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In social networks, preserving privacy and preserving correlation among sensitive labels are a matter of trade-off. �is paper
presents a supervised anonymization technique, SNI (social network immunization), to publish social networks having multiple
sensitive labels with correlation. SNI publishes all sensitive labels without distorting them. It publishes sensitive labels along with
innovative labels named “partial sensitive labels” in an immune graph andmultiple supplementary trees.�ese graph and trees, by
itself or with the combination of other objects, supply correlation among sensitive labels for membership analysis. We present a
framework along with an algorithm for extracting the immune graph and supplementary trees. �ese graph and trees minimize
the membership error rate for membership analysis. �e practical evaluation of the cancer code label of individuals also indicates
the effectiveness of the SNI method.

1. Introduction

Now, the most important need for societal network analysts is
access to raw data of social networks, and the most important
need for individuals is privacy preservation when raw data are
released. Publishing social networks for research purposes
raises serious concerns for individual privacy.

�e important issue in privacy-preserving data pub-
lishing (PPDP) is maintaining privacy while maintaining the
utility of data. Data privacy and data utility are always a
matter of trade-off. In the PPDP area, it is assumed that a
data recipient may be an adversary. In this area, various
methodologies are presented for publishing data in an ad-
versary environment. Anonymization is the most common
methodology in PPDP [1, 2].

Anonymization usually provides an opportunity for the
data holder to anonymize the sensitive information of data
owners before publishing raw data of social networks. When
a social network site collects information of individuals and
a research institution receives the information for analysis
from that site, individuals are considered data owners, the

site the data holder (publisher), and the research institution
the data receiver.

In the age of social network analysis, most social network
data are explicitly available [3]. Now, publishing social
networks which have multiple sensitive labels with corre-
lation has become an essential challenge. In accordance with
Figure 1, we can model a social network as a simple graph G
(V, E, VL, EL), whereV is a set of vertices, E⊆V×V is a set of
edges, VL is a set of labels on the vertices, and EL is a set of
labels on the edges. Here, a social network is modeled as a
graph in which individuals are stated as vertices and their
features as labels on vertices or edges.

In accordance with Figure 1, each of the vertices belongs
to an individual. For example, vertex 7 belongs to Ada. Each
of the edges represents a connection between two individuals.
For example, the edge 7-2 represents a two-way connection
between Ada and Bob. Each of the labels on the edges states a
type of connection. For example, the label “110” on the edge
7-2 states just the relationship of friendship for Ada and Bob,
but the label “111” on the edge 4-5 states three relationships of
friendship, classmate, and roommate for Ed andGeorge. Each
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of the labels on the vertices represents the personal profile of
an individual. For example, the labels of vertex 7 (i.e., “59,M,
11000, P, MA”) state Ada’s personal profile. �at is, Ada is a
59-year-old man with a zip code of 11000, disease name of
pneumonia, and job title of manager.

�e labels on the vertices are typically distributed in four
classes named “explicit identifier label,” “quasi-identifier
label,” “sensitive label,” and “nonsensitive label.” �e explicit
identifier label is a set of labels, such as name and social
security number, containing information that explicitly
identifies data owners; the sensitive label, like the disease
name and job title, is in fact an label whose values are
confidential and the privacy of data owners; quasi-identifier
labels like age, sex, and zip code are a set of labels through
which the privacy of data owners can be threatened and their
sensitive values are disclosed; and the nonsensitive label
contains all labels that do not fall into the previous three
classes. �e four classes of labels are distinct.

1.1. Main Challenges. Clearly, to publish the original graph,
explicit identifier labels must be removed. Typically, about a
target victim, an adversary can have each of three background
knowledge levels or combination of them: 1, the quasi-identifier
of a target victim (i.e., the adversary knows Ada is a 59-year-old
manwith a zip code of 11000); 2, the target vertex degree (i.e., the
adversary knows the vertex degree or the number of connection
of Ada is 4); and 3, the weight edge of a target victim (i.e., the
adversary knows that four weight labels on Ada’s connections
are the friendship and classmate relationships and two weight
labels on Ada’s connections are the roommate relationship).
Here, we enumerate three main challenges, not all possible
challenges: 1, vertex linkage challenge (VLC); 2, label linkage
challenge (LLC); and 3, label correlation challenge (LCC).

1.1.1. VLC. Obviously, removing the explicit identifier label,
like name, is not sufficient, singly. For example, according to
Figure 1, if an adversary identifies Ada has four friends (vertex
degree) and only two of his friends are friends (weight edge),
then the adversary can identify the vertex and personal profile of
Ada in Figure 1. In other words, there is a neighborhood attack
[4] or vertex linkage challenge (VLC). In fact, VLC occurs when
the target victim is linked to a specific vertex in the published
graph. Clearly, to solve VLC, we can insert some additional
edges among vertices [4] or insert additional vertices in the
graph [5]. For example, by adding an additional edge (edge 6-8),
the graph in Figure 2 presents that the vertex 7 (Ada) is not
unique. Visibly, this action hides the vertex 7 (Ada) among two
vertices 2 and 6. Each of the vertices 2, 6, and 7 belongs to Ada.

Note, VLC leads to the disclosure of sensitive labels on
vertices. To solve VLC, many existing methods can be used,
like k-anonymity and l-diversity in social networks [4].

1.1.2. LLC. Label linkage challenge (LLC) is studied in two
modes: 1, LLC on edge and 2, LLC on vertex.

(1) LLC on Edge. In accordance with Figure 2, assume labels
on the edges are distributed into two classes named “sen-
sitive label” and “quasisensitive label.” �e sensitive label,
like the roommate relationship, is in fact a label whose values
can be confidential and the privacy of data owners. �e
quasisensitive label, like the friendship and classmate re-
lationships, is in fact labels whose values are not confidential
but are labels through which the privacy of data owners can
be threatened. For example, if we find that Ada has four
friends (vertex degree) and only three of his friends are
classmates (weight edge), then we can identify the room-
mates of Ada in Figure 2. In this mode, LLC occurs when the
sensitive values on the edge of a target victim are estimated,
like the recent example. Clearly, according to Figure 3, to
solve LLC on edge, we can insert a few additional edges, like
edge 7–9, among some vertices or change the values of a few
labels on some edges [5, 6]. Visibly, this action hides the
sensitive labels on edges of Ada among other edges.

Note that LLC on edge leads to the disclosure of sensitive
labels on edges. To solve LLC on edge, many existing
methods can be used, like differential privacy for edge
weights in social networks [6].
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Sensitive labels on vertices and weight edges

Weight edge

F: friendship

C: classmate

R: roommate

Disease

B: bronchitis

P: pneumonia

F: flu

G: gastritis

GU: gastric ulcer

D: dyspepsia

Job

J: janitor

M: mover

C: carpenter

T: technician

MA: manager

A: accountant

L: lawyer

�e labelsof vertices 1–9

v(name, quasi-identi�er, disease, job)

1(Dell, 35, M, 59000, B, T)

2(Bob, 59, M, 11000, P, L)

3(Cathy, 70, F, 30000, G, C)

4(Ed, 65, F, 25000, D, J)

5(George, 65, F, 25000, GU, A)

6(Irene, 59, M, 11000, P, L)

7(Ada, 59, M, 11000, P, MA)

8(Harry, 27, M, 13000, B, M)

9(Fred, 61, F, 54000, F, J)

�e label of edges

e: (FCR)

1-2: (100)

1–9: (110)

2–9: (100)

2–7: (110)

2-3: (110)

3-4: (100)

4-5: (111)

4–6: (100)

5-6: (100)

6-7: (101)

7-8: (110)

8-9: (111)

Figure 1: Original graph (G).
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(2) LLC on Vertex. In accordance with Figure 2, besides
solving VLC, the risk of attack still exists. For example, each
of the three vertices 2, 6, and 7 in Figure 2 has four friends
and their quasi-identifier and disease labels are equal to “59,
M, 11000,” and “P.” Obviously, if we have the quasi-iden-
tifier of Ada, then we can identify Ada’s disease name with
100% confidence. In this mode, LLC on vertex occurs when
the sensitive values on the vertex of a target victim are
estimated with a high confidence level of the published
graph, like the recent example.

Another example is that, according to Figure 2, if we find
that Ada has four friends, then we can find out that the
disease name of Ada is “P.” According to Figure 2, since just
three vertices 2, 6, and 7 have four friends and their quasi-
identifier and disease labels are the same, each of these
vertices belongs to Ada.

At first glance, to solve LLC on vertex, we can apply each
of the relational models for privacy preserving, like Anatomy

[7] (or alpha anonymization [8]). We can conceive the set of
labels on all vertices as a relational table and use Anatomy to
protect labels. For example, Anatomy obtains the graph in
Figure 3 as the input and returns data in Figure 4 and
Tables 1 and 2 as the output for publishing.

Any table in which each group of tuples contains at least l
separate sensitive values has the l-diversity property [9]. For
example, each of Tables 1 and 3 has the 4-diversity property.
In accordance with Figure 4 and Tables 1 and 3, Anatomy
first partitions each of the original labels of vertices into
buckets supplying the need of l-diversity; then, it extracts a
graph called quasi-identifier graph (QIG) and a table called
sensitive table (ST).

Visibly, this action hides the sensitive labels of vertices,
in two separate tables (Tables 1 and 3). Note that the count
label in Tables 1 and 3 refers to the frequency of disease labels
and job labels in the original graph (Figure 1) and Group-ID
and Group-ID2 refer to bucket identifiers in Tables 1 and 3.

Obviously, solving this challenge (LLC on vertex) results
in weakening VLC because if an adversary can identify a
target vertex, then he could deduce the sensitive values with
a low percentage of confidence. �erefore, solving LLC on
vertex is preferred rather than solving VLC.

Note that, in this work, we focus on the new challenge
(i.e., LLC on vertex) and propose a solution to disable that.

