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Camera traps can be used to address large-scale questions in community ecology by providing systematic

data on an array of wide-ranging species. We deployed 225 camera traps across 1,125 km2 in Serengeti

National Park, Tanzania, to evaluate spatial and temporal inter-species dynamics. The cameras have

operated continuously since 2010 and had accumulated 99,241 camera-trap days and produced 1.2 million

sets of pictures by 2013. Members of the general public classified the images via the citizen-science website

www.snapshotserengeti.org. Multiple users viewed each image and recorded the species, number of

individuals, associated behaviours, and presence of young. Over 28,000 registered users contributed

10.8 million classifications. We applied a simple algorithm to aggregate these individual classifications into a

final ‘consensus’ dataset, yielding a final classification for each image and a measure of agreement among

individual answers. The consensus classifications and raw imagery provide an unparalleled opportunity to

investigate multi-species dynamics in an intact ecosystem and a valuable resource for machine-learning and

computer-vision research.
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Background & Summary
Over the last 20 years, camera traps—remote, automatic cameras—have revolutionized wildlife ecology
and conservation and are now emerging as a key tool in the broader disciplines of behavioural,
population, and community ecology1. Historically, cameras have been used to document the presence of
rare species in understudied protected areas2,3 or estimate densities of individually identifiable animals4.
But advances in digital technology have increased capacity while lowering prices, resulting in a dramatic
increase in the number and diversity of camera trap studies5. While traditional analytical approaches for
camera trapping data require individually identifiable animals1,4,6, recent developments have allowed the
expansion of camera trap inference to multiple ‘unmarked’ species1,7–9. Although camera-trap surveys are
increasing in popularity and scope, they can produce overwhelming amounts of data10–12, highlighting
the need for efficient image processing techniques. Here we describe the datasets generated by Snapshot
Serengeti, a large-scale survey that (1) deployed 225 camera traps across a 1,125 km2 area in the Serengeti
National Park, Tanzania from 2010–2013, (2) used a citizen science website (www.snapshotserengeti.org)
to process millions of images, and (3) used a simple algorithm to ensure high reliability of the resultant
species classifications.

We established the Snapshot Serengeti camera survey to evaluate spatial and temporal dynamics of large
predators and their prey. Serengeti National Park (SNP) is the core of a 25,000 km2 savannah ecosystem that
straddles the Kenya-Tanzania border in East Africa. The Serengeti is dominated by the annual migration of
the combined 1.6 million wildebeest and zebra that follow the seasonal rainfall onto the nutrient rich
plains13. Since the 1960s, the Serengeti Lion Project has monitored lion population numbers and ranging
patterns14, and the Tanzania Wildlife Research Institute (TAWIRI) has surveyed major herbivore numbers
via flight counts and aerial photography15–19. Our camera survey expands upon historical monitoring by
providing the first continuous systematic data on all of the larger predator and prey species, day and night,
across several years. We set out 225 cameras within a 1,125 km2 grid inside the long-term lion study area
that covers the intersection of open plains and savannah woodlands (Fig. 1 and Fig. 2), and spans a 1.67-fold
rainfall gradient and 1.44-fold productivity gradient (T.M. Anderson, unpublished data.). The camera-trap
grid offers systematic coverage of the entire study area (as per O’Brien et al.20) and ensures at least two
cameras per home range for each medium to large mammalian species.

Between June 2010 and May 2013, the survey operated for a total of 99,241 camera-trap days and
produced 1.2 million image sets (each image set contains 1–3 photographs taken in a single burst of ~1 s).
In collaboration with The Zooniverse (www.zooniverse.org), the world’s most popular citizen science
platform, we developed the website www.snapshotserengeti.org that allowed members of the general
public to view and classify each image, identifying species, counting the number of individuals, and
characterizing behaviours (Fig. 3).

Every image set was circulated to multiple users to improve data accuracy. More than 28,000
registered users and ~40,000 unregistered users contributed 10.8 million classifications for the 1.2 million
image sets. We applied a simple plurality algorithm to produce a ‘consensus dataset’ of final classifications
for each image set. The consensus classifications were validated against 4,149 ‘gold-standard’ image-sets
that had been classified by experts, revealing 96.6% accuracy for species identifications and 90% accuracy
for species counts..

