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Abstract

We conducted a field experiment to test the benefit from late bidding (sniping)

in online auction markets. We compared sniping to early bidding (squatting) in

auctions for newly-released DVDs on eBay. Sniping led to a statistically signifi-

cant increase in our average surplus; however, this improvement was quite small.

Nevertheless, the two bidding strategies resulted in a variety of other qualitative

differences in the outcomes of auctions. We show that the small gain to sniping

together with these other patterns in outcomes cannot be explained by a standard

auction model with a single auction and payoff-maximizing opponents. Instead, all

of the experimental results can be explained by a model in which multiple auctions

are run concurrently and a fraction of our opponents are näıve in that they act

as if eBay auctions are literally English auctions rather than dynamic second-price

auctions. Our findings illustrate how the effects of behavioral biases identified in

the lab may be substantially attenuated in real world market settings.

∗We thank Marcin Peski for a suggestion leading to Proposition 1 and David I. Levine, John Wooders

and seminar participants at ESA Asia-Pacific Regional Meetings, Econometric Society Summer Meetings,

City University of Hong Kong and University of Oska-ISER for comments and suggestions. We also thank

Kam Wing Siu and Alvin Ho for excellent research assistance.
†Department of Economics, Northwestern University. Support from the Alfred P. Sloan foundation is

gratefully acknowledged. jeffely@northwestern.edu.
‡Department of Economics, Hong Kong University of Science and Technology. tanjim@ust.hk.

1

mailto:jeffely@northwestern.edu
mailto:tanjim@ust.hk


1 Introduction

Online auction markets provide economists with an access to an almost textbook mar-

ketplace which serves as a natural laboratory for experimental research. In particular,

there has been much recent research, bolstered by laboratory experiments, identifying the

effects of documented behavioral biases. The online marketplace enables us to use field

experiments to assess the extent to which these biases remain present in real world market

settings and if so, to quantify their effect on economic outcomes.

We conducted a field experiment, participating in indigenous eBay auctions, to under-

stand the well-documented phenomenon of “sniping,” and to assess its effect on market

outcomes. Sniping refers to the practice of bidding at the last opportunity in online

auctions with fixed closing times.1 The prevalence of sniping in private-value auctions

is surprising because auction theory suggests that sniping would be, at best, no more

profitable than bidding early if rival bidders follow undominated strategies. Explanations

for sniping therefore focus on the presence of some behavioral bias.

While the practice of sniping has been documented and rationales proposed, surpris-

ingly it has not been empirically verified whether sniping leads to any improvement in

payoffs. Estimation of the benefit to sniping from field data or laboratory experiments

would require inferring a bidders’ valuation from her bidding behavior. This is complicated

for two reasons. First, this entails imposing some assumptions about bidders’ rationality

(i.e. bidding your value) but the common rationalization for sniping in private-value auc-

tions is to take advantage of some form of departure from the standard “rational” bidder

paradigm in the behavior of typical online bidders. Second, even if we were to assume

that bids reveal values, we cannot directly observe the values of winning bidders because

online auction sites usually do not reveal the highest bid.

On the other hand, a field experiment enables a very simple test to compare the effect

of sniping versus squatting (our term for early bidding) on a bidder’s payoffs which does

not require any assumption on distribution of bidder valuations or rationality. Briefly, we

1See, for example, Roth and Ockenfels (2002), Bajari and Hortacsu (2003) and Hossain (2004) for

evidence of sniping in online auctions of various goods.
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bid in auctions of brand new movie DVDs. Randomly dividing the set of auctions of the

same movie into two groups, we placed a bid on the first day of an auction (squatting) in

the first group and a bid of the same amount five seconds before the closing of an auction

(sniping) in the second group. For twenty popular recently released movies, we chose

our induced valuation at four different levels that were expected to win 90%, 60%, 40%

and 20% of the auctions respectively. In each case, we bid our value and in the event of

winning, calculated our surplus to be the difference between our induced valuation and

the final price including any shipping costs.

We find that sniping does lead to a small, but perhaps negligible, increase in a bidder’s

payoff. Controlling for auction characteristics, we find that sniping increases our payoffs

by 16 cents, slightly more than 1% of our average induced valuation.

Additionally, we are able to identify the sources of benefits as well as costs to sniping

behavior. Sniping is beneficial mainly because the typical online bidder bids näıvely:

rather than treating the auction as a dynamic second-price auction and bidding her value

once and for all, she acts as though she is involved in an English auction and continuously

raises her bid whenever outbid until reaching some drop-out price. Bidding early against

such a bidder induces a response and an escalating price. We call this the escalation effect

and it explains the potential benefit to sniping over squatting. In the appendix we include

bid pages from four illustrative auctions that exemplify näıve bidding behavior and its

effects. See Figures 2-5.

On the other hand, there is an advantage to squatting that arises from a different

source. Each individual auction is embedded within the broader eBay market. Entry by

bidders into a given auction is endogenous and this is especially relevant for items such as

DVDs where typically many auctions of near-perfect substitutes run concurrently. Bidding

early in an auction signals to potential rivals that there is likely to be competition for

this particular item, and this tends to deter entry. We find evidence for this competition

effect which tends to favor squatting over sniping.

On the net, we find that these two effects roughly cancel out each other. In retrospect,

it should not be surprising that the effects should be so neatly balanced. Free-entry into
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eBay, and in particular into competing bidding strategies should equate the payoffs to

those strategies. Indeed, our conclusion is that to explain the experimental requires a

theoretical model where multiple auctions go on concurrently and bidders are näıve. We

present such a model at the end of this paper.

We are not the first to identify näıve bidding as the rationale for sniping. Ariely,

Ockenfels, and Roth (2006) performed a laboratory experiment intended to simulate the

conditions on eBay and reproduce sniping behavior. While their primary focus was to

compare the effect of alternative auction rules, they do draw some conclusions on sniping

that relate to ours. They were the first to suggest that sniping arises as an optimal re-

sponse to näıve bidding2 and conclude that sniping significantly improves bidders’ surplus.

Our field experiment complements their findings from the lab. It allows us to test whether

näıve bidding is relevant in a natural market setting with free-entry, and whether its effect

remains strong enough there to produce noticeable bottom-line effects on outcomes. In

addition, the greater control afforded by our experimental design gives us an improved

test of the performance of sniping versus squatting.3 We confirm that our bid level data

is consistent with incremental or näıve bidding but the overall effect of näıveté is subsided

by the large market effect eBay provides. This provides a nice example of a laboratory

experiment providing an insight into a behavioral bias and then a field experiment pro-

viding a better and complete picture of the extent and impact of such behavioral biases

in a large real world market.

1.1 Overview of Results

A striking summary of our experimental results is presented in Table 1. The table shows

two effects of sniping vs. squatting. First, squatting reduces the number of opponents

submitting competing bids. Indeed, the empirical distribution of the number of competi-

tors is higher among auctions in which we sniped in the sense of first-order stochastic

dominance. This is the competition effect and it is depicted graphically in Figure 1. Sec-

2They refer to it as incremental bidding.
3Ariely, Ockenfels, and Roth (2006) caution that the conclusions from their laboratory setting should

not be presumed to generalize to the natural market environment.
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ond, in auctions with at least one opponent bidder, if we condition on a fixed number of

competitors, our probability of winning was lower and the final price was higher in the

auctions in which we squatted. This reflects the escalation effect.

Table 1: Auction outcomes by number of opponents.

surplus win percent final price count

# opps snipe squat snipe squat snipe squat snipe squat

0 2.71 3.63 100% 100% 11.84 11.93 27 39

1 3.28 1.53 79% 61% 12.42 13.44 33 64

2 1.22 0.83 50% 47% 12.29 13.50 34 58

3 1.45 1.00 63% 45% 12.91 13.74 32 49

4 1.05 0.44 50% 20% 13.51 14.97 32 44

5 0.90 0.11 29% 9% 14.06 15.06 31 22

6 0.63 0.45 29% 9% 14.54 15.68 38 11

7+ 0.64 0.34 38% 14% 14.81 16.13 45 7

Of course Table 1, while suggestive, is weak evidence in favor of our model. From

an econometric point of view, we need to control for auction characteristics to determine

the significance of the impacts of sniping. Auction theory suggests that the number of

opponents is dependant on auction characteristics such as the opening price and our

strategies. This implies that conditioning on the number of opponents would lead to

endogeneity issues. Furthermore, as a theoretical matter, it turns out that the patterns

exhibited in Table 1 can be generated by an entirely standard model of bidding in which

bidders arrive in sequence and bid their private value if it exceeds the current price and

stay out otherwise. We demonstrate this in Section 3.

In light of this, we look more closely at the data and highlight a set of results that

are inconsistent with this benchmark model and point to a theory where näıve opponents

and concurrent auctions play an important role. These include the effect of sniping on

our winning probability and the seller’s revenue. We also highlight a peculiar result from
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Figure 1: The competition effect of squatting.

auctions in which ours was the only bid placed. Our average surplus in such auctions was

significantly higher when we squatted. This is inconsistent with our benchmark model

and, as we discuss below, reinforces the significant influence of concurrent auctions.

Finally, we present and analyze a theoretical model of näıve opponents and concurrent

auctions. Bidders view the objects as perfect substitutes and can participate in either

auction (or both). In equilibrium, bidders will try to compete in the auction with the

lowest price. We show how this gives rise to the competition effect, favoring squatting.

Näıve bidders act as if they are competing in an English auction: they repeatedly submit

bids just until they become the standing high-bidder. We show how this gives rise to the

escalation effect, favoring sniping. More generally, the equilibrium of this model matches

all of our empirical findings.

The remainder of this paper is organized as follows. In the next subsection we re-

late our work to the existing experimental and theoretical literature on online auctions

and sniping in particular and to evidences of bounded rationality in online auctions. In

Section 2 we describe our experimental design. In Section 3 we present the benchmark

ascending single-auction model with standard bidders. Our empirical findings are detailed

in Section 4. We reject some rationales behind sniping suggested in the literature in Sec-
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tion 5. Finally, section 6 presents our main theoretical model with concurrent auctions

and näıve bidders. Section 7 concludes. All the proofs are in the appendix.

1.2 Related Literature

This paper complements the theoretical literature on sniping in online auctions for a

private-value object by empirically investigating the impact of sniping using field exper-

iments. In one of the first papers in the online auction literature, Roth and Ockenfels

(2002) present a model of eBay auctions in which sniping arises as part of a tacitly collusive

equilibrium.

Rasmusen (2006) has a model with two bidders, one of which does not know her

private valuation and can learn it exactly by paying a cost. An informed bidder with

comparatively high valuation snipes in order to reduce the incentive of the uninformed

bidder from value discovery. We discuss both models further in light of our data in

Section 5.

