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ABSTRACT

We present a formal svntax and semantics for SNePS considered as
the (modeled) mind of a cognitive agent. The semantics is based
on a Meinongian theory of the intensional objects of thought that
is appropriate for Al considered as “computational philosophy” or
“computational psychology”.

1. INTRODUCTION.

We present a formal syntax and semantics for the SNePS
Semantic Network P rocessing S ystem (Shapiro 1979), based on a
Meinongian theory of the intensional objects of thought (Rapaport
1985a). Such a theory avoids possible worlds and is appropriate
tor Al considered as “computational philosophy”—AlI as the study
of how intelligence is possible—or “computational psychology”—
Al with the goal of writing programs as models of human cogni-
tive behavior. Recently, SNePS has been used for a variety of Al
research and applications projects. These are described in Shapiro
& Rapaport 1985, of which the present paper is a much shortened
version. Here, we use SNePS t¢ model (or construct) the mind of a
ognitive agent, referred to as CASSIE (the Cognitive Agent of
the S NePS S ystem—an / ntelhigent £ ntity).

2. INTENSIONAL KNOWLEDGE REPRESENTATION.

S\ePS represents propositions about entities having propertiesl a‘nd
<tanding in relations. Nodes represent the propositions, entities,
properties, and relations, while the arcs represent structural lllgks
hetween these. SNePS nodes might represent extensional entities,
whose identity conditions do not depend on their manner of
representation. Two extensional entities are equivalent (for some
purpose) iff they are identical (i, iff “they” are really one entity,
not two).

Although SNePS can be used to represent extensional entities
in the world, we believe that it must represent intensional
entities—entities whose identity conditions do depend on their
manner of representation. Two intensional entities might be
equivalent (for some purpose) without being identical (ie., they
might really be two, not one). Only if one wants to represent the
relations between a mind and the world would it also have to
represent extensional entities (Rapaport 1978, McCarthy 1979). If
SNePS is used just to represent a mind—i.e., 2 mind’s model of the
world-—then it does not need to represent any extensional ob jects.
It can then be used either to model the mind of a particular cogni-
tive agent or to build such a mind—i.e., to be a cognitive agent
itselt (Maida & Shapire 1982). There have been a number of
arguments presented 1n both rthe A\l und philosophical literature in
the past few years for the need tor in‘ensional entities (Castafieda
1974, Woods 1975, Maida & Shapire 1982, Rapaport 19854, Brach
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man 1977, Routley 1979, Parsons 1980). Among them, the fol
lowing considerations are especiallv significint:

Principle of Fine-Grained Representation: The chjects f
thought (i.e, intent 1onal objects) are intensional: o mind «un have
two or more objects of thought that correspond to only une exten
sional object. To take the classic example, the Morning Star and
the Evening Star might be distinct objects of thought, vet there is
only one extensional object (a certain astronomical body
corresponding to them.

Principle of Displacement: Cognitive agents can think
and talk about non-existents: a mind can have an object of
thought that corresponds to no extensional object. Again to take
several classic examples, cognitive agents can think and talk about
fictional objects such as Santa Claus, possible but non-existing
objects such as a golden mountain, impossible objects such as a
round square, and possible but not-vet-proven-to-exist objects such
as theoretical entities (e.g., black holes).

If nodes only represent intensions (and extensional entities
are not represented in the network), how do they link up to the
external, extensional world”? One answer is by means of a LEX
arc (see (Syn.1) and (Sem.1), below): The nodes at the head of the
LEX arc are our (the user’s) interpretation of the node at its tail.
The network without the LLEX arcs and their head-nodes displavs
the structure of CASSIE’s mind (Carnap 1928, Sect. 14; for other
answers, see Maida & Shapiro 1982, Shapiro & Rapaport 1985).

3. DESCRIPTION OF SNePS.

SNePS satisfies the Uniqueness Principle: There is a one-to-one
correspondence between nodes and represented concepts. This
principle guarantees that nodes represent intensional objects and
that nodes will be shared whenever possible. Nodes that only
have arcs pointing to them are considered to be unstructured or
atomic. ‘They include: (1) sensory nodes, which—when SNePS is
being used to model a mind—represent interfaces with the exter-
nal world (in the examples that follow, they represent utter-
ances); (2) base nodes, which represent individual concepts and
properties; and (3) variable nodes, which represent arbitrary indi-
viduals (Fine 1983) or arbitrary propositions.