1.1.3. LCC. In accordance with Figure 4, by solving LLC on
vertex, unfortunately, an important challenge named “label
correlation challenge” (LCC) is found out. In Anatomy, LCC
refers to that the correlation among labels extremely
weakens. Preserving the correlation among labels and pri-
vacy is an important issue in publishing social networks
which have multiple sensitive labels with correlation. Since,
in real life, there is a correlation among multiple sensitive
labels, for example, in medical data, the sensitive labels like
disease, physician, symptoms, and treatment are correlated
and breaching one can easily breach the other labels.

Multiple sensitive labels without correlation are a simple
scenario in which the data publisher can use any conven-
tional privacy model, like Anatomy, which supports static
data. In fact, LCC occurs when we use a conventional privacy
model which supports static data.

Finally, note that each of the two challenges VLC and
LLC on edge leads to the disclosure of sensitive labels on
vertices or edges. To solve each of these two challenges, many
methods have been suggested. �ese methods usually edit
the vertices, edges, or labels of the original graph (by re-
moving, adding, or generalizing) [3–6, 8, 10–17]. Obviously,
editing a vertex, edge, or label may intensify (or harden) LCC
for some analyses such as membership analysis.

In this article, only focusing on two challenges LCC and
LLC on vertex, we propose a new method which can almost
supply correlation among labels for some analyses like
membership analysis and solve LLC on vertex, as much as
possible (expert’s desired thresholds).

1.2. Membership Analysis. If the set of labels on vertices is
conceived as a table, then it is immediately said that the
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Figure 2: k-anonymity graph (AG).
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conventional models, like Anatomy, can be used to protect
labels. Suppose we use Anatomy to protect labels. In ac-
cordance with Figure 4 and Tables 1 and 3, Anatomy typ-
ically uses Group-ID and Group-ID2 to reassociate the
relationship between quasi-identifier and two sensitive labels
(disease and job).

Anatomy supplies the privacy of data owners but loses
the correlation among labels and affects the accuracy of some
data analyses like membership analysis which defeats
Anatomy. Membership analysis is studied in two cases: 1,
one sensitive label and 2, multiple sensitive labels.

1.2.1. One Sensitive Label. Suppose, by using query A, we
would like to find out the personal profile of individuals who
are in the category of “SD” (stomach disease).

A:

Select distinct vertex
From original graph
Where disease in {SD}

Note that, in all queries, like query A, to remove the
redundant vertices, the clause “distinct” has used. In ac-
cordance with the taxonomic tree in Figure 5, only “GU,”
“D,” and “G” are in the category of “SD.”

If Figure 1 (original graph) is available, then the result of
running the query A is shown in Figure 6 which only has 3
valid vertices.

If Figure 4 and Table 3 are available, then the easiest way
is to run query B.

B:

Select distinct vertex
From Figure 4 and Table 3
Where Group-ID of Table 3�Group-ID of Figure 4
Disease in (“GU,” “D,” “G”)

�e result of running the query B is shown in Figure 7 in
which 3 vertices are valid and 6 vertices are invalid. So, we
distribute all vertices of a resultant graph into two distinct
classes: 1, valid vertex and 2, invalid vertex. Any vertex in
Figure 7 whose equivalent can be found in Figure 6 is a valid
vertex; otherwise, it is an invalid vertex. For example, the
vertices 3-5 in Figure 7 are valid and the vertices 1-2 and 6-9
are invalid. Note that isolating valid vertices and invalid
vertices of the resultant graph is difficult without having the
original graph or any other information.

To determine the accuracy and error of the membership
analysis, we define the membership accuracy rate (MA) and
the membership error rate (ME). Let NV be the number of
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�e labels of vertices 1–9

v(quasi-identi�er, Group-ID, Group-ID 2)

1(35, M, 59000, 2, 1) 

2(59, M, 11000, 2, 1) 

3(70, F, 30000, 1, 1) 

4(65, F, 25000, 2, 1) 

5(65, F, 25000, 1, 2) 

6(59, M, 11000, 1, 2)

7(59, M, 11000, 1, 1) 

8(27, M, 13000, 1, 2) 

9(61, F, 54000, 2, 2) 

�e label of edges

e: (FCR)

1-2: (100)

1–9: (110)

2–9: (100)

2–7: (110)

2-3: (110)

3-4: (100)

6–8: (100)

4-5: (111)

4–6: (100)

5-6: (100)

6-7: (101)

7-8: (110)

8-9: (111)

7–9: (111)

Figure 4: Quasi-identifier graph (QIG).

Table 1: Second sensitive table (SST).

Group-ID2 Job Count

1 T 1
1 L 1
1 C 1
1 J 1
2 A 1
2 L 1
1 MA 1
2 M 1
2 J 1

Table 2: Result of the query F on Figures 11 and 12.

v Q P1 S1 F

8 27, M, 13000 RI F 1
8 27, M, 13000 RI P 3
8 27, M, 13000 RI B 2

Table 3: First sensitive table (FST).

Group-ID Disease Count

1 P 2

1 B 1

2 B 1

2 P 1

2 F 1

2 D 1

1 GU 1

1 G 1

Group2 Group1
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valid vertices and NI be the number of invalid vertices, then
the MA can be stated by the following equation:

MA �
NV

NV + NI
. (1)

But the MA criterion is exactly opposite to the ME
criterion obtained using the following equation:

ME �
NI

NV +NI
� 1 − MA. (2)

�e smallest value of the ME is 0, when we have the best
performance, and the largest value of the ME is 1, when we
have the lowest performance. Consequently, the MA and
ME for the query B are 0.33 and 0.67 (MA� 3/9 and ME� 6/
9). Note that Anatomy extremely reduces the accuracy of
such membership analysis because it randomly groups
sensitive values [10]. In other words, Anatomy is an un-
supervised anonymization technique.

1.2.2. Multiple Sensitive Labels. Suppose the disease name
and job title are sensitive labels and we would like to find out
the personal profile of individuals who are in categories of
“SD” and “WC” (white-collar), by query C.

C:

Select distinct vertex
From Figure 1
Where disease in {SD} and job in {WC}

In accordance with Figure 8, only the titles of “MA,” “L,”
and “A” are in the category of “WC.” If Figure 1 is available,
then the result of running the query C is just the vertex 5. But
if Figure 4 and Tables 1 and 3 are available, then the easiest
way is to run query D.

D:

Select distinct vertex
From Figure 4 and Tables 1 and 3
Where Group-ID of Table 3�Group-ID of Figure 4
and
Group-ID2 of Table 1�Group-ID2 of Figure 4 and
Disease in (“GU,” “D,” “G”)
And job in (“MA,” “L,” “A”)

�e result of the query D is Figure 9 whose vertex 5 is
only valid. In accordance with equations (1) and (2), the MA
and ME for the query D are 0.11 and 0.89 (MA� 1/9 and
ME� 8/9). In fact, in Anatomy, as the number of sensitive
labels increases, the MA extremely decreases. Accordingly,
Anatomy weakens the correlation among multiple sensitive
labels.

1.3. Motivation. To solve VLC, any conventional anonym-
izationmethods can be applied, like k-anonymity [4, 18, 19], l-
diversity [20], and differential privacy [6] in social networks.

At first glance, to solve LLC on vertex, each of the re-
lational models can be applied, like personalized privacy [21],
MNSA [22], SLOMS [23], Anatomy [7], generalization [2],
anatomization with slicing [24], a novel approach for per-
sonalized privacy [25], effective privacy preserving [26], and a
privacy-preserving model for 1 :M data [27]. Unfortunately,
conventional models disconnect or reassociate the relation-
ships among labels, or change the structure of the graph. �e
relationship disconnection results in information loss, and the
reassociation reduces the correlation among sensitive labels
for some analyses like membership analysis; but changing the
structure results in varying the properties of the graph.

RI SD

F GU

All

P B D G

RI: respiratory infection P: pneumonia

SD: stomach disease B: bronchitis

GU: gastric ulcer D: dyspepsia

F: flu G: gastritis

Figure 5: Taxonomic tree of disease.
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Figure 6: Result of running the query A.
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Invalid vertices = { 1, 2, 6, 7, 8, 9}

Figure 7: Result of running the query B.
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Conceptually, according to Figure 5, a set of the in-
ternal nodes in the taxonomy tree whose values can be
published are named “attack threshold.” For example, in
Figure 5, the nodes like “RI” and “SD” are an attack
threshold. In other words, they are the defined categories
of diseases.

Quantitatively, an attack threshold quantity for a sensitive
label denotes the maximum probability of disclosing original
values of that label. For example, for the disease label, an
attack threshold of 0.5 states that the maximum probability of
disclosing the disease name of any individual is equal to 0.5.

In real life, since an adversary may find out the cate-
gories of sensitive labels of individuals (i.e., the categories
of the disease for patients), it is not necessary that we
protect the categories of sensitive labels (i.e., disease cat-
egories), but protecting the original values of sensitive
labels (i.e., disease name) is necessary. Hence, by decreasing
sensitivity of sensitive labels to an expert’s desired attack
thresholds, we want to propose a new method to publish
social networks having multiple sensitive labels with cor-
relation, without distorting original labels or disconnecting
their correlation.

In fact, for some analyses like membership analysis, we
want to increase the correlation among sensitive labels of
published graphs and decrease the membership error rate, by
reducing the sensitivity of the sensitive values up to the expert’s
desired attack threshold.�us, focusing on LCC, we propose a
new method which can almost supply correlation among
labels for membership analysis and solve LLC on vertex.

1.4. Rationale of SNI. In this article, we propose a supervised
technique named “SNI” which solves two challenges, LLC on
vertex and LCC. Construction of SNI can be understood
from the framework in Figure 10. In this framework, it is
assumed that sensitivity of the sensitive labels can be de-
creased up to the attack thresholds, and also each sensitive
label has a taxonomic tree and an attack threshold.

