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ABSTRACT

Motivation: The technology to genotype single nucleotide polymor-

phisms (SNPs) at extremely high densities provides for hypothesis-

free genome-wide scans for common polymorphisms associated

with complex disease. However, we find that some errors introduced

by commonly employed genotyping algorithms may lead to inflation of

false associations between markers and phenotype.

Results: We have developed a novel SNP genotype calling program,

SNiPer-HighDensity (SNiPer-HD), for highly accurate genotype calling

across hundreds of thousands of SNPs. The program employs an

expectation-maximization (EM) algorithm with parameters based on

a training sample set. The algorithm choice allows for highly accurate

genotyping for most SNPs. Also, we introduce a quality control metric

for each assayed SNP, such that poor-behaving SNPs can be filtered

using a metric correlating to genotype class separation in the calling

algorithm. SNiPer-HD is superior to the standard dynamic modeling

algorithm and is complementary and non-redundant to other algo-

rithms, such as BRLMM. Implementing multiple algorithms together

may provide highly accurate genotyping calls, without inflation of

false positives due to systematically miss-called SNPs. A reliable

and accurate set of SNP genotypes for increasingly dense panels

will eliminate some false association signals and false negative

signals, allowing for rapid identification of disease susceptibility loci

for complex traits.

Availability: SNiPer-HD is available at TGen’s website: http://www.

tgen.org/neurogenomics/data.

Contact: dstephan@tgen.org

1 INTRODUCTION

While high density genotyping of hundreds of thousands of single

nucleotide polymorphisms (SNPs) has rapidly become available,

the development of sophisticated genotype calling algorithms

and analysis paradigms for high-density association analysis has

lagged (Craig and Stephan, 2005). Within the past three years,

the number of SNPs that can be genotyped within a single SNP

microarray panel has grown from a thousand SNPs to hundreds of

thousands of SNPs, and will soon exceed one million. The main

driving force for the increasing SNP genotyping density is the long-

held desire of geneticists to complete genome-wide association

(GWA) studies using hundreds of thousands of SNPs to holistically

scour the genome and identify associations between cases and

controls, which would allow for localization of functional DNA

variants predisposing to disease (Craig and Stephan, 2005). The

exact number of SNPs to cover the majority of the genome is

still being debated, but recent analysis of Phase II of the HapMap

suggests that at least 250 000 well placed SNPs will be sufficient in a

population with Asian or Caucasian descent (Altshuler et al., 2005;

Thorisson, et al., 2005). Both Affymetrix and Illumina now provide

platforms allowing for genotyping of SNPs greater than this

amount. Thus one may be generating billions of genotypes in a

straightforward case-control genome-wide SNP association study

across hundreds or thousands of individuals.

One of the greatest unappreciated difficulties in a GWA study is

accurately calling the genotypes for billions of SNPs. This is espe-

cially difficult given that of several hundred thousand SNPs, only a

few SNPs may be associated with the underlying disorder. At the

most fundamental level, a genotype must be called based on signal

intensities for the two possible SNP alleles. This seemingly trivial

problem grows when one considers that genotype calls must be

made with extremely high accuracy (Huentelman et al., 2005). If

genotype calling is biased or of low precision, the SNPs that are

found to be most significant will be the result of genotyping error.

For example, in one of the first successful genome-wide SNP asso-

ciation studies, 96 cases and 50 controls were genotyped on the

Affymetrix 100K GeneChip Mapping array with two SNPs found

surviving Bonferroni correction (Klein et al., 2005). While the most

significant SNP was found to replicate and truly be associated with

the phenotype, the second highly significant SNP was likely the

result of genotyping error indicated by being significantly out of�To whom correspondence should be addressed.
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Hardy–Weinberg equilibrium (HWE). In this case, the concern

about genotyping error is evident with only the >20 million geno-

types performed in this study. In a second example, we randomly

place 100 individuals genotyped on the Affymetrix 500K platform

in one cohort and 100 individuals randomly into a second cohort.

We use deviations from HWE at a P < 0.05 as a measure of geno-

typing accuracy. SNPs were called using the dynamic modeling

(DM) genotype calling algorithm in GTYPE 4.008 (P-value setting

¼ 0.26). Arrays with a call rate >90% were used and on average 6%

of SNPs were out of HWE. However, if one calculates a Fisher’s

exact statistic and ranks SNPs by P-value, one finds that of the top

100 SNPs, 45% fail HWE. Permuting class memberships retains

these results suggesting that SNPs that are miss-called by algorithms

are more likely to be ranked as significantly associated with the

disease (false-positives). It has been anecdotally suggested that

enrichment of genotyping false positives may result from biased

under-calling of heterozygotes, however extensive testing of this

hypothesis has yet to be completed. Regardless, it is clear that

highly accurate genotype calling is critical for the success and

streamlined implementation of future GWA studies. In this report,

we present a newly developed algorithm that significantly outper-

forms the DM algorithm from Affymetrix, and is complementary

and non-redundant to the BRLMM algorithm.