Molecular nodes, which have arcs emanating from them,
include: (1) structured individual nodes. which represent struc-
tured individual concepts or properties (i.e., concepts and properties
represented in such a wav that their internal structure is exhi-
bited); and (2) structured proposition nodes. which represent pro-
positions; those with no mcoming arcs represent beliefs of the sys-
tem. (Note that structured proposition nodes can also be considered
to be structured mu viduals.) Proposition nodes are either atomic
(representing atomi. propositions) or are rule nodes. Rule nodes
represent deduction rules and are used for node-based deductive
inference (Shapiro 1978; Shapiro & McKay 1980; Mckay &
Shapiro 1981; Shapiro, Martins, & Mckay 1982). For each of the
three categories of molecular nodes (structured individuals, atomic
propositions, and rules), there are constant nodes of that category
and pattern nodes of that category representing arbitrary entities
of that category.



There are a few built-in arc labels, used mostly for rule
nodes. Paths of arcs can be defined, allowing for path-based
inference, including property inheritance within generalization
hierarchies (see below; Shapiro 1978, Srihari 1981). All other arc
labels are defined by the user, typically at the beginning of an
interaction with SNePS.

3.1. CASSIE—A Model of a Mind.

Since most arcs are user-defined, users are obligated to provide a
formal syntax and semantics for their SNePS networks. We shall
describe the way in which we have been using SNePS to build
CASSIE. Using Brachman’s (1979) terminology, insofar as SNePS
is a semantic network system at the logical level and can thus be
used to define one at the epistemological or conceptual level, CAS-
SIL is SNePS being used at a conceptual level.

The nodes represent the objects of CASSIE’s thoughts—the
things she thinks about, the properties and relations with which
she characterizes them, her beliefs, etc. (Maida & Shapiro 1982,
Rapaport 1985a). The Principle of Displacement says that a cogni-
tive agent is able to think about virtually anything, including
fictional objects, possible but non-existing objects, and impossible
objects. Any theory that would account for this requires a non-
standard logic, and its semantics cannot be limited to merely possi-
ble worlds.

Theories based on Alexius Meinong’s Theory of Objects are of
precisely this kind. Meinong held that psychological experiences
consist in part of a psychological act (such as thinking, believing,
wishing, etc.) and the object to which the act is directed (e.g., the
object that is thought about or the proposition that is believed).
Two kinds of Meinongian objects of thought are relevant for us:
(1) The objectum, or object of “simple” thoughts: Santa Claus is
the objectum of John’s act of thinking of Santa Claus. The mean-
ing of a noun phrase is an objectum. (2) The objective, or object
of belief, knowledge, etc.: that Santa Claus is thin is the objective
of John’s act of believing that Santa Claus is thin. Objectives are
like propositions in that they are the meanings of sentences and
other sentential structures. Note that objecta need not exist and
that objectives need not be true. (Cf. Meinong 1904; Rapaport
1978, 1981; Castafieda 1974, 1975; Routley 1979; Parsons 1980);
Lambert 1983; Zalta 1983.)

This is, perhaps, somewhat arcane terminology for what
might seem like Al common sense. But without an underlying
theory, such as Meinong’s, there is no way to be sure if common
sense can be trusted. It is important to note that not only are all
represented things intensional, but that they are all objects of
("ASSIF’s mental acts; i.e., they are all in CASSIE's mind (her
“belief space”)—they are all intentional. Thus, even if CASSIE
represents the beliefs of someone else (e.g., John’s belief that Lucy
1s rich, as in the conversation in Sect. 3.2), the objects that she
represents as being in that person's mind (as being in his “belief
space”) are actually CASSIE’s representations of those objects—ie.,
they are in CASSIE’s mind.

