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Sniffing Bacteria with a Carbon-Dot Artificial Nose

Nitzan Shauloff1, Ahiud Morag1, Karin Yaniv2, Seema Singh1, Ravit Malishev1, 

Ofra Paz-Tal3, Lior Rokach4, Raz Jelinek1,5 *

HIGHLIGHTS

• Novel artificial nose based upon electrode-deposited carbon dots (C-dots). Significant selectivity and sensitivity determined by 

“polarity matching” between the C-dots and gas molecules.

• The C-dot artificial nose facilitates, for the first time, real-time, continuous monitoring of bacterial proliferation and discrimination 

among bacterial species, both between Gram-positive and Gram-negative bacteria and between specific strains.

• Machine learning algorithm furnishes excellent predictability both in the case of individual gases and for complex gas mixtures.

ABSTRACT Continuous, real-time monitoring and identification of 

bacteria through detection of microbially emitted volatile molecules 

are highly sought albeit elusive goals. We introduce an artificial nose 

for sensing and distinguishing vapor molecules, based upon recording 

the capacitance of interdigitated electrodes (IDEs) coated with carbon 

dots (C-dots) exhibiting different polarities. Exposure of the C-dot-

IDEs to volatile molecules induced rapid capacitance changes that were 

intimately dependent upon the polarities of both gas molecules and the 

electrode-deposited C-dots. We deciphered the mechanism of capaci-

tance transformations, specifically substitution of electrode-adsorbed 

water by gas molecules, with concomitant changes in capacitance 

related to both the polarity and dielectric constants of the vapor molecules tested. The C-dot-IDE gas sensor exhibited excellent selectivity, 

aided by application of machine learning algorithms. The capacitive C-dot-IDE sensor was employed to continuously monitor microbial 

proliferation, discriminating among bacteria through detection of distinctive “volatile compound fingerprint” for each bacterial species. 

The C-dot-IDE platform is robust, reusable, readily assembled from inexpensive building blocks and constitutes a versatile and powerful 

vehicle for gas sensing in general, bacterial monitoring in particular.
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1 Introduction

Bacteria are known to emit varied volatile molecules, 

which types and concentrations are strain-dependent [1, 2]. 

Bacterially produced volatile compounds such as alcohols, 

aldehydes, ketones and others have been used as microbial 

biomarkers [3, 4], and bacterially emitted volatile metabolite 

mixtures have been employed as distinctive “odor profile” 

vehicles for bacterial identification [5–7]. In particular, 

colorimetric arrays for sensing volatile compounds have 

been developed, capable of distinguishing among different 

bacterial strains [8]. Optical and chemo-resistive gas sensing 

methods have been also utilized for bacterial analysis, 

exploiting specific biomarkers [7, 9]. The fundamental 

limitation of these vapor-based bacterial detection schemes 

is the fact that they cannot be employed for continuous 

monitoring, since samples need to be collected (usually 

manually) and analyzed ex situ. This facet precludes 

broad range of important bacterial sensing applications 

in healthcare, environmental monitoring and homeland 

security [10].

Among the diverse gas sensing technologies developed, 

“artificial noses” have attracted significant interest. Artifi-

cial noses aim to effectively mimic the functionalities of the 

physiological organ, specifically its extraordinary selectiv-

ity among different vapor molecules and gas mixtures [11]. 

Reported artificial nose platforms have relied on different 

physical mechanisms, such as changes of electrical resist-

ance in conductivity sensors [11–15], absorption and des-

orption of heat in calorimetric sensors [16] and changes of 

electrical conductance in semiconductor field effect transis-

tors [17, 18]. In this work, we fabricated an artificial nose 

based on carbon dots (C-dots) as the principle capacitance 

sensing determinant. C-dots, nanometer-scale carbonaceous 

nanoparticle, have been demonstrated as a powerful and ver-

satile vehicle for sensing applications [19, 20]. In almost 

all instances, C-dot-based sensors have relied on the unique 

optical (particularly fluorescent) properties of these nanopar-

ticles [21, 22]. Electrochemical and electronic C-dot sensors 

have been also reported [23, 24]. Varied C-dot platforms 

have been developed for sensing volatile compounds [25, 

26], and C-dot-mediated electronic noses for vapor detection 

were also reported [27].

The artificial nose presented here comprises of 

interdigitated electrodes (IDEs) coated with C-dots 

exhibiting different polarities, providing a distinctive 

sensing platform and specificity mechanism. The C-dot-

IDEs featured distinct capacitance changes that were 

rapidly induced upon exposure to different gas targets. 

Importantly, application of a simple machine learning 

model utilizing the capacitive response of the C-dot-IDE 

artificial nose facilitated excellent prediction capabilities 

for both individual gases as well as in gas mixtures. The 

mechanism accounting for the vapor sensing was deciphered 

through impedance spectroscopy analysis, indicating that 

matching between the polarities of the gas molecules and 

electrode-deposited C-dots constitutes the primary sensing 

determinant. The C-dot-IDE capacitive artificial nose has 

been successfully applied for continuous monitoring and 

discriminating among bacteria, underscoring the sensor 

availability as a generic platform for non-invasive bacterial 

growth detection.

