for an isochoric deformation if this is desired. Starting from the corresponding realizations one can apply again

15To clarify this open problem, one has to study in more detail the properties of globally rigid inner graphs (cf. Definition 1).



gradient descent algorithms with respect to the function of the deformation energy density in order to find the neighboring
stable realizations. Clearly, this strategy is faced with the same problems as already mentioned in Section 4.1. But for
pin-jointed body-bar frameworks with minimal rigidity under affine transformations we are able to prove the following
statements (Theorem 5 and Corollaries 3 and 4).

Theorem 5. If the undeformed realization G(V) is not shaky, then the local snappability s(V) is a lower bound on the local
singularity-distance ς(V); i.e. s(V)≤ ς(V). If the realization G(V′), which implies the snappability s(V), is shaky, then the
equality holds.

Proof: We show the relation s(V) ≤ ς(V) indirectly by assuming ς(V) < s(V). We denote the shaky realization implying
ς(V) by G(V′′) which corresponds to L̃′′ ∈ Ra. In analogy to Eq. (32) we consider the relation

Q̃t := Q̃+ t(Q̃′′− Q̃) with t ∈ [0,1] (35)

defining a path L̃t in Ra between L̃ and L̃′′, which corresponds to a set of 1-parametric deformations
{

G(V1
t ),G(V2

t ), . . .
}

.
A subset D of this set has the property G(Vi

t)|t=1 = G(V′′) where #D > 1 holds as G(V′′) is shaky [2, 22]. Therefore the
framework can snap out of G(V) over G(V′′) which contradicts ς(V)< s(V) (=⇒ s(V)≤ ς(V)). �

In the case of Theorem 5 the local snappability gives the radius of a guaranteed singularity-free sphere in the space
of intrinsic framework metrics for a non-shaky realization. Note that in the space Rb of squared edge lengths Qi j this
singularity-free zone is bounded by a hyperellipsoid due to the third item of Remark 2.

Moreover, Theorem 5 implies the following statement:

Corollary 3. If none of the undeformed realizations of a framework G(V1), . . . ,G(Vk) is shaky, then the global snappability
s(L) is a lower bound on the global singularity-distance ς(L).

Note that in case of Corollary 3 also o(L)≤ ς(L) has to hold due to Lemma 3. Therefore ς(L) as well as o(L) are radii
of guaranteed singularity-free spheres in the space of intrinsic framework metrics for any of the undeformed realizations.

Moreover, we can make the following statement on the reality of deformations:

Corollary 4. The deformation associated with the local snappability s(V) = d(L,L′), which is implied by Eq. (32), is
guaranteed to be real, if not both realizations G(V) and G(V′) are shaky.

Proof: A real solution of an algebraic set of equations can only change over into a complex one through a double root, which
corresponds either to a (1) shaky realization or to a (2) body of reduced dimension. Case (1) is impossible due to Theorem
5. Moreover, case (2) can also not hold, which can be shown in the same way as in the proof of Theorem 5.

Therefore the entire path has to be real if at least one of the two realizations is not shaky. �

In the following example we want to demonstrate the results obtained so far.

Example 2. We consider a closed serial chain composed of four directly congruent tetrahedral chain elements, which are
jointed by four hinges. The studied example was given by Wunderlich [17] and is illustrated in Fig. 6. It has a threefold
reflexion symmetry with respect to three copunctal lines, which are pairwise orthogonal. Using them as axes of a Cartesian
frame, the vertices can be coordinatized as follows:

A1 = (u1,v1,w1)
T A2 = (−u2,v2,w2)

T A3 = (−u1,−v1,w1)
T A4 = (u2,−v2,w2)

T (36)

B1 = (u1,−v1,−w1)
T B2 = (u2,v2,−w2)

T B3 = (−u1,v1,−w1)
T B4 = (−u2,−v2,−w2)

T (37)

The intrinsic metric of the framework is given by the following assignment:

A1A2 = A2A3 = A3A4 = A4A1 = B1B2 = B2B3 = B3B4 = B4B1 =
25
√

3−15
(3
√

2+10)
√

3−3
√

2+6

A1B2 = A2B3 = A3B4 = A4B1 =
15+5

√
3

(3
√

2+10)
√

3−3
√

2+6

A1B4 = A2B1 = A3B2 = A4B3 =
45−5

√
3

(3
√

2+10)
√

3−3
√

2+6

A1B1 = A2B2 = A3B3 = A4B4 =
15
√

2(
√

3−1
(3
√

3−3)
√

2+10
√

3+6

(38)
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Fig. 6. Left: Illustration of the realization G(V1) as a bar-joint framework, where bars of equal length have the same color. The four
tetrahedra are hinged along the yellow bars. Moreover, the coordinate frame is displayed where the axes have a length of 1. Center: The
same configuration as on the left side but illustrated with panels instead of bars. Congruent triangular panels are again same colored (either
red or green). Right: At the top the second realization G(V2) is visualized and at the bottom the shaky realization G(V′). An animation of
the snapping behavior can be downloaded from [47].