2 METHODS

2.1 500K genotyping

Array-based SNP genotyping: samples were obtained from brain banks

under approved IRB from Caucasian donors, and DNA extracted using

Gentra DNA extraction kits according to manufacturer’s instructions, and

processed as described in the Mapping 500K Protocol (Affymetrix).

2.2 SNiPer-HD

SNiPer-HD utilizes amulti-chip-based genotyping algorithm.Unlike the cur-

rent dynamic modeling (DM) approach implemented in GTYPE 4.008 (Di

et al., 2005), SNiPer-HD treats the genotyping as a classification procedure,

and designs a parametric classifier for each SNP by applying expectation-

maximization (EM) clustering to estimate the distribution parameters.

Besides giving calls, SNiPer-HD also provides two quality control indicators

to help filter out bad calls: a confidence score (per-sample per SNP quality

measure) and a quality index (a SNP quality measure across a cohort). The

confidence scoreworks on individual calls like aP-value: the lower the score,

themore reliable the call. The quality indexworks on eachSNPas awhole: the

higher the quality, the more reliable the SNP is over all samples. Consequen-

tially, one may assess genotype accuracy for a SNP, as compared to all other

SNPs on the platform, while assessing significance of an association signal.

SNiPer-HD works on one SNP at a time. Consider for the current SNP,

D probe quartets (for the 500K chipset D ¼ 6 or 10) are used to detect

the genotypes on the sense, anti-sense or both-strands. Each probe quartet

contains two probe pairs, one for SNP allele A, another for allele B. Each

probe pair consists of perfect match (PM) and mismatch (MM) sequences for

the target allele. A relative allele signal (RAS) for the dth probe quartet is

defined as

xd ¼ Ad/ðAd þ BdÞ‚ ð1Þ

where Ad is the PM signal of allele A, and Bd of allele B. Note that this

definition is slightly different from what originally defined in (Liu et al.,

2003), but identical to the one suggested in the discussion section of the same

paper. The major difference is that the mismatch signals are no longer used

here. Based on our observations, including background subtraction in a ratio-

based measure can increase the signal variance significantly and induce too

many outliers.

The SNP at sample point i is represented by RAS-value vector Xi ¼
(x1, x2, . . . , xD). Clearly if X is close to (0, 0, . . . , 0), then allele B dominates

all probes and the genotype should be BB. If Xi is close to (1, 1, . . . , 1), then

the genotype should be AA. And if Xi is close to (0.5, 0.5, . . . , 0.5), then the

genotype is AB. Thus if there is a whole set of RAS vectors, {X1, X2,. . .} on

one certain SNP, one should expect them to form three mass concentrations

in theD-dimensional space, which could be identified through an appropriate

clustering approach. In the ideal case, the RAS vectors of three genotypes

AA, AB and BB should be (1, 1, . . . , 1), (0.5, 0.5, . . . , 0.5) and (0, 0, . . . , 0),

respectively. However due to background noise, sample points of AA and BB

are seldom close to (1, 1, . . . , 1) and (0, 0, . . . , 0). We can assume that for

each SNP, the RAS vectors are generated from a mixture of three Gaussian

distributions, with each Gaussian distribution representing one genotype. If

one has the distribution of the RAS vector, then for any sample point, its

genotype should be assigned to the one with the highest posterior probability

according to the Bayesian rule. Note that although the Gaussian distribution

may not perfectly fit the points close to the border, i.e. one or more probes

have RAS values close to 0 or 1, there is minimal impact on the genotyping

accuracy since they are usually too far away from decision boundaries

that lie between genotype centers to cause any mistake in their labels

when genotyping.

The SNiPer-HD algorithm has two components: parameter estimation

followed by classification. In the parameter estimation component,

SNiPer-HD will estimate the distribution parameters of each SNP through

an EM clustering algorithm, and give calls to the training sample. The size of

the training sample should be large enough to represent the true distribution

of each SNP to ensure accurate estimation. In the classification component,

SNiPer-HD will give calls to any sample based on the parameters obtained.

