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Abstract

Neural implicit surface representations have emerged as

a promising paradigm to capture 3D shapes in a continu-

ous and resolution-independent manner. However, adapt-

ing them to articulated shapes is non-trivial. Existing ap-

proaches learn a backward warp field that maps deformed

to canonical points. However, this is problematic since the

backward warp field is pose dependent and thus requires

large amounts of data to learn. To address this, we in-

troduce SNARF, which combines the advantages of linear

blend skinning (LBS) for polygonal meshes with those of

neural implicit surfaces by learning a forward deforma-

tion field without direct supervision. This deformation field

is defined in canonical, pose-independent, space, enabling

generalization to unseen poses. Learning the deformation

field from posed meshes alone is challenging since the cor-

respondences of deformed points are defined implicitly and

may not be unique under changes of topology. We propose a

forward skinning model that finds all canonical correspon-

dences of any deformed point using iterative root finding.

We derive analytical gradients via implicit differentiation,

enabling end-to-end training from 3D meshes with bone

transformations. Compared to state-of-the-art neural im-

plicit representations, our approach generalizes better to

unseen poses while preserving accuracy. We demonstrate

our method in challenging scenarios on (clothed) 3D hu-

mans in diverse and unseen poses.

1. Introduction

Modeling the shape and deformation of articulated 3D

objects has traditionally been achieved by deforming a

polygonal mesh via linear blend skinning (LBS) with pose-

correctives. However, meshes are inherently limited by

their resolution-to-memory ratio and their fixed topology.

Therefore, neural implicit surface representations [10, 30,

31, 38] have recently attracted much attention because they

provide a resolution-independent, smooth and continuous

alternative to discrete meshes. However, updating an im-

Continuous Implicit Surfaces in Unseen Poses

Learned Canonical 3D Shape and Skinning Weights

Input 3D Posed Meshes

Figure 1: SNARF: From a sequence of posed meshes (top),

we learn a neural implicit 3D shape and a skinning field

in canonical pose (middle) without supervision of skinning

weights or part correspondences. Learned forward skinning

enables generalization to unseen poses (bottom) while cap-

turing local details via pose conditioning.

plicit surface representation as a function of the underlying

pose changes is challenging since it requires modifying a

continuous function rather than a discrete set of points.

To address this, we propose SNARF (Skinned Neural Ar-

ticulated Representations with Forward skinning), a novel

approach to learning articulated 3D shapes represented by

neural implicit surfaces directly from 3D watertight meshes

and corresponding bone transformations with no need for

supervision via pre-defined skinning weights. SNARF com-

bines the simplicity of skeletal-driven deformation of LBS

with the fidelity and topological flexibility of implicit sur-
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Figure 2: Forward vs. Backward Skinning. Forward

skinning weights are defined in pose-independent canoni-

cal space and therefore naturally generalize to unseen poses

as the one in the bottom left panel. In contrast, backward

skinning weights are defined in pose-dependent deformed

space and thus struggle with unseen poses.

faces, enabling animation of complex human bodies as

shown in Fig. 1. Moreover, SNARF goes beyond LBS

by conditioning the neural shape on poses to capture pose-

dependent non-linear deformations. The main challenge is

to express the mapping between surface points in canonical

pose and their deformed counterparts. Existing approaches

attempt to learn shape in the canonical pose and a back-

ward deformation field, transforming deformed points to

the canonical pose [12, 34, 39, 43]. However, as illustrated

in Fig. 2, backward skinning is problematic since the defor-

mation field depends on the pose of the deformed object,

limiting generalization to unseen poses.

To tackle this problem, we devise a method that learns

a dense forward skinning weight field without requiring di-

rect supervision. Once learned, this skinning field can be

leveraged to generate shape deformations even for poses

outside of the training set. However, to jointly learn the for-

ward skinning field and the object shape from posed meshes

alone, we must establish the correspondence of any 3D

point in deformed space to the undeformed space. Yet, this

requires the availability of the backward mapping which is

only implicitly defined and has no analytical solution.