Chain elements # tracked paths #R #S ς(L) = s(L)

bar-joint 729 113 96 6.762914466510 ·10−7

panel-hinge ν = 1/2 729 161 144 9.363722223978 ·10−6

ν = 1/4 729 137 120 1.052544771247 ·10−5

ν = 0 729 129 112 1.261816856140 ·10−5

tetrahedra ν = 1/2 279936 49 33 3.289330211161 ·10−5

ν = 1/2 (simple) 2187 24 20 "

ν = 1/4 729 179 154 3.946472039856 ·10−5

ν = 0 729 178 155 4.932700715589 ·10−5

Table 2. Computational data: Note that the computation of the set R was done by a total degree homotopy using Bertini. For the case of
tetrahedral chain elements under the assumption ν = 1/2, the set S has to be filtered out from R by using a second-derivative test based
on the bordered Hessian [41] due to the isochoricity side condition.

which has the property that the average edge length equals 1. We consider the two undeformed realizations G(V1) and
G(V2) of the chain illustrated in Fig. 6, which can be computed according to the procedure given in [17]. The vector
(u1,v1,w1,u2,v2,w2) which corresponds to V1 is given by:

(0.802729630788,0.207761716516,0.207761716516,0.169636731183,0.655425998948,0.239902565915) (39)

The coordinates of V2 are obtained by the following exchange of the coordinate entries of V1: u1↔ v2, v1↔ u2 and w1↔w2.
Note that the framework can snap between the two realizations G(V1) and G(V2). The shaky saddle realization, which has
to be passed during the snap, is denoted by G(V′).

In general a closed chain composed of four tetrahedra results in an overbraced bar-joint framework, as one can remove
e.g. the bars A1B4 and B1B4 to get a minimal rigid structure. But under the assumed threefold symmetry resulting in directly
congruent chain elements the framework is minimal rigid, as the input of the six edge lengths A1B1, A1B2, A1A2, A2B1,
A2B2 and B1B2 already determine the six values u1,u2,v1,v2,w1,w2 coordinatizing the four involved points and therefore
the complete structure.

We can interpret the chain elements as bar-joint frameworks, panel-hinge frameworks or as tetrahedra. Moreover,
in the case of triangular panels and tetrahedra we compute the snappability with respect to three different Poisson ratios
ν = 0, 1

4 ,
1
2 . The computational data for the different cases is summarized in the Tables 2 and 3. Note that independent of the

interpretation we get s(L) = s(V1) = s(V2). The corresponding saddle realizations G(V′) ∈S (cf. Table 3) are all shaky



Chain elements u1,v2 v1,u2 w1,w2

bar-joint 0.733113570223 0.186762548180 0.226463240099

panel-hinge ν = 1/2 0.733944401620 0.187601517133 0.226592028651

ν = 1/4 0.733918350832 0.187397874243 0.226701242326

ν = 0 0.733898439861 0.187273478928 0.226766038698

tetrahedra ν = 1/2 0.735389875237 0.190335899873 0.225439236330

ν = 1/4 0.735346467296 0.190324665294 0.225425929220

ν = 0 0.735317448771 0.190317154629 0.225417033375

Table 3. Coordinates of the shaky saddle realization G(V′) ∈S for the different interpretations of the tetrahedra.
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A1 ∈ G(V′)

Fig. 7. Left: The change of the volume of a tetrahedron under the transformation implied by the gradient flow in the space of squared leg
lengths (cf. Eq. (32) and Remark 9). The corresponding trajectory of the point A1 is illustrated by the red curve in the right figure. The green
curve corresponds to an isochoric deformation, which was computed with a projected gradient algorithm.

as they fulfill the equation u1v1w2− u2v2w1 = 0 indicating that the Plücker coordinates of the four lines AiBi are linearly
dependent (cf. [48]). Note that for the interpretation as bar-joint framework or panel-hinge framework the singularity
condition consists of a second factor u1v1w2 + u2v2w1 = 0 which implies the coplanarity of the vertices Ai,Bi,Ai+1,Bi+1
(mod 4) for i = 1, . . . ,4. According to Theorem 5 we get s(L) = s(V1) = s(V2) = ς(V1) = ς(V2) = ς(L).

Concerning the interpretation of the chain as bar-joint framework we can give the maximal absolute and relative varia-
tion of a bar in length during the deformation which equals 0.002359150067 and 0.001715578691, respectively. Moreover,
each edge must change its length in average absolutely by 0.001064975188 and relatively by 0.000993544934.

Remark 10. In the case of interpreting the chain elements as panel-hinge frameworks or as tetrahedra, we also put ν as
a unknown in the optimization process as stated in Remark 3. Computing the critical points with Bertini resulted in 24576
paths. For panel-hinge frameworks none of the local extrema for 0≤ ν < 1/2 has a value less than 9.363722223978 ·10−6

and for tetrahedra no local extrema exists within this interval. Thus in both cases we get the local minimum at the boundary
ν = 1/2. �

We close this example with some remarks on the case, where the chain is assembled by four tetrahedra of Poisson ratio
ν = 1/2: Due to the symmetry of the chain we only have to consider one isochoric constraint Vol′2T −Vol2T = 0, where T
stands for one of the tetrahedra with vertices Ai,Bi,Ai+1,Bi+1 (mod 4) for i = 1, . . . ,4. The computation of critical points of
u(V) under this constraint (cf. Eq. (34)) results in the tracking of 279936 paths (cf. Table 2). If we also invest the information,
that the orientation of the tetrahedra has to remain constant under an isochoric deformation (cf. footnote 14), we can use
the simplified condition Vol′T −VolT = 0 of oriented volumes, which has the half degree. This approach reduces the number
of paths to 2187 for the computation of G(V′) given in Table 3. But we are still lacking for an efficient determination of an
isochoric deformation from G(V) into G(V′) with a monotonically increasing deformation energy density. Until now we can
only achieve such a deformation by a projected gradient descent approach resulting in Fig. 7.