The outline of SNiPer-HD is summarized as follows:

2.2.1 Parameter estimation

(1) Load the RAS values of one SNP from all training sample points;

(2) Based on original calls provided by DM, estimate the number of

clusters/genotypes G in the samples, and assign the initial seeds;

(3) Apply EM clustering algorithm;

(4) If the number of clusters/genotypes after clustering is <G, remove

the empty clusters, use the clustering results as the initial seeds, repeat

step 3;

(5) Set the genotypes for all sample points, calculate the confidence

scores;

(6) Calculate the reliability of the call results of the current SNP, and save

the distribution parameters for future genotyping;

(7) Repeat step 1–6 until all SNPs are processed.

2.2.2 Classification

(1) Load the RAS value of one SNP from one sample point;

(2) Based on the distribution parameters estimated, set the call of current

SNP with corresponding confidence score;

(3) Repeat steps 1 and 2 until all SNPs from all sample points are

processed.

2.3 Parameter estimation

We use three-class labels {0, 1, 2} to represent three genotypes {AA, AB,

BB}, respectively. We will use class and genotype interchangeably. For each

SNP, we assume the RAS vector is drawn from a certain three-class Gaussian

mixture distribution. To be exact, the RAS vector is drawn from the three

genotypes with prior probabilities t0, t1 and t2. A SNP of genotype k has its

RAS vector X generated according to the corresponding class conditional

J.Hua et al.
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distribution, which is a Gaussian:

f kðX jmk‚SkÞ ¼
exp ½ � 1

2
ðX�mkÞ

T
S
�1
k ðX � mkÞ�

ð2pÞD/2 jSk j 1/2
‚ ð2Þ

where mk is the mean vector and Sk the covariance matrix. For each SNP,

tk, mk and Sk, k ¼ 0, 1, 2, are the distribution parameters to be estimated.

Here we assume the covariance matrices to be spherical and of equal vol-

umes: S0 ¼ S1 ¼ S2 ¼ lI. For each RAS vector Xi, there is an indicator

vector Zi ¼ (zi0, zi1, zi2), where zik indicate the posterior probability that Xi is

generated from genotype k. Assume there are altogether N sample points,

then the likelihood of all data is

L ¼
XN

i¼1

X2

k¼0

zik½ log tkf kðX jmk‚SkÞ�: ð3Þ

The EM clustering algorithm (Fraley and Raftery, 1998) is then used to

estimate the parameters of the above Gaussian mixture model:

(1) Initialization: zik ¼ 1, if according DM the genotype of sample i is k,

with its confidence score <0.26; otherwise, zik ¼ 0;

(2) M-step: compute tk, mk and Sk;

tk ¼ nk/N ð4Þ

mk ¼
XN

i¼1

zikXi=nk ð5Þ

l ¼ trðWÞ=ND‚ ð6Þ

where, nk ¼
XN

i¼1

zik, W ¼
X2

k¼0

XN

i¼1

zikðXi � mkÞðXi�mkÞ
T

(Celeux

and Govaert, 1995);

(3) E-step: compute fk(Xi jmk, Sk) and zik;

fk(Xi jmk, Sk) is computed as shown in Equation (2)

zik ¼ tkf kðXi jmk‚SkÞ=
X2

j¼0

tjf jðXi jmj‚SjÞ ð7Þ

(4) Repeat steps 2 and 3 until either the relative change in the overall

likelihood, computed according to Equation (3), is smaller than a

predefined threshold, or the maximum iteration time is reached.

In SNiPer-HD, the threshold for convergence is set to 0.001, and the

maximum number of iteration is set to 30. In most cases, the clustering

will converge after 3–5 iterations.

Note that during the E-step, the posterior probability zik has already been

computed for each sample point. Hence for the training sample, one does not

need to apply the classification component again; rather the calls can be

obtained directly. Once converged, the genotype will be assigned to each

individual according to its indicator vector Zi: the genotype of sample i is k,

if zik > zij, j ¼ 0, 1, 2 and j 6¼ k. Several special cases are considered before

all parameters and call results are saved:

(1) Ties: if a tie is encountered when comparing zik, then a value

randomly chosen from the genotypes with maximal probability

will be assigned. Note that in real situations, a tie rarely

happens. Furthermore, even if a tie occurs for zik ¼ zij, then both zik
and zij should be <0.5, indicating low confidence in the calling of

either call;

(2) Class center order: the centers of the three genotypes AA, AB and BB

should be aligned in a descending order when projected onto the

diagonal line lined up (0, 0, . . . , 0) and (1, 1, . . . , 1) at the RAS

space. If that is not the case, swapping of the calls must be made to

correct the error. The corresponding model parameters should also be

changed;

(3) Missing genotypes: when reordering the class center, it is possible that

only one or two genotypes are presented. If only one class is presented,

thegenotype shouldbe assigned toAAorBB, dependingonwhether the

genotype center is close to (1, 1, . . . , 1) or (0, 0, . . . , 0). If two geno-

types are presented, then the two classes will be assigned to either AA

andAB, orAB andBB, dependingonwhether the overallmass center of

all points is close to (1, 1, . . . , 1) or (0, 0, . . . , 0),with the corresponding

model parameters being changed.