In laboratory experiments, Ariely, Ockenfels, and Roth (2006) run dynamic second-

price auctions with both fixed and extendable closing times. In their controlled envi-

ronment, all auctions involve two bidders and the payoffs are designed to abstract away

from the effects of concurrent auctions as in the eBay market. While their main focus

is on the effect on outcomes of different ending rules, the prevalence and profitability of

sniping is an underlying theme. Like us, they reject the Roth-Ockenfels model of implicit

collusion and instead explain sniping as a response to incremental bidders (what we call

the escalation effect).4

A paper that tests the impact of sniping using field experiments is Gray and Reiley

(2005). They exclusively submitted high bids in order to ensure winning and focus on

winning prices. They find a small benefit to sniping but the statistic is not significant

due to a small data set. Our experimental design allows us to compare probability of

4Ariely, Ockenfels, and Roth (2006) calculate a loss from early bidding in their experiments by demon-

strating a negative correlation between a subject’s surplus and the number of early bids placed by that

subject. This understates the profitability of placing a single, truthful, early bid because it lumps together

such a strategy with the inferior strategy of näıve bidding.
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winning or analyze benefit of sniping for different levels of valuations. Moreover, a large

data set of products from the same category (movie DVDs) enables us to get statistically

significant results in many cases including the benefit from sniping.

Motivated by sniping and multiple bidding on eBay, Hossain (2004) proposes a dy-

namic second-price auction with uninformed bidders who do not know their valuations.

During the auction, these bidders get more information about their valuations from the

price and, in equilibrium, uninformed bidders place many bids to learn about their valu-

ations. Bidding behavior of uninformed bidders can be observationally similar to those of

näıve bidders suggested in this paper. An uninformed bidder perfectly understands that

the auction is a second-price auction and she bids her expected valuation conditional on

her current information as her final bid even if she is the high bidder towards the end of

the auction. On the other hand, a näıve bidder knows her valuation perfectly but fails to

bid that as her final bid when she is the high bidder.

2 Experimental Design

To test the benefit of sniping in a private-value setting, we bid the same amount on

auctions of the same product using the two strategies: squatting and sniping. In one

auction, we place a bid equaling our chosen valuation on the opening day. In the next

one, we place a bid in the last minute using the same valuation. This experiment estimates

the benefit (or loss) from sniping if a buyer randomly chooses whether to snipe or squat

when she is bidding for a private-value good on eBay. One can also view it as a comparison

between the payoffs of two bidders with identical valuations where one of them tends to

bid early and the other tends to bid late in eBay auctions.

We bid on brand new DVDs for popular movies newly released to video. For these

goods, two units are identical and bidders usually have unit demand. There is little uncer-

tainty about the quality of the product in terms of both the content and the condition for

new DVDs of popular movies.5 Thus, DVDs can reasonably be assumed to approximate

5Purchasing for the purpose of eventual resale is not very common. Average auction prices for these

movies fall by 15%-20% one month after the DVD release. Considering the depreciation and shipping
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the theoretical ideal of a private-value good. For all the titles we chose, a large number of

auctions started during the period when we ran the experiment allowing us to get large

enough samples for all treatments.

Via surveys of recently conducted auctions, we determined the most common movie

DVDs being auctioned off on eBay. We also determined the probability of winning at

different values for all the movies we considered. We placed bids at several levels of

valuations to look at the effect of sniping for bidders with different levels of valuations.

The 20 movie titles used in this experiment are presented in Table 12. We conducted the

experiment in two separate runs and the table also presents the number of auctions we

participated in and the bids we used in each run.

In each auction, we placed a single bid equalling our induced valuation. In the auctions

in which we squatted, we bid our valuation on the first day. In the auctions in which

we sniped, we bid our valuation using the sniping services provided by bidnapper.com

Bidnapper charges a fixed fee for unlimited use of the service over a given time frame.

Our bid was placed within the last 5 seconds of the auction.6

On eBay, the total price a bidder pays equals the sum of the final price from the auction

and the shipping and handling cost. Therefore, if in auction k, our induced valuation was

vk and the shipping cost was sk then our nominal bid bk was vk − sk so that our total

bid equaled vk. We assigned auctions to our treatment categories in alternating sequence

according to the time the auctions were listed. Since the unobservable characteristics of

an auction are presumably independent of the order in which they are listed by eBay, this

effectively creates a random assignment.

We restricted our set of auctions in various ways in order to ensure uniformity across

the auctions in our experiment. We participated only in 7-day auctions and did not

participate in secret reserve price or buy-it-now auctions. We participated only in auctions

that sold one movie, not a package of two or more movies. We disregarded the auctions

that had a “total opening price,” the sum of the opening price and the shipping cost,

charges, it would not be very profitable to buy from eBay for resale.
6Out of 272 auctions in which we intended to snipe, our bid went through in all but two of them. This

is further evidence against theories of sniping based on a substantial probability of lost late bids.
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above our valuation. In all of our auctions, the sellers specified the shipping costs in the

auction descriptions and accepted payments via “Paypal.”

For the first run of the experiment, we chose the levels of bids that were likely to win

approximately 90% and 60% of the time. We will refer these two levels of bids as valuation

level 1 and valuation level 2 respectively. We placed bids assuming our induced valuation

was at valuation level 1 in half of the auctions. For the other half, we used valuation level

2. The first run was conducted on all auctions of the 15 chosen titles that fitted the above

mentioned criteria and started between August 12 and August 18 of 2004. There were

269 such auctions. Of those, we squatted in 141 and sniped in 128. In 141 auctions, we

placed a bid using valuation level 1; that is, these bids were expected to be winning bids

90% of times. Our bids were from valuation level 2, bids expected to win 60% of times,

in the remaining 128 auctions.

In the second run, we placed bids with relatively lower levels of valuations. Bids at

valuation level 3 were likely to win 40% of times and bids at valuation level 4 were likely

to win 20% of times. Once again, via a survey of recently completed auctions we chose

the titles that had many auctions fitting our criteria going on. Of these 8 titles, 3 were

included in the first run of the experiment and the other 5 were released after the first

run of experiments started. Following the same criteria as in the first run, we placed bids

in 297 auctions that started between September 9 and September 23 of 2004. We sniped

in 144 auctions and squatted in 153 auctions. In 151 auctions, our bid was likely to win

40% times and in 146 auctions our bid was likely to win 20% times.7

We participated in 566 auctions in total. Of them, we sniped in 272 auctions and

squatted in 294 auctions. The opening price in these auctions had a mean of $3.88 and

a standard deviation of $3.31. The average shipping cost was $3.79 with a standard

deviation of $1.23. The mean and standard deviation of the total opening price were

$7.67 and $3.43 respectively. About 31% of all auctions started on a weekend.

We used the same eBay ID for all the auctions we participated in. As a result, our

feedback number was not constant during the auction. For private-value goods such as

7Table 13 in the appendix presents these summary statistics.
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new movie DVDs, the reputation of a buyer should not significantly affect the bidding

behavior of other bidders. We also do not find any evidence in our data to contradict this

assumption. On the other hand, many studies have found that the reputation level of

the seller positively affects bidder participation and revenues from auctions.8 The average

seller feedback score was 1277 in the auctions in our experiment. The seller had a feedback

score of at least 100 in 433 auctions. In 12 auctions, the seller was a novice—she had

been a member of eBay for less than a month at the start of the auction. The seller was

located in the United States in 491 auction. We control for these auction characteristics

in our empirical analysis.

2.1 A First Look at the Experimental Results

In this section we summarize the experimental findings that suggest the importance of

the competition and escalation effects. We take a closer look at the experimental data in

Section 4 following the development of our benchmark theoretical model.

We participated in 566 auctions and our average induced valuation in these auctions

was $14.05. The average final price including shipping cost was $13.61. We won in 283 or

exactly 50% of the auctions. Our winning percentage was 47.6% and 52.6% for squatting

and sniping respectively. We made a total payment of $3571.26 in the auctions we won.9

Surplus Sniping yielded a statistically significant, yet small, increase in our average

surplus. Suppose our total bid, equaling our induced valuation, is vk and the final price

is pk in auction k. If we lose the auction then our surplus is zero and if we win then our

surplus in absolute and percentage terms are (vk − pk) and (vk − pk) /vk respectively. Our

average surplus was $1.25 and $1.41 in squatting and sniping treatments respectively, and

$1.32 averaged over all auctions.10

8See Dellarocas (2003), Resnick, Zeckhauser, and Lockwood (2003) and Bajari and Hortacsu (2003)

for surveys on effect of feedback scores on outcomes of eBay auctions.
9Table 14 in the appendix summarizes some statistics on auction outcomes.

10Table 16 in the appendix presents some additional data on the surpluses from the auctions in this

experiment.
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To estimate the impact of sniping on our surplus, we control for auction characteristics

such as the opening price, shipping cost, reputation and location of the seller, valuation

level of our bid etc. Throughout the paper we estimate equations of the form:

srk = β0 + β1snipek + β2opk + β3sk + βX (1)

Here srk stands for our surplus from auction k. That is, if we win auction k then srk =

vk − pk and srk = 0 otherwise. The dummy variable snipe equals 1 when we sniped.

The opening price is denoted by op and the shipping cost is denoted by s. The opening

price and the shipping fee is chosen by the seller. Variables characterizing the auctions

and fixed effects pertaining to valuation levels, movie specific variations and day specific

variations are included as controls variables in X. Thus, all the right hand side variables

are exogenous for all of our opponent bidders.

We ran our experiments in two different runs—run 1 in August of 2004 and run 2 in

September of 2004. It is possible that error terms within a run are correlated but error

terms from two different runs are uncorrelated. To rectify that, we use the Huber-White

sandwich estimator of variance in calculating standard errors by clustering observations

from the same run. Table 2 shows that, with robust errors, the impact of sniping on surplus

is significant at 95% confidence level.11 The surplus is higher by around 18 cents if we

snipe. The coefficients for sniping stay significant when we look at surplus in percentage

terms instead. Sniping increased our surplus by around 1.36% of our induced valuation.

In column (1), we control for the auction characteristics and our valuation levels, but not

for the heterogeneity arising from using many different movies. The results stay virtually

unchanged when we include movie specific fixed effects.

