
SNMP Traffic Analysis:
Approaches, Tools, and First Results

Jürgen Schönwälder∗, Aiko Pras†, Matúš Harvan∗, Jorrit Schippers†, Remco van de Meent†
∗ Computer Science

Jacobs University Bremen
Campus Ring 1

28759 Bremen, Germany
† Computer Science
University of Twente

P.O. BOX 217
7500 AE Enschede, The Netherlands

Abstract— The Simple Network Management Protocol (SNMP)
is widely deployed to monitor, control, and configure network
elements. Even though the SNMP technology is well documented
and understood, it remains relatively unclear how SNMP is used
in practice and what the typical SNMP usage patterns are.
This paper discusses how to perform large-scale SNMP traffic
measurements in order to develop a better understanding of how
SNMP is used in production networks. The tools described in
this paper have been applied to networks ranging from large
national research networks to relatively small faculty networks.
The goal of the research is to provide feedback to SNMP
protocol developers within the IETF, researchers working within
the context of the IRTF-NMRG, as well as other researchers
interested in network management in general. We believe that the
results are also valuable for operators and vendors who want to
optimize their management interactions or understand the traffic
generated by their management software.

I. INTRODUCTION

The Simple Network Management Protocol (SNMP) was
introduced in the late 1980s [1] and has since then evolved
to what is known today as the SNMP version 3 framework
(SNMPv3) [2]. While SNMP is widely deployed, it is not
clear which features are being used, how SNMP usage differs
in different types of networks or organizations, which informa-
tion is frequently queried, and what typical SNMP interaction
patterns are in real world production networks.

There have been several publications in the recent past
dealing with the performance of SNMP in general [3], the
impact of SNMPv3 security [4], [5], or the relative perfor-
mance of SNMP compared to Web Services [6]–[8]. While
these papers are generally useful to better understand the
impact of various design decisions and technologies, some
of these papers lack a strong foundation because authors
typically assume certain SNMP interaction patterns without
having experimental evidence that the assumptions are correct.
In fact, there are many speculations on how SNMP is being
used in real world production networks and how it performs,
but no systematic measurements have been performed and
published so far.

Many authors use the ifTable of the IF-MIB [9] or the
tcpConnTable of the TCP-MIB [10] as a starting point

for their analysis and comparison. Despite the fact that there
is no evidence that operations on these tables dominate SNMP
traffic, it is unclear how these tables are read and if any opti-
mizations are done by deployed management applications. It is
also unclear what the actual traffic trade-off between periodic
polling and more aperiodic data retrieval is. Furthermore, we
do not generally understand how much traffic is devoted to
standardized MIB objects and how much traffic deals with
proprietary MIB objects and whether the operation mix differs
between these object classes or between different operational
environments.

This paper describes an effort to collect SNMP traffic traces
in order to find answers to some of these questions. Section II
discusses possible approaches to collect traces and Section III
describes the tools that have been developed to analyze such
traces. Section IV discusses the locations from which traces
have already been collected. Section V provides some initial
results of our analysis; it should be noted that our research is
still in progress and more detailed results will be published in
a forthcoming paper. Section VI discusses related work and
conclusions are finally provided in Section VII.

II. APPROACHES

The collection of SNMP traffic traces requires the support
of network operators. On the technical side, good capturing
points have to be defined and configured. On the non-technical
side, an agreement has to be defined under which data can be
shared and results published.

It is usually difficult to make traces with complete SNMP
messages openly available since they contain sensitive in-
formation. In some cases, we have settled on agreements,
which made data available to specific researchers for research
purposes while in other cases the operators involved kept the
data and instead ran our analysis software and provided the
aggregated results back to us.