2  Experimental Section

2.1  Materials

Urea, p-phenylenediamine, citric acid, cobalt chloride hexa-

hydrate  (CoCl2·6H2O), lithium chloride  (LiCl2), magnesium 

chloride  (MgCl2), potassium carbonate  (K2CO3), sodium 

chloride (NaCl), potassium chloride (KCl), potassium sulfate 

 (K2SO4), toluene, n-hexane, dimethyl formamide, ethyl ace-

tate, methanol and ammonium were purchased from Sigma-

Aldrich. Luria–Bertani (LB) agar was purchased from 

Pronadisa (Spain). Interdigitated gold electrodes (Dimen-

sions: 10 × 6 × 0.75  mm3; glass substrate; Insulating layer: 

EPON SU8 resin; electrode material: Au; electrode thick-

ness: 150 nm; microelectrode with: 10 μm, microelectrode 

gap: 10 μm; number of fingers: 90 pairs) were purchased 

from MicruX Technologies (Oviedo, Spain). The bacteria 

used in the studies were Escherichia coli DH10B wild type, 

Pseudomonas aeruginosa PAO1 wild type, Bacillus subtilis 

PY79 and Staphylococcus aureus wild type strains (gener-

ously provided by Prof. Ariel Kushmaro, Ben Gurion Uni-

versity). Ultrapure distilled water (Millipore) was used in 

all experiments.
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2.2  Synthesis of C-dots

Synthesis of the C-dots employed a modified reported pro-

cedure for construction of multiple polarity C-dots [28]. 

Briefly, 0.2 g of urea, 0.1 g of citric acid and 0.2 g of p- 

phenylenediamine were dissolved in 50 mL of distilled 

water. The solution was subsequently heated at 180 °C for 

10 h in a Teflon autoclave. Following cooling to room tem-

perature, the suspension was centrifuged twice for 5 min 

at 11,000 rpm for discarding larger aggregates. The result-

ant solution was purified via silica column chromatography 

using a mixture of toluene and methanol as the eluent. After 

collecting the different fluorescent C-dots, exhibiting dif-

ferent colors/polarities, the C-dots were dispersed in water 

prior to electrode deposition.

2.3  C-dot-IDE Sensor Construction

To prepare the C-dot-IDE capacitive electrodes, we utilized 

a recently developed protocol [29]. Briefly, C-dot suspen-

sions in water (2 mg mL−1) were sonicated for 5 min, drop-

casted (15 µL) on the interdigitated electrodes (IDEs) and 

left to dry overnight under room temperature. The resultant 

electrodes were kept at room temperature in  N2 environment 

prior to measurements.

2.4  Characterization

2.4.1  Atomic Force Microscopy

Atomic force microscopy (AFM) images were collected 

in AC-mode (tapping mode), with a Cypher-ES, asylum 

research (oxford instrument) model, using an AC 160 TS 

(Olympus) probe, with a tip radius of 9 nm and a force con-

stant of approximately 26 Nm − 1. The C-dots-IDE sample 

and a control IDE sample were measured at the capacitor 

detecting area between the gold IDE electrodes.

2.4.2  Water Contact Angle

Carbon-dot hydrophobicity was determined using a contact 

angle meter (Attension Theta Lite, Biolin Scientific, Finland). 

The contact angles were measured by 5 μL water deposition 

on the surface of deposited C-dot samples and a control sam-

ple. The average water contact angle (WCA) was calculated.

2.5  Vapor Sensing

The gas apparatus setup for vapor generation and sensing 

(Scheme S1) was based on a recent publication [30]. Briefly, 

for the vapor sensing experiments, we used an inert gas car-

rier-dry nitrogen, split into two components: one carrier flow 

bubbling through the volatile organic compounds (n-hex-

ane, toluene, dimethylformamide, ethyl acetate, methanol, 

ammonium) at variable rates. The C-dot-IDE electrodes 

were placed in the detection chamber, connected to an LCR 

meter (Keysight Technologies, E4980AL Precision LCR 

Meter), to detect capacitance changes. Vapor concentrations 

were determined by gas chromatography–mass spectrometry 

(Agilent 7890B/5977A Series Gas Chromatograph/Mass-

Selective Detector); with a range of 5 to 95 ppmv. In order 

to calibrate the vapor concentration, we used a mass flow 

controller (MFC) in order to determine the exact concentra-

tions in correlation with the GC–MS calibration curves. For 

producing different relative humidity (RH) environments, 

we bubbled saturated aqueous solutions of different salts 

(potassium carbonate, cobalt chloride and potassium sulfate, 

for generating RH = 43%, 64% and 97%, respectively) in a 

closed glass vessel, under a constant temperature (25 °C). 

RH values that confirmed using a standard humidity sen-

sor (TH 210, KIMO, Instruments, France), connected to the 

C-dot-IDE chamber. All gas sensing measurements were 

conducted at 64% RH. Prior the examination each of the 

electrodes was saturated at 64% RH.