Of the 1.2 million image sets, Snapshot Serengeti volunteers indicated that 322,653 contained animals;
the remainder were misfires that had been triggered by heat or vegetation. The volunteers identified
48 different species and species groups, including rare and elusive animals such as aardwolf and zorilla
(see Table 1).

In this report we describe the field methods, citizen science interface, and consensus algorithm used to
produce the following datasets:

(1) Images: Full-resolution images produced by the survey.
(2) Raw classification data: All individual classifications made by all users on all image sets.
(3) Consensus data: Single classification per image set produced by applying the consensus algorithm to

raw classifications, along with image metadata (date, time, location).
(4) Operation Dates: Metadata of when each camera was operational
(5) Gold-standard data: Expert classifications for a subset of 4,149 image sets.

We anticipate broad interdisciplinary re-use of these datasets with applications that span basic and
applied ecology, citizen-science research, machine learning, and computer vision. The consensus dataset
provides species-specific capture histories that can be analysed in a number of ways to evaluate
population and community dynamics, either within Serengeti or as part of a larger cross-reserve analysis
(see Usage Notes for details). The applications for this dataset extend beyond ecological research. For
example, increasing the quality of citizen-science data is an area of active research21–24. Computer science
and informatics researchers can use the raw (un-aggregated) citizen-science answers to develop more
complex aggregation algorithms and to test their performance against the gold-standard dataset25.
Additionally, computer-vision researchers need large human-annotated sets of imagery as training sets
in machine-learning algorithms26. Our collaborators are currently using this dataset to automate
species detection, classification and similar-species differentiation, as well as to develop combined
human-machine learning systems and imaging systems for searchable colour. Subsets of the consensus
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dataset have also been used in classrooms to engage students in authentic research that spans ecology,
animal behaviour, and computer science (see Usage Notes for examples).

Methods
Field methods
We set up an initial camera survey at 200 sites within the long-term Serengeti Lion Project study area
from June to November 2010 (Fig. 1a). Cameras were re-installed in February 2011 and have operated

Figure 1. Snapshot Serengeti study area. (a) Serengeti National Park. Long-term lion project study area is

indicated by dotted line; camera-trap study area is indicated by dashed line. (b) Camera trap layout within the

long-term Lion Project Study Area. Camera locations are plotted over tree cover (extracted from Landsat

imagery), with darker green indicating increased tree cover per 30 m2-grid cell.
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continuously thereafter. We expanded the survey from 200 to 225 traps in February 2012 and it is
currently on-going. This paper describes data collected until May 2013.

Layout. The camera-trap layout placed each camera at the centre of a 5 km2 grid cell (Fig. 1b), so as to
offer systematic coverage of the entire study area and allow simultaneous monitoring of multiple
species1,20,27–29. The precise location of each camera was selected as the nearest suitable tree to the pre-
determined centre point of each grid cell, which was typically within 250 m of the centre. We selected
sites to minimize camera misfires by prioritizing trees that offered shade and by avoiding trees
surrounded by tall grass. Where no trees were available within 1 km of the grid cell centre point, we
placed cameras on metal poles (Fig. 2).

Sites. We set cameras ~50 cm above ground level to capture medium to large vertebrates, housed in
steel cases that were attached to trees with 10 cm hardened-steel lag bolts. We trimmed tall grass to
o30 cm, and removed low-hanging branches to minimize risk of camera misfires and improve the
unobstructed view from the camera. Cameras were pointed to minimise obstructions or risk of misfires
rather than with respect to compass direction.

Figure 2. Camera trap placement. Camera traps in steel cases were placed on trees when available (left,

n= 195) and steel poles when no trees were within 1,000 m of the grid-cell centre (right, n= 35).

Figure 3. Online interface for www.snapshotserengeti.org. The Snapshot Serengeti website interface. The

primary interface with all available species options (left) and filters that help narrow users’ choices when

classifying species (right).
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Species Total capture events