The accuracy of parameter estimation is highly dependent on the quality

of the training samples. For SNiPer-HD, we suggest using only the samples

with overall call rate larger than 85% by GTYPE, though it is feasible to use

other algorithms, such as BRLMM.Unreliable calls will be presented and are

largely a function of poor probe quality and/or poor DNA sample quality.

Hence, SNiPer-HD provides two quality control indicators to help filter out

bad calls, one on the individual call level, and one on each SNP as a whole.

For individual genotype calls of a sample, the posterior probability

automatically provides a confidence in the call. SNiPer-HD uses 1 � zik
as the confidence score. The smaller the confidence score, the more reliable

the call result.

Since the outcome of the parameter estimation procedure depends on the

quality of the available sample and probe design, it is possible to have poor

parameter estimation on some SNPs, which not only induce errors in the

training sample, but also propagate into future predictions. To check the

quality of SNP parameter estimation as a whole, SNiPer-HD introduces a

quality index based on a silhouette (Rousseeuw, 1987). If Xi’s genotype is k,

then silhouette width of Xi is defined as

SðXiÞ ¼
bðXiÞ � aðXiÞ

max ½bðXiÞ‚aðXiÞ�
‚ ð8Þ

where a(Xi) is the average distance between Xi and all other sample points of

genotype k, while b(Xi) is the minimum of the two average distances between

Xi and the points of another genotype. A Euclidean distance metric is used in

SNiPer-HD. The silhouette index of genotype k is then defined as the median

value of silhouette widths over all sample points of genotype k. The silhou-

ette value ranges from �1 to 1. The higher the value, the more compact and

separated is the genotype, thus more reliable the calls on that genotype.

SNiPer-HD picks the smallest silhouette index among all three genotypes as

the quality index of the SNP.

2.4 Classification

With the distribution information obtained from the parameter estimation,

the classification component of SNiPer-HD gives calls on any sample by

calculating the posterior probability directly. For the current SNP, we load its

corresponding parameters tk, mk and Sk. If the RAS vector of the sample

point i is Xi, then SNiPer-HD simply applies the E-step in the EM clustering

algorithm to calculate fk(Xi jmk, Sk) and zik, and assigns the genotype and

confidence score according to zik. Note that if one applies the classification

to the samples that were used in the parameter estimation component, then

one will obtain exactly the same call. To ensure the classification perfor-

mance, the testing samples should be from the same ethnic and geographic

population as the training samples.

3 RESULTS

For this study, we compiled a database of �900 individuals, which

have been genotyped in our lab. To construct our database we

removed arrays that have call rates <85% when using the DM

algorithm with the default setting. Of critical importance, the

remaining 500K arrays are not of perfect quality, but they do rep-

resent what researchers are currently encountering in practice using

DNA samples of mixed quality. Since the selection is conducted

separately on NSP and STY chips, the numbers of chips are not

equal between the two types of chips. SNP calling was made and

SNiPer-HD improved genotype for high-density SNP arrays

59

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
3
/1

/5
7
/1

8
9
0
9
8
 b

y
 g

u
e

s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



compared on 939 NSP chips and 834 STY chips, including a set of

case-control study samples: 578 cases and 300 controls from NSP

chip, and 494 cases and 284 controls from STY chip. Additionally,

there are also six technical replicates of the Affymetrix control DNA

on the NSP chips and five on the STY chips.

Figure 1A shows the RAS signal intensity values of 49 SNPs that

were randomly selected based on the quality index (after SNiPer-

HD was run) to illustrate the quality spectrum of SNPs that must be

called by any algorithm. The calls of each SNP are shown as a

scatter-plot in a two-dimension subspace of the original data space

represented by the RAS values of probes. SNPs are ordered accord-

ing to the quality index, which is marked at the upper left corner of

each plot. One can clearly see that if the samples of different

genotypes are well separated, that SNP has a high-quality index.

For SNPs with quality indices <0.4, samples of two or all three

genotypes are mixed up in the plot, and result in inaccurate calls.

Figure 1B shows the distribution of quality indices of all SNPs. The

peak close to quality index value 0.3 in Figure 1B indicates that a

considerable amount of SNP calls are of low reliability. To verify

this, we genotyped 10 000 SNPs again by randomly setting seeds in

EM clustering to artificially generate a huge amount of bad calls.