As in Figure 10, if an original graph (G) contains multiple
sensitive labels, SNI will produce one immune graph (IG) and
multiple supplementary trees (STs) to publish the original
graph. For example, it produces Figures 11–13 instead of
publishing Figure 1 which contains two sensitive labels
(disease and job). Figure 11 shows an IG, and Figures 12 and
13 show two STs. SNI, for each sensitive label, produces an
immune label named “partial sensitive label,” like partial
disease and partial job labels in Figure 11. From the view point
of Anatomy, any partial sensitive label plays the role of a
Group-ID, and from the view point of the expert (or data
owners), it is a label with less sensitivity that can be published.

In order to reduce information loss, SNI presents the
quasi-identifier and sensitive labels in separate objects (graph
and trees). SNI uses the partial sensitive label to reestablish the
relationship between quasi-identifier and sensitive labels. In
accordance with Figure 10, the framework contains 2 phases.

1.4.1. Phase 1. �is phase to solve VLC and LLC on edge has
been considered. In this phase, we can apply each of the
algorithms, like k-anonymity, l-diversity, and differential
privacy, and extract an anonymized graph. Note that the
algorithm that is used in phase 1 is not allowed to edit or
change original values of sensitive labels on vertices. For
example, if Figure 1 is the input of phase 1, then its output
will be Figure 3.

BC WC

NT MA

All

J A

BC: blue-collar

WC: white-collar

NT: nontechnical

TE: technical

MA: manager

PR: professional

J: janitor

M: mover

C: carpenter

T: technician

A: accountant

L: lawyer

TE PR

M C T L

Figure 8: Taxonomic tree of job.
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Valid vertices = {5}

Invalid vertices = {1, 2, 3, 4, 6, 7, 8, 9}

Figure 9: Result of running the query D.
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1.4.2. Phase 2. �is phase which is the main focus of this
article has 3 activities: 1, initialization; 2, extraction; and 3,
reduction.

Phase 1

Phase 1: solving VLC and LLC of edges

Phase 2

Phase 2: solving VLC and LLC of vertices

Initialization

Extraction

Reduction

Initialized
taxonomic

trees

Supplementary
trees

Immune graph

Taxonomic trees
and

thresholds

Original
graph

Anonymized 
graph

Anonymization

Figure 10: SNI framework.

1

9

8

2

3

4

5

6

7

The labels of vertices 1–9

v(quasi-identifier, partial disease, partial job) 

1(35, M, 59000, RI, BC)

2(59, M, 11000, RI,WC) 

3(70, F, 30000, SD, BC) 

4(65, F, 25000, SD, BC) 

5(65, F, 25000, SD, WC) 

6(59, M, 11000, RI, WC)

7(59, M, 11000, RI, WC) 

8(27, M, 13000, RI, BC) 

9(61, F, 54000, RI, BC) 

110

110 111

110
101

100

100

111

100

111

100

110 100

The labels of edges

e: (FCR)

1-2: (100)

1–9: (110)

2–9: (100)

2–7: (110)

2-3: (110)

3-4: (100)

6–8: (100)

4-5: (111)

4–6: (100)

5-6: (100)

6-7: (101)

7-8: (110)

8-9: (111)

7–9: (111)

Figure 11: Immune graph (IG).

RI, 6 SD, 3

F, 1 GU, 1 D, 1

All, 9

Cut1

h1 = 0.5

P, 3 B, 2 G, 1

Figure 12: Supplementary tree of disease (ST1).

BC, 5 WC, 4

NT, 3 MA, 1

All, 9

J, 2 A, 1

Cut2

h1 = 0.5

TE, 2 PR, 3

M, 1 C, 1 T, 1 L, 2

Figure 13: Supplementary tree of job (ST2).
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(1) Initialization. In this activity, for any leaf x in a taxo-
nomic tree, a field F is considered so that x[F] refers to the
frequency of the leaf x in the original graph. However, this
activity receives an original graph and multiple taxonomic
trees as the input (i.e., Figures 3, 5, and 8) and just updates x
[F] for all leaves x in taxonomic trees. For example, in
Figure 12, P[F] (frequency of the leaf “P” or “pneumonia”) is
3 because the frequency of “P” in Figure 1 equals 3 (disease
values of vertices 2, 6, and 7).

(2) Extraction. In this activity, for any internal node y of any
taxonomic tree, two fields (F, R) are considered so that y[F]
and y[R] refer to the sum of x[F] of all leaves x in the subtree
of y and the maximum of x[R] of all leaves x in the subtree of
y, respectively. In other words, if the subtree of y contains n
leaves (i.e., x1,. . ., xn), then

y[F] �
n

i�1

xi[F], (3)

xi[R] �
xi[F]

y[F]
, (4)

y[R] � Max x1[R], . . . , xn[R]( , (5)

where xi[F] and xi[R] are the frequency and relative fre-
quency of the leaf xi in the subtree of y. For example, for the
internal node “RI” (respiratory infection) in Figure 12 which
contains three leaves “P,” “F,” and “B” (that is, pneumonia,
flu, and bronchitis), according to equations (3)–(5), we have

RI[F] � P[F] + B[F] + F[F] � 3 + 2 + 1 � 6,

P[R] �
3

6
� 0.5,

F[R] �
1

6
� 0.17,

B[R] �
2

6
� 0.33,

RI[R] � Max
3

6
.
1

6
.
2

6
  � 3

6
� 0.5.

(6)

Extraction, for any taxonomic tree, finally sets a per-
mitted generalization limit named “Cut.” For example, for
Figure 12, it determines some internal nodes, like “RI” and
“SD,” named “Cut1.” Obviously, any internal node y whose y
[R] is smaller or equal to the attack threshold (h1� 0.5) can
be inserted in Cut1.

(3) Reduction. -is activity firstly receives an anonymized
graph (output of phase 1 like Figure 3) and all updated
taxonomic trees (output of extraction activity like Figures 12
and 13) and produces an IG whose vertices contain three
labels (quasi-identifier label, partial sensitive label, and
nonsensitive label). For example, if Figures 3, 12, and 13 are
the input of reduction, then its output is Figure 11.

However, SNI can publish Figure 11 (IG) with Figures 12
and 13 (ST1 and ST2). Obviously, the output of SNI depends

not only on the frequency of sensitive values but also on the
structure of taxonomic trees. Figures 11–13 solve VLC, LLC,
and LCC because Figure 11 contains partial sensitive values,
and real sensitive values can only be estimated from Fig-
ures 12 and 13.

Assume we would like to disclose Ada’s disease name
and job title through quasi-identifiers of Ada, by using
Figures 11–13. If we can understand that each of the
vertices 2, 6, and 7 in Figure 11 belongs to Ada, then VLC is
solved; if edge 7-9 is a noise edge, then LLC on edge is
disabled. But since we do not obtain accurate information
on disease and job labels and can only obtain information
with partial sensitivity through partial disease and partial
job labels in Figure 11, then LLC on vertex is weakened. It
is obvious that we should use Figures 12 and 13 for more
accurate information. We can find that Ada’s disease name
is in category “RI.” By referring to Figure 12, we find that
his disease name is likely to be 0.5 “P” and 0.33 “B” and 0.17
“F.” We through the partial job label can find that Ada’s job
title is in category “WC.” By referring to Figure 13, we find
that his job is likely to be 0.25 “A” and 0.25 “M” and 0.5 “L.”
Hence, LLC on vertex is disabled. Since SNI supplies the
correlation among sensitive labels, by preserving the
correlation among partial sensitive labels, LCC is partly
solved.

1.5. Contribution. -is paper presents a systematic study of
the SNI technique. First, we formalize the new methodology
based on the attack thresholds and taxonomic trees.

Second, we prove that SNI significantly supplies the
privacy preservation at the vertex level (PPVL) and the
privacy preservation at the individual level (PPIL). In PPVL,
if there are several vertices with the same quasi-identifier,
then each of them is considered separately and its sensitive
values are estimated. But, in PPIL, for all vertices with the
same quasi-identifier which may belong to one individual,
one sensitive value is estimated. For example, vertices 2, 6,
and 7 in Figure 6 contain the quasi-identifier “59,M, 11000.”
In PPVL, each of the vertices 2, 6, and 7 is considered
separately and its sensitive labels are estimated. In PPIL,
the sensitive labels are once estimated for three vertices 2, 6,
and 7.

-ird, we prove that the maximum probability of dis-
closing of a sensitive value for any individual is smaller than
or equal to an attack threshold, so SNI will disable LLC on
vertex.

Fourth, we prove that SNI increases the MA and de-
creases the ME, significantly. To carry out this, we consider
two cases for the clauses in queries: 1, the clauses above the
permitted generalization limits and 2, the clauses below the
permitted generalization limits.

Fifth, we develop an algorithm that produces an IG and
multiple STs. Finally, we prove by extensive experiments that
SNI significantly outperforms Anatomy, and it almost solves
LCC.

-e rest of this paper is organized as follows: First, we
will provide a background for anonymization methods.
Second, we will formalize SNI based on the attack threshold
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and taxonomic tree. -ird, we will prove that SNI compared
with Anatomy provides more correlation for data in
membership analysis. Fourth, we will present an algorithm
for SNI which carries out the major actions on taxonomic
trees. Fifth, using heavy experiments, we will demonstrate
that SNI compared with Anatomy supplies a more con-
siderable utility for membership analysis. In the end, we will
finish the paper with directions for future work.

2. Background

To solve VLC or LLC on edge, each of the anonymization
conventional models can be used to protect social networks.
-ese models usually edit vertices, edges, or labels on the
original graph. For example, in 2012, Song et al. [14] pre-
sented a model named “sensitive label privacy on social
networks.” -is model transforms the original graph into a
graph whose vertices are sufficiently indistinguishable. It
does not allow an adversary, by using the information about
the neighborhood of a vertex, to disclose sensitive labels of
that vertex.