aardvark 386

aardwolf 162

baboon 1556

bat eared fox 291

buffalo 13672

bushbuck 252

caracal 79

cheetah 1272

civet 37

dik dik 1483

eland 2689

elephant 10178

genet 27

giraffe 8386

Grant’s gazelle 7723

guinea fowl 7793

hare 398

hartebeest 12431

hippopotamus 2611

honey badger 35

human 9851

impala 8286

jackal 561

kori bustard 688

leopard 228

lion female&cub 3343

lion male 923

mongoose 246

ostrich 673

other bird 5549

porcupine 288

reedbuck 2875

reptiles 131

rhinoceros 30

rodents 48

secretary bird 434

serval 458

spotted hyena 5303

striped hyena 115

Thomson’s gazelle 41420

topi 2299

vervet monkey 314

warthog 7493

waterbuck 353

wildcat 47

wildebeest 100660

zebra 70577

zorilla 17

Table 1. Raw number of capture events for each species as identified by using the plurality algorithm on

volunteer classifications.
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Cameras. We primarily used Scoutguard (SG565) incandescent cameras. We initiated the survey using
DLC Covert II cameras with an infrared flash, but poor night-image quality prompted the transition to
incandescent cameras. The cameras deployed in 2011 included a mixture of DLC Covert Reveal and
SG565. Since 2012, all cameras and replacements have been SG565. Animals and weather damaged
approximately 15% of cameras annually, requiring repeated replacement.

All survey cameras used passive infrared sensors that were triggered by a combination of heat and
motion. Although standard camera-trapping protocols recommend setting sensitivity to ‘high’ for warm
climates, this produced unacceptable levels of misfires by the movements of tall vegetation or shadows,
thus we set sensor sensitivity to ‘low’ to minimize misfires. The detection radius and field of view were
approximately 14 m and 45° for all cameras.

We set all cameras to take 3 photos per trigger in the daytime. At night, infrared-flash cameras took
3 photos per trigger, but incandescent-flash cameras could only take 1 image per trigger due to flash
limitations (and occasional camera malfunction created a small number of image sets with varying
numbers of images). We refer to each trigger as a ‘capture event’ and the resulting 1–3 images as an
‘image set’; capture events are the units of analysis for ecological studies and comprise the results
presented here. We set cameras to ensure at least 1-minute delay between capture events to prevent the
memory card being filled to capacity by a single individual or herd.

Maintenance. We checked each camera every 6–8 weeks. Except in cases of camera malfunction or
damage, this schedule was sufficient to replace batteries and SD cards and ensure continuous operation.
We labelled SD cards with the Site ID and the date retrieved and reviewed images in the field to ensure
that the camera had functioned properly. We then installed new SD cards and triggered cameras to
photograph placards that indicated Site ID, date, and time.

Data management
We wrote Python scripts to extract date/time from the image files and season, site, and card information
from the directory structure. Common errors that arose from camera malfunction (typically due

ID Species Count Standing Resting Moving Eating Interacting Babies

Image set retired as Consensus—10 matching species identifications (see Fig. 4b)

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 N N Y N N N

ASG0010cz5 giraffe 1 Y N N N N N

Image set retired as Consensus—10 matching species identifications (see Fig. 4c)

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 jackal 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 warthog 1 Y N N N N N

ASG0000009 spotted hyena 1 Y N N N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 warthog 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 wildcat 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

ASG0000009 spotted hyena 1 N N Y N N N

Table 2. Sample classifications for image set retired in Fig. 4 as consensus (10 matching classifications). Each

row represents a classification event by a different user.
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to animal or weather damage) included: the recording of videos instead of still images, incorrect
time-stamps for a portion of images, and only 1–2 photos per capture event instead of three. We wrote
code in Python, MySQL, and R to flag and correct these errors in the metadata.

Data processing
Platform. We partnered with the online citizen science platform The Zooniverse (www.zooniverse.org)
to develop the Snapshot Serengeti website (www.snapshotserengeti.org), an online interface where the
general public helps process camera trap data. The Snapshot Serengeti website utilizes the Zooniverse’s
platform Ouroboros, written in Ruby on Rails (https://github.com/zooniverse/serengeti). Volunteer
classifiers interact with a custom-built JavaScript front-end to classify image sets and results are saved in a
MongoDB datastore. Each classification is recorded alongside the time of classification and the identity of
the classifier in the form of either a unique identifier assigned by the Zooniverse (for logged in users) or
an IP address (for users who have not logged in). Ouroboros also allows for custom rules for image-set
retirement, as discussed below, and the system can scale rapidly to cope with the demands of a popular
site. The interface and images are hosted on Amazon Web Services via Amazon’s Simple Storage
Service (S3).