A. Sharing Traces

In the first approach, an operator collects traces and sub-
sequently makes them available to researchers for further

1-4244-0799-0/07/$25.00 ©2007 IEEE 323

processing. Since traces contain data of different levels of
sensitivity, operators typically want to exercise some control
over the data that is given to researchers. Good examples
are SNMP community strings, which are often used as clear-
text passwords and hence should be removed. Since removing
such data in binary pcap files which contain BER encoded
SNMP messages is technically non-trivial and also difficult
to verify, there is a need for a human and machine readable
representation which makes it easier to (a) identify data to be
removed, (b) to actually remove the identified sensitive data,
and (c) to verify that the removal was successful.

Next to the filtering of highly sensitive data, some operators
also prefer to have data anonymized so that the risk of
leaking sensitive information is reduced. Even though strong
anonymization is difficult to achieve, it is still often considered
useful to achieve at least a level of pseudonymization as a
second safety measure to complement a non-disclosure agree-
ment. Anonymization requires applying a filter-in principle
where only data for which an appropriate anonymization
function exists is retained in a trace. Thus, anonymization
can reduce the usefulness of the traces for researchers and
it therefore requires some careful planning on the side of the
operator involved. Furthermore, the development of suitable
anonymization functions is still an ongoing research topic
and hence the required software tools are experimental and
changing rapidly.

B. Sharing Analysis Software

The alternative approach to sharing traces is to share the
analysis software and to ask operators who own the traces
to execute the analysis software on behalf of researchers.
Of course, operators who execute analysis software provided
by researchers have to trust the software and check the
results against their privacy requirements. As a consequence,
analysis software should be open, portable, and reasonably
well documented. Analysis software should be provided in
a way, which makes it possible for operators to verify that
the code does not contain any unwanted features. This also
implies a pragmatic selection of programming languages so
that programs are likely to be understood by the operator
community.

Experience so far tells us that a combination of both
approaches usually works reasonably well. In such cases a
researcher obtains potentially filtered and anonymized traces
from an operator (typically legally covered by an agreement
between the operator and the trace analyst) and the researcher
executes analysis software provided by other researchers inter-
ested in the trace (assuming that is covered by the agreement).

C. Intermediate Formats

To support the above mentioned approaches, two interme-
diate formats for SNMP traces have been developed [11]. The
first one is an XML format which is intended as a human and
machine readable exchange format which is capable to retain
all information found in BER encoded SNMP messages. This
format is relatively verbose (traces in XML format are typically

a factor 7 larger than the original pcap trace file), but this
can be mitigated by compression. A large number of tools do
exist to process XML files and so ad-hoc transformations are
feasible. However, our experience is that many XML tools do
not scale very well to large data sets.

The second intermediate format is a simple CSV (comma
separated values) format, which only retains the most essential
information. It turns out that processing CSV files is usually
much faster, especially since many line-oriented tools can be
applied directly. The downside of the CSV format is that it
is not very flexible and changes in the CSV format typically
break tools in surprising ways. Hence it is crucial to get this
format right and to keep it stable.

III. TOOLS

SNMP traces are typically captured using tcpdump and
stored in pcap format. Hence, generic tools, which can
process raw pcap files, can be used to split and merge the raw
traffic traces. In order to analyze the traces, we have developed
additional tools, which use the intermediate formats described
above. Since traces may become quite large, tools should be
relatively efficient and fast.

A. Conversion Tool (snmpdump)

A new tool called snmpdump accomplishes the conversion
of raw pcap traces into intermediate formats. It reads raw
pcap files as input and produces traces in XML or CSV
format as output. Since the XML format retains all information,
it is also supported as an input format. This allows using
snmpdump as a filter. In addition, snmpdump accepts CSV
format as input even though this format does not retain all
information.

1) Parsing: To extract SNMP messages from raw pcap
files, it is necessary to (a) deal with fragmentation by reassem-
bling fragmented datagrams and (b) decode the native BER
format into an internal representation. For packet reassembly,
we used the libnids library, which essentially contains a
user-space version of some portions of the Linux TCP/IP
networking code. For the BER decoding, we modified the
SNMP packet decoder shipped with tcpdump to construct
an in memory representation of an SNMP message.