In 2014, Yuan et al. [13] presented a model named
“personalized privacy on social networks.” -is model ap-
plies two techniques generalizing labels and editing vertices
or edges (adding the noisy edge or vertex) to supply the
privacy-preserving service.

In 2014, Sun et al. [28] presented the k-NMF-anonymity
model which preserves original vertices (no deletion) and
adds new vertices.

In 2017, Li et al. [6] presented a model named “differ-
ential privacy method for edge weights in social networks.”
In this method, a certain amount of random noise is added
to the answer of the query set.

In 2018, Baktha and Tripathy [8] presented the alpha
anonymization model. In fact, this model extends the lossy-
join approach [29] to achieve (α, k)-anonymity in relational
data [30].

In 2019, a novel technique named “a novel graph-
modification technique for user privacy preserving on social
networks” has been presented [5].-is technique is based on
edge addition.

Usually, such models change the original structure of the
graph, by adding, removing, or modifying vertices, edges, or
labels. Unfortunately, changing the structure may result in
varying the properties of the graph.

At first glance, to solve LLC on vertex, each of the
relational models can be used. For example, Samarati and
Sweeney [2] proposed the generalization technique. -e
disadvantage of generalization is inflicting loss to the
data.

Sweeney suggested the concept of k-anonymity [19]. A
group of tuples with a quasi-identifier value is named “QI-
group.” Any table in which cardinality of any QI-group is at
least k has a k-anonymity property. k-Anonymity always is
not enough because several records in a QI-group belonging
to one person still have a potential privacy threat for that
person.

Machanavajjhala et al. suggested the concept of l-di-
versity [9]. Since some sensitive values are naturally more

abundant than other values in a QI-group, it is not always
possible to obtain the l-diversity property for any table.

Wang et al. proposed the confidence bounding method
[31]. In this method, a maximum confidence level is spec-
ified to infer any value of the sensitive attribute in a QI-
group.

Xiao and Tao proposed the Anatomy technique to
maintain the confidentiality of data, which, despite the utility
of data for aggregative analysis, lacks the necessary utility of
data mining [7]. -e advantage of Anatomy is that it does
not change the sensitive attribute and quasi-identifier values
at all but only weakens the association between sensitive and
quasi-identifier attributes.

Xiao and Tao introduced another method called per-
sonalized privacy preservation, which allows the data owner,
without notice to the utility of data, to set an attack threshold
named the guarding node on a taxonomic tree belonging to a
sensitive attribute [21]. Unfortunately, the data owners do
not have access to the distribution of sensitive values in a QI-
group or the entire published table when setting their attack
threshold.

In 2013, Han et al. presented the SLOMS method to
publish data with several sensitive attributes [23]. -is
method partitions horizontally the sensitive attributes in
several tables, and each table buckets the sensitive attribute
to provide the l-diversity while also generalizing the quasi-
identifier values to provide k-anonymity. Generalization
causes information loss.

In 2015, Liu et al. proposed the MNSA method for
several numerically sensitive attributes. Unfortunately, this
method can only be used for numerically sensitive attributes
[22].

In 2016, Susan and Christopher introduced a new
method called anatomization by slicing to maintain the
confidentiality of high-dimensional data with multiple
sensitive attributes [24]. -is method uses a slicing
technique to increase the association of attributes and uses
the anatomization technique to reduce information loss,
and because it uses Group-ID to reassociate the re-
lationship between attributes, it reduces the utility of the
data.

In the subtree generalization scheme [32, 33], if the value
of a leaf in a taxonomic tree generalizes to the value of its
ancestor node such as x, then all the leaves in the subtree of x
should also generalize to the value of x. For example, if the
leaf “F” in Figure 5 generalizes to the value of its ancestor like
“RI,” then only values of “P” and “B” should be generalized
to “RI.”

In 2018, the composition attacks were studied by Hasan
et al. [34]. -ey believe that, in two hospitals, if a patient is
examined for a similar disease and his information is in-
dependently distributed, it would be the probability of a
composition attack. -ey have used the cell generalization
approach [35, 36] to disable the composition attack and
increase data utility.

In 2019, the newmethods have been presented to publish
[26, 27] data with multiple sensitive attributes. 1 :M means
an individual can have multiple records with multiple
sensitive attributes.
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In the proposed technique (SNI), from the view point of
the confidence bounding method, each attack threshold is
considered to be a maximum confidence level. From the
outlook of Anatomy, each partial sensitive label plays the
role of a Group-ID. From the view point of the personalized
privacy preservation method, each permitted generalization
limit plays the role of guarding nodes on a taxonomic tree.
SNI, contrary to the personalized privacy preservation
method that allows any data owner to define a guarding node
for himself, allows the data holder to define only one attack
threshold for all values of a sensitive label. Because the
distribution of sensitive values is available in the entire
vertices on the original graph, the partial sensitive values
(guarding nodes) are properly calculated. -e new partial
sensitive label, in addition to being used in reconstructing
the correlation of labels, is used by many analyses, especially
membership analyses. SNI uses the subtree generalization
scheme which is usually more practical for categorization
[37].

3. Formalization of SNI

Suppose, according to Figure 1, each vertex v in a simple
graph G (V, E, VL, EL) has a quasi-identifier label and b
sensitive labels and is expressed as

v � v Q1 , v Q2 , . . . , v Qa , v S1 , v S2 , . . . , v Sb ( ,
(7)

where the symbols of Si and Qi refer to the ith sensitive label
and ith quasi-identifier label on the vertex v ∈ G, re-
spectively; v[Q] refers to the values of all quasi-identifier
labels on v (i.e., values of v[Q1], v[Q2], . . ., v[Qa]); and v[Si]
refers to the value of the ith sensitive label on v. Anyhow, Qi
can be numerical or categorical (1≤ i≤ a), but Si must be
categorical (1≤ i≤ b).

-e proposed technique requires a taxonomic tree and
an attack threshold be determined for each sensitive label by
the expert. -e symbols of TAXi and hi refer to a taxonomic
tree and an attack threshold for Si, respectively.

Suppose any leaf l ∈ TAXi has three fields that is
expressed as

l �(l[N], l[F], l[R]), (8)

where l[N], l[F], and l[R] refer to the value of the ith sensitive
label in G, the frequency of l in G, and the relative frequency
of l in a specified subtree of TAXi, respectively. For example,
in Figure 12, for leaf l� “p” in the subtree of “RI,” we have

l[N] � “P”,

l[F] � 3,

l[R] �
3

3 + 2 + 1
� 0.5.

(9)

Note that the relative frequency of “P” in the subtree of
“RI” has been calculated.

Assume any internal nodes n ∈ TAXi have three fields
(N, F, R) that are expressed as

n � (n[N], n[F], n[R]), (10)

where n[N], n[F], and n[R] refer to the category name of all
leaves, sum of the frequencies of all leaves, and maximum
of the relative frequencies of all leaves, in the subtree of n.
For exampluations 3, 4, and 5, for the internal node y= “RI,”
we have

y[N] � “RI”,

y[F] � 
All x ∈ subtree of y

x[F] � 2 + 2 + 1 � 5,

y[R] � Max(All x[F]wherex ∈ subtree of y)
� Max(0.5, 0.17, 0.33) � 0.5.

(11)

Assuming that we can decrease the sensitivity of the
sensitive values of an individual to the expert’s desired attack
thresholds, we present some new concepts for formalization
of SNI.

3.1. Concepts. SNI requires specifying the immune nodes
and permitted generalization limits for any taxonomic tree.

Definition 1 (immune node). An internal node y ∈ TAXi in
which y[R]≤ hi is considered to be an immune node in
TAXi.

For example, in Figure 13, the nodes of “WC,” “BC,” and
“TE” are immune nodes because for h2 � 0.5 and all y∈
{“WC,” “BC,” “TE”}, we have

y[R]≤ h2. (12)

Definition 2 (Cuti). If a set of leaves in a subtree of the kth
immune node is referred to as Setk, then the immune node
m∈ TAXi which satisfies two equations (6) and (7) is con-
sidered to be a Cuti for TAXi; for 1≤ k≠ j≤m and leaf
l ∈ TAXi,

∪ mk�1Setk � all l ∈ TAXi , (13)

Setk ∩ Setj � ∅. (14)

For example, in Figure 13, Cut2 contains only two
immune nodes “WC” and “BC” because

SetWC � “J”, “M”, “C”, “T”{ },

SetBC � “MA”, “A”, “L”{ },

SetWC ∪ SetBC � all leaves of TAXJob ,
SetWC ∩ SetBC � ∅.

(15)

Definition 3 (partial sensitive label). For each Si on vertices
v ∈ G, a new label named “partial sensitive label” (Pi) is
defined and its values are derived from the generalization of
Si to Cuti contained in TAXi. In fact, the domain of Pi is
Cuti.
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For example, in Figure 11, the partial disease label is
P1 derived from the generalization of the disease label to
Cut1 in Figure 12. In fact, any Pi reduces sensitivity of Si to
Cuti.

Definition 4 (SNI). SNI always obtains an original graph
(G) and b attack thresholds (h1, . . ., hb) and b taxonomic
trees (TAX1, . . ., TAXb) as the input and produces b
permitted generalization limits (Cut1,Cut2, . . . , Cutb), b
supplementary trees (ST1, ST2,. . ., STb), and an immune
graph (IG) as the output. Each Cuti represents a permitted
limit to generalizing Si. Each STi is related to Si ∈ G and is
expressed as

STi � Si, Pi, Fi . (16)

-e symbol of Fi refers to the frequency of Si in G. -e
domain of Si ∈ STi equals the domain of Si ∈ G, and Cuti is
considered the domain of Pi. But IG is expressed as

IG �(IV, IE, IVL, IEL), (17)

where IV is a set of vertices, IE⊆ IV× IV is a set of edges, IVL
is a set of labels on vertices, and IEL is a set of labels on edges.
IV is equivalent toV, IE is equivalent to E plus the new edges,
and IEL is equivalent to EL plus the labels on new edges. But
IVL contains all quasi-identifier and nonsensitive labels in
VL plus the new labels named “partial sensitive labels.” Any
vertex v′ ∈ IV has a quasi-identifier label and b partial
sensitive labels and is expressed as

v′ � v′ Q1 , v′ Q2 , . . . , v′ Qa , v′ P1 , v′ P2 , . . . , v′ Pb ( ,
(18)

where the symbols of Pi and Qi refer to the ith partial
sensitive label and ith quasi-identifier label in IVL, re-
spectively. Each Qi of IVL is equivalent to one Qi of L. Each
Pi of IVL is equivalent to one immune node in Cuti whose
publication and disclosure are allowed.