Task flow. On the Snapshot Serengeti interface (Fig. 3), volunteers identify species in each image set,
count the number of individuals, classify behaviour, and indicate the presence/absence of young. For
image sets that contain more than one image, volunteers initially see the second image in the set and can
toggle between images or use the ‘play’ feature to animate the images. We designed the task flow to help
guide people with no background knowledge through the process of identifying the animal(s) in question
from 48 possible species and species groups while still providing a rapid route to classification for more
knowledgeable participants. Users filter potential species matches by morphological characteristics such
as horn shape, body shape, colour, pattern, and tail shape or jump straight to selecting from a list of all
species. A ‘nothing here’ button allows users to classify image sets without any animals present. We do
not offer an ‘impossible’ or ‘I don’t know’ option because previous testing on a small-scale prototype

ID Species Count Standing Resting Moving Eating Interacting Babies

ASG000xzxd impala 1 Y N N N N N

ASG000xzxd G. gazelle 1 N N Y N N N

ASG000xzxd reedbuck 1 Y N N N N N

ASG000xzxd reedbuck 1 Y N N N N N

ASG000xzxd dik dik 1 Y N Y N N N

ASG000xzxd (blank)

ASG000xzxd dik dik 1 Y N N N N N

ASG000xzxd impala 1 Y N N N N N

ASG000xzxd (blank)

ASG000xzxd reedbuck 1 Y N N N N N

ASG000xzxd (blank)

ASG000xzxd impala 1 Y N N N N N

ASG000xzxd impala 1 Y N N N N N

ASG000xzxd dik dik 1 Y N N N N N

ASG000xzxd T. gazelle 1 Y N N N N N

ASG000xzxd G. gazelle 1 Y N N N N N

ASG000xzxd G. gazelle 1 Y N N N N N

ASG000xzxd impala 1 Y N N N N N

ASG000xzxd T. gazelle 1 Y N N N N N

ASG000xzxd T. gazelle 1 Y N N N N N

ASG000xzxd dik dik 1 Y N N N N N

ASG000xzxd waterbuck 1 Y N N N N N

ASG000xzxd G. gazelle 1 Y N N N N N

ASG000xzxd G. gazelle 1 Y N N N N N

ASG000xzxd dik dik 1 Y N N N N N

Table 3. Sample classifications for image set retired in Fig. 4 as complete (25 total classifications). Each row

represents a classification event by a different user. Image set retired as Complete—not reaching consensus but

having been viewed by 25 people (see Fig. 4d).

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150026 | DOI: 10.1038/sdata.2015.26 7

www.zooniverse.org
www.snapshotserengeti.org
https://github.com/zooniverse/serengeti


indicated that such answers were overused and provided no information on the actual species
classification, thus wasting volunteer effort. Image difficulty (and probability of being correct) can instead
be assessed by measuring variance across individual volunteer answers (see Technical Validation)

Circulation and retirement. We circulate each image set to multiple users and retire image sets from
circulation when they have met one of the following criteria (see Table 2 and 3 & Fig. 4 for examples):

● Blank: the first 5 classifications are ‘nothing here’.
● Blank_Consensus: 10 ‘nothing here’ classifications, not necessarily consecutive.
● Consensus: 10 matching classifications of species or species combination (e.g., 10 identifications of ‘lion’
or 10 identifications of ‘lion-zebra’); these classifications do not have to be consecutive.

● Complete: 25 total non-‘nothing here’ classifications (does not require consensus for any single species).

Note that volunteers classified Snapshot Serengeti data faster than images were produced, and images
were re-circulated for classroom use and testing the value of additional classifications. As a result, the
number of classifications (11–57 for images containing animals) generally exceeded the number needed
for retirement under the above rules.

Data aggregation
We implemented a simple plurality algorithm to transform the volunteer classifications for each image set
into a single aggregated species identification. First, we calculated the number of different species present
in an image set as the median number of different species identified across all users for that image set.
For all image sets, we assigned the one (or more) species with the most ‘votes’ as the aggregated answer.

We calculated the number of individuals present for each identified species as the median number
reported for that image set for that species by all volunteers. We also calculated the proportion of users
who chose each behavioural activity or presence of young.

