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ABSTRACT 

W’e present a formal s\ ntax and semantics for SNePS considered as 
the (modeled) mind of a cogn:ti\e agent. The semantics is based 
on a Meinongian theory of’ the intensional objects of’ thought that 
is appropriate for 41 considered as “computational philosophy” or 
“computational psychology”. 

1. INTRODUCTION. 
W’e present a formal syntax and semantics for the SNePS 
Semantic Network P recessing System (Shapiro 1979), based on a 
\leinongian theory of the intensional objects of thought (Rapaport 
198Sa). Such a theory avoids possible worlds and is appropriate 
t or AI considered as “computational philosophy”-AI as the study 
of how intelligence is possible-or “computational psychology”- 
.ql with the goal of w-riting programs as models of human cogni- 
tile behavior. Recently, SNePS has been used for a variety of AI 
research and applications projects. These are described in Shapiro 
k Kapclport 1985, of u hich the present paper is a much shortened 
version. Here, w-e use SNePS to model (or construct> the mind of a 
cllgnitive agent, referred to do C.ASSIE (the cognitive Agent of 
the SNePS System--an Intelligent Bntitv). 

2. INTENSIONAL KNOWLEDGE REPRESENTATION. 
\\ePS represents propositions about entities having properties and 
standing in relations. Nodes represent the propositions, entities, 
properties, and relations, while the arcs represent structural links 
kt \veen these. S?WS nodes might represent extensional entities, 
whose identity conditions do not depend on their manner of 
representation. Two extensional entities are equivalent (for some 
purpose) iff they are identical (i.e., iff “they” are really one entity, 
not two>. 

Although S?(ePS can be used to represent extensional entities 
in the world, we believe that it must represent intensional 
entities-entities whose identity conditions do depend on their 
manner of representation. Two intensional entities might be 
equivalent (for some purpose) without being identical (i.e., they 
might really be two, not one). Only if one wants to represent the 
relations between a mind and the world would it also have to 
represent extensional entities (Rapaport 1978, McCarthy 1979). If 
S\ePS is used just to represent a mind-i-e., a mind’s model of the 
wjoorld-- then it does not need to represent any extensional objects. 
It can then be used either to model the mind of a particular cogni- 
ti\e agent or to build such a mind-i.e., to be a cognitive agent 
itself (Vaida & Shapiro 1982 1. There have been a number of 
arguments presented in both rhe 41 and philosophical literature in 
the past few years for rife tieed I or in’en\ional entities (Castaiieda 
1974. Woods 1975. Maidn It. Sh,rp~rc~ 1982, Rapaport 198%. Rrach 
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man 1977, Routlep 1979. Parsons 19801. Among them, the f-o1 
lowing considerations are e\peciilIl\ Flgnltic.lrlt: 

Principle of Fine-Grai ned Representation: The clb.pc t\ of 
thought (i.e., intent ional object\) are intensional. d mind I dn 1!,1\e 
two or more objects of thought that correspond to only one eaten 
sional object. To tahe the classic esample, the llorning Star and 
the Evening Star might be distinct objects of thought, yet there 14 
only one extensional object (a certain astronomical body1 
corresponding to them. 

Principle of Displacement: Cognitive agents can think 
and talk about non-existents: a mind can have an object of 
thought that corresponds to no extensional object. Again to take 
several classic examples, cognitive agents can think and talk about 
fictional objects such as Santa Claus, possible but non-existing 
objects such as a golden mountain, impossible objects such as a 
round square, and possible but not-yet-proven-to-exist objects such 
as theoretical entities (e.g., black holes). 