To overcome this issue, we propose a forward skinning

model that exploits an iterative root finding algorithm to

find the corresponding canonical point for any deformed

point. Our approach is able to retrieve multiple correspon-

dences for any deformed point and therefore naturally han-

dles topology changes. We further derive the gradients of

our forward skinning module, hence making it differen-

tiable and enabling end-to-end learning of the canonical

shape and skinning weights jointly from deformed observa-

tions. Importantly, and in contrast to prior work, our method

does not require any a priori skinning weights or pose cor-

rectives defined on the surface and hence can be applied in

scenarios where pre-rigged mesh models are not available.

We experimentally demonstrate that our method is able

to generate high-quality shapes with arbitrary desired bone

transformations, even those far beyond the training distri-

bution, where other recent methods like NASA [12] fail.

Since our approach operates in continuous space, it enables

reconstruction of fine geometric details. By conditioning

the neural implicit function on poses, our method faithfully

models local pose-dependent deformations, e.g., the move-

ment of clothing or soft tissue. Our code is available at

github.com/xuchen-ethz/snarf.

2. Related Work

Skinning Polygonal Meshes: Modeling the deformation of

non-rigid and articulated 3D objects is a fundamental prob-

lem in computer vision and graphics with many applica-

tions. Traditionally, this problem is formulated for polygo-

nal meshes and is referred to as skinning. Skinning enables

deformation of a high-resolution surface mesh with low-

order control primitives such as skeletal bones. The most

common approach is linear blend skinning (LBS), which

models each mesh vertex’s deformation as a convex com-

bination of input bone transformations as defined by skin-

ning weights. These skinning weights are typically defined

by an artist or learned from data. LBS produces well-

known artifacts that many methods attempt to address, e.g.

with dual quaternion blend skinning [20] or multi-weight

enveloping [29, 54]. The key concept is to define pose-

dependent “corrective blend shapes” that are added to a

shape such that, when it is posed, the LBS errors are min-

imized [21, 46]. Classically, these “pose correctives” are

artist defined, though they can also be learned [24]. Here

we extend the concept of LBS and pose correctives to neu-

ral implicit surface representations.

Learning both blend weights and rigs from examples

has a long history, starting with James and Twigg [17].

Specifically for human bodies, numerous learning methods

have been proposed, many of which learn the LBS weights

[15, 24, 37, 56]. Recent methods attempt to disentangle

shape and pose in an unsupervised fashion given registered

training meshes [19, 60]. RigNet [57] uses a deep network

to learn both articulated rigs and skinning weights jointly.

NeuroSkinning [23] also uses a deep network to learn blend

weights and can cope with complex surface topology. In
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contrast to us, these methods require a large dataset of

rigged models with hand-painted skinning weights and do

not consider implicit surface representations.

Neural Implicit Shapes: Neural implicit shape represen-

tations can model complex shapes with arbitrary topol-

ogy in a continuous fashion. Given a 3D location, these

networks regress the distance to the surface [38], occu-

pancy probability [30], color [36] or radiance [33] of a 3D

point. Conditioning on local information such as 2D im-

age features or 3D point cloud features has been shown

to yield more detailed reconstructions [11, 16, 41, 47, 48].

While early methods require watertight meshes for train-

ing, several recent approaches have demonstrated unsuper-

vised training from raw 3D points clouds [5, 13, 49] or im-

ages [33, 35, 51, 58]. A current limitation of most exist-

ing implicit models is that they do not support high-quality

skeletal deformation. Our method addresses this key limi-

tation, enabling learning and generation of realistic skeletal

deformations of neural implicit surfaces.