To parse data stored in the intermediate XML format, we use
the libxml reader API. The data provided by the generic
XML parser, which automatically checks well-formedness, is
used to generate an in memory representation. Although not
surprising, it should be noted that parsing raw pcap files is
significantly faster and hence pcap remains a good choice for
processing large trace files if no filtering or anonymization is
needed.

The CSV parser is a straightforward implementation which
reads a line, tokenizes it and then generates an in memory
representation of the message. The CSV parser is handy when
existing CSV files have to be processed further.

2) Data Representation and Control Flow: SNMP mes-
sages are represented internally using a nested data structure,
which can represent the different SNMP message formats.

324

parser

filter

filterconversion

flows
anonymi−

zation

parser
SMI

XML
driver

messagemessage

CSV
driver

XML
parser

CSV
parser

pcap

Fig. 1. Data flow within the snmpdump data conversion tool.

Every data member carrying the value of a field of an SNMP
message has associated attributes. These attributes control
memory management and indicate whether a value is present.
By adding these attributes to all data members, we are able
to pass a decoded SNMP message through several stages of a
processing pipeline until the message is finally serialized into
one of the output formats. The drivers, which produce different
output formats, adhere to a common interface, which makes
the implementation extensible. The overall data flow within
snmpdump is shown in Figure 1.

3) Filtering: The filter module of snmpdump is responsi-
ble to filter out message fields that should be suppressed, for
instance because specific sensitive data must be removed. The
message fields that should be suppressed are selected using a
regular expression and the suppression essentially changes the
attributes of the selected message fields. As a safety measure,
the data stored in filtered message fields is cleared or set
to some standard “null” value, just in case some other code
forgets to check the attributes when accessing message fields.

4) Conversion: The format of the payload of SNMP mes-
sages changed when the second version of SNMP was in-
troduced. In particular, the format of unconfirmed traps was
changed and harmonized. The coexistence specification [12]
defines a conversion procedure, which allows traps in the old
format to be translated into the new format and back. The
conversion module implements this conversion procedure in
order to provide a uniform interface. Note that the conversion
module can be bypassed if no conversion is desirable. If
conversion has been performed, it is necessary to call the filter
module again since the conversion might have filled message
fields with values, which were not present before.

5) Anonymization: The anonymization module is respon-
sible for anonymizing message fields. It makes use of a
reusable anonymization library called libanon [13]. The
library provides anonymization functions for standard data
types such as signed / unsigned integers and octet strings as
well as specific functions for MAC addresses or IP addresses.
The anonymization functions support a lexicographic-order-
preserving mode in order to preserve SNMP’s lexicographic-
order property of instance identifiers. A more detailed descrip-
tion of prefix- and lexicographic-order-preserving IP address

anonymization can be found in [13].
In order to select the anonymization function for a given

message field, it is necessary to have some context infor-
mation, such as the object descriptor or the object’s type
name. The anonymization module therefore looks up data
definitions by calling the libsmi library, an embeddable MIB
parser library. Note that these lookups are only performed if
anonymization has been requested and the values in question
are actually present. The selection of the anonymization func-
tion to apply for a given object or a given data type is runtime
configurable.

6) Flow Identification: Large traces, which may contain
interactions of several managers with hundreds of agents,
usually have to be broken into more manageable pieces.
A natural choice is to split a combined trace into several
traces, each one representing a message flow. An SNMP
message flow is defined as all messages between a source and
destination address pair which belong to a command generator
(CG) / command responder (CR) relationship or a notification
originator (NO) / notification receiver (NR) relationship.

The above definition deliberately does not consider port
numbers. The reasons are twofold: First, most managed de-
vices include just a single SNMP agent. Even if multiple
agents are present, either subagent protocols or proxy mech-
anisms are usually used to hide this. Even if a device has
multiple totally independent SNMP agents, we still consider
the device a single logically managed device. Second, many
managing systems make heavy use of dynamically allocated
port numbers which can change frequently and thus would
cause lots of unrelated flows to be generated, even though all
the flows are coming from a single management station.