To assess the accuracy of aggregated classifications, we calculated an evenness index, using all
non-blank classifications for each image set. When all classifications were in agreement, we assigned the
value zero, indicating high accuracy. Otherwise, we used Pielou’s evenness index (Pielou 1966), calculated
as - Σ

S
i¼1pi ln pi

� �

=ln S, where S is the number of different species chosen among all volunteers, and pi is
the proportion of ‘votes’ that species i received. The Pielou evenness index ranges from 0 to 1, with 0
indicating low evenness and high accuracy and 1 indicating high evenness and low accuracy. Note that
the Pielou evenness index is expected to be high for image sets with multiple species and therefore is not a
useful gauge of accuracy in these cases.

Figure 4. Sample Snapshot Serengeti images. Sample images from image sets retired from Snapshot Serengeti

as (a) blank: receiving five consecutive ‘nothing here’ classifications, (b-c) consensus: receiving 10 matching

species classifications, and (d) complete: receiving 25 classifications regardless of agreement. Note that the

plurality algorithm correctly arrived at ‘giraffe,’ ‘spotted hyena,’ and ‘impala’ for images b-d, respectively

(see Tables 2 and 3 for individual classifications).
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Code availability
Classification Interface. The code used to create the Snapshot Serengeti web interface is publicly
available at https://github.com/zooniverse/serengeti (current) and archived on figshare30.

Data processing and consensus calculation. The scripts used to process the data and calculate the
consensus classifications are publicly available at https://github.com/mkosmala/SnapshotSerengetiScripts
(current) and archived on figshare31.

Data Records
All classification data and metadata are publicly available at Dryad (Data Citation 1).

Images: (all_images.csv; 3,198,737 data rows) URL information for retrieving each image; 1 record per
image. All images in this data descriptor can be accessed at htt #ps://snapshotserengeti.s3.msi.umn.edu/
by appending the URL_Info field. For example, appending the value ‘S1/B04/B04_R1/
S1_B04_R1_PICT0012.JPG’ yields the full URL: https://snapshotserengeti.s3.msi.umn.edu/S1/B04/
B04_R1/S1_B04_R1_PICT0012.JPG. Pasting this value into a browser will display the image in the
browser. Note that while we provide all images via the University of Minnesota Supercomputing Institute,
this is not a proper archive site. Currently, there are no archiving systems or organizations available for
storing the terabytes of images from our study. We hope that image archiving options will become
available in the near future.

● CaptureEventID: A unique identifier for each capture event and resultant image set.
● URL_Info: A URL suffix to be appended to ‘htt#ps://snapshotserengeti.s3.msi.umn.edu/’ to yield the full

URL of the image.

Raw classification data: (raw_data.csv; 10,530,564 data rows) Raw classification dataset; 1 record per
unique user, capture event, and species. Includes images retired as ‘Blank’ and ‘Blank_consensus.’

● CaptureEventID: A unique identifier for each capture event and resultant image set.
● ClassificationID: A unique identifier for each classification event (one user classifying a single capture

event). If a single user identifies multiple species within a capture event, they share the same
classification ID.

● UserID: Unique user ID for logged-in users; sessionID (unique computer & browser information) for
non-logged-in users.

● Species: Species selected from a list of 48 options or ‘blank’ for ‘nothing here’
● Count: Number of individuals, estimated as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11–50 or 51+.
● Standing: Binary indicator of whether any individuals are standing.
● Resting: Binary indicator of whether any individuals are resting.
● Moving: Binary indicator of whether any individuals are moving.
● Eating: Binary indicator of whether any individuals are eating.
● Interacting: Binary indicator of whether any individuals are interacting (including both intra- and

inter-specific interactions).
● Babies: binary indicator of whether young were present.

Consensus classification data and metadata: (consensus_data.csv; 334,671 data rows) Applying the
plurality algorithm to the raw classification data yielded a single classification per capture event,
accompanied by measures of uncertainty and difficulty. Each species classified in a single capture event
receives its own record and species-specific measures of uncertainty. Metadata (data/time & location) are
provided to facilitate ecological analyses. This dataset excludes all images retired as ‘Blank’ or
‘Blank_consensus.’

● CaptureEventID: A unique identifier for each capture event and resultant image set. Links to
CaptureEventID from raw classification data.