We would like also to control for exogenous variation in the amount of competition,

i.e. the total number of potential bidders including those who visited the auction but did

not place a bid. However, this cannot be observed directly and we cannot use the number

of actual bidders as that number is endogenous. Instead, by including fixed effects for

the day that the auction started, we can control for any unmeasured difference in eBay

traffic through the course of an auction to a limited extent. The results with these fixed

11The coefficients are not significant at 95% confidence level without robust standard errors.
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Specification

(1) (2) (3)

Regressor

Sniping Dummy 0.18 0.16 0.17

(1.99) (2.67) (2.17)

Opening Price 0.05 0.05 0.04

(0.87) (1.02) (0.87)

Shipping Cost −0.16 −0.18 −0.20

(−3.35) (−2.87) (−2.42)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 566 566 566

Mean Dep. Variable 1.32 1.32 1.32

(2.07) (2.07) (2.07)

Adjusted R-squared 0.55 0.60 0.60

Table 2: Effect of sniping on surplus.

effects included are reported in column (3). The fit does not improve in that case and the

effect of sniping on surplus remains almost unchanged.

When we look at all the auctions together we find that the significant positive impact

of sniping on our surplus is robust to many variations in empirical analysis. This is

discussed in appendix A.3. However, if we look at auctions with different valuation levels

separately, the impact of sniping stays positive but becomes statistically insignificant. As

such, we do not consider the results on our surplus to be strong enough to reject the

stand-alone auction model.

The small benefit of sniping could be a result of the fact that we have many data

points with a low bid (bids at valuation level 4) where we were unlikely to win in either

treatments. When we look at auctions where our bid was drawn from valuation levels 1

to 3 (bids that were expected to win at least 40% of times), the benefit to surplus jumps

to 26 cents and stays significant.

Competition and Bids by Opponents An opponent in an auction refers to any

bidder other than us who submitted at least one bid. The average number of opponents
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we faced in an auction was 3.16. The average number of opponents were 2.48 and 3.90

when we squatted and sniped respectively.12

Table 1, which shows the frequencies of auctions with different numbers of opponents

for sniping and squatting supports the hypothesis that a benefit from squatting is reduced

competition. Indeed, using Poisson regressions of the number of opponents on auction

characteristics, as presented in Table 3, we find that more opponents placed bids in

sniping auctions. Given that the average number of opponents per auction was above

3, on average we faced almost 1.5 fewer opponents in auctions where we squatted. The

coefficients are significant even without robust standard errors.

Specification

(1) (2) (3)

Regressor

Sniping Dummy 0.43 0.43 0.42

(3.96) (3.90) (3.56)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 566 566 566

Mean Dep. Variable 3.16 3.16 3.16

(2.30) (2.30) (2.30)

Adjusted R-squared 0.24 0.27 0.27

Table 3: Effect of sniping on number of opponents.

Our hypothesis is that sniping pays because opponents are not provoked into bidding

aggressively. Again, Table 1 is preliminary evidence of this. It shows that conditional on

n ≥ 1 opponent, the surplus was higher for auctions where we sniped. A stronger evidence

of sniping reducing the aggressiveness of bidders is that, auctions where we squatted and

had n opponents received lower surplus than auctions where we sniped and had n + 1

opponents in most cases.

We must emphasize that we view these results as suggestive, but not conclusive support

of the role of competition and escalation effects in the performance of sniping. In both

cases the reason is the same: the number of active opponents is endogenous and in

12Table 15 in the appendix presents some more data on the numbers of bids, bidders and opponents.
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particular affected by the auction price because higher prices early in the auction will

mean that fewer bidders find it profitable to bid. Because the price always equals the

second highest bid, the price is higher when we squat than when we snipe, other things

equal. Even if opponent behavior is unaffected by our own strategy, this could make it look

as if squatting reduced the number of opponents but made them bid more aggressively.

Indeed, in the following section we formalize this point and show that the basic results

outlined here are also consistent with an entirely standard model of bidding in which the

competition and escalation effects are absent and there is no benefit to sniping.

3 Benchmark Model

In this section we develop an important theoretical benchmark model of a single private-

value ascending auction with proxy bids. In the equilibrium of this model, opponents

arrive in sequence and bid their value. Under this assumption, there can be no benefit

from sniping and yet we show that the model generates the qualitative features from

Table 1. This observation will require us to look more closely at the data to reveal evidence

of these effects that are inconsistent with this benchmark model. These inconsistencies,

presented in Section 4 will motivate our more general model of concurrent auctions and

näıve bidders, to be presented in Section 6.

A single object is up for sale. We suppose that N > 1 potential opponents have values

drawn independently from the same continuously differentiable strictly increasing distri-

bution F on support [0, 1]. Let vi denote the (private) value of bidder i ∈ {1, 2, . . . , N}.

In addition, we model the experimenter as an additional bidder whose private value is v0.

The auction starts at an opening price of m ≥ 0. The auction takes place over N + 2

periods and proceeds as follows. In period 0, the experimenter may submit a bid. Then,

in each subsequent period i ≤ N , bidder i visits the auction. She observes the current

price equal to the second highest among all bids previously submitted. The price is m if

no bid has been placed. Bidder i can then submit a single bid of any value strictly greater

than the current price. Finally, at date N + 1, the experimenter may bid. Arrival of

bidders is uncorrelated with their valuations and bidders do not know in what sequence
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they arrive at the auction site.

At the end of this sequence, the high bidder wins and pays the closing price, i.e. the

second highest among all submitted bids (or zero if there were no bids). A losing bidder’s

payoff is zero and the winning bidder’s payoff is equal to her private value minus the price

paid.

When the experimenter bids at date 0 or N + 1, he is squatting or sniping, respec-

tively. We will analyze separately these two cases, and we will always assume that the

experimenter bids his value. Indeed, by standard arguments, for each bidder it is a weakly

dominant strategy to bid her value whenever it exceeds the current price. In the subse-

quent analysis we focus on this undominated equilibrium.

The following proposition summarizes the qualitative features of the equilibrium of

this game in the sniping and squatting treatments. Perhaps surprisingly, it shows that

the patterns in Table 1 are replicated even though there is a single auction. Here the

bidders are standard rational agents. We refer to them as sophisticated bidders.

Proposition 1 In the benchmark single-auction model,

1. The distribution over the number of opponents who submit bids is larger in the snip-

ing treatment than in the squatting treatment, in the sense of first-order stochastic

dominance.

2. For any n, the probability that the experimenter wins conditional on n opponents

submitting bids is larger in the sniping treatment than in the squatting treatment,

strictly so iff n ≥ 1.

3. For any n, conditional on the experimenter winning against n bidding opponents, the

expected price paid is lower in the sniping treatment than in the squatting treatment,

strictly so iff n ≥ 1.

4. The overall expected surplus for the experimenter is the same in the sniping and

squatting treatments.
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To gain some intuition for the result, note that for any given arrival sequence and

valuation profile of players 1 to N , the price will be higher in the squatting treatment.

This is because the price is always equal to the second highest among the set of bids

submitted and in the squatting treatment the experimenter’s bid is included in this set.

As a result, on average, fewer bidders actually place bids. It follows that when we compare

two auctions that received bids by the same number of opponent bidders (players 1 to

N) these opponents will have higher values on average in the squatting treatment. Thus,

conditional on a given number of bidders, the experimenter expects to earn a lower surplus

and win with a lower probability when squatting.13

We see that the striking features of Table 1 are qualitatively consistent with a model

of standard bidders in which there is no potential advantage to sniping.

4 Rejecting the Benchmark Model

Our hypothesis is that any benefit from sniping arises because some opponents bid näıvely,

and that this benefit is offset and perhaps nullified by the competition effect which tends

to favor squatting. Table 1 is tentative support for this hypothesis, but Proposition 1

shows that Table 1 is also qualitatively consistent with a completely standard bidding

model with a single isolated auction and sophisticated bidders. In this section we show

that a closer look at the experimental results can clearly reject the benchmark model.

We present additional evidence of the competition and escalation effects that are not

consistent with the benchmark model and motivate the concurrent auctions model that

we present in Section 6.

13While the result is intuitive, the proof is complicated by the fact that the valuations of those opponents

who actually bid is endogenous and affected by the treatment, sniping vs squatting. It is easy to show

that conditional on any given sequence of opponent bidders’ valuations, the price will be lower when we

snipe, but the endogenous distribution of these sequences are different in the two treatments even after

conditioning on the number of opponents who bid.
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4.1 Final Outcomes

If the benchmark model were an accurate description of the eBay market, then there

would be no significant difference in the final outcomes of auctions in which we squatted

and sniped. As discussed earlier, sniping did have an effect on our final surplus, but this

effect was quite small and significant only for some specifications. Thus, on the basis of

surplus alone, we cannot reject the hypothesis that the benchmark model is a reasonable

approximation of bidder behavior on eBay, and that Proposition 1 is the explanation

for Figure 1. However, sniping had very different effects on the two components of final

surplus: winning probability and expected price conditional on winning.

Table 4 presents marginal effects coefficients for probit analysis of a dummy showing

whether we won an auction. We once again use standard errors robust to correlations in

error terms within a given run. We find that sniping increases the probability of winning

and the increase is statistically significant for all specifications. Between two identical

auctions where we squat in one auction and snipe in the other, our probability of winning

increased by 9% in the auction where we sniped. When we look at auctions with different

levels of bids by us separately, we find that the impact of sniping is smaller in auctions

where our bid was expected to win around 90% of times (and ended up winning 93% of

times) than the auctions with lower valuations. This makes sense because, as we won

most of these auction with either strategies, the relative benefit of sniping in winning the

auction was lower. Nevertheless, the benefits of sniping are significant.

On the other hand, the effect on our expected payment conditional on winning was

much weaker. Table 5 shows that our expected payment conditional on winning was lower

by around 20 cents in auctions where we sniped if we do not control for any day or movie

specific fixed effects. However, the impact is reduced by half and becomes insignificant

when movie- and day-specific fixed effects are included.

The weak overall effect on our final surplus is a combination of these two and therefore

taken by itself obscures the strong and significant effect from sniping on the probability

of winning.

Another bottom-line effect from sniping that is not captured by surplus alone is the
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Specification

(1) (2) (3)

Regressor

Sniping Dummy 0.09 0.10 0.13

(2.12) (2.20) (3.90)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 565 559 552

Mean Dep. Variable 0.50 0.50 0.50

(0.50) (0.50) (0.50)

Adjusted R-squared 0.35 0.40 0.44

Table 4: Marginal effect of sniping on winning probability.

Specification

(1) (2) (3)

Regressor

Sniping Dummy −0.20 −0.09 −0.10

(−5.63) (−1.11) (−1.59)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 283 283 283

Mean Dep. Variable 12.62 12.62 12.62

(2.25) (2.25) (2.25)

Adjusted R-squared 0.24 0.52 0.51

Table 5: Effect of sniping on price conditional on winning.
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effect on sellers’ revenues. If the final outcomes were unaffected by the choice of squatting

or sniping, then sellers’ average revenues would be the same in the two treatments. How-

ever, we find that sniping decreases revenue by more than 30 cents controlling for auction

characteristics and the coefficients are significant for all specifications, see Table 6.