Deformable Neural Shapes: Compared to meshes, de-

forming neural implicit shapes is more challenging as one

needs to deform continuous space rather than a fixed set

of vertex points. Very recently, various approaches have

been proposed to model backward deformation fields [18,

34, 39, 43]. These fields map points in deformed space

to canonical ones, where geometric properties (e.g. occu-

pancy) are queried from a canonical shape network. The de-

formation field is modeled as a neural network that outputs

velocity [34], translation [43] or rigid transformation [39]

and is jointly trained with the canonical occupancy network

using observations in deformed space. NiLBS [18] learns

skinning weights for each point and then derives the de-

formation via LBS according to the bone transformations.

An inherent limitation of learned backward deformation,

however, is poor generalization to unseen poses. As illus-

trated in Fig. 2, backward deformation fields are defined in

deformed space and, hence, inherently deform with pose.

Thus, the network must memorize deformation fields for

different spatial configurations, making it difficult to gener-

ate deformations that have not been seen during training.

Part-based Models: In recent work, NASA [12], proposes

to represent a 3D human body model as a combination of

independent parts, each of which is represented by an oc-

cupancy network [30]. Rigidly transforming these parts

according to the input bone transformations produces de-

formed shapes. While such a formulation preserves the

global structure after articulation, the continuity of surface

deformations is violated, causing artifacts at intersections

of body parts. Although each part can learn to deform it-

self to partially compensate for this undesired effect, no-

ticeable artifacts remain, particularly for poses that are be-

yond the training distribution. Moreover, NASA requires

ground-truth surface skinning weights to learn correct part

assignments. In contrast to NASA, our method learns for-

ward skinning weights without such supervision and cap-

tures pose-dependent deformations.

More generally, the previous approaches suffer from ar-

tifacts due to overly simple assumptions about deformation

or do not generalize well to unseen poses as shown in Fig. 4.

In contrast, SNARF generates continuous shapes in arbi-

trary poses, even those far beyond the training distribution,

by learning pose-independent forward skinning weights and

pose-dependent correctives in canonical space.

3D Human Avatars: While more general, we demonstrate

our approach on the problem of learning and animating re-

alistic 3D human avatars. Recent [2, 3, 4, 6, 59] and con-

current works [9, 14, 22, 25, 26, 32, 40, 42, 44, 49, 50, 52,

53, 55] on learning 3D human models typically require a

template mesh model with fixed topology, e.g. SMPL [24],

or are limited in resolution due to the underlying 3D repre-

sentation [2, 3, 55, 59]. In contrast, our method is able to

represent articulated shapes at high fidelity without strong

prior assumptions about the object’s shape. This allows us

to better model deformations of objects with more flexible

topology, e.g., humans in clothing.

3. Method

In this section, we first define our representation for the

canonical shape and forward skinning weights. Next, we

introduce our forward mapping and derive the gradients for

learning the canonical shape representation and skinning

weights in an end-to-end manner.

3.1. Representation

We represent an articulated object by its shape and skin-

ning weights in canonical space. Similar to classical ap-

proaches like SMPL, we split the problem into LBS with

pose-independent skinning weights and pose-dependent

non-linear deformations. LBS captures many important as-

pects of the shape change, thus the pose-dependent model

only has to learn a corrective. This makes training with lim-

ited data feasible and aids generalization to unseen poses.

Shape: We use a neural network to predict the occupancy

probability for any input 3D point x in canonical space. To

model pose-dependent local deformations such as wrinkles

or soft tissue, we inject the object pose p as additional input:

fσf
: R3 × R

np → [0, 1]. (1)

Here, σf are the network parameters and np is the dimen-

sionality of the pose condition p ∈ R
np which we specify

in terms of joint angles. The canonical shape is implicitly

defined as the 0.5 level set of the neural function S:

S = {x | fσf
(x,p) = 0.5}. (2)
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Figure 3: Generating Deformed Shapes with Forward Skinning. Given a query point in deformed space x′, our method

first finds its canonical correspondences x∗ which satisfy the forward skinning equation (4) via iterative root finding. Multiple

correspondences may exist due to topological changes, which can be reliably found by initializing the root finding algorithm

with multiple starting points derived from the bone transformations. The canonical occupancy network fσf
then predicts the

occupancy probabilities at {x∗} which are finally aggregated to yield the occupancy probability of the query point x′.