Further demonstration/verification of our method is done in Appendix A, where two snapping model flexors are studied.
Moreover, the obtained results are compared with those reported in the literature.



6 Singularity-distance computation for Stewart-Gough manipulators
A Stewart-Gough (SG) manipulator is a parallel robot consisting of a moving platform, which is connected over six

telescopic legs to the base. These legs are anchored by spherical joints to the platform and the base (cf. Fig. 8). If the
prismatic joints of the legs are fixed, then the pin-jointed body-bar framework is in general rigid. It is well-known, that it has
an infinitesimal flexibility if and only if the carrier lines of the six legs belong to a linear line complex [49].

A detailed literature review on works dealing with the determination of the closest singular configuration to a given non-
singular one, which is of interest for singularity-free path-planning and performance optimization of the robot, was done
by the author in [50]. Most of these approaches (also the one presented in [50]) evaluate the closeness extrinsically (i.e. in
the 6 dimensional configuration space) and not intrinsically (i.e. in the 6 dimensional space of prismatic joints). Up to the
knowledge of the author only one work of Zein et al. [51] determines a singularity-free cube in the joint space of a 3-RPR
manipulator, which is the planar analogue of a SG platform. For a detailed comparison of extrinsic and intrinsic singularity
distance measures for planar 3-RPR manipulators we refer to [52].

In the following we want to compute the singularity-distance within the 6-dimensional joint space of the manipulator.
As a SG manipulator is an isostatic body-bar framework, this computation can be based on Theorem 4 under the additional
condition that the affine deformations of the platform and the base are restricted to direct isometries. In this case the function
of the strain energy density of a SG manipulator simplifies to:

u(L′) =
1

∑
6
i=1 Li

6

∑
i=1

(L′i
2−L2

i )
2

8L3
i

(40)

where Li (resp. L′i) denotes the length of the undeformed (resp. deformed) ith leg spanned by the platform anchor point Vi
and the corresponding base anchor point Vi+6. The base can be pinned down16, i.e. v′i = vi for i = 7, . . . ,12, and for the
platform we set up an affine moving frame with origin V1 and the three vectors v2− v1, v3− v1 and (v2− v1)× (v3− v1)
under the assumption that V1,V2,V3 are not collinear. Then one can compute the affine coordinates (ξ j,υ j,ζ j) of the points
Vj with respect to this frame for j = 4,5,6, which can be used for writting down the coordinate vector of V ′j as follows:

v′j = v′1 +ξ j(v′2−v′1)+υ j(v′3−v′1)+ζ j[(v′2−v′1)× (v′3−v′1)]. (41)

This affine transformation is an orientation preserving isometry if the three side conditions ei = 0 with

e1 := ‖v′2−v′3‖2−‖v2−v3‖2, e2 := ‖v′3−v′1‖2−‖v3−v1‖2 and e3 := ‖v′1−v′2‖2−‖v1−v2‖2 (42)

hold true. Under consideration of Eq. (41) one can write Eq. (40) in dependence of v′1,v
′
2,v
′
3, which is part of the Lagrangian

F(v′1,v
′
2,v
′
3,η1,η2,η3) = u(v′1,v

′
2,v
′
3)−η1e1−η2e2−η3e3. (43)

Remark 11. By using the linear combination given in Eq. (41) instead of the formulation of Eq. (27) the number of side
conditions forcing an isometric transformation is reduced from 6 to 3; i.e. e1 = e2 = e3 = 0. In addition this formulation
already restricts to direct isometries. Clearly, one can also use a parametrization of the Euclidean motion group (e.g. Study
parameters) for the representation of v′1, . . . ,v

′
6. We use here this so-called point-based formulation as it turned out to have

certain computational advantages (cf. [53]). �

The formulation given in Eq. (40) rely on the change of the leg lengths relative to its initial length. As we are now
working in the joint space of the SG manipulator also the following function of absolute changes in the leg lengths makes
sense:

l(L′) =
6

∑
i=1

(L′i
2−L2

i )
2. (44)

Therefore one can also substitute u(v′1,v
′
2,v
′
3) by l(v′1,v

′
2,v
′
3) in Eq. (43). For both Lagrangians, analogous considerations as

done in the proof of Theorem 4 show that the saddle realizations have to be shaky (as the bodies cannot reduce in dimension
due to the enforced direct isometries). We demonstrate this in the following example.

16In this context it should be mentioned that the results of the paper also hold for pinned frameworks (cf. [11, Section 3.3]).
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Fig. 8. Axonometric view (left), front view (center) and top view (right): G(V1) is illustrated in yellow, G(V2) is displayed in green and
G(V′) w.r.t. u(L′) is shown in red. Note that the realization G(V′) w.r.t. l(L′) is not shown here as it is too close (cf. Table 5) to G(V′)
w.r.t. u(L′).