If nodes only represent intensions (and extensional entities 
are not represented in the network), how do they link up to the 
external, extensional world 3 One answer is by means of a LES 
arc (see (Syn.1) and (Sem.l), below): The nodes at the head of the 
IL\ arc are au,. (the user’s> interpretation of the node at its tail. 
The network without the 1,1’S arcs and their head-nodes displa.vs 
the strucfure of CASSIH’s mind (Carnap 1928, Sect. 14; for other 
answers, see Maida & Shapiro 1982, Shapiro & Rapaport 1985). 
3. DESCRIPTION OF SNePS. 
‘;YePS satisfies the Uniqueness Principle: There is a one-to-one 
correspondence between nodes and represented concepts. This 
principle guarantees that nodes represent intensional ob;jects and 
that nodes will be shared whenever possible. Nodes that only 
have arcs pointing to them are considered to be unstructured or 
at omit. They include: (1) sensory nodes, which-when SNePS is 
being used to model a mind-represent interfaces with the exter- 
nal world (in the examples that follow, they represent utter- 
ances); (2) base nodes, which represent individual concepts and 
properties; and (3) variable nodes, which represent arbitrary indi- 
viduals (Fine 1983) or arbitrary propositions. 

Molecular nodes, u-hich have arcs emanating Jrorn them, 
include: (1) structured indi\idunl nodes. R hich represent struc- 
tured indi\?dual concept\ or prc~prrtles (i.e., concepts and properties 
represented in such a w’av tlldt their internal structure is exhi- 
bited); and (21 structured p~opositi,~l nodes. ivhich represent pro- 
positions; those w ith no incoming arcs represent beliefs of the sys- 
tem. (\ote that strtlr tured proposition nodes c~ln also be considered 
to be structuretl IIICI \ idu.~ls.) l’rop~~sition nodes are either alolnic 
(representing dtorn]L pr!lposirions) or are &e nodes. Rule nodes 
represent deduction rules and are used for node-based deductilTe 
inf‘erence (Shapiro 1978; Shapiro & McKay 1980; Mchav & 
Shapiro 1981; Shapiro, Martins, CEr McKay 1982). For each of the 
three categories of molecular nodes (structured individuals, atomic 
propositions, and rules), there are constant nodes of that category 
and pattern nodes of that category representmg arbitrary entities 
of that category. 
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There are a few built-in arc labels, used mostly for rule 
nodes. Paths of arcs can be defined, allowing for path-based 
inference, including property inheritance w.ithin generalization 
hierarchies (see below; Shapiro 1978, Srihari 1981). All other arc 
labels are defined by the user, typically at the beginning of an 
interaction with SNePS. 

3.1. CASSIE-A Model of a Mind. 
Since most arcs are user-defined, users are obligated to pro\-ide a 
formal syntax and semantics for their Sh‘ePS networks. We shall 
describe the way in which we have been using S>ePS to build 
tY.4SSllF. Lsing Brachman’s (1979) terminology, insofar as SNePS 
is a semantic network system at the logical level and can thus be 
used to define one at the epistemological or conceptual level, CAS- 
SIl: is SiePS being used at a conceptual level. 

The nodes represent the objects of CASSIE’s thoughts-the 
things she thinks about, the properties and relations with which 
she characterizes them, her beliefs, etc. (Maida & Shapiro 1982, 
Rapaport 1985a). The Principle of Displacement says that a cogni- 
tive agent is able to think about virtually anything, including 
fictional objects, possible but non-existing objects. and impossible 
obpcts. Any theory that would account for this requires a non- 
standard logic, and its semantics cannot be limited to merely possi- 
ble w orlds. 

Theories based on Alexius Ileinong’s Theory of Objects are of 
precisely this hind. 2leinong held that psychological experiences 
consist in part of a psychological act (such as thinking, believing, 
wishing, etc.) and the object to which the act is directed (e.g., the 
object that is thought about or the proposition that is believed). 
Two kinds of ‘Meinongian objects of thought are relevant for us: 
(1) The objectum, or object of “simple” thoughts: Santa Claus is 
the objecturn of John’s act of thinking of Santa Claus. The mean- 
ing of a noun phrase is an objectum. (2) The objective, or object 
of belief, knowledge, etc.: that Santa Claus is thin is the objective 
of John’s act of believing that Santa Claus is thin. Objectives are 
like propositions in that they are the meanings of sentences and 
other sentential structures. Note that objecta need not exist and 
that objectives need not be true. (Cf. Meinong 1904; Rapaport 
1978, 1981; Castaiieda 1974, 1975; Routley 1979; Parsons 1980; 
Lambert 1983; Zalta 1983.) 