Neural Blend Skinning: We model the non-rigid deforma-

tion induced by skeleton changes using linear blend skin-

ning (LBS). Towards this goal, we represent an LBS weight

field in canonical space using a second neural network:

wσw
: R3 → R

nb , (3)

where σw are the network parameters and nb denotes the

number of bones. Following traditional LBS, we enforce

the weights w = {w1, . . . , wnb
} of each point x to satisfy

wi ≥ 0 and
∑

i wi = 1 using a softmax activation function.

Note that wσw
does not depend on the pose p.

Given the LBS weights w of a 3D point x and the bone

transformations B = {B1, . . . ,Bnb
} corresponding to a

particular body pose p, the deformed point x′ is determined

by the following convex combination:

x′ = dσw
(x,B) =

nb
∑

i=1

wσw,i(x) ·Bi · x. (4)

Note that the canonical pose is a free hyper-parameter.

Empirically, we found the canonical pose shown in Fig. 1 to

work well and used it for all experiments on human shapes.

3.2. Differentiable Forward Skinning

To predict the occupancy probability o′
x

of an observed

3D point x′ in deformed space, we must first determine the

canonical correspondence x∗ of the deformed query x′ in

order to evaluate the occupancy o(x′,p) = f(x∗,p) with

the canonical occupancy network.

At the core of our forward skinning approach lies the

problem of finding canonical correspondence x∗ of any

query point x′. This is non-trivial because (i) their relation-

ship is defined implicitly via Eq. (4) without an analytical

inverse form, and (ii) multiple canonical points might corre-

spond to the same deformed point as space can overlap after

warping (cf. Fig. 3). To address this problem, we propose a

procedure that is able to retrieve all potential canonical cor-

respondences {x∗
i } of any deformed point x′ from the im-

plicitly defined relationship and then composite these cor-

respondences using standard operations for implicit shape

composition. An overview is provided in Fig. 3.

Correspondence Search: Unlike backward skinning, for-

ward skinning defines the canonical correspondence x∗ of

x′ implicitly as the root of the following equation

dσw
(x,B)− x′ = 0, (5)

which cannot be solved in closed form. The solution of

Eq. (4) can be attained numerically via standard Newton or

quasi-Netwon methods:

xk+1 = xk − (Jk)−1 · (dσw
(xk,B)− x′), (6)

where J is the Jacobian matrix of dσw
(xk,B) − x′. To

prevent computing the Jacobian at each iteration, we apply

Broyden’s method [8] using a low-rank approximation of J.

Handling Multiple Correspondences: We find multiple

roots {x∗
i } by initializing the optimization procedure with

different starting locations and exploiting the local conver-

gence of iterative root finding. The initial states {x0
i } are

thereby obtained by transforming the deformed point x′

rigidly to the canonical space for each of the nb bones, and

the initial Jacobian matrices {J0
i } are the spatial gradients

of the LBS weight field at the corresponding initial states:

x0
i = B

−1

i · x′ J0
i =

∂dσw
(x,B)

∂x

∣

∣

∣

∣

x=x
0

i

(7)

Initial states that are far from the optima lead to either con-

vergence to one of the optima and can be safely included

for further computation, or divergence, and can therefore be

easily discarded by thresholding. Consequently, we define

the final set of correspondences as:

X ∗ = {x∗
i | ‖dσw

(x∗
i ,B)− x′‖

2
< ǫ} , (8)
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where ǫ is the convergence threshold which we set to 10−5

in our experiments. This allows us to retrieve all canoni-

cal correspondences of any deformed point x′ even under

topological changes which induce one-to-many mappings.