Example 3. We study a SG manipulator, which is of interest for practical applications, as the positioning and orientation of
the relative pose of the platform and the base is decoupled (cf. [54, Section VI]). The moving platform has a semihexagonal
shape (with central angles of π/6 and π/2, respectively) and the base is a truncated triangular pyramid (cf. Fig. 8). The
coordinates of the base anchor points V7, . . . ,V12 with respect to the fixed frame are given by:

v7 :=

0
0
0

 , v8 :=


√

3
2
1
2
1
2

 , v9 :=

2
√

3
0
0

 , v10 :=

 3
√

3
2
1
2
1
2

 , v11 :=

√3
3
0

 , v12 :=

√3
2
1
2

 . (45)

The vertices V1, . . . ,V6 of the moving platform are determined by the three conditions

‖v2−v3‖2 = 2, ‖v3−v1‖2 = 3, ‖v1−v2‖2 = 2−
√

3 (46)

and the affine coordinates (ξ j,υ j,0) for j = 4,5,6 given by

ξ4 :=−
√

3+1
2 , υ4 :=

√
3+1
2 , ξ5 :=− 3(

√
3+1)
2 , υ5 :=

√
3+1
2 , ξ6 :=−

√
3−2, υ6 := 1. (47)

The input data is completed by the following six leg lengths:

L1 := 31/10, L2 := 25/10, L3 := 32/10, L4 := 26/10, L5 := 315/100, L6 := 255/100. (48)

We compute the closest singularity with respect to both intrinsic metrics in the 6-dimensional joint space, which are
given in Eq. (40) and Eq. (44), respectively. The computational data is summarized in Table 4.

For this input data the SG manipulator has 4 real solutions for the direct kinematics, whereby two solutions are out of
interest as the platform is below the base. The other two undeformed realizations are illustrated in Fig. 8 and the corre-
sponding vectors vi = (xi,yi,zi)

T (with respect to the fixed frame) of the platform anchor points Vi for i = 1,2,3 are given in
Table 5. This table also contains the corresponding coordinate entries of the two saddle realization G(V′), which imply the
singularity-distance with respect to the different metrics. It can easily be checked that in both realizations G(V′) the lines of
the six legs belong to a linear line complex [49].

Remark 12. Note that the snapping octahedra of Wunderlich [16] imply further examples of octahedral hexapods with a
high snapping capability. �



Intrinsic metric # tracked paths #R #S ς(L) = s(L)

u(L′) 26017 124 111 3.324106490339 ·10−5

l(L′) 25473 122 112 1.024890249080 ·10−1

Table 4. Computational data: Note that the computation of the set R was done by a regeneration homotopy performed with Bertini. Note
that the set S has to be filtered out from R by using a second-derivative test based on the bordered Hessian [41] due to the three side
conditions e1 = e2 = e3 = 0.

V1 V2 V′ w.r.t. u(L′) V′ w.r.t. l(L′)

x1 0.842928302224 1.722185861193 1.225741950663 1.221043138727

x2 1.227117667465 2.215337180628 1.731161637163 1.726370305617

x3 2.571092053711 2.516815584869 2.684588070901 2.680372134138

y1 0.505604311407 0.043791592870 0.160342690355 0.156045184954

y2 0.158839883661 0.201000858188 0.048866028718 0.044256807218

y3 0.594205901934 1.582339155201 1.092093613851 1.086968370169

z1 2.940040162536 2.577238474600 2.814950790353 2.824067090458

z2 2.950147373651 2.583256403538 2.823499874485 2.833916224311

z3 3.014872015394 2.615119877650 2.875019201615 2.885230039892

Table 5. Coordinates of the undeformed realizations G(V1) and G(V2) of the SG manipulator and of the shaky saddle realization G(V′)
with respect to both intrinsic metrics given in Eq. (40) and Eq. (44), respectively.

7 Conclusion
The first considerations in the design process of a pin-jointed body-bar framework concern its geometry. In this paper

we presented an index, which evaluates the framework geometry with respect to its capability to snap. As this so-called
snappability only depends on the intrinsic framework geometry, it enables a fair comparison of frameworks differing in
the combinatorial structure, inner metric and types of structural elements (bars, polygonal panels or polyhedral bodies).
Therefore it can serve engineers as a criterion in an early design stage for the geometric layout of frameworks without or
with the capability to snap, depending on the application. In the context of multistability the index can for example be
used for the geometric layouting of unit-cells/building-blocks of periodic metamaterials (e.g. [7, 8, 9, 29, 30]) and origami
structures (e.g. hypar tessellation [6], waterbomb cylinder tessellation [5] or the Kresling pattern with a circular arrangement
to closed strips, which correspond to snapping antiprisms [18] and can be composed to cylindrical towers [4, 55, 56], or a
helical arrangement according to C.R. Calladine studied in [28, 57, 58, 59]). For the resulting framework geometry one can
specify in a later design phase the material and dimensioning (e.g. profile of bars) of the framework elements in such a way
that the wanted effects are even increased.

We also demonstrated on basis of parallel manipulators of Stewart-Gough type, that our approach can be used for the
computation of intrinsic singular-distances. The computational aspects of the index were also illuminated and an allover
algorithm was presented for isostatic frameworks (under affine deformation of the bodies). Note that this algorithm does
not take the bending of panels into account and also ignores the collision of bars and/or bodies during the deformation. For
overbraced frameworks we gave a strategy for the snappability computation but the result is without guarantee. In this case
one can use the proposed lower bounds, which always hold true.