● NumImages: The number of images in the image set/capture event.
● DateTime: The date-time stamp is reported in yyyy-mm-dd hh:mm:ss. Time zone is UTC + 3:00. Note

that daylight savings time is not observed in Tanzania.
● SiteID: The alpha-numeric site code.
● LocationX, LocationY: UTM X and Y coordinates of the site (datum Arc1960, zone 36S)
● NumSpecies: The number of species in this capture event.
● Species: Species of animal in the capture event (one of 48 possibilities).
● Count: Median number of individuals, estimated as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11–50 or 51+.
● Standing: The proportion of users who selected this behaviour for this species.
● Resting: The proportion of users who selected this behaviour for this species.
● Moving: The proportion of users who selected this behaviour for this species.
● Eating: The proportion of users who selected this behaviour for this species.
● Interacting: The proportion of users who selected this behaviour for this species.
● Babies: The proportion of users who selected ‘young present’ for this species.

www.nature.com/sdata/

SCIENTIFIC DATA | 2:150026 | DOI: 10.1038/sdata.2015.26 9

https://github.com/zooniverse/serengeti
https://github.com/mkosmala/SnapshotSerengetiScripts
https://snapshotserengeti.s3.msi.umn.edu/S1/B04/B04_R1/S1_B04_R1_PICT0012.JPG
https://snapshotserengeti.s3.msi.umn.edu/S1/B04/B04_R1/S1_B04_R1_PICT0012.JPG


● NumClassifications: The total number of users who classified this capture event.
● NumVotes: The total number of users who selected this species for this capture event.
● NumBlanks: The number of users who selected ‘nothing here’ for this capture event.
● Evenness: The Pielou evenness index of species classifications for the capture event.

Species * Correct Total Proportion Correct

wildebeest 1,727 1,740 0.993

zebra 885 888 0.997

buffalo 244 252 0.968

hartebeest 245 251 0.976

Thomson’s gazelle 197 199 0.990

impala 172 181 0.950

other bird 101 134 0.754

warthog 120 120 1.000

giraffe 92 92 1.000

elephant 84 85 0.988

human 72 75 0.960

Grant’s gazelle 55 67 0.821

guinea fowl 55 56 0.982

spotted hyena 55 55 1.000

hippopotamus 28 28 1.000

eland 23 25 0.920

reedbuck 22 25 0.880

baboon 22 22 1.000

topi 15 20 0.750

lion (female&cubs) 18 18 1.000

dik dik 8 8 1.000

porcupine 8 8 1.000

cheetah 6 6 1.000

mongoose 5 6 0.833

serval 6 6 1.000

aardvark 4 4 1.000

bushbuck 3 4 0.750

kori bustard 4 4 1.000

secretary bird 4 4 1.000

jackal 1 3 0.333

leopard 3 3 1.000

ostrich 3 3 1.000

vervet monkey 3 3 1.000

aardwolf 1 2 0.500

hare 1 1 1.000

lion (male) 1 1 1.000

rhinoceros 1 1 1.000

rodent 0 1 0.000

waterbuck 1 1 1.000

Table 4. Accuracy of aggregate classifications of species in 4,149 image sets in comparison with expert
classifications. Total indicates the number of image sets containing that species, as identified by experts .

*Correct indicates the subset of those image sets for which the plurality algorithm arrived at the correct answer.

Proportion Correct is given by # Correct / Total. Note that the 30 image sets marked as ‘impossible’ by experts

do not appear in this table. Twenty-nine image sets were marked impossible due to insufficient amount of

detail to make a definitive identification; one image set was marked impossible because it contained an animal

(duiker) not in the list of 48 species available to the volunteers.
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Operation dates: (search_effort.csv; 1,128 data rows) The dates that each camera was active and
functioning properly, extracted from the image EXIF data as the first and last dates of valid photographs
on a given SD card. Valid photographs are defined as those taken while the camera was secured on the
tree pointing outwards (as opposed to photos taken after a camera was torn down and facing the ground).

● Site ID: The alpha-numeric site code.
● Start date: Date of first valid image on a given SD card.
● End date: Date of last valid image on the SD card.

Gold standard data: (gold_standard_data.csv; 4,432 data rows) Expert classifications for 4,149 capture
events. Note that gold-standard answers are more accurate than answers provided by a single expert
because multiple experts reviewed all images for which any single expert expressed uncertainty. In 0.2%
of images, the panel of experts agreed that no authoritative species identification could be made; those
images are marked as ‘impossible.’