Note that if any of the canonical correspondences is oc-

cupied, the deformed point x′ is occupied as well. Thus, the

maximum over the occupancy probabilities of all canonical

correspondences gives the final occupancy prediction:

o(x′,p) = max
x
∗∈X∗

{fσf
(x∗,p)}. (9)

This union operator is commonly used to composite inde-

pendent shapes [45]. Similar to NASA [12], in practice we

use softmax instead of a hard maximum to allow gradients

to back-propagate to all canonical correspondences.

3.3. Training Losses

Our model is trained via minimizing the binary cross en-

tropy loss LBCE(o(x
′,p), ogt(x

′)) between the predicted

occupancy of the deformed points o(x′,p) and the corre-

sponding ground-truth ogt(x
′) for all posed 3D meshes of

a single subject. In addition, we apply two auxiliary losses

during the first epoch to bootstrap training. We randomly

sample points along the bones that connect joints in canoni-

cal space and encourage their occupancy probabilities to be

one. Moreover, we encourage the skinning weights of all

joints to be equal to 0.5 for their respective two neighboring

bones. No ground truth skinning weights or part segmenta-

tions are required by our method.

3.4. Gradients

During training, we must determine the gradient of the

overall loss L w.r.t. the network parameters σ = {σf , σw}.

For the occupancy network fσf
, the gradient is given by

∂L

∂σf

=
∂L

∂o
·

∂o

∂fσf

·
∂fσf

∂σf

(10)

which can be easily obtained by backpropagating gradients

through the corresponding computation graph. For the LBS

weight field wσw
, the gradient is given by

∂L

∂σw

=
∂L

∂o
·

∂o

∂fσf

·
∂fσf

(x∗)

∂x∗
·
∂x∗

∂σw

(11)

where x∗ is the root as defined in Eq. (8) and the last term

can be analytically obtained via implicit differentiation:

dσw
(x∗,B)− x′ = 0 (12)

⇔
∂dσw

(x∗,B)

∂σw

+
∂dσw

(x∗,B)

∂x∗
·
∂x∗

∂σw

= 0 (13)

⇔
∂x∗

∂σw

= −

(

∂dσw
(x∗,B)

∂x∗

)−1

·
∂dσw

(x∗,B)

∂σw

. (14)

4. Experiments

We first conduct toy experiments on synthetic 2D data

to analyze different methods and model design choices

in a controlled setting. Next, we apply our approach to

model minimally clothed human bodies and compare it to

NASA [12] and other self-implemented baselines. Finally,

we demonstrate that our method can handle clothed hu-

mans, generalizing well to unseen poses.

4.1. Datasets

We use the following datasets in our experiments:

2D Stick: We simulate a 2D stick articulated by two bones.

We set the true skinning weights of each point as the the

inverse of its distance to each bone. To simulate topology

changes, we include a further rigid object. While this ob-

ject is separate in canonical space, the two may intersect in

posed space and therefore cause topology changes to simu-

late human self-contact or object interaction.

Minimally Clothed Humans: Following NASA [12], we

use the DFaust [7] subset of AMASS [28] for training and

evaluating our model on SMPL meshes of people in min-

imal clothing. This dataset covers 10 subjects of varying

body shapes. For each subject, we use 10 sequences, from

which we randomly select one sequence for validation, us-

ing the rest for training. For each frame in a sequence, 20K

points are sampled, among which, half are sampled uni-

formly in space and half are sampled in near-surface regions

by first applying Poisson disk sampling on the mesh surface,

followed by adding isotropic Gaussian noise with σ = 0.01
to the sampled point locations. Besides the “within distribu-

tion” evaluation on DFaust, we also include another subset

named PosePrior [1] from AMASS for an “out of distribu-

tion” evaluation. This dataset contains natural, more chal-

lenging, poses beyond those in DFaust.