Acknowledgments. The author is supported by grant P 30855-N32 of the Austrian Science Fund FWF as well as by project
F77 (SFB “Advanced Computational Design”, subproject SP7). Moreover, the author thanks Miranda Holmes-Cerfon for
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outsourcing some of the Bertini computations.
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A Examples of snapping model flexors
Within this appendix we discuss the examples of the Siamese dipyramid and the four-horn in detail and compare the

obtained results with existing ones reported in the literature.

A.1 Siamese dipyramid
The original Siamese dipyramid (SD) introduced by Goldberg [23, page 167] consists of 20 equilateral triangles with

an edge lengths of 1, which are arranged in two dipyramids with a hexagonal equatorial polygon (see Fig. 9, left). Note that
we assume that the SD has a reflexion-symmetry with respect to two orthogonal planes. We can insert a coordinate frame in
such a way that these planes are the xy-plane and the yz-plane, respectively.



A1

A1

C2
B1

C2 B1

z

x y

B2

B2

A2

A2

C1

C1

Fig. 9. Left: Illustration of the realization G(V1) as a bar-joint framework together with the coordinate frame, where the axes are of length
one. Center: The same configuration as on the left side but illustrated with panels instead of bars. Right: At the top the second realization
G(V2) is visualized and at the bottom the third one G(V3).

Fig. 10. On the left (resp. right) side the shaky saddle realizations G(V′) (resp. G(V′′)) is illustrated, which is passed during the snap
between G(V1) and G(V2) (resp. G(V3)). An animation of the snapping behavior can be downloaded from [47].

Then the vertices, which are noted according to Fig. 9, can be coordinatized as follows:

A1 = (x1,y1,0)T A1 = (−x1,y1,0)T A2 = (0,u1,v1)
T A2 = (0,u1,−v1)

T (49)

B1 = (x2,y2,0)T B1 = (−x2,y2,0)T B2 = (0,u2,v2)
T B2 = (0,u2,−v2)

T (50)

C1 = (x3,y3,0)T C1 = (−x3,y3,0)T C2 = (0,u3,v3)
T C2 = (0,u3,−v3)

T (51)

In addition we can assume without loss of generality that u3 =−y3 holds; i.e. the vertices C1 and C1 have the same distance
from the xz-plane as the points C2 and C2. Therefore the total number of unknowns is 11.

It is well-known [23, 26] that the SD can snap out of the symmetric17 realization G(V1) (cf. Fig. 9, left/center) into one
of the two asymmetric realizations G(V2) and G(V3), respectively (cf. Fig. 9, right). A simple procedure for the computation
of these three undeformed realizations is given in [26]. We only give the numerical values of these configurations in Table 6.

A.1.1 Isostaticity and shakiness
The bar-joint framework of the SD is isostatic, because every closed polyhedral surface of genus 0 with triangular

faces has this property18. This isostaticity remains intact under the assumption of the 2-fold reflexion-symmetry, as it only
corresponds to the identification of some of the coordinates within the structure.

The SD is in a shaky configuration if the rank of its rigidity matrix RG(V) is less than 30. From this one can compute the
algebraic characterization, which corresponds to the vanishing of the following polynomial

17With respect to the height of the two dipyramids.
18This can easily be followed from Euler’s polyhedral formula.



V1 V2 V′ (bar-joint) V′ (panel-hinge)

x1 -0.5 -0.5 -0.501499108259 -0.501518680610

x2 -0.940024410925 -0.997453425271 -0.979262620688 -0.979200605399

x3 -0.327267375345 -0.492373245899 -0.432379113707 -0.432385909548

y1 -1.245032582350 -1.296828963170 -1.282364611843 -1.282380966624

y2 -0.347046770776 -0.429338277522 -0.400464708308 -0.400381868195

y3 0.443224584739 0.433734148410 0.440320490435 0.440337472811

u1 1.245032582350 1.146172627664 1.193026874842 1.192998833484

u2 0.347046770776 0.205744933405 0.273852988315 0.273969061570

v1 0.5 0.5 0.498976790866 0.498943974578

v2 0.940024410925 0.839993752693 0.887603513697 0.887698700553

v3 0.327267375345 0.071185256433 0.190566289070 0.190551925851

Table 6. Coordinates of the undeformed realizations G(V1) and G(V2), respectively, and of the shaky saddle realization G(V′) with
respect to the two different interpretations. The coordinates of G(V3) and G(V′′) can be obtained from G(V2) and G(V′) by the following
exchange of coordinate entries: xi↔−vi and yi↔−ui for i = 1,2,3.

v3(x1y2 + x1y3− x2y1− x2y3)︸ ︷︷ ︸
copl(C2,C2,A1,B1)

v3(2x2y3− x3y2− x3y3)︸ ︷︷ ︸
copl(C2,C2,B1,C1)

x3(u1v2−u2v1 + v1y3− v2y3)︸ ︷︷ ︸
copl(C1,C1,A2,B2)

x3(u2v3 +2v2y3− v3y3)︸ ︷︷ ︸
copl(C1,C1,B2,C2)

S (52)

where copl indicates the coplanarity of the vertices given in the round bracket. For the condition x3 = 0 or v3 = 0 one of the
two dipyramids is even in a flat configuration. Beside these geometric simple cases of shakiness we also have the factor19 S,
which denotes an algebraic expression with 374 terms and a total degree of 9. Interestingly S is only quadratic with respect
to the two non-zero coordinates of the following points: Ai, Bi, Ai and Bi for i = 1,2. For the points Ai and Ai it is even linear
in x1 (for i = 1) or v1 (for i = 2).