● CaptureEventID: Same as in the raw and reduced classification data.
● NumSpecies: The number of species in this capture event.
● Species: One of the 48 possibilities or ‘impossible.’
● Count: Number of individuals, estimated as 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11–50 or 51+.

Technical Validation
We asked five researchers with extensive wildlife identification experience to classify 4,149 randomly
selected image sets containing animals using the Snapshot Serengeti interface; 263 image sets received two
expert classifications and 8 image sets received three, for a total of 4,428 classifications. The experts noted
whether any image sets were especially difficult or whether they thought the image was identifiable at all.
In cases where experts disagreed with the results of the plurality algorithm or had marked an image set as
particularly difficult or impossible, AS and CP made the final authoritative identification. Thus, the gold
standard dataset included a small number of images that were agreed by multiple experts to be
‘impossible’ to identify. Because the Snapshot Serengeti interface does not allow ‘impossible’ as an option,
the consensus answers for these images are incorrect by definition. We compared citizen-science
classifications derived from the plurality algorithm with the expert-classified ‘gold standard’ dataset to
assess accuracy of species identifications and counts of individuals.

Of the 4,149 image sets viewed by experts, 96.6% of algorithm-derived answers agreed with the expert
species classification, though the accuracy rate varied by species (Table 4). Of the 142 image sets in which
the algorithm did not agree with the experts, 21% (n= 30) were marked as ‘impossible’ by experts, 29.5%
(n= 42) reflected cases where the algorithm only identified one of two species identified by experts
(for example, only zebra in an image set where both wildebeest and zebra had been present), 3.5%
involved cases where the algorithm indicated two species whereas the experts only reported one, and
45.8% (n= 65) reflected true errors in which the algorithm reported the wrong species. The most
common mistakes included misidentification of birds (n= 11) and incorrectly identifying Grant’s gazelles
as Thomson’s gazelles (n= 11).

Variance in raw classifications strongly predicted whether image sets were classified correctly. Image
sets for which the algorithm differed from expert IDs had higher levels of disagreement among raw

Species Counts * Validated Proportion Exactly Correct Proportion within+/− 1 bin

1 1,662 0.975 1.000

2 626 0.827 1.000

3 401 0.721 0.965

4 309 0.621 0.942

5 213 0.507 0.897

6 202 0.386 0.797

7 136 0.397 0.794

8 98 0.286 0.653

9 84 0.298 0.726

10 54 0.185 0.704

11–50 456 0.713 0.776

51+ 16 0.438 0.938

Table 5. Validation of species counts against expert classifications for image sets with a single species.

*Validated is the total number of counts validated by experts. Proportion Exactly Correct reflects the proportion

of algorithm-derived counts that matched expert classifications exactly. Proportion within +/− 1 reflects the

proportion of algorithm-derived accounts that fell within 1 count bin above or below the expert classification.
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classifications: the mean evenness score (+/− standard error) was 0.451 (+/− 0.004) for correct answers
versus 0.725 (+/− 0.014) for incorrect answers. Classifications of images that experts identified as
‘impossible’ are considered to be incorrect. We provide guidelines in the Usage Notes for using measures
of disagreement to measure certainty that a consensus classification is correct and to target image sets for
review or exclusion in any given analysis.

For image sets where the plurality algorithm accurately captured all or a subset of species present, we
compared the species-specific counts reported by the algorithm to expert classifications (n= 4,269 species
counts). 76.4% of algorithm-derived counts matched expert counts exactly, and 92.98% of algorithm-
derived counts were within +/ − 1 bin of the expert classification (Table 5). Accuracy varied by the
number of individuals present: users were > 97% accurate when counting a single individual and least
accurate distinguishing between 5–10 individuals.

Usage Notes
We envision broad applications for these datasets in ecology, informatics, computer vision, and
education. Here we provide additional details and guidelines.

Ecological analyses
The consensus classifications are equivalent to raw data produced by standard camera trapping surveys
and include all metadata necessary for applying robust analytical procedures that explicitly consider
variations in detection probability. We provide dates of activity for every camera trap, as well as dates,
times, and locations for every image. Researchers can thus aggregate camera activity (‘search effort’) and
species-specific capture histories into time spans suitable for relative abundance indices32–34, single and
multi-season occupancy modelling8,35–38 across multiple scales39, dynamic and multi-species occupancy
modelling1,40–42, hierarchical binomial or n-mixture models43,44. All images are downloadable and
identified to species, so capture histories of individually recognized animals can be constructed for species
with distinct pelage patterns (e.g., cheetahs, leopards, hyenas, civets, genets, etc.). In such cases,
sophisticated mark-recapture analyses can permit spatially-explicit inference45,46.