The resulting quality index shows a strong peak at 0.25–0.3, which

confirms our suspicion. While the exact choice of the quality index

is arbitrary, it is clear by inspection of Figure 1 that selection of

SNPs with a quality index at�0.45 will remove those SNPs that are

most likely to be poorly called, while still keeping those SNPs with

highest separation between genotype classes. As with all calling

algorithms, the exact choice of filtering those SNPs most likely to

yield poor calls is dependent on an individual’s requirements for

accuracy while balancing SNP coverage.

The importance of quality control can be seen in the results of the

case-control study on typical experimental data generated on the

Affymetrix 500K platform using multiple calling algorithms. A

Fisher’s exact statistic is first applied to the autosomal SNPs

between the cases and controls. Next, HWE testing is conducted

for each autosomal SNP based on the control samples only. To show

the relationship between the two statistics, in the x-axis, from left to

right, the autosomal SNPs are then ordered in increasing order

according to the P-value obtained through the Fisher’s exact test.

In the y-axis, we compute the percentage of SNPs that fail HWE at P

< 0.05. To ensure a smooth curve, the percentage is calculated based

on a window size of 2000 SNPs along the ordered SNPs. The results

for the most significant 100 000 SNPs are shown in Figure 2A.

Along with SNiPer-HD, the results of two other genotype calling

algorithms (Affymetrix: DM and BRLMM v1.0) are shown. Default

settings are used for DM and BRLMM to set ‘NoCall’. For SNiPer-

HD, any call with a confidence score >0.05 is set to ‘NoCall’. The

exact test of HWE was used (Wigginton et al., 2005). Unless spe-

cifically mentioned, this set-up is used for all comparisons shown in

this study.

Although the performance of the three algorithms differs dramati-

cally, with BRLMM and SNiPer-HD clearly superior to DM, a

Fig. 1. Genotype calls on 49 SNPs of various quality indices and the dis-

tribution of quality index. In (A) each scatter-plot corresponds to one SNP.

The SNPs are ordered according to the quality index, which is given at the

upper left corner of each plot. The SNPs with lowest quality index values are

in the top rows, and highest quality index values in the bottom. The x- and y-

axis are two selectedRASvalues.GenotypeAA is denoted as blue point,AB as

red point andBB as green point. The histogram of quality index on all SNPs is

shown in (B). Only the major portion of the whole range of quality index is

shown for better viewing.

 

 

 

 

 

  

 
 

 

 

 

 

 

   

 

 

 

 

 

   

 

 

 

Fig. 2. HWE failure rate/call rate versus top SNPs ordered by P-value of

Fisher’s exact on DM, SNiPer-HD and BRLMM calls of all samples. Exact

test of HWE is used. The x-axis is the SNPs ordered by theP-value of Fisher’s

exact on a case-control study, and the y-axis is the percentage of SNPs that fail

HWE at 0.05 for control samples in (A andC), and call rate on all individuals

in (B and D). Default settings are used for DM and BRLMM to set ‘NoCall’.

For SNiPer-HD, ‘NoCall’ is set to any call with confidence score >0.05.

J.Hua et al.

60

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/b
io

in
fo

rm
a
tic

s
/a

rtic
le

/2
3
/1

/5
7
/1

8
9
0
9
8
 b

y
 g

u
e

s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



common problem exists in all three: the SNPs with the most sig-

nificant P-values have the highest HWE failure rate, which is

reflected by up-biased tails in the extreme left of Figure 2A.

This problem is confirmed by checking the average call rates of

the top SNPs in a similar manner, as shown in Figure 2B: the top

SNPs also have the lowest call rates and the lowest quality indices.

There are a considerable number of SNPs that are poorly called, and

they represent false-positive association findings. These results indi-

cate that although the new genotyping algorithms (SNiPer-HD and

BRLMM) are superior to the DM algorithm, it is still necessary to

filter out unreliable SNPs so that false-positive associations do not

overwhelm the replication phase of a WGA study.

In the following comparison, we use a quality index threshold of

0.45 to pick out the reliable SNPs from SNiPer-HD calls. The

number of SNPs that pass this threshold depends on the overall

data quality. For the data in this study,�76% SNPs (380 330 SNPs)

pass the threshold. After removing SNPs on the X chromosome,

which do not obey HWE, there are�75% SNPs (375 000 SNPs) that

pass this threshold. We will refer to these SNPs as the ‘best 75%

SNPs’. In Figure 2C and D, we compare the HWE failure rate and

call rate between all SNPs and best 75% SNPs, respectively. Since

the call results of DM are far inferior to BRLMM and SNiPer-HD,

we only show the results of BRLMM and SNiPer-HD. For com-

parison, we picked the same number of SNPs from BRLMM’s calls

based on the call rate, a traditional way to select reliable SNPs.