Capacitive measurements were performed using 35 

ppmv gas concentrations under standard conditions at 

room temperature upon exposure of the C-dot-IDE elec-

trodes to the target vapor. Capacitance values that recorded 

after producing a clear baseline with exposure to 64% RH, 

collecting the data every 1.3 s. The changes in capaci-

tance were recorded upon addition to different vapor ana-

lytes through generation at specific flows (calibrated to 

the desired gas concentration). After reaching saturated 

capacitance values gas molecules were removed by flush-

ing with  N2 gas passing through an aqueous  CoCl2 satu-

rated solution (producing RH = 64% vapor).
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2.6  Bacterial Growth and Vapor Sensing

The four bacterial strains were cultured in Luria–Bertani 

(LB) medium at 37 and 28 °C for gram-negative and gram-

positive bacteria, respectively. Single bacterial colonies 

from LB agar plates were inoculated into 10 mL of LB 

broth and maintained at the proper temperatures (37 or 

28 °C) for 12 h in a shaking incubator (220 rpm). The 

concentration of bacteria in the medium was obtained by 

measuring the optical density at 600 nm (OD 600). When 

the OD 600 reached 0.5, 50 µL from the bacterial cultures 

was grown on solid LB agar in 20 mL vials maintained 

at a constant temperature. Bacterial gas emissions were 

monitored by placing the electrodes 2.5 cm above the sam-

ples. The initial capacitance was taken, proceeding with 

measuring the capacitance change in different time points.

2.7  Data Analysis

The IDE capacitance value is defined as:

C is capacitance in farads (F), η is the number of fingers, 

ε0 is the permittivity of free space (ε0 = 8.854 × 10−12 F  m−1), 

εr is the relative permittivity, usually known as the dielectric 

constant, l is the length of interdigital electrodes, t is the thick-

ness of interdigital electrodes and d is the distance between the 

electrodes. The IDEs capacitive sensing is lean on modulations 

of the dielectric constant of the material placed upon the elec-

trode. The dielectric constant is modulated with absorption 

of different gas analytes, causing capacitance changes effect.

The capacitance response of the sensors—ΔC—was defined 

as Cgas–C0, where Cgas and C0 are, the saturated capacitance 

value after addition of the gas analyte measured under the 

same humidity (64% RH) in a specific concentration and the 

capacitance baseline value measured at 64% RH, respectively. 

The baseline was adjusted as 0 nF in order to compare between 

the electrodes (as all electrode presented a high initial capaci-

tance value in nF units).

2.8  Gas Chromatography–Mass Spectrometry

Gas chromatography–mass spectrometry (GC–MS) was 

used to detect the analyte concertation at a specific flow 

(1)C = ��
0
�

r

lt

d

rate (controlled with the mass flow controller). The unit’s 

Agilent 7890B GC was connected to an Agilent 5977A 

single-quadrupole mass-selective detector. The instrument 

is equipped with a 100-vial autosampler, an NIST02 MS 

and an ACD Labs MS Manager (software package for mass-

spectra interpretation and structure elucidation). Column 

type of (35% phenyl methyl siloxane for MS; length 30 m; 

0.25 mm, I.D. & 0.25 µm film thickness; temperature was 

programmed at 25 °C for 1 min to 70 °C at 3 °C min−1 to 

280 °C at 10 °C min−1. Transfer line temperature 280 °C and 

total run time is 37 min. The carrier (Helium) gas flow rate 

of 2 mL min−1 was applied. Sample analysis was carried out 

by solution (calibration) and vapor injecting (Splitless) 20 

µL sample size into the GC.

Concentration determination—for each analyte, we cre-

ated a calibration curve with a known concentration (5 – 95 

ppmv) dissolved in a suitable organic solvent. (High purity 

solvents were used in order to prepare the standard solu-

tions (toluene, n-hexane, dimethyl formamide, ethyl acetate, 

butanol and ammonium with ≥ 99% purity). All standards 

were prepared in methanol solution, except of the methanol 

standard which was prepared in acetonitrile. To construct 

the calibration curves, the results were quantified based 

on peak area using the extracted ion method performed by 

Masshunter qualitative analysis software. The target peak 

assignments were confirmed with the pure materials [29]. 

Analyte vapors were measured in different flow rates and 

examined using GC–MS in injection mode. The flow rates 

were then adjusted to produce 35 ppmv gas concentrations 

for each examined analyte.

2.9  Impedance Measurements

Complex impedance spectra were conducted between 

1 Hz–100 kHz for C-dot-IDEs kept at different humid-

ity values by using a LCR meter (Keysight Technologies, 

E4980AL Precision LCR Meter) with testing voltage of 1 V 

at room temperature. To set up different RH environments, 

saturated aqueous of  K2CO3,  CoCl2,  K2SO4 was placed 

in airtight glass vessels at a temperature of 25 °C, which 

yielded atmospheres with RHs 43%, 64% and 97%. each 

electrode was placed inside the detection chamber, con-

nected to an LCR meter measuring Z’ and Z’’, the real and 

imaginary value of the impedance, respectively, using the 

follow impedance equation:
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where R is the resistance, f is the frequency and C is the 

capacitance.

2.10  Machine Learning (ML)

In order to report an unbiased and reliable estimate for 

the machine learning (ML) model accuracy, we used the 

leave-one-out cross-validation procedure (Wong 2015), 

as recommended by Beleites and Salzer (2008) for evalu-

ating chemometric models in small sample sizes [31]. 

The leave-one-out procedure is performed by training 

the model N times, where N is the number of different 

sensors’ readings. In each training repetition, we trained 

the model with all readings except for one that is used to 

evaluate its predictive performance. Notably, each avail-

able reading is used only once for evaluating the model. 