Note that ecological analyses sometimes require higher species-identification accuracy than the 97%
returned by the consensus algorithm. Our three ‘certainty’ metrics for consensus answers reflect image
difficulty and likelihood of being correct and thus provide guidelines for targeting ‘uncertain’ images for
expert review or exclusion from the analysis (see certainty and difficulty section below).

Citizen science and informatics analyses
Crowdsourcing and citizen science are being used increasingly often to produce science datasets22–24, but
they require robust methods to measure and validate data quality. While our consensus dataset derives
from a simple plurality algorithm, more complex algorithms can improve upon these results. For
example, Hines et al.25 weighted raw classifications by individual accuracy, raising overall accuracy to
98%. Our raw classification dataset could be used to develop and test algorithms that employ user-
weighting or even apply a Bayesian framework to incorporate information about species likelihood based
on previous or subsequent images.

Computer vision
Object search-and-recognition research requires large data sets of labelled imagery. Reliable data sets of
wild animals are rare, due to the enormous task of hand-annotating large numbers of images. By using
the raw images together with the consensus dataset, machine-learning algorithms could be developed to
automatically detect and identify species, using part of the dataset for training the image-recognition
algorithm and the rest for testing the algorithm. Raw images could be used separately, or in conjunction
with the consensus data set, to research automatic detection of textures, patterns, and other
characteristics of outdoor scenes.

Education
Higher education teachers can use the consensus dataset and metadata to develop curricula around the
scientific method, using charismatic fauna to engage students. As examples, students can ask questions
about species abundances and distributions, daily activity patterns and seasonal movements. The dataset
can be tailored by the instructor for use by undergraduates for authentic research experiences. (See http://
www.cbs.umn.edu/explore/education-outreach/hhmi/projects/nonmajor/serengeti as an example.) This
dataset is also suitable for graduate level coursework in ecology, informatics, and computer vision. (See
http://rogerioferis.com/VisualRecognitionAndSearch2014/
Projects.html as an example.)

Dataset and calculation details
The 48 possible ‘species’ options include four ‘group’ categories: human, bird (other), reptiles, and rodents.
‘Human’ reflects any human activity, including vehicles and hot-air balloons. We made no effort to
distinguish among species of hare, jackal, and mongoose. Additionally, lions were split into two
categories: Lion (male) and Lion (female & cubs).
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Users typically selected as many behaviours as applicable for a given species in each image but
sometimes classified two individuals as displaying two different behaviours by listing the same species
twice. For example, an image with one standing zebra and one moving zebra might receive one
classification of ‘1 zebra, standing’ and ‘1 zebra, moving’—resulting in multiple classifications of the
same species with the same ClassificationID. We standardized classifications by combining multiple
classifications of the same species within a single ClassificationID before applying the consensus
algorithm. So ‘1 zebra, standing’ and ‘1 zebra, moving’ were combined to form ‘2 zebras, standing and
moving,’ which was the most common classification for such images. Note that the raw classification data
set contains separate assessments made by each volunteer and thus does not combine multiple records
within ClassificationID for any single image.

Certainty & difficulty measures
The plurality algorithm produces classifications that are97% correct on average. However, the accuracy
varies by species and difficulty and certain analyses may require greater accuracy than obtained from the
plurality algorithm. ‘Percent support’ for each species in each image set can be calculated as NumVotes/
NumClassifications and reflects the proportion of users who identified that species as present in the image
set. High values indicate high certainty. High values for NumBlanks and Evenness (for single species
image sets) tend to reflect more difficult image sets for which the consensus vote is more likely to be
incorrect. We found that when some users were unsure of their classification, they used the ‘nothing here’
option instead of guessing a species. As a result, difficult images are more likely to have more blank
classifications. As described in the Technical Validation, higher evenness score reflects lower agreement
among classifications and were more likely to be incorrect for single species captures. To increase
certainty of datasets for analyses, analyses can be restricted to data that meet any threshold for percent
support, Evenness, or NumBlanks.
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