Specification

(1) (2) (3)

Regressor

Sniping Dummy −0.40 −0.31 −0.35

(−54.88) (−3.29) (−4.10)

Opening Price −0.07 −0.09 −0.07

(−5.23) (−3.61) (−3.09)

Shipping cost 0.22 0.27 0.31

(4.59) (11.50) (18.46)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 566 566 566

Mean Dep. Variable 13.61 13.61 13.61

(2.47) (2.47) (2.47)

Adjusted R-squared 0.05 0.41 0.42

Table 6: Impact of Sniping on Revenue.

In an ascending auction such as those held on eBay, any strategy that allows the

auction to close at a price below the bidder’s value would be dominated. This still allows

for a great variety of bidding behavior over the course of the auction. However, one

unambiguous implication is that the final price must equal the value of the second-highest

bidder independent of whether we snipe or squat. Thus, our results on revenue allow us to

reject the hypothesis that all, or nearly all opponents use undominated strategies. Later,

we suggest that an alternative näıve bidding strategy better explains our data.

4.2 The Escalation Effect

Our results on the effect of sniping on winning probability and sellers’ revenue are indirect

evidence of the escalation effect: opponents bid less aggressively when we snipe. We now

look for direct evidence of the escalation effect by examining the impact of sniping on
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the bidding behavior of opponents. In an eBay auction for private-value goods, only a

bidder’s final bid in an auction matters for payoffs. To test for the escalation effect, we

look at the effect of sniping on each competitor’s final bid in the auction.

In all the auctions, 1791 opponents placed 2954 bids. After an auction ends, eBay

publishes all bids up to the second highest bid. As a result, some of the opponents’

bids in the data set are right-censored. Table 7 presents results from censored normal

regressions of the final bids of each of our opponents on characteristic variables for the

auction and the bidder’s feedback rating. The average of the dependent variable was

$11.17. If we sniped, then on average the final bid of an opponent was lower by at least

$1.58 cents and the impact is significant.

Specification

(1) (2) (3)

Regressor

Sniping Dummy −1.58 −1.61 −1.64

(−8.03) (−8.47) (−8.55)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 1781 1781 1781

Mean Dep. Variable 11.71 11.71 11.71

(3.55) (3.55) (3.55)

Pseudo R-squared 0.07 0.08 0.08

Table 7: Censored normal regression of effect of sniping on opponent’s final bid.

For a given sequence of arrivals of opponent bidders to an auction, the price in the

squatting auction is weakly higher than that in the sniping auction as the price equals

the second highest bid. As a player placing a bid implies that her valuation is above

the current price, conditional on bidding the expected value of a bidder’s valuation is

increasing in the current price. However, we cannot directly control for the current price

or the numbers of bidders (potentially including us) or opponents who have placed a bid

so far in the regressions as they are endogenously determined. The regressions in Table 7

includes only auction characteristic variables the bidder’s feedback rating as regressors.

Nevertheless, if we include an instrument for the number of potential bidders as suggested
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in appendix A.3 or the timing of the bid as regressors to indirectly control for the effect

of the current price, the impact of sniping barely changes. Just to look at the effect of

the current price, if we ignore endogeneity issues and include the current price when the

bidder first placed a bid as a regressor, the coefficients of sniping almost do not change.

For example, the coefficient of the sniping dummy in the censored normal regression of

last bids of opponent bidders presented in column (1) of Table 7 goes from -1.58 to -1.52

with the inclusion of the price variable. Here we should note that the current price when

the bidder first placed her bid has a positive and significant and the fit of the equation

improves significantly and the pseudo R-squared goes from 0.07 to 0.16 when we include

this endogenous variable as a regressor. This suggests that the negative impact of sniping

on opponent bids we find is not only due to our inability to control for a player’s expected

valuation conditional one her placing a bid.

Overall, opponents bid less aggressively when we snipe, consistent with the escalation

effect. To measure the escalation effect in a way that is not affected by the difference

in progression of price between the two treatments, we examine the highest among all

bids by opponents in an auction. In the benchmark model, the highest-valued opponent

places a bid equaling her valuation in both treatments. Running censored regression of

the highest of opponent bids in the auctions that received at least one opponent bid,

presented in Table 8, we find that the highest opponent bid was lower by more than a

dollar in the sniping treatments. The coefficients are significant at 99% confidence level.

The impacts of sniping in both tables 7 and 8 are also significant if we look at auctions

with different levels of our bids separately.

4.3 The Competition Effect

Indirect Evidence In Table 1, we related auction outcomes to the number n of oppo-

nents submitting bids. For any number n ≥ 1 sniping increases our conditional expected

surplus. Curiously, however, for n = 0 the comparison is reversed. At first glance it seems

impossible for there to be any difference in expected surplus conditional on zero oppo-

nents, since in that case the price paid is just the opening price. But there is a correlation
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Specification

(1) (2) (3)

Regressor

Sniping Dummy −1.54 −1.13 −1.16

(−3.83) (−3.59) (−3.81)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 527 527 527

Mean Dep. Variable 13.51 13.51 13.51

(2.60) (2.60) (2.60)

Pseudo R-squared 0.07 0.16 0.18

Table 8: Censored normal regression of effect of sniping on highest bid among opponents.

between the opening price and the event n = 0 and because of the competition effect, this

correlation is stronger when we snipe than when we squat.

To see this, suppose that there are two auctions being held simultaneously, and the

experimenter is bidding on object 1. There are two scenarios under which no opponents

bid on object 1: no other bidders have values greater than the opening price or exactly

one other bidder has a value greater than the opening price and she bids on object 2. The

first case is associated with high opening prices, the second with relatively lower opening

prices on average. But the relative likelihood of the second case is higher when we squat

because in that case the opponent is certain to bid on object 2 in order to avoid competing

with us. By contrast, when we snipe, the opponent may still bid on object 1 in the second

case as she is not yet aware that we are planning to snipe. This argument is formalized

below in Proposition 5.

Thus, the comparison of expected surplus conditional on zero opponents is indirect

evidence of the competition effect.

Direct Evidence Table 3 showed that squatting significantly reduces the number of

opponents and the size of the impact is large. However, the increase in the number of

opponent bidders who place a bid in sniping auction is accentuated by the fact that in a
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squatting auction the price will be higher conditioning the number of opponents.14 Instead

if we condition for the number of bidders (including ourselves), then in the benchmark

model the price should rise at similar pace in expectation in both treatments leading to

similar number of bidders in expectation.

In a market with many buyers and sellers, similar auctions should receive comparable

number of bidders as when the price in one auction is driven up, buyers should move to

another auction. This suggests that similar auctions should receive similar number of non-

sniping bids.15 Table 9 presents Poisson regressions of the number of distinct bidders who

placed a bid up to the penultimate minute of an auction on auction characteristics. The

dependent variable counts the experimenter in squatting treatments but not in sniping

treatments, hence in the benchmark model we would expect a negative coefficient on the

sniping dummy. In fact, we find that sniping increases the number of bidders placing bids

in an auction before the auction has just one minute left by more than 0.3 bidders on

average and this increase is significant.16

Another way in which the competition effect may manifest itself is that bidders are

discouraged from bidding in an auction when they expect the price may be very high. In

particular this would mean that when we squat with a high bid and therefore remain the

high bidder through most of the auction, potential bidders will be deterred from bidding.

Indeed, when we include the interaction term for the size of our bid and a dummy for

squatting, we find that its effect on the number of non-sniping bidders is negative and

statistically significant. In squatting auctions, the larger our bid is the lower is the number

of non-sniping bidders. On the other hand, the impact of the interaction term of the size

of our bid and a dummy for sniping is positive and statistically significant. These suggest

that large squatting bids by us reduce competition.

14Nevertheless, this effect alone should increase the expected number of opponents bidding in the

sniping treatment by less than one.
15We do not include sniping bids here as they do not give time to other bidders at the auction site to

react to these bids.
16This impact persists if we use the numbers of bidders prior to the last three or five minutes of an

auction as the dependent variable instead. The impact also does not change when we restrict attention

only to auctions that received at least one bid prior to the closing minutes.
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Specification

(1) (2) (3)

Regressor

Sniping Dummy 0.11 0.10 0.09

(19.12) (21.63) (9.40)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 566 566 566

Mean Dep. Variable 3.54 3.54 3.54

(2.14) (2.14) (2.14)

Pseudo R-squared 0.17 0.20 0.21

Table 9: Effect of sniping on total number of (non-sniping) bidders.

5 Alternative Models

The literature includes a few alternative models of auctions and bidder behavior that

would generate a positive benefit from sniping. Here we assess these models in light of

the experimental data.

In the Roth and Ockenfels (2002) model (referred to as RO henceforth), bidders play

a carrot-stick equilibrium in which early bidding is punished by bidding wars, and late

bidding is rewarded by the small probability that late bids by the opponents will fail to

materialize due to an exogenous probability of untransmitted bids. The bidding wars

used in the RO strategies can be viewed as largely consistent with the escalation effect we

have identified.17 On the other hand, due to the exogenous probability of untransmitted

late bids, in the RO model we would expect to see fewer opponents submit bids when we

sniped than when we squatted, in contrast to the competition effect.

However, the clearest evidence against the RO strategies is the effect of our sniping

on the sniping behavior of others. In the RO equilibrium, opponents bid early whenever

a bidding war has broken out, and snipe when it has not. Thus, the RO model would

predict that our own sniping would increase the prevalence of sniping by others.

17Nevertheless, conditional on being able to place a bid, a bidder’s final bid will be the same whether

she went on to a bidding war or sniped in the RO model .
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In our experiments we see no significant effect of our sniping on the timing of oppo-

nent’s bids. Table 10 presents Poisson regression of the number of opponents placing bids

in the last minute of an auction. The effect of sniping is positive but insignificant in all

cases. In these regressions, we clustered the error terms of the auctions in the same run

and used robust standard errors. When we do not use robust standard errors, we still get

insignificant coefficients for sniping. We looked at some other measures of late bidding

such as number of bids and number of auctions receiving late bids. We also looked at bids

by opponents in the last three or five minutes. In almost all cases, the effect of sniping on

late bidding by opponents is insignificant albeit positive. Given this result, we conclude

that our sniping does not seem to have induced sniping by opponents.

Specification

(1) (2) (3)

Regressor

Sniping Dummy 0.13 0.12 0.15

(0.53) (0.47) (0.53)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 566 566 566

Mean Dep. Variable 0.24 0.24 0.24

(0.49 (0.49) (0.49)

Pseudo R-squared 0.04 0.10 0.14

Table 10: Effect of sniping on number of opponents who snipe.

In the model of Rasmusen (2006), opponents can learn their valuation only at a cost.