This is, perhaps, somewhat arcane terminology for w-hat 
might seem lihe AI common sense. But without an underlying 
theory, such as Meinong’s, there is no way to be sure if common 
sense can be trusted. It is important to note that not only are all 
represented things intensional, but that they are all obJects of 
(‘.~SSIE’s mental acts; i.e., they are all in CASSIE’s mind (her 
“belief space”)-they are all intent ional. ‘I‘hus, even if CASSIE 
represents the beliefs of someone else (e.g., John’s belief that Lucy 
IS rich, as in the conversation in Sect. 3.2), the objects that she 
represents as being in that person’s mind (as being in his “belief 
space”) are actually CASSIE’s representations of those objects-i.e., 
they are in CASSIE’s mind. 

3.2. A Conversation with CASSIE. 
Before giving the syntax and semantics of the case-frames 
employed in representing CASSIE’s “mind”, we present a conversa- 
tion we had with her, showing the network structure as it is 
built-i.e., showing the structure of CASSIE’s mind as she is given 
information and as she infers new information. An ATN 
parser/generator (Shapiro 1982) was used to parse the English 
input into SNePS and the SNePS structures into English. User 
input is on lines with the :-prompt; CASSIE’s output is on the 
lines that follow. Comments are enclosed in brackets. A frag- 
ment of the full network showing CASSIE’s state of mind at the 
end of the conversation is shown in Fig. 1. 

: J’oung Lucy petted a yellow dog 
1 understand that young I.ucy petted a vellow dog 

[CASSIE is told something, which she now believes. At this point, 
her entire belief structure consists of nodes bl, ml-m13, and the 
corresponding sensory nodes. The node labeled “now” represents 
the current time, so the petting is clearly represented as being in 
the past. CASSIE’s response is “I understand that” appended to her 
1:nglish description of the proposition just entered.] 

W’hat is yellow 
a dog is yellow 

[This response shows that CASSIE actually has some beliefs; she 
did not just parrot back the above sentence.] 

: Dogs are animals 
I understand that dogs are animals 

[CASSIE is told a small section of a class hierarchy.] 

: Who petted an animal 
young Lucy petted a yellow dog 

[CASSIE can answer the question using the class hierarchy, be- 
cause, prior to the conversation, an inheritance rule was given to 
SNePS. The rule says that the CLASS arc is implied by the path 
consisting of a CLASS arc followed by zero or more occurrences of 
the two-arc path consisting of the converse SUBCLASS arc fol- 
lowed by the SUPERCLASS arc (Shapiro 1978, Srihari 1981). The 
dog was called “a yellow dog” rather than “a yellow animal” be- 
cause the redundant CLASS arc is not built. CASSIE’s new 
belief’s about the dog’s classification and color consists of nodes 
m9-m13, m16-m17, and the corresponding sensory nodes.] 

: Lucy is sweet 
I understand that young Lucy is sweet 

[CASSIE’S response shows that she identifies this Lucy with the 
previous Lucy.] 

: I.UCY is a girl 
I understand that sweet young Lucy is a girl 

[The beginning of a class hierarchy for I.uc\‘. Sotice that all the 
adpcti\ al properties of Iucy are mentioned.] 

: (;irls are people 
I understand that girls are people 

[\lore of the class hierarchy is given.] 

: What was petted by a person 
a yellow dog was petted by sweet young Lucy 

[The proposit’ ion is retrieved using the CLASS inheritance rule.] 