Moreover, if the infinitesimal flexibility of the SD interpreted as bar-joint framework does not result from the degenera-
tion of a triangular substructure into a collinear arrangement, then the corresponding panel-hinge framework is also shaky.

A.1.2 Interpretation as a bar-joint structure
We set up our formulation of the deformation energy density u under the assumption that the SD keeps the 2-fold

reflexion-symmetry during the deformation. The obtained system of 11 equations ∇u results in 177147 paths within a total
degree homotopy (cf. [40]). The path tracking done by the software Bertini ends up in 22153 finite real solutions (set R).
After reduction to the set S we remain with 21904 solutions. This set is the input for the algorithm described in Section 4.2,
which outputs the two shaky saddle realizations G(V′) and G(V′′), respectively, displayed in Fig. 10. The numerical values
of these realizations are also given in Table 6.

We get s(L) = s(V1) = s(V2) = s(V3) = 1.661376004928 ·10−6 and due to Theorem 5 (under consideration of Corollary
1) this value also equals ς(L) = ς(V1) = ς(V2) = ς(V3).

Comparison with the results obtained in [27]: According to [27] there exists a realization within the deformation path
between two snapping realizations G(V1) and G(V2/3), where the value for e :=

√
∑i j(L2

i j−L′2i j)
2 is greater or equal to a

value e∗min given by 2.98 · 10−4 for G(V1) and 3.35 · 10−4 for G(V2/3), respectively. As noted in [27] the value e∗min is a
minimum bound and does not say how close this bound is to the true barrier.

By our approach we can determine this true barrier value numerically as emin = 1.996823079751 · 10−2, which has to
be the same for the three realizations G(Vi) for i = 1,2,3 due to the snapping between these realizations. Therefore the true
barrier is approximately 67 times and 60 times, respectively, larger then the given e∗min value.

From e∗min one can also approximate the length ∆L∗�, which an edge must change in average according to [27, Example
2], yielding the values 2.720355368942 ·10−5 and 3.058117612737 ·10−5, respectively. Based on G(V′) we can also com-
pute the absolute average change ∆Labs

� = 1.673630072024 ·10−3 (which equals also the relative average change ∆Lrel
� as the

19It can be downloaded from [47].
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Fig. 11. Left: Illustration of the realization G(V1) of the original four-horn as a bar-joint framework together with the coordinate frame, where
the axes are of length one. Center: The same configuration as on the left side but illustrated with panels instead of bars. Right: The two flat
realizations are visualized, where G(V2) is displayed at the top and G(V3) at the bottom.

Fig. 12. On the left (resp. right) side the shaky saddle realizations G(V′) (resp. G(V′′)) of the design FH1 is illustrated, which is passed
during the snap between G(V1) and G(V2) (resp. G(V3)). An animation of the snapping behavior can be downloaded from [47].

initial length of the edges is 1). Therefore it is 62 times and 55 times, respectively, larger than the values resulting from the
data given in [27].

Comparison with the results obtained in [26]: The intrinsic index given in [26] equals ∆L∗max = 3.94 ·10−3 and correspond
to the maximal relative (with respect to the initial length of 1) change in the length of an edge during the deformation. But it
should be noted that the setup of the pyramids in [26] is more restrictive than ours, as all edges through the vertices C1, C1
and C2, C2 cannot be deformed and have a fixed length of 1; all other edges are restricted to have the same length.

Based on G(V′) we can also compute this maximal relative change ∆Lrel
max of an edge as 2.998216519082 ·10−3 (which

equals also the maximal absolute change ∆Labs
max as the initial length of the edges is 1). Therefore the value reported in [26] is

31% larger than ours.

Remark 13. In [26] and [27] also some indices are given to estimate/quantify the variations of the spatial shape of the
snapping framework. Due to their extrinsic nature they cannot give information about the snappability, which only depends
on the intrinsic geometry. �

A.1.3 Interpretation as a panel-hinge structure
The same study can also be done by considering the SD as a polyhedral surface composed of triangular panels with

a Poisson ratio of ν = 1/2. The tracking of the 177147 paths of a total degree homotopy using Bertini ends up in 20305
real solutions, which can be reduced to 20056 solutions of the set S . In this case we get s(L) = s(Vi) = ς(Vi) = ς(L) =
4.466362657431 ·10−6 for i = 1,2,3.