The leave-one-out cross-validation procedure allows us 

to use the largest available training set (N-1) and achieve 

an unbiased estimate of the accuracy [32].

(2)Z = Z�
+ Z��

= R +
1

i ⋅ 2�f ⋅ C
= R −

i

2�f ⋅ C

3  Results and Discussion

3.1  Experimental Strategy

The objective of this study is to design a simple, sensitive 

artificial nose for continuous monitoring of vapor mol-

ecules. Scheme 1 illustrates the design of the C-dot-based 

capacitive vapor sensor. C-dots exhibiting different polari-

ties were synthesized from para-phenyl diamine, urea and 

citric acid as the carbonaceous precursors and separated 

according to polarity by liquid chromatography [28]. Spe-

cifically, the blue C-dots displayed lower abundance of 

polar units on their surface, while the orange C-dots and 

more so the red C-dots contained higher concentrations 

of polar residues such as hydroxyl, carboxyl and amines 

[33, 34]. (The distinct colors of the chromatography-

separated C-dot solutions are shown in Scheme 1.) The 

isolated C-dots, exhibiting different polarities and colors, 

were each drop-casted on commercially available inter-

digitated electrodes (IDEs; Scheme 1, middle). As out-

lined in Scheme 1 (right), the capacitance measured by 

the C-dot-IDEs was altered upon exposure of the C-dot-

IDEs to gas molecules. Importantly, the extent and direc-

tion (e.g., increase or decrease) of the capacitance changes 
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Scheme 1  Fabrication of the carbon-dot-interdigitated electrode capacitive vapor sensors. C-dots are separated according to color/polarity using 

liquid chromatography and deposited on commercially available IDEs. Distinct capacitance changes are recorded upon exposure of the C-dot-

IDEs to vapor molecules, depending upon the types of C-dots deposited and gas molecules
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were significantly different for each C-dot-IDE electrode, 

depending upon the polarities of both the C-dots species 

deposited as well as the gas molecules detected.

3.2  Characterization of the Carbon-Dot-interdigitated 

Electrodes

Figure 1 depicts characterization of the C-dot-IDE sys-

tem, particularly examining incorporation of the C-dots 

upon the electrode surface and their effects. (Microscopic, 

spectroscopic and thermodynamic characterization of the 

C-dots employed in the experiments are presented in Figs. 

S1–S5.) The atomic force microscopy (AFM) images in 

Fig. 1a attest to deposition of ubiquitous C-dots at the 

space between the gold fingers comprising the interdigi-

tated “comb”. (A smooth surface between the IDE fingers 

was observed in the AFM analysis of control electrodes 

prior to C-dot deposition, Fig. S6.) The diameters of the 

C-dots were on the order of 5 nm, as apparent in the AFM 

height profile in Fig. 1a, right.

Figure 1b presents the water contact angle (WCA) of IDEs 

coated with the different C-dots, confirming the significant 

effect of C-dot polarity upon the macroscopic IDE surface 

properties. Indeed, Fig. 2b attests to a direct relationship 

between surface polarity of the C-dots and the degree of 

hydrophobicity of the electrode. For example, the WCA of 

an electrode coated with red C-dots, which exhibit the high-

est polarity among C-dots employed, decreased from  30° to 

 23° (Fig. 2b), reflecting the abundant polar units upon the 

C-dots. In comparison, the WCA increased to  58° and  74° in 

the IDEs coated with orange C-dots and blue C-dots, respec-

tively, accounting for the lower polarities of these C-dots 

which affect more pronounced electrode hydrophobicity.

3.3  Sensing Volatile Organic Compounds 

with the C-dot-IDE Capacitive Sensors

Figure 2 depicts the capacitance profiles of the C-dot-IDEs 

measured upon exposure to different gases. Figure 2a illus-

trates the capacitance curves recorded for the three C-dot-

IDEs sensors upon exposure to toluene (representing a non-

polar gas molecule), dimethylformamide (DMF, exhibiting 

medium polarity) and ammonia (high polarity molecule). 

The C-dot-IDEs were initially exposed to 64% humidity (at 

room temperature), resulting in adsorption and equilibration 

of water molecules onto the C-dot-coated electrode surface; 

the direct relationship between the capacitance values and 

degree of humidity is outlined in Fig. S7. Figure 2a depicts 

the capacitance changes induced by the three gas molecules 

in each electrode. Both toluene and dimethylformamide 

(DMF) induced lowering of the capacitance, albeit by dif-

ferent degrees depending upon the C-dots deposited. In con-

trast, ammonia gave rise to higher capacitance in all three 

electrodes (Fig. 2a). A comprehensive mechanistic analysis 

accounting to the different capacitance response profiles is 

provided below (Fig. 3).