For example, SNI receives Figure 1 as G, taxonomic trees
in Figures 5 and 8 as TAX1 and TAX2, and h1 � h2 � 0.5 and
extracts Figure 11 as IG and Figures 12 and 13 as ST1 and ST2.

In fact, SNI uses partial sensitive labels to preserve the
correlation among labels. IG actually contains sensitive
values with a lower sensitivity degree that can be published
and preserves correlation among labels.

3.2. Privacy Requirements. Obviously, since none of b STi
have quasi-identifier labels and IGs have no sensitive labels,
each of those protects the privacy, alone. But the level of
privacy protection in any dataset derived from IG∞ST1 . . .

∞STb (natural join) should be checked.-e query E is a case
of natural join.

E:

Select the vertex number of the IG, quasi-identifier,
Partial sensitive labels, sensitive labels, frequency
From ST1, ST2, . . ., STn, IG
Where P1 of ST1� P1of IG and

P2 of ST2� P2 of IG and
.
.
Pb of STb� Pb of IG and
Q of IG� v[Q]

-e symbol of v[Q] refers to the quasi-identifier of the
target vertex v ∈ G. In fact, the query E states if there are IGs
with several STi, an adversary can partially reconstruct the
vertex v ∈ G belonging to a target victim. In this section, we
want to prove that SNI significantly supplies PPVL and PPIL.

3.2.1. PPVL. In PPVL, if n vertices v1,. . ., vn ∈ IG (i.e., the
vertices 2, 6, and 7 in Figure 11) are found whose quasi-
identifiers are equal to a target victim, each of them is
considered separately, and its sensitive values are estimated.
SNI will supply PPVL, if we can reconstruct a sensitive value
of any vertex v ∈ G when the maximum probability equals hi
or all sensitive values of any vertex v ∈ G when the maxi-
mum probability equalsb

i�1hi. We will study two modes: 1,
one STi with IG and 2, multiple STi with IG.

(1) First Mode (One STi ). Obviously, to reconstruct a vertex
v ∈ G by one STi and an IG, firstly we must run the query F
on the IG and STi and then estimate v[Si].

F:

Select vertex number of the IG, quasi-identifier,
Partial sensitive labels, sensitive labels, frequency
From STi, IG
Where Piof IG� Pi of STi and Q of IG� v[Q]

Clearly, the result of running the query F is a table as Tq
(i.e., Table 2) which has tuples such as

x � x[ID], x[Q], x Pi , x Si .x[F]( , (19)

where x[ID], x[Q], x[Pi], x[Si], and x[F] are the vertex
number of the IG, quasi-identifier, ith partial sensitive label,
ith sensitive label, and frequency of the tuples x ∈ Tq,
respectively.

For example, Table 2 as Tq is the result of running the
query F on Figures 11 and 12, where v[Q] � “27, M, 13000.”
According to the clause “Q of IG� v[Q]” in the query F, the
quasi-identifiers of all tuples x ∈ Tq equal the quasi-iden-
tifier of the target vertex v ∈ G, and according to the clause
“Pi of STi� Pi of IG,” the partial sensitive labels of all tuples in
Tq are equal to the partial sensitive label of the target vertex
v ∈ G. When there is one STi with an IG, the PPVL is de-
scribed in Lemma 1 formally.

Lemma 1. IfTq is the result of running the query F on IG and
one STi, then an adversary can reconstruct the ith sensitive
label of a target vertex v ∈ G up to hi. In other words, for
x ∈ Tq and v ∈ G,

Pr v Si  � x Si  ≤ hi. (20)

Proof. Firstly, according to the clause “Q of IG= v[Q]” in the
query F, since the quasi-identifier of all tuples in Tq is equal to

Security and Communication Networks 11



v[Q], any tuple x ∈ Tq can belong to the target vertex v ∈ G.
Secondly, according to the clause “Pi of STi =Pi of IG,” since
the result of running the query F is a table as Tq (i.e., Table 2)
in which all tuples are exactly equal to all leaves in the subtree
of Pi ∈ Cuti, and on the contrary, in any STi, Pi is an immune
node. -en, according to Definitions 1 and 2, we have

Pr v Si  � x Si   � x[R] ≤ hi, (21)

where x[R] is the relative frequency of the tuple x ∈ Tq or the
relative frequency of the leaf x in the subtree of the immunenode
Pi ∈ Cuti. So, according to equation (9), Lemma 1 is correct.

Using Table 2, we will describe Lemma 1. As in Table 2,
for v[Q] � “27, M, 13000,” we have

Pr v S1  � “P”  � 3

3 + 2 + 1
� 0.5,

Pr v S1  � “B”  � 2

3 + 2 + 1
� 0.33,

Pr v S1  � “F”  � 1

3 + 2 + 1
� 0.17.

(22)

On the contrary, since h1 � 0.5, we can see that equation
(8) is correct.

(2) Second Mode (Multiple STi ). To reconstruct a target
vertex v ∈ G through b STi and an IG, firstly we must run the
query E on b STi and an IG and then estimate v[S1] · · · v[Sb],
simultaneously. Clearly, as in the previous mode, the result
of running the query E is a table as Tq (i.e., Table 4) which has
tuples such as

x � x[ID], x[Q], x Pi , x S1 , . . . , x Pb , x Sb , x[F]( .
(23)

For example, Table 4 as Tq is the result of running the
query E on Figures 11–13, where V[Q]� “27,M, 13000.” But
when there are multiple STi with an IG, PPVL is described in
Lemma 2 formally. □

Lemma 2. IfTq is the result of running the query E on IG and
b STi, then an adversary can simultaneously deduce the values
of b sensitive labels of any target vertex v ∈ G up tob

i�1hi. In
other words, for x ∈ Tq and v ∈ G,

Pr v S1  � x S1 , . . . , v Sb  � x Sb  ≤
b

i�1

hi. (24)

Proof. Firstly, according to the clause “Q of IG� v[Q]” in
the query E, since the quasi-identifier of all tuples in Tq is
equal to v[Q], any tuple x ∈ Tq can belong to the target
vertex v ∈ G. Secondly, according to any clause “Pi of STi � Pi
of IG,” and Lemma 1, we have

Pr v S1  � x S1  ≤ h1
.

.

Pr v Sb  � x Sb  ≤ hb.

(25)

On the contrary, since maximum values for each of these
probabilities can be considered equal to hi, and these
probabilities are independent, we can say that

Pr v S1  � x S1 . . . . .v Sb  � x Sb  

�
b

i�1

Pr v Si  � x Si  ≤
b

i�1

hi

(26)

and that Lemma 2 is correct. Note that the probability of
estimating all the sensitive values of v ∈ G is extremely less.

Using Table 4, we will describe Lemma 2. In accordance
with Table 4, since v[Q] � “27, M, 13000,” we have

Pr v S1  � “B”, v S2  � “C”  � 2

30
� 0.07

≤ h1 × h2 � 0.5 × 0.5 � 0.25

.

.

Pr v S1  � “P”, v S2  � “T”  � 3

30
� 0.1

≤ h1 × h2 � 0.5 × 0.5 � 0.25,

(27)

and then we can see that equation (10) is correct. In ac-
cordance with Lemmas 1 and 2, SNI always supplies
PPVL. □

3.2.2. PPIL. In PPIL, if n vertices v1, . . ., vn ∈ IG (i.e., the
vertices 4 and 5 in Figure 11) are with the same quasi-
identifier, we do not consider each of them separately, since
each of them can belong to the target individual X ∈ G with
a probability of 1/n. Obviously, in this case, for all vertices
v1, . . ., vn ∈ IG, one Si has to be estimated, and for the target
individual, X ∈ G is considered.

Table 4: Result of the query E on Figures 11–13.

v Q P1 P2 S1 S2 F

8 27, M, 13000 RI BC B C 2
8 27, M, 13000 RI BC B J 4
8 27, M, 13000 RI BC B M 2
8 27, M, 13000 RI BC B T 2
8 27, M, 13000 RI BC F C 1
8 27, M, 13000 RI BC F J 2
8 27, M, 13000 RI BC F M 1
8 27, M, 13000 RI BC F T 1
8 27, M, 13000 RI BC P C 3
8 27, M, 13000 RI BC P J 6
8 27, M, 13000 RI BC P M 3
8 27, M, 13000 RI BC P T 3
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SNI will supply PPIL, if we can reconstruct the sensitive
values of any individual X ∈ G when the maximum prob-
ability equals hi. Here too, we consider the same two pre-
vious modes.

(1) First Mode (One STi ). Obviously, to reconstruct an
individual X ∈ G, firstly we must run the query F on IG and
STi and then estimateX[Si]. For example, Table 5 asTq is the
result of running the query F on Figures 11 and 12, where
v[Q] � “65, F, 25000.” When there is one STi with an IG, the
PPIL is described in Corollary 1 formally.