Clothed Humans: We use the registered meshes from

CAPE [27] and corresponding joints and bone transforma-

tions derived from the accompanied SMPL model regis-

tration to train our model. We use 8 subjects from the

dataset with different clothing types including short/long

lower body clothing and short/long upper body clothing.

We train a model for each subject and clothing condition.

4.2. Baselines

We consider the following baselines in our evaluation. For

“Back-LBS”,“Back-D” and “Pose-ONet” we use the same

training losses and hyperparameters as in our approach.

Pose-Conditioned Occupancy Networks (Pose-ONet):

This baseline extends Occupancy Networks [30] by directly

concatenating the pose input to the occupancy network.

Backward Skinning (Back-LBS): This baseline imple-
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Figure 4: Qualitative Results on 2D Toy Experiment.

Row 1 (2 bones): Our deformed shape appears similar to the

ground-truth. In contrast, Back-LBS and Pose-ONet pro-

duce distorted shapes. The piecewise rigid model (Piece-

wise) leads to artifacts around bone intersections. Row 2

(2 bones + 1 rigid object): Our forward skinning algorithm

can handle topology changes while artifacts at the intersec-

tion are noticeable in the result of the backward skinning

baseline (Back-LBS).

ments the concept of backward skinning similar to [18]. A

network takes a deformed point and pose condition as in-

put and outputs the skinning weights of the deformed point.

The deformed point is then warped back to canonical space

via LBS and the canonical correspondence is fed into the

canonical shape network to query occupancy.

Backward Displacement (Back-D): This baseline directly

predicts the displacement from deformed space to canonical

space, similar to D-NeRF [18].

NASA: NASA [12] models articulated human bodies as a

composition of multiple parts, each of which transforms

rigidly and deforms according to the pose. Note that in con-

trast to us, NASA requires ground-truth skinning weights

for surface points as supervision. We use the official NASA

implementation provided by the authors.

Piecewise: For evaluation on the 2D toy dataset, we created

a variant of NASA for 2D which we refer to as “Piecewise”.

4.3. Results on 2D Stick Dataset

For our results on the simple 2D stick dataset, we do not

use local pose-conditioning as the shape does not locally

deform with pose. We consider the following three settings:

Extrapolation: An essential requirement for articulated

models is the ability to deform into arbitrary poses. In this

setting, we generate training data using the articulated 2D

stick with joint angles from the interval [−60, 60]◦. At test

time, the models are tasked to generate deformed shapes

with larger joint angles in [−120, 60]◦ ∪ [60, 120]◦. Fig. 4

and Fig. 5 (left) show our results. While our forward skin-

ning model follows the ground truth closely, Pose-ONet

fails to generate a meaningful structure as it learns a direct

mapping from poses to shapes and thus cannot produce un-
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Figure 5: Quantitative Results on 2D Toy Experiment.

Left: For pose extrapolation, our method outperforms all

baselines on both test cases, with and without topological

changes. Right: When interpolating, the performance gap

increases as training angles are sampled more sparsely.

seen shapes. By disentangling deformations from shapes,

Back-LBS preserves the structure better, but the learned

pose-dependent skinning weights do not generalize. The

piecewise model (Piecewise) generates the correct global

pose configuration but exhibits visible artifacts as the rigid-

ity assumption is violated at the joint.

Topological Changes: To simulate topological changes,

we include a rigid object but otherwise keep the setting the

same as in the previous experiment. Changing topology is

challenging for Back-LBS since it is not able to model one-

to-many backward correspondences. To compensate for

this, the occupancy field gets distorted as shown in Fig. 4. In

contrast, our model gracefully handles topological changes,

as also shown quantitatively in Fig. 5 (left).

Interpolation: To assess interpolation performance, we

evaluate the accuracy of the generated shapes with angles

sampled continuously from [−60, 60]◦ while increasing the

sampling step size of the training poses. As shown in Fig. 5

(right), with increasing difficulty, the gap between the base-

line methods (Pose O-Net and Back-LBS) and ours be-

comes larger. An exception is the piecewise model (Piece-

wise), whose performance is invariant to the training sample

density, but instead exhibits artifacts at part intersections.