Importantly, the capacitance curves in Fig. 2a under-

score rapid capacitance response (depending on gas spe-

cies), revealing fast response times of between 10–100 s 

and recovery times in the range of 50–200 s. (Table S1 

summarizes the C-dot-IDE sensors’ response and recovery 

time values of the electrodes and analytes presented in 

Fig. 2a.) Such capacitance response is among the fastest 
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Fig. 1  Characterization of the carbon-dot-IDE sensors. a Optical 

image of the IDE (left) and atomic force microscopy (AFM) images 

showing ubiquitous C-dots deposited upon the IDE surface between 

the gold fingers. b Water contact angles (WCA) recorded for the 

three C-dot-IDEs. The control sample corresponds to an IDE without 

deposited C-dots. (Color figure online)
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recorded for capacitive vapor sensors and accounts for 

rapid adsorption of gas molecules onto the electrode sur-

face. Furthermore, Fig. 2a also demonstrates that purg-

ing the C-dot-IDE with air (at 64% humidity) resurrected 

the initial capacitance values facilitating reusability of 

C-dot-IDE sensor for multiple measurements. Reusabil-

ity of the C-dot-IDE sensor in a prolonged time scale (up 

to 30 days) is demonstrated in Fig. S10. Further analysis 

of temperature effects (Fig. S10) indicates that the sensor 

response is sensitive to temperature variations only above 
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Fig. 2  Capacitive response of the carbon-dot-IDE sensors to gas vapors. a Capacitive transformation recorded for the red C-dot-IDE, orange 

C-dot-IDE and blue C-dot-IDE, respectively, upon exposure and subsequent purging of gas molecules. (Concentrations of all vapor molecules 

were 35 ppmv, determined by GC–MS.) The arrows indicate times of gas injection. Purging of the gases was carried out after the capacitance 

reached plateaus. The capacitance of a control IDE electrode without C-dot deposited was not affected by humidity nor VOC. b Capacitive 

dose–response curves for (i)  NH3, and (ii) DMF recorded for the red C-dot-IDE sensor. Linear fittings of the datapoints are presented;  R2 above 

0.98 was obtained in all linear fits. c Bar diagram depicting the capacitance changes at saturation following exposure of the C-dot-IDEs to gas 

molecules at a concentration of 35 ppmv. The bars represent an average value of five replicates per each electrode. (Color figure online)
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45 °C, although the excellent sensitivity even in very high 

temperature was retained.

Figure 2b presents the capacitive dose–response graphs 

recorded upon exposure of the red C-dot-IDE to different 

concentrations of  NH3and DMF vapors [the concentrations 

were determined by gas chromatography–mass spectrom-

etry (GC–MS)]. The ammonia dose–response analysis in 

Fig. 2b-i reveals two linear regions, one between 0 and 50 

ppmv and another linearity between 50 and 100 ppmv. The 

two linear capacitive response domains likely correspond 

to different mechanisms of ammonia adsorption onto the 

C-dot-IDE surface; indeed, distinct  NH3 concentration-

dependent surface-adsorption regimes have been reported, 

indicating  NH3 monolayer formation in low concentra-

tions, multilayer assembly in higher ammonia concentra-

tions [35–37]. In the case of exposure of the red C-dot-IDE 

sensor to DMF, a single linear dependence was apparent 

(Fig. 2b-ii) likely reflecting a single adsorption process of 

the DMF molecules. Note the negative capacitance change 

recorded, accounting for the lower dielectric constant of 

the DMF gas molecules adsorbed on the electrode surface. 

Both dose–response curves in Fig. 2b demonstrate a detec-

tion threshold of around 5 ppmv, underlying an excellent 

sensitivity of the C-dot-IDE platform. Close inspection of 

the dose–response curves in Fig. 2b reveals detection lim-

its of around 3 ppm. Notably, the device could detect even 

lower vapor concentrations, essentially determined by the 

gas flow rate apparatus (see Experimental Section).

The bar diagram in Fig. 2c summarizes the capacitance 

response signals induced in all three electrodes by gas target 

molecules spanning a wide polarity range. (Concentrations 

of all gases were 35 ppmv; Table S2 presents the capacitance 

response values of all electrodes.) The diagram in Fig. 2c 

reveals significant variations of capacitance responses for 

each gas target (i.e., capacitive “fingerprints”), dependent 

both upon the polarity of the gas molecules as well as the 

polarity of C-dots deposited on the electrode surface. For 

example, the sensor comprising blue C-dots exhibited sig-

nificant negative capacitance signals upon addition of the 

relatively non-polar gases ethyl acetate, toluene or hexane, 

while the more polar gas molecules, such as ammonia, meth-

anol or butanol, affected less capacitance decreases (or a 

capacitance increase in the case of ammonia).

Importantly, the capacitive response data in Fig. 2c indi-

cate that correlation between the polarities of gas mole-

cules and the electrode-deposited C-dots constitutes a core 

Fig. 3  Impedance spectroscopy of the carbon-dot-IDEs upon exposure to different vapors. a Nyquist plots of the orange C-dot-IDE recorded in 

the indicated relative humidity (RH) levels. b Nyquist plots of the orange C-dot-IDE recorded following exposure to different gas molecules (RH 

was 64%; concentrations of gas molecules were all 35 ppmv). (Color figure online)
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determinant affecting both the magnitude of the sensor 

signals and their direction (negative/positive). For exam-

ple, while Fig. 2c reveals that the IDE sensor coated with 

the non-polar blue C-dots displayed the most pronounced 

(negative) capacitance signals in the case of the non-polar 

gases toluene and hexane, the highly polar red C-dot-IDE 

electrode exhibited the highest (and positive) capacitance 

changes upon exposure to the polar gases ammonia and 

methanol. Interestingly, the orange C-dot-IDE sensor 

electrode featured the highest sensitivity (e.g., most pro-

nounced capacitance decrease) toward ethyl acetate and 

DMF, which exhibit intermediate polarity among the gases 

examined. While recent studies have reported polarity-

based modulation of C-dots’ optical properties [38], the 

data in Fig. 2 are the first example of macroscopic, coop-

erative effect of polarity-dependent transformations occur-

ring in C-dot systems.