Pr X Si  � x Si   � 
n

k�1

1

n
Pr X Si  � xk Si  , (29)

Corollary 1. If Tq is the result of running the query F on IG
and one STi, then an adversary can deduce the sensitive label
of a target individual X ∈ G up to hi. In other words, for
x ∈ Tq and X ∈ G,

Pr X Si  � x Si  ≤ hi. (28)

Proof. We consider two cases. In the first case, suppose n
tuples x1, . . ., xn ∈ Tq (i.e., the tuples 1 and 4 in Table 5) are
found whose partial sensitive labels and sensitive labels are
the same. Obviously, in this case, for all tuples x1, . . .,
xn ∈ Tq, one Sihas to be estimated by x[Si] which is referred.
However, we deduce the sensitive label of a target individual
X ∈ G in two steps. In the first step, since each of the tuples
x1, . . ., xn ∈ Tqcan belong to the target individualX ∈ G with
a probability of 1/n, we obtain the total probability for a target
individual X ∈ G as where x[Si] =x1[Si] � x2[Si] � · · · �
xn[Si]. In the second step, using Lemma 1, for each tuple
xk(1≤ k≤ n), we obtain that Pr X[Si] � xk[Si] ≤ hi, and
since maximum values for each of these probabilities can be
considered equal to hi, we have


n

k�1

1

n
Pr X Si  � xk Si  ≤ 

n

k�1

1

n
hi ≤ hi, (30)

and according to equation (13), Corollary 1 is correct.
Using Table 5, we will describe Corollary 1. In accor-

dance with Table 5, for h1 � 0.5, it can be said that

Pr X S1  � “D”  � 2

6
� 0.33≤ 0.5,

Pr X S1  � “GU”  � 2

6
� 0.33≤ 0.5,

Pr X S1  � “G”  � 2

6
� 0.33≤ 0.5.

(31)

In the second case, suppose n tuples x1, . . ., xn are
found in Tq whose partial sensitive labels are the same
(i.e., the tuples 1-4 or 5-7 in Table 6) but sensitive labels
are not the same. Obviously, in this case, using Lemma 1,
we obtain Pr X[Si] � xk[Si] ≤ hi, and Corollary 1 is
correct.

Using Table 6, which is the result of running the query F
on Figures 11 and 13 with v[Q] � “65, F, 25000,” we will
describe Corollary 1. In accordance with Table 6, for h2 � 0.5,
it can be said thatand then equation (11) is correct. But when
there are multiple STi with an IG, PPIL can be described in
Corollary 2 formally. □

Pr X S1  � “C”  � 1

5
� 0.2≤ 0.5,

Pr X S1  � “J”  � 2

5
� 0.4≤ 0.5,

Pr X S2  � “M”  � 1

5
� 0.2≤ 0.5,

Pr X S2  � “T”  � 1

5
� 0.2≤ 0.5,

Pr X S2  � “A”  � 1

4
� 0.25≤ 0.5,

Pr X S2  � “L”  � 2

4
� 0.5≤ 0.5,

Pr X S2  � “MA”  � 1

4
� 0.25≤ 0.5,

(32)

Corollary 2. If Tq is the result of running the query E on
IG and b STi, then an adversary can simultaneously de-
duce the values of b sensitive labels of any target indi-
vidual X ∈ G up to b

i�1hi. In other words, for x ∈ Tq and
X ∈ G,

Pr X S1  � x S1 . . . . .X Sb  � x Sb  ≤
b

i�1

hi. (33)

Proof. We consider two samples. In the first sample,
assume n tuples x1, . . ., xn ∈ Tq are discovered whose
partial sensitive and sensitive labels are the same. Clearly,
in this sample, for all tuples x1, . . ., xn ∈ Tq, one Siis cited
to be computed with x[Si] . However, we deduce b sensitive
values of a target individual X ∈ G in two phases. In the
first phase, since each of the tuples x1, . . ., xn ∈ Tq can
belong to the target individual X ∈ G with a probability of
1/n, we obtain the total probability for a target individual
X ∈ G as

Table 5: Result of the query F on Figures 11 and 12.

v Q P 1 S 1 F

4 65, F, 25000 SD D 1
4 65, F, 25000 SD GU 1
4 65, F, 25000 SD G 1
5 65, F, 25000 SD D 1
5 65, F, 25000 SD GU 1
5 65, F, 25000 SD G 1
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Pr X S1  � x S1 . . . . .X Sb  � x Sb  

� 
n

k�1

1

n
Pr X S1  � xk S1 . . . . .X Sb  � xk Sb  ,

(34)
where X[Si] = x1[Si] � x2[Si] � . . . � xn[Si]. In the second
phase, using Lemma 2, for each tuple xk(1≤ k≤ n), we
obtain that

Pr X S1  � xk S1 . . . . .X Sb  � xk Sb  ≤
b

i�1

hi, (35)

and since the maximum value for these probabilities can be
considered equal to b

i�1hi, we have


n

k�1

1

n
Pr X S1  � xk S1 . . . . .X Sb  � xk Sb  

≤ 
n

k�1

1

n

b

i�1

hi �
b

i�1

hi,

(36)

and Corollary 2 is correct.
In the second sample, assume n tuples x1, . . ., xn are

discovered in Tq whose partial sensitive labels are the same
(i.e., the tuples 1-12 or 13-21 in Table 7) but some of their
sensitive labels are not the same. Obviously, in this case,
using Lemma 2, we obtain

Pr X S1  � xk S1 . . . . .X Sb  � xk Sb  ≤
b

i�1

hi, (37)

and Corollary 2 is correct. Using Table 7, we will explain
Corollary 2. In accordance with Table 7, it can be said that

Pr X S1  � “D”, X S2  � “C”  � 1

15
� 0.067

≤ h1 × h2 � 0.5 × 0.5 � 0.25

.

.

Pr X S1  � “G”, X S2  � “MA”  � 1

12
� 0.083

≤ h1 × h2 � 0.5 × 0.5 � 0.25.

(38)

However, in accordance with Corollaries 1 and 2, SNI
always supplies PPIL because an adversary can reconstruct a
sensitive value of an individual up to hi and all sensitive
values of him up to b

i�1hi. □

3.3. Utility Requirements. -e correlation among the pub-
lished graph labels is always significant for analysts. In this
section, we want to show that SNI almost preserves the
correlation among sensitive labels, by preserving the cor-
relation among partial sensitive labels. In SNI, each of STs
and IG can separately be used by analysts, since each partial
sensitive label results from the generalization of a sensitive
label which can solve the problem of scattered data for
analysts. We study the membership analysis for two models:
1, one sensitive label and 2, multiple sensitive labels.

3.3.1. One Sensitive Label. Assume we want to study cat-
egorization (classification) of the job titles. In accordance
with Figure 13, the taxonomic tree of the job label has 7
leaves and 5 internal nodes. Table 8 has 12 queries related to
the nodes of that taxonomic tree. In fact, each of these
queries extracts the vertices having special conditions.

Suppose we want to compute each of the queries Q1–Q12

in Table 8 by objects which are derived fromAnatomy or SNI.
In accordance with Figure 13, the clauses in queries Q11-Q12,
like “WC,” are on Cut2 and those in queries Q1–Q10, like
“PR,” are below Cut2. Hence, we will study two modes for the
clauses in these queries: 1, below cut and 2, above cut.

(1) First Mode (Below Cut). Assume, by query Q10, we would
like to find out the individuals who are in the category of
“PR.” If G (Figure 1) is available, according to Figure 13, the
result of running the query Q10 is three valid vertices 2, 5,

Table 6: Result of the query F on Figures 11 and 13.

v Q P2 S2 F

4 65, F, 25000 BC C 1
4 65, F, 25000 BC J 2
4 65, F, 25000 BC M 1
4 65, F, 25000 BC T 1
5 65, F, 25000 WC A 1
5 65, F, 25000 WC L 2
5 65, F, 25000 WC MA 1

Table 7: Result of the query E on IG, ST1, and ST2.

v Q P1 P2 S1 S2 F

4 65, F, 25000 SD BC D C 1
4 65, F, 25000 SD BC D J 2
4 65, F, 25000 SD BC D M 1
4 65, F, 25000 SD BC D T 1
4 65, F, 25000 SD BC GU C 1
4 65, F, 25000 SD BC GU J 2
4 65, F, 25000 SD BC GU M 1
4 65, F, 25000 SD BC GU T 1
4 65, F, 25000 SD BC G C 1
4 65, F, 25000 SD BC G J 2
4 65, F, 25000 SD BC G M 1
4 65, F, 25000 SD BC G T 1
5 65, F, 25000 SD WC D A 1
5 65, F, 25000 SD WC D L 2
5 65, F, 25000 SD WC D MA 1
5 65, F, 25000 SD WC GU A 1
5 65, F, 25000 SD WC GU L 2
5 65, F, 25000 SD WC GU MA 1
5 65, F, 25000 SD WC G A 1
5 65, F, 25000 SD WC G L 2
5 65, F, 25000 SD WC G MA 1
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and 6 in G. If Figures 11 and 13 are available, then the easiest
way is to run the query H instead of the query Q10.

H:

Select distinct vertex
From Figures 11 and 13
Where partial job of Figure 11� partial job of Figure 13
And job in (“L,” “A”)

�e result of running the query H is shown in Figure 14
that has 3 valid vertices and 1 invalid vertex. In accordance
with equations (1) and (2), the MA and ME for the query H
are 0.75 and 0.25 (MA� 3/4 and ME� 1/4). But if Figure 4
and Table 1 are available, then the easiest way is to run the
query I.

I:

Select distinct vertex
From Table 1 and Figure 4
Where Group-ID2 of Table 1�Group-ID2 of Figure 4
And job in (“L,” “A”)

Figure 15 shows the result of the query I that has 3 valid
vertices and 6 invalid vertices (MA� 3/9� 0.33 and ME� 6/
9� 0.67).

(2) Second Mode (Above Cut). Assume, by query Q12, we
would like to extract those who are in the category of “BC.”
�e result of running Q12 by Figure 1 is shown in Figure 16
which has 5 valid vertices 1, 3, 4, 8, and 9. If Figure 11 is
available, then we can run the query J instead of the query
Q12.