: The dog is named Rover 
I understand that Ro\.er IS a yellow dog 

[“I-he dog’ refers to the only dL>,g (‘ASSlE knows about, who is 
now giLen if name.1 

: \Yhat v.a\ petted 1, a perkon 
ye] low Rev er w ‘1s petted bv \v. eet \ oung Iucy 

[‘fhis que\tion \vas ;l\ked before hut I\ ,,nswered differently this 
time, because the dog now ha\ it name. and (‘ASSII: prefers to 
Jp,Lribe an indi\ idud 1,~ its n,lmr M hen it h‘ts one.] 

: John believes that 1.uc.y is rich 
I understand that John believes that LUCY is rich 

[In our current development of‘ (‘ASSIE. she interprets ‘believes 
that’ contexts to be de ditto, so she assumes that the Lucy that 
John has in mind is a different one from the Lucy that she knows. 
(:ASSIE’s beliefs about the two Iucies are added to the network 
(nodes m40, m44).] 
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: Who is rich 
1 don’t know. 

(Sem.1) i is the ob,jectum corresponding to the utterance of W. 

[(‘ASSlh hnc\ks no onr‘ who 1s rich. She only believes rhat John 
believes that someone (u horn he believes to be named ‘l,ucy’) is 
rich. The answer IS ‘I don’t know’, rather than ‘no one is rich’, be- 
cause CXSSIE doesn’t use the closed-world hypothesis.] 

(Syn.2) If either “t ,” dnd “1 ?” are identifiers not previously used, 
or “t ,” is an identifier nor pre\ ~nusly used and t, is a temporal 
node, then 

BEFORE 

: N’ho is swleet is a network and t I and t J are tempt-al nodes, i.e. individual 
young I,uc?: is sheet nodes representing times. 

[This question demonstrates that I.ucy is able to answer a “v,Tho 1s 
<property >” question when she has relevant beliefs.] 

(Sem.2) I, and t z are objecta corresponding to two times, the 
former occurring before the latter. 

: John belie\?es that l.ucy is old 
I understand that John believes that rich Lucy is old 

nodes, and “172 ” is an identifier 

[(*.3%X a%umes that John knows a different I*ucy than she 
hnows, but she assumes that all John’s beliefs about “l,ucy” are 
about the same I,ucy.] 

(Syn.3) If i and j are individual 
not previously used, then 

EQUIV EQUIV 

: lohn is a bov 
1 understand that John is a bov 

is a network and m is a structured proposition node. 

[This and the next two Inputs are given to establl5h more of the 
class hierarchy and to make it clear that when <:.4SSII: answers 
the last question of this session, she is doing both path-based rea- 
soning and node-based reasoning at the same tlme.1 

(Sem.3) m is the objective corresponding to the proposition that 
objecta i and j (are believed by CASSIE to> correspond to the 
same actual object. (This is not used in the conversation, but is 
needed for fully intensional representational systems; cf. Rapaport 
1978, 1984b; Castaiieda 1974; Maida & Shapiro 1982.) 

: F3oys are people 
1 understand that boys are people 

(Syn.4) If i and j are individual nodes and “m ” is an identifier 
not pre\ iously used, then 

PROPERTY OBJECT 
: Ilogs are pets 
1 understand that dogs are pets 

: ]:or every p and d if p 1s a person and d 1s a pet then p loves d 
1 understand that for every d and p, If p is a person and d is a pet 
then p loves d 

15 a network and m is a structured proposition node. 

(Sem.4) m is the 
has the property j 

ObJective correspondi ng to the proposition that i 

nodes and “m ” is an identifier (Syn.5) If i and j are individual 
not pre\.iou9ly used, then [y]‘hls n&-based rule fits Into thr CIA\\ lrler,trLh?: as node m%. 

Thiy is, Lye bellr\e, eyul\-alent t(T the Inlegr,tted Tllo.\ Al%)\ 
mechanism proposed for h K\ I’ I‘( )L i I\r ,Ichrtian et al. 1983. Hr,~ch 
man et al. 19SS).l 
: \\‘ho lo\-e5 ~1 pet 
\LJ eet > clung l.UCY IO\-es xel]o\ Ro\ er and 
John lo\es vellnw Koker 
[The question was answered using path-based lnferenclng to 
deduce that I.ucy and John are people and that Rover is a pet, and 
node-ba<ed inferencing to Conclude that. therefore, I-ucy and John 
lo\ e Ro\ er.] 