A.2 Four-horn
The original four-horn (FH) was introduced by Casper Schwabe at the Phänomena exposition 1984 in Zürich, Swiz-

erland (cf. Fig. 11). From the combinatorial point of view the FH equals a SD with pentagonal equatorial polygons. In
contrast to a SD, a FH does not consist of congruent equilateral face-triangles but of congruent isosceles ones where α

denotes the angle enclosed by the base of length b > 0 and the leg of length a > 0. Under consideration of the two-fold
reflexion-symmetry with respect to two orthogonal planes, we can insert a Cartesian frame in such a way, that the vertices,
which are noted according to Fig. 11, are coordinatized as follows:

A1 = (x1,y1,0)T A1 = (−x1,y1,0)T B1 = (0,y2,0)T C1 = (x3,y3,0)T C1 = (−x3,y3,0)T (53)

A2 = (0,u1,v1)
T A2 = (0,u1,−v1)

T B2 = (0,u2,0)T C2 = (0,u3,v3)
T C2 = (0,u3,−v3)

T (54)

As in Appendix A.1 we can assume without loss of generality that u3 =−y3 holds.
It is well-known that the FH can snap out of the symmetric realization G(V1) into one of the two flat realizations G(V2)

and G(V3), respectively, which are both shaky due to their planarity. According to [25] these three undeformed realizations,
which are displayed in Fig. 11, exist for all choices of a and b with 2a > b.

As done in [25] we will distinguish three different designs FHi i = 1,2,3 of four-horns, which differ in the lengths of
the leg ai and base bi with

a1 = 3
√

2+6− 3
2

√
20+14

√
2 a2 = 6−3

√
3 a3 = 6

√
3+12− (9

√
3+15)

√
2

2
(55)

b1 = 3
√

20+14
√

2−6
√

2−9 b2 = 6
√

3−9 b3 = (9
√

3+15)
√

2−12
√

3−21 (56)

For these values, which result in an average edge length of 1, we get the angles α1 = 22.5◦ (the original design of Schwabe),
α2 = 30◦ and α3 = 15◦, respectively.

How the coordinates of the vertices can be computed for the two flat realizations G(V2) and G(V3) and the symmetric
realization G(V1) of these three designs FHi can be looked up in [25]. We only give the numerical values of these realizations
in the Tables 9–11.

A.2.1 Isostaticity and shakiness
The FH is isostatic for the same reasons as pointed out in A.1.1. Moreover, we can also determine the algebraic condition

of shakiness in an analogous way, which yields:

x1x2
3v1v2

3 v3(2x1y3− x3y1− x3y3)︸ ︷︷ ︸
copl(C2,C2,A1,C1)

x3(u1v3 +2v1y3− v3y3)︸ ︷︷ ︸
copl(C1,C1,A2,C2)

S = 0 (57)

where x1 = 0 means that the triangles (A1,B1,C2) and (A1,B1,C2) coincide with (A1,B1,C2) and (A1,B1,C2), respectively.
The same holds for the condition v1 = 0 by swapping the indices 1 and 2 for the above given triangles. For the condition
x3 = 0 or v3 = 0 two out of the four horns are in a flat configuration. Beside these geometric simple cases of shakiness
we also have the factor20 S, which denotes an algebraic expression with 110 terms and a total degree of 9. Again S is only
quadratic with respect to the two non-zero coordinates of Ai and Ai, respectively, for i = 1,2.

A.2.2 Interpretation as a bar-joint structure
For the three designs FHi for i = 1,2,3 we compute similar to the SD example given in Appendix A.1 the shaky

saddle realizations G(V′) and G(V′′), respectively, which are displayed in Fig. 12 for FH1. The numerical values of these
realizations are also given in the Tables 9–11. For all three designs the relation s(L) = s(Vi) = ς(V1) holds true for i = 1,2,3
(due to Theorem 5 under consideration of Corollary 1) as well as ς(L) = ς(V2) = ς(V3) = 0. Moreover, we calculated for all
three designs FHi the additional values emin, ∆Labs

� , ∆Lrel
� , ∆Labs

max and ∆Lrel
max as in the case of the SD. For a better comparison

they are arranged in the Tables 7 and 8, respectively.

Comparison with the method presented in [27]: According to [60] the minimum bound e∗min of FH1’s realization G(V1)
equals 4.0458 · 10−4, which is approximately 1/6 of the true barrier emin (cf. Table 7). Moreover, e∗min implies an approxi-
mation of the absolute length ∆L∗� = 4.129227333 ·10−5 an edge must change in average, which is about 23% of the value
∆Labs

� (cf. Table 7).

20It can be downloaded from [47].



# tracked paths # R # S s(L) = ς(V1) emin

FH1 19683 924 863 1.753810068479 ·10−8 2.503636587824 ·10−3

FH2 19683 917 819 2.035395987407 ·10−7 1.663070753397 ·10−2

FH3 19683 923 897 9.864008781699 ·10−11 1.944647875494 ·10−4

Table 7. Computational data for the three designs FH1, FH2 and FH3. Note that the computation of the set R was done by a total degree
homotopy using Bertini.

∆Labs
� ∆Lrel

� ∆Labs
max ∆Lrel

max

FH1 1.755195468044 ·10−4 1.684100667119 ·10−4 2.932163649725 ·10−4 2.318551827789 ·10−4

FH2 1.219270735675 ·10−3 1.174975973629 ·10−3 2.061810888944 ·10−3 1.830418324804 ·10−3

FH3 1.315683847557 ·10−5 1.257398895852 ·10−5 2.221096435873 ·10−5 1.598717509714 ·10−5

Table 8. Continuation of Table 7.