Opponents who expect to face little competition have no incentive to learn their valuation

and instead simply bid low. If we were to squat against such an opponent we would provide

that opponent with an incentive to learn her valuation and bid accordingly while she will

not invest in value discovery and bid her average value if we snipe.

One empirical implication of the Rasmusen model is that in auctions we lose, the final

price will be higher on average when we squat than when we snipe. For example, if our

value is v0, and we snipe, then the opponent will bid her average value v̄ and so outbid

us only if v̄ > v0. On the other hand, if we squat, the opponent will learn her valuation
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v and bid max {v, v′} where her initial bid before value discovery is v′. She will outbid

us iff max {v, v′} > v0. Thus, the distribution of an uninformed bidder’s bid when we

squat will stochastically dominate the distribution of her bid when we squat. Hence, in

the presence of such uninformed opponents and conditional on highest of their bids being

above v0, the expected final price will be higher when we squat.

In our experiment, we found no statistically significant difference between squatting

and sniping in the expected final price conditional on losing. Table 11 shows that seller

revenue in auctions we lost was not significantly affected by whether we sniped or squatted

for any of the econometric specifications.

Specification

(1) (2) (3)

Regressor

Sniping Dummy −0.12 −0.25 −0.26

(−0.50) (−1.21) (−1.40)

Fixed Effects

Movie No Yes Yes

Starting Day No No Yes

Summary

Observations 283 283 283

Mean Dep. Variable 14.61 14.61 14.61

(2.29) (2.29) (2.29)

Pseudo R-squared 0.16 0.46 0.45

Table 11: Effect of sniping on seller revenue in auctions we lost.

6 Concurrent Auctions Model

The evidence in the previous sections suggest that the experimental outcomes in a given

auction are best understood by considering that auction in the context of the larger

market. To that end we examine in this section a theoretical model of concurrent auctions.

We suppose that there are two auctions running simultaneously. Each auction is a

dynamic second-price auction as modeled in Section 3. Bidders arrive in sequence and can

bid in one or both auctions. We first consider a model in which bidders are sophisticated

who understand and choose optimal bidding strategies. This model will capture some
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aspects of the competition effect, but none of the escalation effect. This will finally lead

us to consider a model with näıve bidders which can explain all of the qualitative results

from the experiment.

6.1 Sophisticated Bidders

There are two auctions for perfectly substitutable goods, labeled 1 and 2. Each bidder

demands at most a single unit. There are N + 2 periods—periods 0 to N + 1. Bidders

arrive in sequence so that bidder i ∈ {1, 2, . . . , N} arrives and bids in period i. At the

beginning of each period, the observed price in each auction k ∈ {1, 2}, pik equals the

second-highest bid submitted in auction k in periods 0 to i − 1. When bidder i arrives,

she observes the prices in both auctions and decides whether and how to bid. To motivate

our model of bidding, it will help to outline the strategic issues that arise when auctions

run concurrently.

When there are two auctions running simultaneously, a bidder i would like to bid in

the auction where she would pay the lowest price. However, i only observes the current

price in an auction and not the current high bid, and the latter determines the price if

i becomes the high bidder. To find the auction with the lowest high bid, i would like to

alternate between auctions, submitting small incremental bids until he becomes the high

bidder in one of them. For example, suppose the observed price in both auctions is p and

the (unobserved) high bids are qi1 and qi2 in auctions 1 and 2 respectively, with qi1 < qi2.

A sophisticated bidder i would steadily raise the price in each auction until he becomes

the high bidder. In this case that would occur when the price reaches qi1 at which point

i becomes the high bidder in auction 1 and ceases bidding in auction 2. To incorporate

this behavior into our model, we will allow bidders to continuously raise the price in both

auctions.

Once i has found the auction k with the lowest price, she may want to submit an

additional bid to ensure that he remains the high bidder in auction k. Indeed we will

show that it is optimal to submit a bid equal to vi, i’s value for the object. To incorporate

this into our model, we will allow bidders to submit an additional bid before their bidding
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period ends.18

Formally, the game is defined as follows. The price and current high bids in both

auctions are initialized at m, the minimum opening bid. As in Section 3, bidder i’s

valuation vi is independently drawn from the continuously differentiable strictly increasing

distribution F on support [0, 1]. At the beginning of period i, the current prices pik and

the current high bidders for each auction k are observed by bidder i. The current high

bids qi1 ≥ pi1 and qi2 ≥ pi2 are unobserved where q11 = q12 = m. Bidding by i consists of

two steps. First, i is given the opportunity to continuously raise prices in both auctions.

To do this, i specifies an upper bound κi > min {pi1, pi2}. The price in auction k is then

raised to p̃ik equaling the third highest of {qi1, qi2, pik, κi}. If κi ≤ min {qi1, qi2} then the

current high bidders in the two auctions stay unchanged. Otherwise, suppose qik′ > qik′′ ;

then bidder i becomes the current high bidder in auction k′′ and the high bidder in auction

k′ stays unchanged. If qik′ = qik′′ then i becomes the high bidder in one of the auctions

randomly and the high bidder in the other auction stays unchanged. In the second step,

i can submit a final bid bik ≥ p̃ik in each auction k. This concludes i’s bidding period.

The next period begins with new prices pi+1k equal to the second highest of {p̃ik, qik, bik}.

The new high bid qi+1k will be max {bik, qik}. For simplicity, we assume that bidders 1

to N know their positions in the bidder arrival sequence. The results in this section will

remain valid even without this assumption.

In the sniping treatment, the experimenter randomly selects an auction k bids v0 in

auction k in period N +1. In the squatting treatment, the experimenter randomly selects

an auction k and bids v0 in auction k in period 0. This means that the initial high bid in

auction k, q1k is equal to v0. Once again, we will only look at equilibrium in undominated

strategies.

Proposition 2 In the concurrent auction model with sophisticated bidders, the game can

be solved by backward induction. Each bidder i ∈ {1, . . . , N} uses the following bidding

strategy

1. If (and only if) vi > min {pi1, pi2}, then bidder i submits κi = vi.

18eBay refers to this as a “proxy” bid.
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2. If (and only if) i becomes the high-bidder in auction k, then i submits a final bid

bik = vi in auction k.

The experimenter wins with a higher probability and earns a higher expected surplus

by squatting rather than sniping.

6.2 Näıve Bidders

The results of the previous section demonstrate that extending the model to allow for

concurrent auctions, while generating one aspect of the competition effect, is not by

itself enough to capture the experimental outcomes we observe. Our empirical analysis

suggests that the presence of näıve opponents is another important consideration. In this

subsection we analyze a model of concurrent auctions with näıve opponents who act as if

the auction were an English auction rather than a dynamic second-price auction.

In an isolated English auction a bidder with value vi would optimally remain in the

auction actively bidding until the price exceeds vi. The key contrast with sophisticated

bidders is that when a näıve bidder becomes the high-bidder in an auction, he does not

submit a proxy bid, but rather remains inactive until another competitor arrives and

competes. The ensuing competition raises the price until it rises above the smaller of the

two bidders’ values at which point that bidder drops out. The other bidder is then the

high bidder and becomes inactive until another competitor arrives.

Our model incorporates this behavior into a market with concurrent auctions. Notice

that when näıve bidders compete in two auctions, the current high bidders at any stage

i will be the bidders with the two highest values among bidders {1, . . . , i}. The prices

in both auctions will equal the third-highest value as the bidder with the third-highest

value will have dropped out at that price. The highest bids will also equal this price as

näıve bidders do not use proxy bids. This is the basis for our model. All that remains is

to describe the behavior of the experimenter.

We begin with the sniping treatment. After bidder i arrives at the market, the price

in both auctions is (mechanically) raised to the third-highest value among {v1, . . . , vi},

denoted by pi+1. This process continues until period N . Thus, pN+1 equals the third
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highest of {v1, . . . , vN}. Then he randomly selects an auction k and submits a bid equal

to v0 in k. The experimenter wins at price pN+1 if v0 > pN+1, otherwise he loses.

In the squatting treatment, in period 0, the experimenter randomly selects an auction

k and submits a (proxy) bid of v0 in k. The auction then proceeds as described above

with the modification that the price pi at stage i will now equal the third highest among

{v0, v1, . . . , vi} (i.e. v0 is now included.) The experimenter wins if he remains the high

bidder until the end. This occurs iff v0 > pN+1 where pN+1 equals the third highest of

{v0, v1, . . . , vN}. If he wins, the experimenter pays price pN+1.

Proposition 3 When bidders i ∈ {1, 2, . . . , N} are näıve then the experimenter’s ex-

pected surplus and probability of winning is higher in the sniping treatments.

When bidders are näıve, sniping reduces the seller’s expected revenue and also the

highest among the bids placed by bidders i ∈ {1, 2, . . . , N}.

The result that, compared to squatting, sniping is strictly less profitable when bidders

1 through N are sophisticated and strictly more profitable when they are näıve does not

depend on any assumptions on F and N . If a bidder is sophisticated with probability α

and näıve with probability 1− α, then either sniping or squatting can be more profitable

or both can be equally profitable depending on F , N and α. This holds true even if

other bidders strategically decide whether to snipe or squat. We analyze α ∈ {0, 1} to

get sharper predictions and to contrast the two extreme cases.

Given that the presence of näıve bidders can theoretically replicate the benefit of

sniping while absence of them fails, we provide results parallel to those in Proposition 1 for

the concurrent auctions model with näıve bidders. In the mechanical model we presented,

näıve bidders do not directly place bids. Hence, we have to incorporate the notion of the

number of opponents bidding in the auction in which the experimenter submits his bid

into this model. In the squatting treatment, the first bidder (in terms of arrival sequence)

with valuation above m bids in the auction in which the experimenter did not bid. All

subsequent bidders bid in both auctions iff vi > pi. Thus, the number of opponents can

be calculated by the number of periods such that pt > pt−1. In the sniping treatment,

the first opponent to have valuation above m bids in the auction where the experimenter
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will eventually snipe. Suppose this is bidder l. The next bidder to have valuation above

m bids in the auction in which bidder l did not bid. All future bidders to place bids (i.e.,

vi > pi) bid in bot auctions. Thus, if there are zero periods such that pt > pt−1 then the

number of opponents is zero or 1 with equal probability and otherwise, the number of

opponents can be calculated by adding one to the number of periods for which pt > pt−1.

Proposition 4 In the concurrent auction model with näıve bidders,

1. The distribution over the number of opponents who submit bids is larger in the snip-

ing treatment than in the squatting treatment, in the sense of first-order stochastic

dominance.

2. For any n, the probability that the experimenter wins conditional on n opponents

bidding in the auction where he bid is larger in the sniping treatment than in the

squatting treatment, strictly so iff n ≥ 1.

3. For any n, conditional on the experimenter winning against n opponents bidding in

the auction where he bid, the expected price paid is lower in the sniping treatment

than in the squatting treatment, strictly so iff n ≥ 1.