4.4. Results on Minimally Clothed Humans

Following NASA [12], we now consider the more chal-

lenging case of modeling articulated 3D human bodies. Hu-

man bodies are challenging due to their complex skeletal

structure and local deformations that are non-linearly de-

pendent on the bone transformations. While NASA re-

quires ground-truth skinning weights as additional super-

vision, our method does not require such knowledge.

Within Distribution: Overall, all methods perform well

in this relatively simple setting, as shown in Tab. 1. How-

ever, our method still provides an improvement over all

baselines. In particular, compared to NASA [12], we im-
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Within Distribution Out of Distribution

IoU bbox IoU surface IoU bbox IoU surface

Subject P.-ONet Back-D Back-LBS NASA Ours P.-ONet Back-D Back-LBS NASA Ours P.-ONet Back-D Back-LBS NASA Ours P.-ONet Back-D Back-LBS NASA Ours

50002 84.80% 87.89% 47.34% 96.56% 97.50% 63.86% 66.42% 85.41% 84.02% 89.57% 60.61% 70.02% 73.42% 87.71% 94.51% 31.94% 39.84% 71.01% 60.25% 79.75%

50004 80.09% 84.52% 93.53% 96.31% 97.84% 57.79% 59.93% 88.07% 85.45% 91.16% 55.44% 64.63% 65.17% 86.01% 95.61% 34.26% 38.62% 69.43% 62.53% 83.34%

50007 88.31% 89.09% 50.13% 96.72% 97.96% 67.14% 68.02% 83.46% 86.28% 91.02% 40.53% 59.68% 62.66% 80.22% 93.99% 17.80% 34.76% 59.53% 51.82% 77.08%

50009 71.67% 74.75% 65.36% 94.94% 96.68% 50.87% 53.96% 85.38% 84.52% 89.19% 38.17% 50.18% 63.34% 78.15% 91.22% 23.24% 30.85% 64.40% 55.86% 75.84%

50020 69.21% 73.37% 93.04% 95.75% 96.27% 48.73% 53.72% 86.03% 87.57% 88.81% 42.66% 52.43% 64.98% 83.06% 93.57% 26.56% 33.62% 68.24% 62.01% 81.37%

50021 79.30% 79.48% 96.86% 95.92% 96.86% 57.80% 64.02% 89.96% 87.01% 90.16% 45.50% 58.99% 69.89% 81.80% 93.76% 29.07% 37.19% 61.69% 65.49% 81.49%

50022 86.60% 90.59% 97.60% 97.94% 97.96% 66.82% 74.27% 93.51% 91.91% 92.06% 52.17% 60.41% 67.83% 87.54% 94.67% 33.00% 34.71% 73.46% 70.23% 83.37%

50025 80.14% 79.81% 95.28% 95.50% 97.54% 59.47% 60.37% 87.33% 86.19% 91.25% 52.78% 56.93% 68.91% 83.14% 94.48% 31.37% 34.49% 70.60% 60.88% 82.48%

50026 79.39% 84.58% 97.32% 96.65% 97.64% 60.52% 64.07% 90.17% 87.72% 91.09% 56.09% 64.33% 65.20% 84.58% 94.13% 32.07% 37.71% 71.85% 59.78% 80.01%

50027 73.91% 76.71% 80.33% 95.53% 96.80% 53.91% 57.46% 85.04% 86.13% 89.47% 48.22% 57.00% 67.86% 83.97% 93.76% 27.56% 32.56% 70.55% 61.82% 81.81%

Avg. 79.34% 82.08% 81.68% 96.14% 97.31% 58.61% 62.22% 87.44% 86.98% 90.38% 49.21% 59.46% 66.93% 83.16% 93.97% 28.69% 35.44% 68.93% 60.21% 80.65%

Table 1: Quantitative Results on Minimally Clothed Humans. The mean IoU of uniformly sampled points in space (IoU

bbox) and points near the surface (IoU surface) are reported. Our method outperforms all baselines including NASA [12].