3.2. A Conversation with CASSIE.

Before giving the syntax and semantics of the case-frames
employed in representing CASSIE’s “mind”, we present a conversa-
tion we had with her, showing the network structure as it is
built—i.e., showing the structure of CASSIE’s mind as she is given
information and as she infers new information. An ATN
parser/generator (Shapiro 1982) was used to parse the English
input into SNePS and the SNePS structures into English. User
input is on lines with the :-prompt; CASSIE’s output is on the
lines that follow. Comments are enclosed in brackets. A frag-
ment of the full network showing CASSIE’s state of mind at the
end of the conversation is shown in Fig. 1.

: Young Lucy petted a vellow dog
I understand that voung Lucy petted a vellow dog

[CASSIE is told something, which she now believes. At this point,
her entire belief structure consists of nodes bl, m1-m13, and the
corresponding sensory nodes. The node labeled “now” represents
the current time, so the petting is clearly represented as being in
the past. CASSIE’s response is “I understand that” appended to her
I'nglish description of the proposition just entered.]

What is yellow
a dog is yellow

[This response shows that CASSIE actually has some beliefs; she
did not just parrot back the above sentence.]

: Dogs are animals
I understand that dogs are animals

[CASSIE is told a small section of a class hierarchy.]

: Who petted an animal
young Lucy petted a yellow dog

[CASSIE can answer the question using the class hierarchy, be-
cause, prior to the conversation, an inheritance rule was given to
SNePS. The rule says that the CLASS arc is implied by the path
consisting of a CLASS arc followed by zero or more occurrences of
the two-arc path consisting of the converse SUBCLASS arc fol-
lowed by the SUPERCLASS arc (Shapiro 1978, Srihari 1981). The
dog was called “a yellow dog” rather than “a yellow animal” be-
cause the redundant CLASS arc is not built. CASSIE’s new
belief’s about the dog’s classification and color consists of nodes
m9-m13, m16-m17, and the corresponding sensory nodes.]

: Lucy is sweet
[ understand that young Lucy is sweet

[CASSIE’s response shows that she identifies this Lucy with the
previous Lucy.]

s lucy s a girl

I understand that sweet voung Lucy is a girl

[The beginning of a class hierarchv for Lucy. Notice that all the
adjectival properties of lLucy are mentioned.}

: Girls are people
I understand that girls are people

[More of the class hierarchy is given.]

: What was petted by a person

a vellow dog was petted by sweet young Lucy

[The proposition is retrieved using the CLASS inheritance rule.]

: The dog is named Rover

I understand that Rover is a vellow dog

[“The dog’ refers to the only dog CASSIE knows about, who is
now given a name.]

: What was petted by a person

vellow Rover was petted by sweet voung Lucy

[This question was ashed before but 15 unswered differently this
time, because the dog now has a name, and CASSIE prefers to
describe an individual by its name when at has one.]

. John believes that l.ucy is rich
[ understand that John believes that Lucy is rich

[in our current development of (CASSIL, she interprets ‘believes
that’ contexts to be de dicto, so she ussumes that the Lucy that
John has in mind is a different one from the Lucy that she knows.
CASSIE’s beliefs about the two lLucies are added to the network
(nodes m40, m44).)
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: Who is rich
I don’t know.

[C:ASSIE knows no one who is rich. She only believes that John
believes that someone (whom he believes to be named ‘Lucy’) is
rich. The answer 1s ‘I don’t know’, rather than ‘no one is rich’, be-
cause CASSIF doesn’t use the closed-world hypothesis.]

: Who is sweet
voung Lucy is sweet

[This question demonstrates that lLucy is able to answer a “who is
<property>" question when she has relevant beliefs.]

: John believes that lLucy is old
I understand that John believes that rich Lucy is old

[CASSIE assumes that John knows a different T.ucy than she
knows, but she assumes that all John’s beliefs about “Lucy” are
about the same Lucy.]

: John is a boy
I understand that John is a boy

[This and the next two inputs are given to establish more of the
class hierarchy and to make it clear that when CASSIE answers
the last question of this session, she is doing both path-based rea-
soning and node-based reasoning at the same time.]

: Bovs are people
1 understand that boys are people

: Dogs are pets
I understand that dogs are pets

: For every p and d if pisa person and d is a pet then p loves d
I understand that for every d and p, if pis a person and d is a pet
then p loves d

[This node-based rule fits into the class hierarchy as node mS6.
This is, we believe, equivalent to the integrated TBox ABoy
mechanism proposed for KRYPTON {Brachman et al. 1983, Brach-
man et al. 1985).]