4. The overall expected surplus for the experimenter is higher in the sniping treatments.

With sophisticated bidders, the first statement of the proposition will hold true and the

fourth statement will be exactly the opposite as already seen in Proposition 2. Statements

2 and 3 will hold true for n = 0. For n ≥ 1, with sophisticated bidders, statements 2 and

3 of Proposition 4 may hold only for certain F and N .

Proposition 5 below shows that concurrent auctions allow us to capture the com-

petition effect that leads to higher surplus conditional on zero opponents in squatting

treatments. In the benchmark model, our expected payoff conditional on zero opponent

and the probability of having zero opponent is the same in both sniping and squatting

treatments for any given opening price. Therefore, the expected payoff in auctions where

no opponent places a bid is independent of the treatment. However, in our data set,
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average surplus in sniping auctions was only three-quarters of that in squatting auctions

conditional on no opponents.

Proposition 5 Conditional on facing zero opponents, the expected opening price is lower

and the expected surplus is higher in the squatting treatment.

For any given opening price, the probability of getting zero opponents is lower in the

sniping auction in the concurrent auctions model no matter whether bidders 1 to N are

sophisticated or näıve. A sniping auction not attracting any opponent implies that the

opening price, equaling the payment, is relatively high leading to a lower surplus.

7 Conclusion

We conclude by discussing a possible extension of our research. Rather than attempt

to identify the bidding strategy that maximizes surplus, we have simply compared the

common practice of sniping to the natural benchmark strategy of squatting. We find that

market competition results in the payoff to these two strategies being roughly equalized.

On the other hand, it is not hard to see that either of these strategies could be improved

upon in a market such as eBay where many auctions for the same item run nearly concur-

rently. Indeed there is an important search aspect to bidding that our analysis ignores.

A bidder who snipes would optimally monitor simultaneously many auctions that are set

to close at a similar time. As the closing time approaches, she would attempt to forecast

the closing prices based on bidding history and bid on the item which is likely to have

the lowest price. Similarly, a bidder who squats would seek an auction with the most fa-

vorable opening price. The most favorable price could be the lowest price, or conceivably

it could be a higher price in order to signal toughness. In our experiment, we randomly

selected the auctions on which to bid at the opening and so we cannot assess whether any

additional profit opportunity exists based on combining these search aspects with optimal

bidding. Conducting a more elaborate experiment in order to test this should be a goal

for future research.
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A Proofs

A.1 Proof of Proposition 1

The proof of Proposition 1 will make use of the following lemma. We defer the proof of

the lemma until after the main proof of Proposition 1.

Lemma 1 Fix p̄ ∈ [0, 1], and let h : [0, 1] → [0, 1] be any non-decreasing function which

is not constant over [0, p̄]. Let psnipe and psquat be the random variables corresponding to

the highest bid among opponents in the snipe and squat treatments, respectively. Denote

by On the event that exactly n opponents submit bids, and P̄ the event that the highest

bid among opponents is no greater than p̄. We have

E
[
h(psnipe) | On, P̄

]
≤ E

[
h(psquat) | On, P̄

]
with a strict inequality iff n ≥ 1.

Proof of Proposition 1. We begin with the inequalities in parts 2 and 3 which are

immediate consequences of Lemma 1. For part 3 we take h to be the identity function

and p̄ = v0. Then E
[
h(psquat) | On, P̄

]
and E

[
h(psnipe) | On, P̄

]
give the expected price

conditional on winning when n opponents submit bids. For part 3 we take h to be the

indicator function

h(p) =

0 if p < v0

1 otherwise.

and set p̄ = 1. Then E
[
h(psquat) | On, P̄

]
and E

[
h(psnipe) | On, P̄

]
give the probability of

losing conditional on n opponents submitting bids.

Turning to the last statement, that the expected surplus is the same from squatting

and sniping. This follows immediately from the observation that the final price equals

the second-highest among all values {v0, v1, . . . vN}, regardless of treatment. To see why,

note that when bidders bid their values, the price never exceeds the second-highest value,

and hence the bidders with the highest and second-highest values always submit bids.

Finally, we prove the first statement. Consider any valuation profile (v1, . . . , vN) for

the opponents such that n of them will place bids in the squatting treatment. Consider
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any stage t at the beginning of which the current price pt is less than v0, the bid of the

experimenter. In this scenario, pt is equal to the highest value among all bidders prior to

t. Bidder t bids iff vt > pt. Consider now the identical valuation profile in the sniping

treatment. In this case, the current price will be equal to the second-highest value among

bidders prior to t, hence no greater than pt. If t were to bid in the squatting treatment,

she will bid in the sniping treatment as well.

By a similar reasoning, we can show that when pt ≥ v0, bidder t will bid in the

sniping treatment whenever she will bid in the squatting treatment. It follows that for

any valuation profile, the number of bids submitted is at least as high in the sniping

treatment as in the squatting treatment. Moreover, the inequality is strict with positive

probability. First-order stochastic dominance follows immediately.

Proof of Lemma 1. Consider the event that the auction arrives at stage t, among

the opponents the current highest bid is pt, subsequently exactly j additional oppo-

nents submit bids and the highest bid among opponents is no greater than p̄. We let

φsnipe (t, j, pt) and φsquat (t, j, pt) denote the expected value of h
(
psnipe

)
and h (psquat) con-

ditional on this event in the sniping and squatting treatments respectively. We will prove

the following claim by induction on j.

Claim: For every j = 1, . . . N , there exists a strictly increasing function gj (·) such that

if t ≤ N − j + 1 and pt < p̄, then

1. φsquat (t, j, pt) ≥ gj (pt) with a strict inequality if t < N − j + 1,

2. φsnipe (t, j, pt) ≤ gj (pt) . with a strict inequality if pt > m.

We begin by showing the claim for j = 1. We define the function g1 as follows.

g1 (p) = E [h (v) | p̄ > v > p] .

The assumption that F has full-support and that h is non-decreasing and non-constant

over [0, p̄] implies that g1 is strictly increasing.

In the squat treatment, suppose that at the beginning of stage t ≤ N , the current

price is pt, and consider the event that psquat < p̄ and exactly 1 additional opponent will
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submit a bid. Let t′ be the (random) stage at which that last opponent bids. Note that

t′ can take on any value between t and N , and psquat will be the bid submitted at stage

t′, i.e. vt′ . Taking expectations with respect to the value of vt′ , we can express

φsquat (t, 1, pt) = E [h (vt′) | E1 ∩ E2 ∩ E3]

where the events E1, E2, and E3 are defined as follows.

1. E1 =
{
vt̂ ≤ pt for all t ≤ t̂ < t′

}
(i.e. no bids between t and t′)

2. E2 = {p̄ > vt′ > pt} (i.e. bidder t′ bids)

3. E3 =
{
vt̂ ≤ min {vt′ , v0} for all t′ < t̂ ≤ N

}
(i.e. no bids after t′).

Note that, given pt, the event E1 conveys no additional information about vt′ . Fur-

thermore, conditioning on the event E3 increases the conditional expectation of h (vt′),

strictly so when t′ < N . The latter holds with positive probability when t < N , since

with positive probability t′ = t. Thus, using the fact that h is non-decreasing,

φsquat (t, 1, pt) = E [h (vt′) | E2 ∩ E3] ≥ E [h (vt′) | E2] = g1 (pt)

with a strict inequality when t < N . This establishes the claim for j = 1 in the squatting

treatment.

In the snipe treatment, suppose date t has been reached and the current high bid

among opponents is pt and the current price is rt ≤ pt. Consider the event that exactly

one additional bid is placed and the psnipe < p̄. Suppose t′ is the stage at which that last

bid is placed.

We can divide the conditioning event into two cases. First, consider rt < vt′ ≤ pt.

Note that this case has positive probability when pt > m and in this case psnipe = pt. The

alternative case is pt < vt′ < p̄. Here, psnipe = vt′ . Hence conditional on this second case,

the expectation of h(psnipe) is

E [h (vt′) | E1 ∩ E2 ∩ E3]

where
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1. E1 =
{
vt̂ ≤ rt for all t ≤ t̂ < t′

}
(i.e. no bids between t and t′)

2. E2 = {pt < vt′ < v0} (i.e. bidder t′ bids)

3. E3 =
{
vt̂ ≤ pt for all t′ < t̂ ≤ N

}
(i.e. no bids after t′).

Notice that given pt and rt, the events E1 and E3 convey no additional information

about vt′ so we can simplify to

E [h (vt′) | E1 ∩ E2 ∩ E3] = E [h (vt′) | E2] = g1 (pt)

The definition of g1 implies that g1 (pt) > h (pt), i.e. the expectation in the second case

exceeds the expectation in the first case. Therefore, the overall conditional expectation

no greater than g1 (pt), i.e.

φsnipe (t, 1, pt) ≤ g1 (pt)

and strictly smaller when the first case has positive conditional probability. The first

case, i.e. rt < vt′ ≤ pt, has positive conditional probability so long as rt < pt. In the

snipe treatment rt is the second highest bid at time t among the opponents, or m if fewer

than two opponents have bid. If pt > m, then at least one opponent has bid, and with

probability 1, his bid strictly exceeds the second-highest bid, i.e. pt < rt. We conclude

that the inequality is strict if pt > m and this establishes the claim for j = 1 in the snipe

treatment.

Now, for the inductive step, assume the claim holds for j − 1 and define

gj (p) = E [gj−1 (v) | p < v < p̄]

Note that by the induction hypothesis, gj−1 is increasing and hence so is gj and gj (p) >

gj−1 (p) for any p < p̄.

In the squat treatment, suppose that at the beginning of stage t ≤ N−j+1, the current

price is pt, and consider the event that psquat < p̄ and exactly j additional opponents will

submit bids. If t′ is the next opponent to bid, then the price becomes vt′ after she

bids. The conditional expected value of h (psquat) is, by the induction hypothesis, at least
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gj−1 (vt′) with a strict inequality if t′ < N − j +2. Note that the latter holds with positive

probability when t < N − j + 1.

Taking expectations with respect to the value of vt′ , a lower bound (strict when t <

N − j + 1) on the conditional expectation of h (psquat) is

φsquat (t, j, pt) ≥ Evt′
[gj−1 (vt′) | E]

where E is the event that vt̂ ≤ pt for all t̂ ∈ {t, . . . t′ − 1} and p̄ > vt′ > pt. By

independence, the inequality can be written

φsquat (t, j, pt) ≥ E [gj−1 (v) | pt < v < p̄] = gj (pt) .

This establishes the inductive step in the squatting treatment.

In the snipe treatment, suppose the current high bid among opponents is pt and the

current price is rt ≤ pt. Consider the event that exactly j additional bids are placed and

psnipe < p̄. Suppose t′ is the next bidder to place a bid.