Among the 375 000 SNPs that are called by each algorithm, �90%

of those SNPs (335 554 SNPs) are called (versus ‘NoCall’) in both

algorithms. For the 100 000 SNPs shown in Figure 2C and D, this

number is reduced to 80% that are called in common (80 319 SNPs).

For the top 100 SNPs, this number is further reduced to 70% that are

called in common (70 SNPs). Thus when one compares the top 100

SNPs in the P-value list, there is less agreement between calling

algorithms, and thus less confidence in the accuracy as measured by

agreement of just calls versus ‘NoCalls’.

After removing the SNPs with a quality index <0.45, both HWE

failure rate and call rate are significantly improved. Furthermore, no

observable bias exists in the top SNPs. SNiPer-HD has better per-

formance than BRLMM in both HWE failure rate and call rate for

the best 75% SNPs. For the top 100 000 SNPs shown, the HWE

failure rates are 6.06 and 7.06%, and the call rates are 99.29 and

98.63%, for SNiPer-HD and BRLMM, respectively. We have also

conducted a comparison of HWE over all individuals in our data-

base. The results are shown in Figure 3, where SNiPer-HD is

compared with BRLMM and DM for both all SNPs and the best

75% SNPs. SNiPer-HD outperforms BRLMM and DM in all cases.

The HWE failure rates at several thresholds are also shown in

Table 1.

The reproducibility test is conducted on the available technical

replicates. If one call is different from the majority call of all

replicates, then a concordance error is reported. ‘NoCall’ calls

are omitted when considering the majority call. The results of repro-

ducibility are shown in Table 2. When all SNPs are considered, DM

has the highest concordance and lowest call rate. When best 75%

SNPs are considered, all three methods have very good concordance

rates. SNiPer-HD has the highest call rate, and a concordance rate of

99.84% is between DM and BRLMM.

We have also considered SNiPer-HD to the available HapMap

samples that were genotyped by Affymetrix on the 500K SNP

platform. We find that the HapMap sample data are of superior

quality compared to the usual sample encountered in our lab, likely

a result of optimization of site-specific laboratory techniques and

ultra-pure high molecular weight cell line DNA as a starting mate-

rial. However, due to the limited publicly-available Affymetrix

 

  

 

Fig. 3. HWE on DM, BRLMM and SNiPer-HD calls. The x-axis is the HWE

test threshold, and the y-axis is the percentage of SNPs that fails at the

corresponding threshold. Exact test of HWE is used. For DM, ‘NoCall’ is

set to any call with confidence score >0.26. For BRLMM, ‘NoCall’ is set to

any call with confidence score >0.5. For SNiPer-HD, ‘NoCall’ is set to any

call with confidence score >0.05.

Table 1. HWE test failure rate of DM, BRLMM and SNiPer-HD genotype

calls

HWE

threshold

0.001

(%)

0.005

(%)

0.01

(%)

0.05

(%)

0.10

(%)

All SNPS DM 27.54 32.13 34.56 42.66 47.82

BRLMM 7.43 9.73 11.27 18.02 24.03

SNiPer-HD 6.23 7.67 9.46 15.57 21.83

Top 75%

SNPs

DM 15.16 20.14 22.86 32.03 37.98

BRLMM 1.81 3.24 4.33 10.20 16.06

SNiPer-HD 1.39 2.58 3.50 9.51 15.35

Thepercentage ofSNPs that fails theHWEtest is reported. The exact test ofHWEisused.

ForDM, ‘NoCall’ is set to anycallwith confidence score>0.26.ForBRLMM, ‘NoCall’ is

set to any callwith confidence score>0.5. For SNiPer-HD, ‘NoCall’ is set to any callwith

confidence score >0.05.

Table 2. Reproducibility measures of accuracy of the genotype calling

algorithms

All SNPs Top 75% SNPs

Call

rate (%)

Concordance

(%)

Call

rate (%)

Concordance

(%)

DM 91.54 99.37 96.36 99.79

BRLMM 97.23 99.15 98.96 99.89

SNiPer-HD 97.09 99.15 99.51 99.84

Comparison is done on technical replicates, six for NSP chip, and five for STY chip. For

DM, ‘NoCall’ is set to any callwith confidence score>0.26. ForBRLMM, ‘NoCall’ is set

to any call with confidence score >0.5. For SNiPer-HD, ‘NoCall’ is set to any call with

confidence score >0.05.
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probe intensity data available (39 individuals), comparisons are

likely unreliable because both BRLMM and SNiPer-HD require

a relatively large training database of individual genotypes

(BRLMM requires >48 samples to train for high-quality chips).