J:

Select distinct vertex
From Figure 11
Where partial job in (“BC”)

Obviously, the result of running the query J is shown in
Figure 16 which has just 5 valid vertices 1, 3, 4, 8, and 9
because Figure 11 contains the complete information re-
quired by the query J. Interestingly, the MA and ME for the
query J are 1 and 0 (MA=5/5 and ME= 0/5). Note that, by
query J, the vertices can be reconstructed only with partial
sensitive values, not with original sensitive values.

But if Figure 4 and Table 1 are available, then we can run
the query K instead of the query Q12.

K:

Select distinct vertex
From Figure 4 and Table 1
Where Group-ID2 of Figure 4�Group-ID2 of Table 1
and
Job in (“J,” “M,” “T,” “C”)

Figure 17 shows the result of the query K (MA� 5/
9� 0.55 and ME� 4/9� 0.44). Note that the accuracy of
membership analyses is extremely decreased, by Anatomy.

Figure 18 shows the MA and ME of the queries Q1–Q12

by Anatomy and SNI. In accordance with Figure 18, it is
observed that SNI shows higher performance than Anatomy,

and from the view point of categorization, it can even
produce the complete instances in some cases (i.e., Q11-
Q12).

In accordance with Figure 18, for one sensitive label, it
is observed that the ME criterion in SNI is less. In the next

Table 8: Queries Q1–Q12 related to the taxonomic tree of job.

Q Select From Where

Q1 Distinct vertex G Job in {“C”}
Q2 Distinct vertex G Job in {“L”}
Q3 Distinct vertex G Job in {“M”}
Q4 Distinct vertex G Job in {“J”}
Q5 Distinct vertex G Job in {“MA”}
Q6 Distinct vertex G Job in {“T”}
Q7 Distinct vertex G Job in {“A”}
Q8 Distinct vertex G Job in {“TE”}
Q9 Distinct vertex G Job in {“NT”}
Q10 Distinct vertex G Job in {“PR”}
Q11 Distinct vertex G Job in {“WC”}
Q12 Distinct vertex G Job in {“BC”}

2

5

6

7

Valid vertices = {2, 5, 6}

Invalid vertex = {7}

Figure 14: Result of the query H.
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Valid vertices = {2, 5, 6}

Invalid vertices = {1, 3, 4, 7, 8, 9}

Figure 15: Result of the query I.
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section, the MA and ME for graphs having several sen-
sitive labels with correlation are calculated, which is
interesting.

3.3.2. Multiple Sensitive Labels. Suppose that we want to
apply each of the queriesQ13–Q22 in Table 9 by Anatomy and
SNI. Note that each of these queries applies two sensitive
labels (disease and job). In accordance with Figures 12 and
13, the clauses in the queries Q17–Q19 and Q22, like “WC”
and “RI,” are on Cut1 and Cut2, and the clauses in the queries
Q13–Q16 and Q20–Q21, like “PR,” are below Cut2. We will
study two modes for the clauses in these queries: 1, below cut
and 2, above cut.

(1) First Mode (Below Cut). Assume, by query Q15, we would
like to realize the individuals who are in the categories of the
“PR” and “RI.” If Figure 1 is available, according to Fig-
ures 12 and 13, the result of runningQ15 is two vertices 2 and
6 in Figure 1 (original graph). If Figures 11 and 13 are
available, then the easiest way is to run the query L.

L:

Select distinct vertex
From Figures 11 and 13
Where partial job of Figure 11� partial job of Figure 13
and
Partial disease in (“RI”) and
Job in (“L,” “A”)

�e result of running the query L is shown in Fig-
ure 19 which has 2 valid vertices and 1 invalid vertex
(MA � 2/3 � 0.67 and ME � 1/3 � 0.33). But, if Figure 4
and Tables 1 and 3 are available, then we must run the
query M.

M:

Select distinct vertex
From Figure 4 and Tables 1 and 3
Where Group-ID2 of Figure 4�Group-ID2 of Table 1
and
Group-ID of Figure 4�Group-ID of Table 3 and
Job in (“L,” “A”) and disease in (“F,” “P,” “B”)

�e result of running the queryM is shown in Figure 20
which has 2 valid vertices and 7 invalid vertices (MA� 2/
9� 0.22 and ME� 7/9� 0.78).

(2) Second Mode (Above Cut). Assume, by query Q18, we
would like to discover those who are in the categories of the
“BC” and “RI.” According to Figures 1, 12, and 13, the result
of running the query Q18 is three valid vertices 1, 8, and 9 in
Figure 21. If Figure 11 is available, then the easiest way is to
run the query N.

N:

Select distinct vertex
From Figure 11
Partial job in (“BC”) and
Partial disease in (“RI”)

Figure 21 presents the output of the query N which has
three valid vertices 1, 8, and 9 because Figure 11 contains the
complete information required by the queryN. Note that the
MA and ME for the query N are 1 and 0 (MA� 3/3 and
ME� 0/3). If Figure 4 and Tables 1 and 3 are available, the
easiest way is to run the query O.

O:

Select distinct vertex
From Figure 4 and Tables 1 and 3
Where Group-ID2 of Figure 4�Group-ID2 of Table 1
and
Group-ID of Figure 4�Group-ID of Table 3 and
Job in (“J,” “M,” “T,” “C”) and
Disease in (“F,” “P,” “B”)

Figure 22 states the output of the query O which has 6
invalid vertices and 3 valid vertices (MA� 3/9� 0.33 and
ME� 6/9� 0.67).

1

9

8

3

4

Valid vertices = {1, 3, 4, 8, 9}

Figure 16: Result of the query J.
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Valid vertices = {1, 3, 4, 8, 9}

Invalid vertices = {2, 5, 6, 7}

Figure 17: Result of the query K.
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Figure 23 shows the MA and ME for all queries Q13–Q22

by Anatomy and SNI. Note that, according to Figure 23,
when the values of the clause in a query are above Cut1 and
Cut2, MA� 1 and ME� 0. In other words, the resultant
graph only contains valid vertices.

By comparing Figures 18 and 23, it can be seen that when
the clause in a query containsmultiple sensitive labels, theMA
in immunization is extremely more than that in Anatomy.
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Figure 18: MA (a) and ME (b) for queries Q1–Q12.

Table 9: Queries Q13–Q22 related to taxonomic trees of disease and job.

Query Select From Where

Q13 Distinct vertex G
Job in {nontechnical} and disease in {stomach

disease}

Q14 Distinct vertex G
Job in {technical} and disease in {respiratory

infection}

Q15 Distinct vertex G
Job in {professional} and disease in {respiratory

infection}
Q16 Distinct vertex G Job in {professional} and disease in {stomach disease}
Q17 Distinct vertex G Job in {white-collar} and disease in {stomach disease}

Q18 Distinct vertex G
Job in {blue-collar} and disease in {respiratory

infection}
Q19 Distinct vertex G Job in {blue-collar} and disease in {stomach disease}
Q20 Distinct vertex G Job in {technical} and disease in {stomach disease}

Q21 Distinct vertex G
Job in {nontechnical} and disease in {respiratory

infection}

Q22 Distinct vertex G
Job in {white-collar} and disease in {respiratory

infection}
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6

7

Figure 19: Result of the query L.
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Valid vertices = {2, 6}

Invalid vertices = {1, 3, 4, 5, 7, 8, 9}

Figure 20: Result of the query M.
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Figure 22: Result of the query O.
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Figure 23: MA (a) and ME (b) for queries Q12–Q22.
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Also, the ME in immunization is extremely less than that in
Anatomy. In fact, immunization increases the accuracy of
membership analysis. -e reason is that there is a correlation
among the quasi-identifier and partial sensitive labels. As a
result, multiple sensitive labels with correlation are a simple
scenario in which the data publisher can publish multiple
trees (one for each sensitive label) by using the SNI model.

4. SNI Algorithm

Figure 24 illustrates the SNI algorithm. -e algorithm
operates according to the framework in Figure 10. Using an
original graph and n taxonomic trees (TAX1, . . ., TAXn) and
attack thresholds (h1, . . ., hn) as the input, it produces an

immune graph (IG) and n supplementary trees (ST1, . . .,
STn) as the output. In accordance with Figure 24, the al-
gorithm contains 2 procedures.-e second procedure which
is the main focus of this article has three activities: 1, ini-
tialization (lines 1–3); 2, extraction (lines 4–12); and 3,
reduction (lines 13–16).

-e first procedure applies a conventional algorithm
which does not edit the sensitive labels on vertices of G and
forms an anonymized graph. For example, if Figure 1 is the
input of this procedure, then its output will be Figure 3
which solves VLC and LLC for labels on edges.

In initialization activity, in accordance with the sensitive
labels on any vertex v ∈ G, x[Fi] of any leaf x ∈ TAXi is
updated. For example, according to Figure 1, the amount of
Fi for the leaf “L” in Figure 8 is set to 2 since the job title of
two vertices in Figure 1 equals “L.”

In extraction activity, first, y[Fi] of any internal node
y ∈ TAXi is set by the sum of x[Fi] of all leaves in the subtree
of y (line 5). Second, y[Ri] is set by the maximum of x[Ri] of
all leaves x in the subtree of y (line 6), or by the maximum of
the relative frequencies of all leaves in the subtree of y.
Finally for each TAXi, a set of nodes named “Cuti” is
extracted (lines 8–11). Finally, TAX1, . . ., TAXn are renamed
to ST1, . . ., STn, respectively.

In reduction activity, the sensitivity of the sensitive labels
on any vertices v ∈G is decreased and a graph named “IG” is
produced for publishing (lines 13–16). First, for any vertex
v ∈G, a leaf x ∈ STi is found where x[Si] � v[Si], and then
the field Pi of the ancestor of the leaf x in Cuti is copied to the
field Si of the vertex v (Line 14). Finally, G is renamed to IG
(line 16).