3.4  Machine Learning Algorithm Application

The capacitive response profiles of the gas molecules 

using the C-dot-IDE electrode systems outlined in Fig. 2 

can be employed for selective detection of gas targets 

through a machine learning (ML)-based detection model, 

demonstrating applicability of the sensors an effective 

“artificial nose” (Table 1). Specifically, in the ML strat-

egy employed, the capacitance change values obtained for 

the different electrodes were used as input attributes for 

training a model designed to identify which gas molecule 

induces a given sensors’ reading. Specifically, instead of 

training a dedicated binary model for each gas separately, 

the gas identification scheme we implemented is formu-

lated as a multi-label classification task. With this model, 

a single sensors’ reading may be simultaneously assigned 

to many labels (gases). In particular, a multi-label classi-

fier can better capture the statistical interactions among 

electrodes’ values in the presence of gas mixtures. Specifi-

cally, we employed a Rakel ++ algorithm [39] that solves a 

multi-label classification task by constructing an ensemble 

of models, each of which considers a random subset of 

gases. For training every base model, we used the “random 

forest” algorithm [40] that train many decision trees inde-

pendently while injecting randomness to ensure diversity 

among the trees. We focused on a random forest because 

this approach fits well to a relatively limited number of 

readings (as is the case here), excluding application of 

other machine learning methods (such as deep learning) 

that require much larger training sets [31].

Table 1 underscores the excellent predictive performance 

of the ML-based model applied here. (Details of applica-

tion of the ML model to the capacitive response data are 

provided in the Experimental Section.) Specifically, Table 1 

indicates that the “accuracy” values obtained (correspond-

ing to the proportion of correct detections, both “true posi-

tives” and “true negatives”, among all examined cases) 

were almost all above 80%, with an average approaching 

90%, indicating relatively accurate prediction of the gas 

molecule detected. Similarly, the AUCs, areas under the 

receiver operating characteristic (ROC) curves which reflect 

the trade-off between the true positive rate and false positive 

rate; Fig. S11 presents the ROC curves of all gases) were 

on the order of 0.9 (average of 0.87), indicating satisfactory 

“true positive” predictions even in stringent thresholds.

Table 1 further demonstrates that the ML model utiliz-

ing the C-dot-IDE capacitive signals can also accurately 

predict gas mixture compositions. (Figure S12 presents 

Table 1  Predictive accuracy of the machine learning (ML) model

Accuracy: percentage of correct predictions (both “true positive” 

and “true negative”) out of the total readings. AUC : area under the 

receiver operating characteristic (ROC) curve, accounting for the 

quality of prediction of “true positive” vs “false positive” readings. 

The upper part of the table presents the predictive performance of 

the ML model for each gas individually, and the lower part shows the 

subset accuracy of correctly detecting different gas mixtures

Gas tested Accuracy (correctly 

classified instances)

AUC (Area under 

the ROC curve)

Ammonia 100% 1.00

BuOH 80.5% 0.92

DMF 87.5% 0.95

EtAc 87.8% 0.73

Hexane 78.05% 0.83

MeOH 97.6% 0.99

Toluene 90.2% 0.92

Average 88.7% 0.87

Gas mixture tested Subset accuracy

Hexane + Toluene 85%

BuOH + DMF 83%

Hexane + Tolu-

ene + BuOH + DMF

81%

Average 83%
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the capacitance data obtained for the gas mixtures.) To 

account for this aspect, we evaluated the “subset accuracy” 

– a very strict evaluation parameter requiring that the pre-

dicted set of gases in a mixture be an exact match of the 

true set of gases (for example, detecting only some of the 

gases, or detecting extra gases are considered to be a mis-

detection) [41]. Importantly, as shown in Table 1, the ML 

model reached a relatively high average subset accuracy of 

83%. Such a predictive performance underscores the capa-

bility of the C-dot-IDE platform to detect individual gas 

targets in mixtures. Overall, the ML analysis outlined in 

Table 1 underscores an excellent predictive performance, 

on par or better than reported ML applications in chemo-

metrics [42–44].

3.5  Mechanistic Analysis

To decipher the mechanistic basis for the remarkable selec-

tivity and sensitivity of the C-dot-IDE capacitive gas sensor, 

we carried out an electrochemical impedance spectroscopy 

analysis [45] (Fig. 3). In general, impedance measured in 

capacitive systems strongly depends upon charge transfer 

processes occurring at the electrode-vapor interface. As 

such, impedance spectroscopy exhibits pronounced sensi-

tivity to electrode surface properties and illuminates sur-

face properties and processes occurring through adsorption 

of gas molecules [46]. Figure 3a depicts the Nyquist plots 

recorded for the orange C-dot-IDE in different humidity 

conditions (i.e., different RH values). The semicircle diam-

eters in the Nyquist plots depicted in Fig. 3a account for 

the charge transfer resistance (Rct) at the electrode surface. 