PROPER -NAME OBJECT 

is a net\,-orh and 1n is a structured proposition node. 

(Sem.5) m is the objective corresponding to the proposition that 
objectum i’s proper name is j. (j is the objectum that IS i’s prt’p- 
er name: its expression in English IS represented by a node at the 
head of a LEN-arc emanating from j.) 

3.3. Syntax and Semantics of SNePS. 
In thl\ sectlon, LX e gi\ e the syntax and semantic% of the nodes and 
e\rL\ used In the Interaction. \Vhat me present here is our current 
mL,del: \xe mahe no claims to completeness of the representational 
xheme. \L’e begin with a few rough definitions. ((Yf. Shapiro 
1979, 5eeLt. 2.1. for more precise ones.) 

(Def. 1) A node do?ninates another node if there is a path of 
directed arcs from the first node to the second node. 

(Syn.6) If i and j are individual nodes and “?n” is an Identifier 
not previously used, then 

CLASS MEMBER 

IS a nets-ork and ~tz is a structured proposition node. 

correspondi ng to the proposition that i (Sem.6) I)Z is the objective 
is a (member of class) j. 

(Def. 2) A pattern node is a node that dominates a variable node. 

(Def. 3) An individual node is either a base node, a variable node, 
or a structured constant or pattern indil~idual node. 

(Def. 4) A proposition node is either a structured proposition 
node or an atomic variable node representing an arbitrary proposi- 
tion. 

(Syn.7) If i and j are Indi\~ldual nodes and “m” IS an identifier 
not previously used. then 

SUPERCLASS SUBCLASS 

is a network and nz is a structured proposition node. 

/ 
(Syn.1) If “w” is a(n English) Lvord and 2” is an identifier not 
pre\ 10us1y u5ed, then 

LEX 
a-----B@ 

proposition that (Sem.7) 772 is the objective corresponding to the 
(the class of‘) is are (a subclass of the class of) js. 

(Syn.8) If i, , i, , i 1 are individual nodes, t , , t 2 are temporal 
nodes, and I’m” is an identifier not previously used, then 

1’; a netv,ork, w is a censor\’ node, and i is a structured Indl\ Idual 
node. 
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is a network and m is a structured proposition node. (Nodes m40, 
m34 are examples of this for the mental act of believing; cf. Rapa- 
port 1984b, Rapaport & Shapiro 1984. The ETIME and STIME 
arcs are optional and can be part of any proposition node; they are 
a provisional technique for handling temporal information-cf. 
Shapiro & Rapaport 1985.) 

(Sem.8) m is the objective corresponding to the proposition that 
agent i , performs act i z with respect to i 3 starting at time t 1 and 
ending at time t 2, where t , is before t *. 

Rule nodes have been described more fully in Shapiro 1979, 
and a full syntax and semantics for them is presented in Shapiro 
and Rapaport 1985. Here, we present the syntax and semantics 
only for the node-based inference rule used in the conversation 
with CASSIE (Fig. 2, node m56): 

(Syn.9) If a,, . . . , a,, C,, . . . , Cj, and d,, . . . , dk are PrOpOSitiOn 
nodes (n, j, k 1 0), and “T ” is an identifier not previously used, 
then 

is a network, and T is a rule node. 

(Sem.9) r is the objective correspondmg to the proposition that 
the conjunction of the propositions a ,, , . , a, relevantly implies 
each cl (1 5 1 I j) and relevantly implies edch dl (1 I1 5 k) for 
which there is not a better reason to belie1.e it is false. (The dl 
are default consequences: each is Implied only if it is neither the 
case that CASSIE already believes not dl nor that not di follows 
from non-default rules.) 