If m ≤ rt < vt′ ≤ pt, then the high bid after player t′ bids is still pt and by the

induction hypothesis psnipe will be strictly less than gj−1 (pt). If instead pt < vt′ < p̄ then

psnipe ≤ gj−1 (vt′). Hence the conditional expectation of h(psnipe) is bounded above by

φsnipe (t, j, pt) ≤ E [gj−1 (vt′) | E1 ∩ E2]

where E1 =
{
vt̂ ≤ rt for all t̂ ∈ {t, . . . t′ − 1}

}
and E2 = {pt < vt′ < p̄}. The bound is

strict if the first case, m ≤ rt < vt′ ≤ pt holds with positive conditional probability, which

is true whenever pt > m. Given pt and rt, the event E1 conveys no additional information

about vt′ so we can simplify the bound to

φsnipe (t, j, pt) ≤ E [gj−1 (v) | pt < v < p̄] = gj (pt) .

This concludes the proof of the claim.

We use the claim to prove the lemma. Let n be the total number of opponents

submitting bids. Note that

E
[
h

(
psnipe

)
| On, P̄

]
= φsnipe (1, n, m) (2)

E
[
h

(
psquat

)
| On, P̄

]
= φsquat (1, n, m) . (3)
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The claim implies that (3) exceeds (2) and strictly so if 1 ≤ n < N , using the condition

for strict inequality in the first part of the claim. It remains to show treat the case n = N ,

i.e. all opponents bid. In that case, an opponent must submit a bid v1 = p1 > m in the

first period. Then

E
[
h

(
psnipe

)
| On, P̄

]
= Ev1

[
φsnipe (2, N − 1, v1) | v1 < p̄

]
(4)

E
[
h

(
psquat

)
| On, P̄

]
= Ev1

[
φsquat (2, N − 1, v1) | v1 < p̄

]
. (5)

The claim implies that φsnipe (2, N − 1, p1) < φsquat (2, N − 1, p1) for all p1 < p̄ since

p1 > m, using the condition for strict inequality in the second part of the claim. It follows

that (5) strictly exceeds (4).

A.2 Proofs for the Concurrent Auctions Model

Proof of Proposition 2. Notice that, in any undominated strategies, bik ≤ vi for both

k and bik = vi for at least one k as long as p̃ik < vi for some k for all i ∈ {1, . . . , N}.

We will prove the proposition using backward induction. First we analyze the optimal

strategy of bidder N . After placing κN , if she is the high bidder in auction k then it

implies that the highest of bids by all bidders 1 to N − 1 is (weakly) lower in auction k.

Since in which auction bidder 0 bids is randomly decided, bidder N ’s optimal strategy in

undominated strategies is bNk = vN and bNk′ = 0 for k′ 6= k. Now suppose she is not the

highest bidder in any of the auctions after submitting κN implying that the prices in each

auction, p̃Nk, are at least as great as κN . The next paragraph shows that, in equilibrium,

κN = vN . Therefore, if bidder N is not the high bidder in either of the auctions after the

initial bid, she does not place any more bids. That is, bNk = 0 for k ∈ {1, 2} in that case.

The main function of the initial bid κN is to figure out min {qN1, qN2}. Since p̃Nk does

not cross min {qN1, qN2}, the optimal κN equals vN as for a smaller κN , she may fail to

learn which auction has the lower highest bid even when min {qN1, qN2} < vN . In fact,

κN = vN weakly dominates any other κN . For κN < vN , bidder N ’s final payoff can be

different from that in the κN = vN case iff κN < min {qN1, qN2} < vN . However, in that

case, bidder N will be better off with κN = vN as she would learn for sure which auction
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has the lower qNk. For κN > vN , p̃Nk will be different for some k from the κN = vN case

when vN < min {qN1, qN2} < κN . However, in that case, bidder N ’s payment conditional

on winning is above vN . Hence, in any equilibrium in undominated strategies, bidder N

chooses κN = vN if vN > pNk for some k.

Now we assume that bidders j ∈ {i + 1, . . . , N} follows the strategy κj = vj and

bjk = vj if and only if she becomes the high bidder in auction k after placing the initial

bid κj. Then, bidder i’s best response is to choose bik = vi if she becomes the high bidder

in auction k after placing κi. She bids nothing in the auction(s) where she is not the

high bidder. Moreover, using logic similar to that in the previous paragraph, we can show

that κi = vi. Bidder i’s final payoff by choosing κi < vi can be different from that in the

κi = vi case iff κi < min {qi1, qi2} < vi. In that case, she will be better off with κi = vi as

she would learn for sure which auction has the lower qik. If vi < min {qi1, qi2} < κi, then

p̃ik will be different for some k from the κi = vi case. Then, bidder i pays above vi if she

wins. Therefore, in any equilibrium in undominated strategies, bidder i chooses κi = vi if

vi > pik for some k.

Finally we calculate the experimenter’s probability of winning and expected payoff.

Suppose A is a set of numbers and the function L (A) is such that

L (A) =

 m if |A| < L

the Lth highest element in A if |A| ≥ L.

We denote L ({v1, . . . , vN}) by v(L). If the experimenter squats then the two bidders

(including the experimenter) with the highest two valuations win and both pay the third

highest valuation as the price. He wins and pay v(2) iff v > v(2). The experimenter’s

expected surplus from the squatting treatment equals

Pr
(
v0 > v(2)

) (
v0 − E

[
v(2)|v0 > v(2)

])
and the probability of winning equals Pr

(
v0 > v(2)

)
. If the experimenter snipes and bids

in auction k then, qN+1k equals v(1) or v(2) with equal probability. His probability of

winning from sniping is

1

2
Pr

(
v0 > v(1)

)
+

1

2
Pr

(
v0 > v(2)

)
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and his expected surplus equals

1

2
Pr

(
v0 > v(1)

) (
v0 − E

[
v(1)|v0 > v(1)

])
+

1

2
Pr

(
v0 > v(2)

) (
v0 − E

[
v(2)|v0 > v(2)

])
.

Thus, the expected payoff and probability of winning for the experimenter is higher if he

squats when bidders i ∈ {1, 2, . . . , N} are sophisticated.

Proof of Proposition 3. The experimenter’s expected surplus from the squatting

treatment equals

Pr
(
v0 > v(2)

) (
v0 − E

[
v(2)|v0 > v(2)

])
His expected surplus from the sniping treatment equals

Pr
(
v0 > v(3)

) (
v0 − E

[
v(3)|v0 > v(3)

])
Thus, the expected payoff and probability of winning is higher for the experimenter if he

snipes when bidders i ∈ {1, 2, . . . , N} are näıve.

Lemma 2 Fix p̄ ∈ [0, 1], and let h : [0, 1] → [0, 1] be any non-decreasing function which

is not constant over [0, p̄]. In the concurrent auctions model, suppose psnipe and psquat are

the random variables corresponding to v(2) in the snipe and squat treatments, respectively.

Denote by On the event that exactly n opponents submit bids, and P̄ the event that v(2) is

no greater than p̄. We have

E
[
h

(
psquat

)
| On, P̄

]
≥ E

[
h

(
psnipe

)
| On, P̄

]
with a strict inequality iff n ≥ 1.

Proof of Lemma 2. We can prove this lemma exactly the same way as we proved

Lemma 1 incorporating concurrent auctions. Hence, instead of repeating the entire proof,

we will just sketch out the differences between the two proofs.

Consider the case where pt equals 2 ({v1, . . . , vt−1}), and subsequently exactly j of

bidders i to N place a bid and the second highest of the valuation of all opponents, v(2),

is no greater than p. In the snipe treatment, the current price for both auctions equals

3 ({v1, . . . , vt−1}). On the other hand, the current price for both auctions in the squatting
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treatment equals pt. Let us denote 1 ({v1, . . . , vt−1}) and 3 ({v1, . . . , vt−1}) respectively

by qt and rt where rt ≤ pt.

To prove claims 1 and 2 as in Lemma 1, we can follow the same procedure with the

difference that we redefine the function g1 as follows.

g1 (p) = E [h (min {va, vb}) | p̄ > va, vb ≥ p] .

Moreover, E3 in the squat treatment now equals
{
vbt ≤ min {vt′ , v0, qt} for all t′ < t̂ ≤ N

}
.

Using this E3, we can show that since h is non-decreasing then

φsquat (t, 1, pt) = E [h (min {vt′ , qt}) | E2 ∩ E3] ≥ E [(min {vt′ , qt}) | E2] = g1 (pt)

with a strict inequality if t < N .

For the snipe treatment, consider the event that exactly one additional bid is placed.

Suppose t′ is the last opponent to place a bid. First, consider rt < vt′ ≤ pt. This case

has positive probability when pt > m and in that case psnipe
N+1 = pt. The alternative case is

pt < vt′ and the current price becomes pt. Here, the final price pN+1 equals pt and E1, E2

and E3 will be the same as those in Lemma 1. Therefore,

φsnipe (t, 1, pt) = E [h (min {vt′ , qt}) | E1 ∩ E2 ∩ E3] = E [h (min {vt′ , qt}) | E2] = g1 (pt)

and this establishes the claim for j = 1 in the snipe treatment.

For the inductive step, assume the claim holds for j − 1 and define

gj (p) = E [gj−1 (min {va, vb}) | p ≤ va, vb < p̄] .

Note that by the induction hypothesis, gj−1 is increasing in p for p < v0 and hence so is gj.

Moreover, gj (p) ≤ gj−1 (p), strictly so if p < v0. Again, we can prove the inductive step

using the same line of argument used in proving the inductive step in Lemma 1. The only

difference is that, in the squat treatment, we redefine E as the event that vbt ≤ min {pt, vt′}

for all t̂ ∈ {t, . . . t′ − 1} and p̄ > vt′ ≥ pt to incorporate concurrent auctions. Finally, we

can use the claims to prove the lemma as done in Lemma 1.

Proof of Proposition 4. First we fix a valuation profile (v1, . . . , vN) for the

opponents. Consider player t has just arrived at the auction site and the current price in
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auction 1 in the squatting treatment psquat
t is less than v0, the bid of the experimenter.

That is, psquat
i = 2 ({v1, . . . , vt−1}). We consider player i to have placed a bid iff pt+1 >

pt and, this implies, bidder t bids iff vt > psquat
t . Consider now the identical valuation

profile in the sniping treatment. In this case, psnipe
t equals 3 ({v1, . . . , vt−1}), hence, is

no greater than psquat
t at any t. Therefore, if the bidder were to bid in the squatting

treatment, she would bid in the sniping treatment as well.

By a similar reasoning we can show that when psquat
t ≥ v0, a bidder arriving at time t

would bid in the sniping treatment whenever she would bid in the squatting treatment.