Remark 14. For the flat realizations the method of [27] does not work, as they are not pre-stressed stable. Therefore we
cannot compare the method of [27] with the values obtained by our method regarding G(V2) and G(V3), respectively. �

Comparison with the results obtained in [25]: The authors of [25] sliced the four-horn along the polylines C1C2C1 and
C1C2C1 with exception of the points C1 and C1. In this way they get two two-horns, which are linked over the points C1
and C1. Maintaining the 2-fold reflexion-symmetry, the resulting structure has a one-parametric mobility. Apart from the
configurations G(V1), G(V2) and G(V3) the points on both two-horns, which correspond to the point C2 do not coincide.
This mismatch of points is measured by the relative error in the z-coordinate. The maximum of this relative error during the
flexion of the two two-horns between the two flat configurations equals the index given in [25]. Therefore this index is also
of extrinsic nature, but the authors of [25] also noted an empirical rule of thumb without further explanation, which reads as
δ ∗ = 0.018 · (α/10)4% where α has to be inserted in degree. This formula only depends on the intrinsic geometry of the
framework.

For our considered values αi for i = 1,2,3 we get δ ∗1 = 0.4613203125%, δ ∗2 = 1.458% and δ ∗3 = 0.091125%. As this
index δ ∗ cannot be compared one-to-one with any of our given values, we can evaluate the index δ ∗ by considering the
relation δ ∗1 : δ ∗2 : δ ∗3 . It can easily be seen that this relation does not go along with the corresponding relation of any of the
values s(L), emin, ∆Labs

� , ∆Lrel
� , ∆Labs

max and ∆Lrel
max, respectively, given in Tables 7 and 8.

A.2.3 Interpretation as a panel-hinge structure
The same study can also be done by considering the FH as a polyhedral surface composed of triangular plates with a

Poisson ratio of ν = 1/2. We track for each of the three designs 19683 paths of a total degree homotopy performed with
Bertini. The computations end up in 1259 real solutions for FH1 (1457 for FH2 and 1324 for FH3). After reduction to the set
S we remain with 1242 realizations for FH1 (1360 for FH2 and 1238 for FH3). Also for the interpretation as a panel-hinge
structure the relations ς(L) = ς(V2) = ς(V3) = 0 and s(L) = s(Vi) = ς(V1) (i = 1,2,3) hold true for all three designs. The
corresponding value equals 1.748173013469 ·10−6 for FH1 (2.340885199965 ·10−5 for FH2 and 6.288380657092 ·10−8 for
FH3).



V1 V2 V′ (bar-joint) V′ (panel-hinge)

x1 -0.439833121345 -0.551313194956 -0.514676938265 -0.513910947926

x3 -0.402578359944 -0.551313194956 -0.496123528337 -0.495616858966

y1 -1.045126760122 -1.055331194900 -1.049041632768 -1.047987400977

y2 -0.401357155967 -0.504017999944 -0.463165051665 -0.461829297096

y3 -0.266342733180 -0.275656597478 -0.269426558812 -0.269389463808

u1 1.045126760122 1.055331194900 1.047880696191 1.048797729978

u2 0.401357155968 0.275656597478 0.331798913977 0.332716034007

v1 0.439833121346 0 0.308030377883 0.310260240907

v3 0.402578359945 0 0.267213277407 0.268392688481

Table 9. Coordinates of the undeformed realizations G(V1) and G(V2) of the design FH1 and of the shaky saddle realization G(V′) of
FH1 with respect to the two different interpretations. The coordinates of G(V3) and G(V′′) can be obtained from G(V2) and G(V′) by the
following exchange of coordinate entries: x j↔−v j for j = 1,3 and yi↔−ui for i = 1,2,3.

V1 V2 V′ (bar-joint) V′ (panel-hinge)

x1 -0.610560396069 -0.696152422706 -0.674892191647 -0.673709307095

x3 -0.514152040259 -0.696152422706 -0.629718504095 -0.630052932256

y1 -0.969412109993 -1.004809471616 -0.984812341395 -0.981100971148

y2 -0.446547949553 -0.602885682969 -0.546021679456 -0.541654138725

y3 -0.171366775159 -0.200961894323 -0.181083746571 -0.180980608226

u1 0.969412109993 1.004809471616 0.975854359558 0.978589555099

u2 0.446547949553 0.200961894323 0.316170888257 0.318169735899

v1 0.610560396069 0 0.457391731880 0.463293753345

v3 0.514152040259 0 0.344387159440 0.344641218655

Table 10. The analogous table to Table 9 but with respect to the design FH2.

V1 V2 V′ (bar-joint) V′ (panel-hinge)

x1 -0.284308975844 -0.381499642545 -0.346332965123 -0.345941194845

x3 -0.274123668705 -0.381499642545 -0.341068732408 -0.340681988409

y1 -1.091519316228 -1.093387667069 -1.092180085853 -1.092027657175

y2 -0.383468247941 -0.432610903111 -0.412298335661 -0.412002561558

y3 -0.328588016197 -0.330388381978 -0.329187289575 -0.329179948495

u1 1.091519316228 1.093387667069 1.092099843041 1.092235340815

u2 0.383468247944 0.330388381978 0.353323819879 0.353582747289

v1 0.284308975853 0 0.190684818526 0.191590754090

v3 0.274123668714 0 0.179953619106 0.180744480102

Table 11. The analogous table to Table 9 but with respect to the design FH3.
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