: Who Joves a pet

sweet voung Lucy loves vellow Rover and

lohn loves vellow Rover

[The question was answered using path-based inferencing to
deduce that Lucy and John are people and that Rover is a pet, and
node-based inferencing to conclude that. therefore, lucy and John
love Rover.]

3.3. Syntax and Semantics of SNePS.

In this section, we give the svntax and semantics of the nodes and
arcs used in the interaction. What we present here is our current
mudel: we make no claims to completeness of the representational
scheme. We begin with a few rough definitions. (Cf. Shapiro
1979, Sect. 2.1, for more precise ones.)

(Def. 1) A node dominates another node if there is a path of
directed arcs from the first node to the second node.

(Def. 2) A pattern node is 2 node that dominates a variable node.
(Def. 3) An individual node is either a base node, a variable node,
or a structured constant or pattern individual node.

(Def. 4) A proposition node is either a structured proposition
node or an atomic variable node representing an arbitrary proposi-
tion.

(Syn.1) If “w” is a(n English) word and
previously used, then

s
1

is an identifier not

LEX
is « network, w is a sensorv node, and i is a structured individual
node.

(Sem.1) i is the objectum corresponding to the utterance of w.

(Syn.2) If either “t,” and “1,” ore identifiers not previously used,
or ;" is an identifier not previocusly used and ¢, is a temporal
node, then

BEFORE

is a network and ¢, and ¢, are temporal nodes, i.e.
nodes representing times.

individual

(Sem.2) 1, and 1, are objecta corresponding t0 two times, the
former occurring before the latter.

(Syn.3) If i and j are individual nodes, and “m” is an identifier
not previously used, then

EQUIV EQUIV

is a network and m is a structured proposition node.

(Sem.3) m is the objective corresponding to the proposition that
objecta i and j (are believed by CASSIE to) correspond to the
same actual object. (This is not used in the conversation, but is
needed for fully intensional representational systems; cf. Rapaport
1978, 1984b; Castafieda 1974; Maida & Shapiro 1982.)

(Syn.4) If i and j are individual nodes and “m” is an identifier
not previously used, then

PROPERTY
D

Is a network and m is a structured proposition node.

OBJECT

(Sem.4) m is the objective corresponding to the proposition that i
has the property j.

)

(Syn.5) 1f i and j are individual nodes and “m™ is an identifier

not previously used, then

PROPER-NAME

is a network and m is a structured proposition node.

OBJECT

(Sem.5) m is the objective corresponding to the proposition that
objectum i’s proper name is j. (j is the objectum that 1s i’s prop-
er name; its expression in English is represented by a node at the
head of a LEX-arc emanating from j.)

{Syn.6) If i and j are individual nodes and “m” is an identifier

not previously used, then
CLASS

is @ network and m is a structured proposition node.

MEMBER

(Sem.6) m is the objective corresponding to the proposition that i
is a (member of class) j.

(Syn.7) If i and j are individual nodes and “m” is an identifier
not previously used. then

SUPERCLASS SUBCLASS

()

is a network and m is a structured proposition node.

(Sem.7) m is the objective corresponding to the proposition that
(the class of) is are (a subclass of the class of) js.

(Syn.8) If i,,i,,i; are individual nodes, ¢, ,?, are temporal
nodes, and “m” is an identifier not previously used, then
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is a network and m is a structured proposition node. (Nodes m40,
m44 are examples of this for the mental act of believing; cf. Rapa-
port 1984b, Rapaport & Shapiro 1984. The ETIME and STIME
arcs are optional and can be part of any proposition node; they are
a provisional technique for handling temporal information—cf.
Shapiro & Rapaport 1985.)

(Sem.8) m is the objective corresponding to the proposition that
agent i, performs act i, with respect to i; starting at time ¢, and
ending at time #,, where ¢ is before ¢ ;.

Rule nodes have been described more fully in Shapiro 1979,
and a full syntax and semantics for them is presented in Shapiro
and Rapaport 1985. Here, we present the syntax and semantics
only for the node-based inference rule used in the conversation
with CASSIE (Fig. 2, node m56):

(Syn.9) If ay,...,8,,Cpo..-,Cj,and dy, ..., dy are proposition
nodes (n, j, k 2 0), and “r” is an identifier not previously used,
then

is a network, and r is a rule node.