It follows that for any valuation profile, the number of bids submitted is at least as high

in the sniping treatment as in the squatting treatment. Moreover, the inequality is strict

with positive probability. First-order stochastic dominance follows immediately.

In the näıve bidders model, the second and third statements follow from Lemma 2

and we choose the same hs as in Proposition 1. For part 2 we take h to be the indicator

function

h(p) =

0 if p < v0

1 otherwise.

and set p̄ = 1. Then E
[
h (psquat) | On, P̄

]
gives the probability of losing conditional on

n opponents submitting bids in auction 1 in the squatting treatment in the concurrent

auction model when bidders are näıve.19 On the other hand, the probability of losing

conditional on n opponents submitting bids in auction 1 in the sniping treatment is less

than or equal to E
[
h

(
psnipe

)
| On, P̄

]
when bidders are näıve. The equality holds only

when n = 0.20 For part 3 we take h(p) to be the identity function and set p̄ = v0. Then

E
[
h (psquat) | On, P̄

]
gives the expected price conditional on winning when n opponents

submit bids in the squatting treatment. On the other hand, the expected price conditional

on winning when n opponents submit bids in the sniping treatment is less than or equal

to E
[
h

(
psnipe

)
| On, P̄

]
when bidders are näıve, the equality holding only when n = 0.

Part 4 of the proposition was proved in Proposition 3.

19This is also the probability of losing in squatting treatment when bidders are sophisticated.
20When bidders are sophisticated, the probability of losing in the snipe treatment is

E
[
f(psnipe) | On, P̄

]
and E

[
f(rsnipe) | On, P̄

]
with equal probability where rsnipe = 1 ({v1, . . . , vN}).
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Proof of Proposition 5. Suppose N̂ denotes the number of bidders with valuation

above m and n is the number of opponents who place a bid in the auction in which

the experimenter placed a bid. Conditional on n = 0, the experimenter’s probability of

winning is 1 and his payment is the opening price m. If the experimenter squats, then

bidders 1 through N do not bid in auction 1 if and only if at most one bidder has valuation

above m; that is, N̂ = 0 or 1. If he snipes then the experimenter has no opponent with

probability 1 if N̂ = 0 and with probability 1
2

if N̂ = 1. That is, the probability of getting

zero opponent are

FN (m) + (N − 1) FN−1 (m) (1− F (m))

and

FN (m) +
N − 1

2
FN−1 (m) (1− F (m))

in squatting and sniping treatments respectively. This is true in both sophisticated bidder

and näıve bidder concurrent auction models. Given that it is less likely to have no

opponents when the experimenter snipes, the expected value of the opening price m is

higher when he snipes conditional on having no opponents. Therefore, conditional on

none of bidders 1 to N placing a bid, the experimenter obtains higher expected surplus

in the squatting treatment as the expected opening price is lower in those auctions.

A.3 Robustness Issues

In this paper, we present only the simplest of the empirical analyses. However, the results

are usually robust to all the variations in analysis that we considered.

To control for day specific fixed effects, we controlled for the day in which an auction

started. An alternative would be to control for the day we placed a bid. This controls

for the day specific fixed effects if a bidder randomly decides on whether to bid now

on an auction that is immediately ending or bid now on an auction that is not ending

soon. With this fixed effect, the coefficient of interest always have the same sign as the

coefficients without any fixed effects or a fixed effect for the day the auction started.

However, sometimes the sizes of the coefficients of interest and the t-statistics are quite

a bit larger. One caveat is that if the bidder does not randomly choose whether to bid
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on an auction ending soon or not, then this is a choice variable. That is why we do not

present the results from regression with the bidding day specific fixed effects. If we allow

for differing day specific fixed effects for different titles, the qualitative effect of sniping

or its significance level on any dependent variable does not change either.

The result that sniping significantly increases our payoffs is robust to analyzing dif-

ferent measurements of surplus and to estimating other functional forms than the one

presented in equation 1. The impact of sniping on surplus is positive and statistically sig-

nificant if we use surplus in percentage terms instead of absolute surplus as the dependent

variable. The qualitative impact of sniping also stays unchanged if we look at only at

the auctions where we won. The impact of sniping stays positive and significant and al-

most unchanged if we include higher orders of the opening price as independent variables.

When we look at log of absolute surplus and consider all the auctions we participated

in, the positive impact of sniping on surplus become statistically significant (at 95% con-

fidence level) even without robust standard errors. Using Durbin-Watson statistics, we

can accept the null hypothesis that there was no first order auto-correlation between two

consecutive auctions, in terms of starting time, in the data set.

If we look at auctions in the two different runs separately, we once again find positive

impact of sniping on surplus. For both runs, the impact of sniping is statistically signifi-

cant if we cluster the standard errors of auctions with the same valuation level together.

If we look at auctions with different valuation levels separately, the impact of sniping

becomes positive but statistically insignificant.

The number of opponents who placed a bid in an auction, or the observed number

of opponents, depends on the opening price, whether we sniped in the auction, seller

characteristics etc. in addition to the true number of opponent bidders present at an

auction. As a result, using the observed number of opponents as a regressor leads to

endogeneity problems. However, we can use a two-stage method to create an instrument

for the true number of opponents present in an auction. For this, first we regress the

observed number of bidders on a dummy for sniping treatments, the opening price and

shipping cost, seller characteristics and dummies for the time period during which the
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auction took place. We can argue that valuations of bidders is not correlated with the

days in which an auction took place but is correlated to the true number of bidders at an

auction. We also assume that the observed number of opponents is linearly related to the

true number of opponents and other exogenous variables. Then, we can us the difference

between the predicted number of observed opponents and the actual number of observed

opponents as an instrument for the true number of opponents. When we include this

instrument as a regressor, there is no significant change in the coefficients of interest in

all the regressions we present. For example, the coefficient for the sniping dummy in the

regression of our surplus, presented in column (1) of Table 2, goes from 0.182 to 0.187

when we include this instrument as a regressor. Because of the negligible effect of this

instrument, we present only regressions without it in all the tables in this paper.
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Table 12: Overview of Auctions
# Auctions Valuation (in USD)

Title Run 1 Run 2 Level 1 Level 2 Level 3 Level 4

The Lord of the Rings - The Return of the King 49 20 16

The Last Samurai 26 21 18 14 11 9

Shrek 7 18 14

Along Came Polly 23 13 18 14 11 9

Pirates of the Caribbean 9 18 14

Master and Commander - The Far Side of the World 26 17 13

Miracle 16 17 13

Love Actually 6 17 13

Mystic River 33 23 17 13 11 9

Harry Potter and the Chamber of Secrets 13 17 13

50 First Dates 26 17 13

Big Fish 8 16 12

Seabiscuit 15 16 12

Lost in Translation 8 16 12

X2: X-Men united 4 15 11

Cold Mountain Â Â Â Â Â Â Â Â Â Â 18 12 10

Hidalgo Â Â Â Â Â Â Â Â Â Â 16 12 10

13 Going on 30 Â 25 13 11

Kill Bill vol 2 60 14 12

The Passion of Christ 121 15 13
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Table 13: Summary statistics of some auction characteristics

Mean / Count Std. Dev. Max Min

Opening price 3.88 3.31 9.99 0.01

Shipping cost 3.79 1.23 9.99 0

Total opening price 7.67 3.42 15.49 0.01

Seller feedback score 1277.22 2861.68 30995 0

Number of novice sellers 12

Number of sellers with feedback score above 100 433

Number of sellers based in the US 491

Number of auctions that started on a weekend 175

Table 14: Summary statistics of auction outcomes

Count We Won Winning Ratio Average Final Price

All auctions 566 283 50% 13.61

Auctions in Run 1 269 212 79% 13.40

Auctions in Run 2 297 71 24% 13.81

Auctions where we sniped 272 143 53% 13.41

Auctions where we squatted 294 140 48% 13.80
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Table 15: Summary statistics of bids and bidders

Mean / Count Max Min

(Std. Dev.)

Number of bids 6.08 24 1

(4.26)

Number of bids — snipe 7.08 24 1

(4.90)

Number of bids — squat 5.15 23 1

(3.33)

Number of bidders 3.96 10 1

(2.17)

Number of bidders — snipe 4.49 10 1

(2.41)

Number of bidders — squat 3.48 9 1

(1.79)

Number of opponents 3.16 10 0

(2.30)

Number of opponents — snipe 3.90 10 0

(2.55)

Number of opponents — squat 2.48 8 0

(1.80)
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Table 16: Summary statistics of surpluses for various treatments

Mean in absolute terms Mean in percentage terms

(Std. Dev.) (Std. Dev.)

surplus 1.32 8.17

(2.07) (12.16)

surplus — we won 2.65 16.34

(2.25) (12.75)

surplus — we sniped 1.41 8.83

(2.07) (12.37)

surplus — we squatted 1.25 7.57

(2.07) (11.95)

surplus — we sniped and won 2.68 16.78

(2.17) (12.56)

surplus — we squatted and won 2.62 15.89

(2.34) (12.96)

surplus — snipe with valuation level 1 4.03 22.99

(2.21) (12.84)

surplus — squat with valuation level 1 3.75 21.21

(2.54) (14.22)

surplus — snipe with valuation level 2 1.22 8.89

(0.31) (9.28)

surplus — squat with valuation level 2 1.02 7.16

(1.33) (8.99)

surplus — snipe with valuation level 3 0.37 2.86

(0.84) (6.59)

surplus — squat with valuation level 3 0.22 1.67

(0.53) (3.86)

surplus — snipe with valuation level 4 0.14 1.37

(0.50) (5.38)

surplus — squat with valuation level 4 0.07 0.78

(0.33) (3.68)
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Figure 2: This auction shows a drawback of squatting. The sole opponent was bidding näıvely and

eventually raised the price above our value. Presumably, the opponent would have stopped bidding earlier

had he/she become the high bidder at a lower price. By sniping we therefore would have won this auction,

possibly at a low price.
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Figure 3: This auction shows a drawback of squatting. The winner was bidding näıvely and eventually

raised the price above our value. Presumably, the opponent would have stopped bidding earlier had

he/she become the high bidder at a lower price. By sniping we therefore would have won this auction,

possibly at a low price.
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Figure 4: This auction illustrates the benefit of sniping. Our competitors reveal that they are bidding

näıvely and the highest-bidding opponent stops bidding after just outbidding her rival. By sniping we

avoid provoking her into raising her bid further, enabling us to win the auction.
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Figure 5: This auction illustrates the benefit of sniping. Our competitors reveal that they are bidding

näıvely and the highest-bidding opponent stops bidding after just outbidding her rival. By sniping we

avoid provoking her into raising her bid further, enabling us to win the auction.
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