Importantly, Fig. 3a demonstrates that placing the C-dot-

IDE in higher humidity environments gave rise to lower Rct 

(i.e., smaller semicircle diameter; the Rct values calculated 

from the impedance spectra are presented in Table S3).

The close relationship between humidity and charge trans-

fer resistance reflects affinity of water molecules onto the 

electrode surface, particularly docking of the adsorbed water 

molecules upon the polar residues (primarily OH and COOH 

units) on the C-dots’ surface [47, 48]. As such, higher con-

centrations of physically adsorbed water molecules upon the 

C-dot-IDE surface would give rise to smaller Rct due to 

the conductive nature of water molecules [49]. Indeed, an 

almost linear relationship between the real and imaginary 

impedance values (i.e., diminished semicircle correspond-

ing to very small Rct) was apparent in the case of RH = 97%, 

ascribed to the substantial concentration of water molecules 

adsorbed on the C-dot-IDE surface.

Figure  3b presents the Nyquist plots recorded at 

RH = 64% for the orange C-dot-IDE following exposure to 

different gases. (Gas concentrations were 35 ppmv; imped-

ance data for other gases tested in this work are presented 

in Fig. S13.) Figure 3b reveals a close relationship between 

the polarities of gas molecules and impedance changes. Spe-

cifically, exposure to DMF, BuOH and toluene gave rise to 

significantly more pronounced Rct (e.g., wider semicircles; 

the Rct values extracted from the Nyquist plots are outlined 

in Table S1). The mechanistic picture emerging from the 

impedance spectroscopy data in Fig. 3b underscores sub-

stitution of electrode surface-adsorbed water by the vapor 

molecules. Specifically, two factors shape the capacitance 

changes and their magnitude. When adsorbed water mol-

ecules are substituted by gases exhibiting lower polarities 

and lower dielectric constants than water—DMF, BuOH and 

toluene – Rct decreased (ascribed to the presence of less-

polar adsorbed molecules) and in parallel the capacitance 

became more negative (accounting for the lower dielectric 

constants of the adsorbed molecular layers). Crucially, the 

extent of water substitution in the C-dot-IDEs depends upon 

“matching” between the polarity of the electrode-displayed 

C-dots and vapor molecules. For example, the Rct (Fig. 3b) 

and capacitance change (Fig. 2c) induced by DMF in the 

case of the orange C-dot-IDE sensor were much more pro-

nounced than toluene although DMF exhibits higher polarity 

and larger dielectric constant then toluene. This result is 

due to better matching between the polarities of DMF and 

orange C-dots.

In contrast to the relatively low polarity DMF, BuOH and 

toluene, ammonia is highly polar and gave rise to a lower 

Rct (lower-diameter semicircle, Fig. 3b, black curve). The 

enhanced conductance in this case is ascribed to formation 

Fig. 4  Monitoring the growth and distinguishing bacteria with the 

carbon-dot-IDE artificial nose. a Experimental setup. C-dot-IDEs 

comprising red C-dots, orange C-dots and blue C-dots, respectively, 

provide continuous monitoring of capacitance changes induced by 

bacterially emitted volatile molecules. b Time-dependent capaci-

tive response curves recorded for different bacteria. Red curves: 

red C-dot-IDE; orange curves: orange C-dot-IDE; blue curves: blue 

C-dot-IDE. The curves represent average values of three replicates 

per each electrode. c Capacitance changes recorded after 20-h bacte-

rial growth. d Principal components analysis (PCA) showing capaci-

tive response cluster differentiation according to bacterial strain. 

(Color figure online)

◂
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of an ammonia layer physically adsorbed upon the water 

layer [50, 51]. Such a “double layer” ammonia adsorption, 

previously reported on metal surfaces [35], is due to the 

extensive hydrogen bonding between the adsorbed ammo-

nia molecules and deposited water. This phenomenon also 

accounts to the more pronounced dielectric constant and 

concomitant higher capacitance recorded (i.e., Fig. 2c).

3.6  C-dot-IDA Artificial Nose for Bacterial Sensing

Figure 4 demonstrates utilization of the C-dot-IDE artificial 

nose for both continuous monitoring of bacterial prolifera-

tion as well as identification of bacterial species. Figure 4a 

illustrates the experimental setup. A C-dot-IDE sensor was 

placed short distance above a surface (solid agar matrix) on 

which bacteria were allowed to proliferate. Capacitive sig-

nals induced by volatile compounds released by the growing 

bacteria were continuously monitored, yielding a real-time 

inline profile of bacterially emitted gas molecules. Impor-

tantly, while the scheme in Fig. 4a presents a simplified 

scheme of the bacterial sensing experiment through emitted 

bacterial metabolites. In essence, an array comprising dif-

ferent electrodes (blue C-dot-IDE, orange C-dot-IDE, red 

C-dot-IDE) can be employed simultaneously, serving as an 

artificial nose for bacterial detection with a multichannel 

recording.