(Syn.10) If r is a rule node, and I- dominates variable nodes 

Vl, * . . , v,, and, in addition, arcs labeled “AVB” go from r to each 
vi, then r.-is a quantified rule node. 

(Sem.10) f’ is the objective corresponding to the proposition that 
the rule that would be expressed by T without the AVB arcs 
holds after replacing each vi by any object in its range. 

4. SNePS AND CASSIE AS SEMANTIC NETWORKS. 
We conclude by looking at SKePS from the perspective of 
Brachman’s discussions of structured inheritance networks and 
hierarchies of semantic-network formalisms (Brachman 1977, 
1979). Brachman offers six criteria for semantic networhs: 

A semantic network must have a uniform notation. SNePS 
provides some uniform notation with its built-in arc labels for 
rules, and it provides a uniform procedure for users to choose their 
own notation. 

A semantic network must have an algorithm for encoding 
information. This is provided for by the interfaces to SNePS, e.g., 
the parser component of our ATN parser-generator inputs English 
sentences and outputs SNePS networks. 

A semantic network must have an “assimilation” mechanism 
for building new information in terms of stored information. 
SNePS provides for this by the Uniqueness Principle, lvhich 
enforces node sharing during network building. The assimilation 
is demonstrated by the generator component of our ATK parser- 

generator, which takes SKePS nodes as input and produces English 
output expressing those nodes: In our conversation with CASSIE, 
the node built to represent the new fact, ‘Lucy is sweet’, was 
expressed in terms of the already existing node for Lucy (who had 
pre\‘iously been described as young) by ‘young Lucy is sv,Teet’. 

A semantic net\.-ark should be neutral with respect to net- 
work formahxms at higher levels in the Brachman hierarchy. 
SNePS is a semantic networb at the “logical” level, and CASSIE is 
(perhaps) at the “conceptual” level. SNePS is neutral in the 
relevant sense; it is not so clear whether CASSIE is. But a more 
important issue than neutrality is the reasons why one formalism 
should be chosen over another. Several possible criteria that a 
researcher might consider are: eficiency (including the ease of 
interfacing with other modules; e.g., our ATh‘ parser-generator has 
been designed for direct interfacing with SKePS), psychological 
adequacy (irrelevant for SNePS, but precisely what CASSIE is 
being designed for), ontological adequacy (discussed below), logicat 
adequacy (guaranteed for SNePS, because of its inference package), 
and natural-language Qdf?qUQCy (a feature of SNePS’s interface 
with the ATN grammar). 

A semantic network should be QdeqUQZe for any higher-level 
network formalism. SNePS meets this nicely: KL-OKE can be 
implemented in SNePS (Tranchell 1982). 

A semantic network should have a semantics. We presented 
that in Sect. 3.3. But there are at least two sorts of semantics. 
SYePS nodes have a meaning within the system in terms of their 
links to other nodes; they have a meaning so?- users as provided 
by nodes dt the heads of LES arcs. Arcs, on the other hand, only 
have meaning within the system, provided by node- and path- 
based inference rules (which can be thought of as procedures that 
operate on the arcs). In both cases, there is an “internal”, system’s 
semantics that is holistic and structural: the meaning Of the nodes 
and arcs are not given in isolation, but in terms of the entire net- 
work. This sort of “syntactic” semantics differs from a semantics 
that provides links to an external interpreting system, such as a 
user or the “world’‘--I.e.. links between the network’s way Of 
representing information dnd the user’s a’ay. It is the latter Sort 
of semantics that we provided for (‘.1%SIE u!lth respect to an 
ontology of Meinongian uhJects, which are not to be tahen as 
representing things in the world. C4SSIE’s ontology 1s an 
epislemological ontology (Rapaport 1985’1986) of the purely 
intensional items that enable a cognitive agent to h‘l\o l~?Iiefs 
about the world. It is a theory of what there must be In clrdel for 
a cognitiye agent to ha\Te beliefs about \vhat there is. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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