(Sem.9) r is the objective corresponding to the proposition that
the conjunction of the propositions ay,....d, relevantly implies
each ¢, (1 <1 < j)and relevantly implies each d; (1 =1 < k) for
which there is not a better reason to believe it is false. (The d,
are default consequences: each is implied only if it is neither the
case that CASSIE already believes not d, nor that not d; follows
from non-default rules.)

(Syn.10) If r is a rule node, and r dominates variable nodes
V1, ..., Vy,and, in addition, arcs labeled “AVB” go from r to each
v;, then  is a quantified rule node.

(Sem.10) r is the objective corresponding to the proposition that
the rule that would be expressed by r without the AVB arcs
holds after replacing each v; by any object in its range.

4. SNePS AND CASSIE AS SEMANTIC NETWORKS.

We conclude by looking at SNePS from the perspective of
Brachman’s discussions of structured inheritance networks and
hierarchies of semantic-network formalisms (Brachman 1977,
1979). Brachman offers six criteria for semantic networks:

A semantic network must have a uniform notation. SNePS
provides some uniform notation with its built-in arc labels for
rules, and it provides a uniform procedure for users to choose their
own notation.

A semantic network must have an algorithm for encoding
in formation. This is provided for by the interfaces to SNePS, e.g.,
the parser component of our ATN parser-generator inputs English
sentences and outputs SNePS networks.

A semantic network must have an “assimilation” mechanism
for building new information in terms of stored information.
SNePS provides for this by the Uniqueness Principle, which
enforces node sharing during network building. The assimilation
is demonstrated by the generator component of our ATN parser-
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generator, which takes SNePS nodes as input and produces English
output expressing those nodes: In our conversation with CASSIE,
the node built to represent the new fact, ‘Lucy is sweet’, was
expressed in terms of the already existing node for Lucy (who had
previously been described as young) by ‘young Lucy is sweet’.

A semantic network should be neutral with respect to net-
work formalisms at higher levels in the Brachman hierarchy.
SNePS is a semantic network at the “logical” level, and CASSIE is
(perhaps) at the “conceptual” level. SNePS is neutral in the
relevant sense; it is not so clear whether CASSIE is. But a more
important issue than neutrality is the reasons why one formalism
should be chosen over another. Several possible criteria that a
researcher might consider are: efficiency (including the ease of
interfacing with other modules; e.g., our ATN parser-generator has
been designed for direct interfacing with SNePS), psychological
adequacy (irrelevant for SNePS, but precisely what CASSIE is
being designed for), ontological adequacy (discussed below), logical
adequacy (guaranteed for SNePS, because of its inference package),
and natural-language adequacy (a feature of SNePS's interface
with the ATN grammar).

A semantic network should be adequate for any higher-level
network formalism. SNePS meets this nicely: KL-ONE can be
implemented in SNePS (Tranchell 1982).

A semantic network should have a semantics. We presented
that in Sect. 3.3. But there are at least two sorts of semantics.
SNePS nodes have a meaning within the system in terms of their
links to other nodes; they have a meaning for users as provided
by nodes at the heads of LEX arcs. Arcs, on the other hand, only
have meaning within the system, provided by node- and path-
based inference rules (which can be thought of as procedures that
operate on the arcs). In both cases, there is an “internal”, system’s
semantics that is holistic and structural: the meaning of the nodes
and arcs are not given in isolation, but in terms of the entire net-
work. This sort of “syntactic” semantics differs from a semantics
that provides links to an external interpreting system, such as a
user or the “world”—i.e. links between the network’s way of
representing information and the user’s way. It is the latter sort
of semantics that we provided for CASSIE with respect to an
ontology of Meinongian uhjects, which are not to be taken as
representing things in the world. CASSIE's ontology 1s an
epistemological ontology (Rapaport 1985/1986) of the purely
intensional items that enable a cognitive agent to have beliefs
about the world. It is a theory of what there must be in order for
a cognitive agent to have beliefs about what there is.
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