5. Experiments

In this section, an empirical experiment examines the degree
of utility of data derived from SNI and Anatomy. For
necessary experiments, a real dataset of cancer patients in an
Iranian hospital that contains the cancer detection code of
patients was used. -e sensitive label in this dataset is the
cancer detection code. Here, only results related to the
cancer code label were presented. -e ICD-O (International
Classification of Diseases for Oncology) [38] was used to
construct the taxonomic tree of cancer code. Figure 25 shows
the part of this taxonomic tree. -is taxonomic tree has 848
nodes, 98 of which are internal nodes. For example,
according to Figure 25, the internal node C00 is a parent
node for leaves C00.0–C00.9. C00.0 is the cancer code for the
external upper lip (NOS, lipstick area, and vermilion
border).

Table 10 shows the main internal nodes that were used in
queries on the dataset. Table 11 contains the main queries
that were used in tests. -e degree of utility of data derived
from SNI and Anatomy was calculated by the MA and ME
(equations (1) and (2)). Figure 26 illustrates the results of all
queries A′–O′ in Table 11 with h1 � 0.34 for SNI and l� 127
for SNI and Anatomy.

In accordance with Figure 26, in SNI, when the query
condition, like queries M′–O′, is close to CutCancer (per-
mitted generalization limit), the membership accuracy (MA)

Output: an immune graph (IG) and n supplementary trees
ST1.….STn)

Input: an original graph (G) and n taxonomic trees (TAX1,…,

TAXn) and attack thresholds (h1,…, hn)

Module:

Procedure 1: to solve VLC and LLC for labels on edges,
extract an anonymized graph, by conventional
algorithms which do not edit sensitive labels on vertices

Procedure 2: to solve LLC for labels on vertices and weaken LCC,
extract an IG and n STi by lines 1–16

/∗The lines 1-3 initialize the frequency field of all leaves
in taxonomic trees∗/

1. For each leaf x ∈ TAXi do

x[Fi]2. frequency of x[Si] in all vertices of G;

3. End for

/∗Extraction activity (lines 4-12) extracts n STi
∗/

/∗the lines 4-7 calculate the internal nodes∗/

4. For each internal node y ∈ TAXi do

5. y[Fi] ∑All Leaves x in subtree y x[Fi];

y[Ri]6.
Max(all x[Fi] in subtree of y)

y[Fi]

7. End for

/∗the lines 8-11 extract the Cuti
∗/

8. For each TAXi, consider m internal nodes yk ∈ TAXi as a Cuti,

If them satisfy following two conditions. (for 1≤ k, j≤m)

9. ∪
m
k=1 {Leaves in subtree of yk} = {all leaves of TAXi}

10. {Leaves in subtree of yk} ∩ {Leaves in subtree of yj} = ø

11. End for

/∗the line 12 extract n STi
∗/

12. Rename n taxonomy trees (TAX1,…,TAXn) to 
Trees (ST1.….STn)

/∗Reduction activity (lines 13-16) reduces sensitivity of the sensitive
labels on vertices of G and extracts an Immune Graph (IG)∗/

For each v[Si] do13. // vertex v ∈ G

find a leaf x ∈ STi where v[Si] = x[Si]14

15. End for

16: Rename G to IG

17: Return IG and all STi.

and v[Si] Si of ancestor of x ∈ Cuti

Figure 24: SNI algorithm.
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increases up to 1. In other words, the resultant graph only
contains valid vertices, and in fact, it does not contain any
invalid vertices. -is suggests a correlation of quasi-iden-
tifier and sensitive labels since there is a correlation among
the quasi-identifier and partial sensitive labels in the im-
munized graph and supplementary trees.

Obviously, SNI depends highly on the structure of taxo-
nomic trees and the frequency of data. Generally, deeper or
more balanced taxonomic trees cause better results. -e in-
teresting point to be found in the experiments is that, for the
data that need to be published using the SNI technique, a
characteristic called the maturity time should be defined. In
other words, the data are not allowed to be published until
maturity time is reached. In fact, if the data holder realizes that
the data frequency is not suitable for the publication of the data,

he/she should wait until more data are collected or can use and
add up previous years’ data to supplementmaturity time needs.

5.1. Details of Computational Effort. In accordance with the
SNI algorithm in Figure 24, the frequency field of leaves of
all taxonomic trees is initialized through sensitive label
values in the graph, by once traversing the graph (lines 1-3
of the algorithm); all necessary calculations to extracting
immunized supplementary trees are only done on taxo-
nomic trees (lines 4-11 of the algorithm); and any taxo-
nomic tree has finite and tolerable nodes. Obviously, the
SNI algorithm is feasible and efficient for very large graphs
having millions of nodes because the time of traversing a
taxonomic tree that has the frequencies of the nodes of a
very large dataset is exactly equal to the time of traversing
the same taxonomic tree that has the frequencies of the
nodes of a small dataset. In fact, the difference between two
datasets—very large dataset and small dataset—is the
mapping time of their nodes on a taxonomic tree that we

C0075 C7680 C8196

C0014 C7375… … C81 … C96

All

C00 C14 …… …

Cutcancer

hcancer = 0.34

Figure 25: Taxonomic tree of cancer code.

Table 10: Main internal nodes in the taxonomic tree of cancer
code.

Category Node

Lip, oral cavity, and pharynx C0014
Digestive organs C1526
Respiratory and intrathoracic organs C3039
Bone and articular cartilage C4041
Skin C4344
Mesothelial and soft tissue C4549
Breast C5050
Female genital organs C5158
Male genital organs C6063
Urinary tract C6468
Eye, brain, and other parts of the central nervous
system

C6972

-yroid and other endocrine glands C7375
Malignant neoplasms, stated or presumed to be
primary, of specified sites, except for lymphoid,
hematopoietic, and related tissue

C0075

Malignant neoplasms of ill-defined, secondary, and
unspecified sites

C7680

Malignant neoplasms, stated or presumed to be
primary, of lymphoid, hematopoietic, and related
tissue

C8196

Table 11: Queries related to the main nodes in the taxonomic tree
of cancer code.

Query Select From Where

A′ Distinct vertex Dataset Cancer in {C0014}
B′ Distinct vertex Dataset Cancer in {C1526}
C′ Distinct vertex Dataset Cancer in {C3039}
D′ Distinct vertex Dataset Cancer in {C4041}
E′ Distinct vertex Dataset Cancer in {C4344}
F′ Distinct vertex Dataset Cancer in {C4549}
G′ Distinct vertex Dataset Cancer in {C5050}
H′ Distinct vertex Dataset Cancer in {C5158}
I′ Distinct vertex Dataset Cancer in {C6063}
J′ Distinct vertex Dataset Cancer in {C6468}
K′ Distinct vertex Dataset Cancer in {C6972}
L′ Distinct vertex Dataset Cancer in {C7375}
M′ Distinct vertex Dataset Cancer in {C0075}
N′ Distinct vertex Dataset Cancer in {C7680}
O′ Distinct vertex Dataset Cancer in {C8196}
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can use the best existing mapping algorithms. �at is, the
algorithm receives an original graph and multiple taxo-
nomic trees as the input (i.e., Figures 3, 5, and 8) and just
updates the frequency field of leaves in taxonomic trees
(i.e., Figures 5 and 8). �is algorithm computes immunized
supplementary trees in O(n/b) I/Os, where n is the car-
dinality of the dataset and b the page size. Note that if n is
very large in practice (e.g., at the order of a million), then
our algorithm is nearly optimal.

5.2. Implementation of Taxonomy Tree. For the experiments,
the values of the sensitive labels on vertices are transferred to
a table. Any taxonomic tree is transferred to a table that has 7
fields. For example, Table 12 illustrates how to implement
the taxonomy tree shown in Figure 25. �e ID attribute is
used to refer to a record or to link between records. �e type
attribute is used to distinguish between the internal node
and leaf node. �e parent ID attribute is actually used to
simulate the edge between the parent node and the child
node. �e reason for using only the parent ID attribute is
that movement on the tree is only from bottom to top.

6. Conclusion

�e SNI technique preserves correlation among multiple
sensitive labels and almost solves LCC for membership

analysis. It is appropriate for a graph that has multiple sensitive
labels, and each sensitive label has a taxonomic tree and an
attack threshold. It produces one IG and multiple STs to
publish the original data.�ese IG and STs considerably supply
privacy-preserving service and utility for membership analyses.
Unlike Anatomy, in SNI, the sensitive values are not randomly
grouped but are grouped based on the attack threshold and
taxonomic tree.�is technique uses the partial sensitive label to
maintain the correlation among labels.�is new technique can
also help the researchers to get exact compact data about
unknown original data as well as more detailed data such as
partial sensitive values and real quasi-identifiers. It definitely
increases the utility of the published data for membership
analysis. It alsomakes way for future researchers.�e output of
the SNImethod not only depends on the frequency of sensitive
values but also depends on the structure of taxonomic trees.

Data Availability

�e data analyzed during this study are described in the
following metadata record: https://drive.google.com/file/d/
1sovHfcitNX95CdER3JJCnv_6MeZJEfxZ/view?usp�sharing.
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Figure 26: MA (a) and ME (b) of queries A′–O′ of cancer.

Table 12: Implementation of the taxonomy tree (cancer code).

ID Type Detection code Detection code of the parent Parent ID Frequency Attack risk

1 Leaf C00.0 C00 10 0 0
2 Leaf C00.1 C00 10 0 0
. . . . . . .
9 Leaf C00.9 C00 10 3 1
10 Internal C00 C0014 56 3 1
11 Internal C01 C0014 56 0 0
12 Leaf C02.0 C02 20 0 0
13 Leaf C02.1 C02 20 0 0
14 Leaf C02.2 C02 20 1 1
. . . . . . .
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