Improvements are more pronounced for points near the surface, and for poses outside the training distribution.
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Figure 6: Qualitative Results on Minimally Clothed Humans. Our method produces results similar to the ground-truth

with correct body pose and plausible local details, both for mild poses within the training distribution and more extreme

poses. In contrast, the baseline methods suffer from various artifacts including incorrect poses (Pose-ONet), degenerate

shapes (Pose-ONet, Back-D, LBS), and discontinuities near joints (NASA) which become more severe for unseen poses.
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Figure 7: Qualitative Results for Clothed Humans. Our method can model 3D clothed humans in various clothing types,

with rich details including wrinkles, and in novel poses. Moreover, our method faithfully learns the non-linear relationship

between cloth deformations and body poses. On the right, we show a failure case where the cloth does not fall naturally for

an extreme, unseen pose. However, note how our method still degrades gracefully in this situation.

prove the IoU of uniformly sampled points by 1.2% and

the IoU of near-surface points by 4.6%. This improvement

can also be observed in the qualitative results Fig. 6. Our

method produces bodies with smooth surfaces and correct

poses. In contrast, NASA suffers from discontinuous arti-

facts near joints. Back-D, Back-LBS and Pose-ONet suffer

from missing body parts.

Out of Distribution: In this setting, we test the trained

models on a different dataset, PosePrior [1], to assess the

performance in more realistic settings, where poses can be

far from those in the training set. Similar to the observa-

tions in the 2D toy setting, unseen poses may cause drastic

performance degradation to the baseline methods as shown

in Tab. 1. In contrast, our method degrades gracefully

despite test poses being drastically different from training

poses and very challenging. Hence, the performance gap on

IoU surface between our method and NASA increases from

4.6% to 20.4%. As can be seen in Fig. 6, our method gener-

ates natural shapes for the given poses while NASA fails to

generate correctives at bone intersections for unseen poses,

leading to noticeable artifacts. Pose-ONet and Back-D fail

to generate meaningful shapes and Back-LBS produces dis-

torted bodies due to incorrect skinning weights.

Learned Skinning Weights: We demonstrate our learned

skinning weights in Fig. 1. Our model learns plausible skin-

ning weights with smooth transitions for all moving body

parts, reflecting the correct body part assignment. More re-

sults can be found in the supplementary material.

4.5. Results on Clothed Humans

Our method can also be applied to modeling clothed

humans. We train SNARF using meshes from the CAPE

dataset. The results are shown in Fig. 7. Our method is

able to model different clothing types with flexible topol-

ogy and generates realistic results in novel poses with plau-

sible local details, such as wrinkles. The clothing deforms

naturally with the body pose, except for very extreme poses

where prediction quality degrades gracefully. Fig. 8 shows

the canonical shapes corresponding to different body poses.

C
an
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al

Po
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d

Figure 8: Pose-dependent non-linear deformations (cor-

rectives) in canonical space. The heatmaps show the dif-

ferences (yellow=large, zoom in for more details) between

the canonical shape for the current pose and the one for the

canonical pose, demonstrating the flexibility of the defor-

mations that can be captured by our model.

5. Conclusion

In this paper, we proposed a differentiable forward

skinning model for articulating neural implicit surfaces.

Our method learns continuous pose-conditioned shapes and

skinning weights from meshes and is able to generate plau-

sible shapes in nearly arbitrary poses. We obtain state-of-

the-art results on articulated neural implicit representations

for 3D human bodies and demonstrate significantly better

generalization to unseen poses than the baselines. We show

SotA results on challenging cases of (clothed) 3D humans

with diverse shapes and poses. In future work, we plan to

extend our method to learn across subjects and from images

only using differentiable rendering [35].
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