We applied SNiPer-HD classifiers, which are trained on our own

900 sample database, to the 15 available CEU individuals of Hap-

Map, which are of similar ethnic background to the training data in

our database. The results are shown at Table 3. For the top 75%

SNPs which also appear in the HapMap data, SNiPer-HD reports

99.8% call rate and 99.5% concordance at confidence score thresh-

old 0.05, which is used in previous comparison. Obviously there is

significant improvement in both call rate and concordance by fil-

tering out the low-quality index SNPs. Considering that SNiPer-HD

is actually trained on the much lower quality chips, the results are

quite satisfactory. If the full dataset of HapMap sample is available,

one would expect the results improve in all aspects, especially the

quality index. However, for array signal intensity data of this qual-

ity, all algorithms should achieve excellent performance, and the

difference could be very small, which says little for more realistic

scenarios. These results suggest that under ideal situations, such as

is the case with the HapMap samples genotyped by Affymetrix, all

algorithms perform well. However, when optimal genotyping con-

ditions are not available, such as when limited to DNA of variable

quality, training-based algorithms may be more accurate.

4 DISCUSSION

There are several important aspects one has to consider in order to

design or judge a genotype calling algorithm. The accuracy and call

rate are certainly the two most important measures. One important

and more often ignored aspect is the bias towards certain genotypes

in the calls. This problem becomes significant when sample size

increases. For example, miss-calls or failures to call a genotype in

only a few individuals of the homozygous genotype of the minor

allele can immediately force a HWE failure, although the overall

accuracy and call rate on all genotypes are still high. It is known

that the DM algorithm (currently used in Affymetrix GTYPE) is

relatively precise, as can be seen from our test of reproducibility in

Table 2. But DM often has low call rates, and calls are often biased

away from heterozygotes. This deficiency severely affects the

accuracy as measured by HWE, and leads to false associations in

the case-control GWA studies. As previously highlighted, the first

major GWA success by Klein and colleagues also showed a false-

positive as the second most significant SNP. As GWA studies move

to complex diseases with common variants of lower effect size,

these false positives may mask true associations.

In this study, we have developed a highly accurate genotype

calling program that includes quality index for each SNP. The

quality index introduced is a quality metric that does not depend

on call rate, which is often the standard for filtering poor quality

SNP data. From Table 3, one can see by picking SNPs of high

quality index, the concordance rate with HapMap data significantly

increases, and call rate also increases. With the quality index,

SNiPer-HD can pick out of the good quality SNPs with the most

accurate parameter estimation, and which achieve better accuracy

in their calls. This numerical estimate can be visually inspected

for significant association findings, and lend a level of confidence

to any single SNP association finding that would be unwieldy to do

by visually inspecting the signal intensities across a large cohort.

However, this does not mean that SNPs of low quality index are

without use. The quality index can be low due to many reasons. For

example, if some individuals have copy number change at certain

regions, it can lead to poor initial seeds and poor separation of

genotype clusters, which finally induce poor quality index.

Hence currently SNiPer-HD will output calls on all SNPs with

the corresponding quality index and confidence scores, and one

can do their own filtering or joint analysis according to one’s

own needs.

The major problem in accurately calling SNP genotypes, as

opposed to other common classification problems, is the low

minor allele frequency. The difficulty is that training-based algo-

rithms require training sets that include enough sample points from

all genotypes for reliable parameter estimation. Although the per-

formance improves with the increase of training sample size, effi-

cient sampling is unlikely for tens of thousands of SNPs with very

low allelic frequency even the training sample size is considerably

large, e.g. 500–1000.Without considering the effects of minor allele

frequency, poor separation will lead to poor parameter estimation in

many SNPs, especially due to the iterative nature of EM algorithm

used. Hence in SNiPer-HD, we carefully select our data model and

parameters. We put the prior probability into the mixed Gaussian

model to reflect the minor allele frequency of the training sample.

Since the small number of individuals of certain genotypic classes

can lead to unstable estimation of the parameters of that genotype,

we enforce an identical covariance matrix for all genotypes. These

settings in the data model not only help the EM algorithm to

successfully capture the genotypes of small size, but also provide

the right balance to avoid bias toward any certain genotype. For

example, in our study, we found that changing the threshold of

the confidence score from 0.05 to 0.01 can cause an undetectable

change of +0.1% on the HWE failure rate for the best 75% SNPs,

although the call rate drops from 99.2% to 98.7%. Importantly, we

use a quality metric to identify those SNPs for which SNiPer-HD

provides high accuracy calls, since it is unlikely that any algorithm

is universally effective at calling over 500 000 SNPs with resilience

due to variable assay performance.