Figure 4b presents capacitance response curves induced 

by volatile compounds emitted by different bacterial stains 

through using the C-dot-IDE artificial nose. The graphs in 

Fig. 4b show the capacitance increase or decrease induced 

in the three C-dot-IDE sensors (comprising blue C-dots, 

orange C-dots and red C-dots, respectively) upon exposure 

to the same quantity of bacterial cells initially placed upon 

an agar surface underneath the sensor electrodes (e.g., 

Fig. 4a). The experimental data in Fig. 4b reveal signifi-

cant differences in the capacitive signals generated by each 

bacterial species. Specifically, E. coli and P. aeruginosa 

gave rise to an increase in capacitance in the three C-dot-

IDE sensing platforms albeit by different degrees, while 

B. subtilis and S. aureus proliferation induced reduction in 

the recorded capacitance. The different capacitance pro-

files are ascribed to the distinct compositions of volatile 

compounds, including amines, sulfides and hydrocarbons 

emitted by different bacterial species [52–54]. In particu-

lar, the graphs in Fig. 4b reveal pronounced difference 

between the capacitive response of Gram-negative bacteria 

(E. coli and P. aeruginosa) and Gram-positive bacteria 

(B. subtilis and S. aureus), reflecting the high concentra-

tion of volatile polar molecules emitted by Gram-negative 

bacteria in comparison with the more abundant non-polar 

gas compounds secreted by Gram-positive bacterial cells 

[55, 56]. Notably, the time-dependent capacitance curves 

in Fig. 4b closely trace the bacterial growth curves deter-

mined through a conventional turbidity assay (Fig. S14).

The bar diagram in Fig. 4c, summarizing the capaci-

tance transformations recorded after a 20-h exposure of the 

C-dot-IDEs to proliferating bacteria inoculated at the same 

initial concentration, indicates that the C-dot-IDE artifi-

cial nose can distinguish each bacterial species through 

its “capacitive fingerprint” generated by the three C-dot-

IDE electrodes (blue, orange, red; Fig. 4c). Specifically, P. 

aeruginosa gave rise to high positive capacitive response 

in the three electrodes, producing a capacitance change 

ratio of 1.00:0.63:0.26 (red C-dot-IDE/orange C-dot-IDE/

blue C-dot-IDE). E. coli, in comparison, affected much 

lower capacitance change and also a different signal ratio 

of 1.00:0.54:0.33. Figure  4c reveals that a significant 

difference in capacitive responses is similarly apparent 

between the more negative capacitive changes induced by 

B. subtilis (capacitance change ratio of 0.55:1.00:0.47; red 

C-dot-IDE/orange C-dot-IDE/blue C-dot-IDE] compared 

to S. aureus [capacitance change ratio of 0.43:1.00:0.77].

The capacitive response data obtained for the bacteria 

using the C-dot-IDE artificial nose were classified accord-

ing to principal component analysis (PCA) (Fig. 4d), high-

lighting the feasibility for distinguishing among bacterial 

species. Specifically, Fig. 4d depicts the score plot in the 

first two principal component space in which PC1 accounts 

for the greatest total variation (95.10%) and each point 

represents three independent capacitive measurements. 

Importantly, clustering of the experimental datapoints 

in the PCA plot reveals no overlap between the different 

bacterial species tested, demonstrating that the C-dot-IDE 

artificial nose readily discriminates among the bacteria. 

Notably, the excellent selectivity was accomplished with-

out relying upon recognition of specific bacterial metab-

olites, a difficult task used in most previously reported 

vapor-based bacterial sensing techniques [9, 57]. The 

distinctive capacitive fingerprints observed for the bac-

terial species tested, obtained with just three electrodes, 

point to the applicability of the C-dot-IDE artificial nose 
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for detection and growth monitoring of different bacterial 

strains.

4  Conclusions

We present a new capacitive artificial nose technology for 

real-time vapor sensing based upon IDEs coated with car-

bon dots exhibiting defined surface polarities and optical 

properties. In particular, the high surface area and changes 

in C-dot surface polarities furnish excellent sensitivity and 

selectivity. A C-dot-IDE array comprising three C-dot spe-

cies (red C-dots exhibiting high polarity, orange C-dots of 

medium polarity and relatively a polar blue C-dots) was 

employed, yielding distinct capacitance changes depending 

upon the C-dot polarities. Specifically, the experimental 

data demonstrate significant variability in vapor-induced 

capacitance changes, depending upon matching between 

the polarities of both the electrode-deposited C-dots as 

well as the gas molecules. In particular, application of 

a machine learning model which utilized the capacitive 

response data yielded excellent predictability both in case 

of individual gases and for complex gas mixtures. Imped-

ance spectroscopy measurements illuminated the likely 

mechanism underlying the capacitive transformations of 

the C-dot-IDE sensor, pointing to substitution of C-dot-

adsorbed water by the gas molecules as the primary factor 

affecting the capacitance changes. The C-dot-IDE capaci-

tive artificial nose was successfully employed for continu-

ous, real-time monitoring of bacterial proliferation. Impor-

tantly, the distinctive capacitive signals recorded allowed 

discrimination among different Gram-positive and Gram-

negative bacteria. Overall, the new capacitive C-dot-based 

artificial nose can be readily implemented as a portable 

vapor sensor, and for continuous non-invasive monitoring 

and identification of bacterial growth in different applica-

tions, including medical diagnosis, food processing, envi-

ronmental monitoring and others.
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