Concomitant to the development of SNiPer-HD, other genotyping

algorithms are being developed (Cuttler et al., 2001; Di et al.,

2005; Rabbee and Speed, 2006). BRLMM is another classification-

based approach that is a modification of the supervised algorithm:

Robust Linear Model with Mahalanobis distance classifier (RLMM)

Table 3. Performance on 15 CEU samples from HapMap data at different

control levels

Quality index >�1 (All SNPs) >0.45 (Top 75% SNPs)

Confidence

score

Call

rate (%)

Concordance

(%)

Call

rate (%)

Concordance

(%)

0.01 98.52 99.42 99.63 99.51

0.05 99.14 99.34 99.79 99.49

0.1 99.37 99.30 99.85 99.48

1 100 99.07 100 99.43

Classifiers are trained on our own 900 sample database, and called on 15 HapMap

samples. The call rate and concordance rate to HapMap data are given for different

confidence score and quality index thresholds. Only the common SNPs appeared in both

500K chip and HapMap data are checked.
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by Speed and colleagues (Rabbee and Speed, 2006). Of major

importance is that BRLMM was designed to optimize call accuracy

and call rate for the Affymetrix 500K array, after those �500 000

SNPs had been selected and the platform launched. Conversely,

SNiPer-HD was designed to improve accuracy and only call

those SNPs that are best called by an EM based approach. Conseq-

uentially, we introduce an algorithm that calls�375 000 of the most

informative SNPs on the Affymetrix 500K platform with extremely

high accuracy. Fortunately, most SNPs left-out are of very low

allelic frequency, which often have low power due to limited

information content.

SNiPer-HD and BRLMM differ algorithmically, and thus it is

feasible to use algorithms jointly to identify those SNPs that are

most likely called correctly. Differences between SNiPer-HD

and BRLMM lie in two aspects: the data space and parameter

estimation.

BRLMM applies normalization and keeps the probe intensity as a

feature of the data space. SNiPer-HD does not normalize the data

because we do not see any obvious tailing effects on the M-A plot

of probe intensities of randomly selected individuals. The simple

RAS value is chosen in SNiPer-HD as our data space, where we

believe the ratio of the A to the A + B alleles can correct most of the

shifting in the intensity. Other more elaborate transformations may

be able to improve the data space concentration of each genotype

and increase the separation between different genotypes. Although

we achieve excellent results in our present data space, our approach

does not limit other novel transforms from being explored in the

future.

For parameter estimation, SNiPer-HD and BRLMM choose quite

different approaches. While both SNiPer-HD and BRLMM strongly

depend on the initial calls of DM, both algorithms improve over it in

different ways. SNiPer-HD relies on DM calls to decide how many

genotypes presented in the current SNP and set seeds. But it only use

this as the start point, and utilizes the iterative nature of the EM

algorithm to find the most compact clusters that represent the exist-

ing genotypes. By this way, it can correct wrong calls and ‘NoCall’

calls of DM. If the initial seeds are too bad, the iteration can amplify

this by forming poorly separate clusters of low-quality index, which

is hard to detect if only utilizing the initial seeds. On the other side,

BRLMM uses the Bayesian priors collected from other SNPs to help

estimate the genotypes of minor allele, even totally missing ones,

which are caused by the low call rate of DM. However, BRLMM

self-correction mechanism is limited and the supervised learning

relies heavily on the accuracy of DM calls and estimated priors. If

DM calls and priors do not match the current SNP, or do not match

each other, then there is high probability of genotyping error or low

call rate on certain genotypes.

The immediate question for the researchers undertaking a GWA

study is which genotyping algorithm or program should be

employed. Each algorithm (BRLMM and SNiPer-HD) has strengths

and weaknesses, and different GWA analysis strategies have

different sensitivities towards accuracy and coverage. In the case

where accuracy is critical and one does not require SNPs with low

minor allelic frequency, our results found that SNiPer-HD per-

formed marginally better than BRLMM and significantly better

than DM (currently implemented by GType). In the case that

one requires the greatest number of SNPs called we find that

BRLMM provides the greater coverage, with only slightly lower

quality. To merge data, we suggest calculation of association

statistics, whether they be Fisher’s exact, TDT, FBAT, for each

algorithm separately so as not to propagate calling inaccuracies.

One can then compare rank or statistical significance between

algorithms, and weighing the quality index to identify false posi-

tives. Ideally, if the same SNP is in the top few SNPs of several

hundred thousand statistical tests, those genotype calls are more

likely to be accurate.
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