The implementation of the flow identification module re-
quires to deal with reordered messages and to associate
responses (and reports) to prior requests since responses do
not indicate whether they are sent in response to a notification
or a data retrieval operation.

B. Analysis Tools

Analysis tools usually read the intermediate format pro-
duced by snmpdump in the first stage and extract meaningful
statistics in a second processing stage.

325

A Java 5.0 based statistics generator takes an intermediate
file as input, parses it sequentially and handles internally each
extracted packet to a set of statistics generators, which are
responsible for maintaining counters and other data structures.
Currently the program is capable of generating basic protocol
statistics, like version and protocol operation usage, as well as
statistics about MIB usage, relations between managers and
agents and statistics about error responses.

In addition to the Java program, a collection of Perl scripts
have been developed (part of the snmpdump distribution)
which analyze intermediate files in CSV format. Besides the
generation of basic statistics, the scripts are able to ana-
lyze SNMP walks (sequences of GetNext or GetBulk
operations) in order to produce data about how applications
retrieve management information and which strategies are
used to implement tables. Additional tools can perform object
name (OID) conversion and aggregation on base statistics by
reading the MIB identifiers lists that can be created using the
smidump MIB compiler.

IV. TRACES

Traces have been collected at several different locations.
We report here analysis results covering eight traces collected
at seven different locations. To easily identify the traces and
the locations, we use a naming scheme essentially consisting
of two numbers: The first number identifies a location while
the second number identifies a specific trace collected at that
location. For example, a trace name such as l01t02 refers to
the second trace collected at location number 1.

trace description start hours
l01t02 national research network 2005-07-26 162.98
l01t05 national research network 2006-07-10 336.00
l02t01 university network 2006-04-21 294.62
l03t02 faculty network 2006-04-27 159.21
l04t01 server-hosting provider 2006-04-14 4.00
l05t01 regional network provider 2006-04-19 580.60
l06t01 national research network 2006-05-14 222.08
l12t01 point of presence 2006-07-10 208.02

TABLE I

OVERVIEW OF THE SNMP TRACES

Table I provides an overview of the traces analyzed in this
paper. The traces l01t02 and l01t05 have been collected at the
backbone of SURFnet, which is the research network provider
within the Netherlands. Note, however, that these two traces
are collected with roughly a year in between and that different
attachment points were used to collect the traffic. The first
trace was collected near the network operation center (NOC)
while the second trace was collected close to a data collection
point in the network.

Trace l02t01 was collected on a university network man-
agement VLAN while trace l03t02 was collected on a faculty
network. The relatively short trace l04t01 was collected at a
server-hosting provider. The data was collected by capturing
all SNMP traffic originating from or destined to a specific
network manager.

Trace l05t01 was collected at a regional network provider
network. The network utilizes many wireless point-to-point
links to interconnect research institutions, government institu-
tions and commercial organizations.

Trace l06t01 was collected on the main network manage-
ment server of a national research network. Note that there are
additional systems generating SNMP traffic in this network
and thus the trace only describes the traffic generated by a
single management system.

Finally, trace l12t01 was collected at a point of presence of
another national research network.

Network traffic was captured using tcpdump and stored
in pcap format. In some cases, we could capture other
management traffic (e.g. SYSLOG) in addition to SNMP
traffic. We plan to analyze these traces in the future and relate
the results to the SNMP analysis we are working on at the
moment.

V. ANALYSIS

The purpose of this section is to present some initial
analysis results; more traces must be collected and additional
analysis methods and scripts must be developed before more
comprehensive conclusions on SNMP usage can be drawn.
Still it is possible to present some interesting first results.

A. General Characterization

Table II provides a general characterization of the traces.
The trace sizes are given in the CSV format that has been
used throughout in the analysis. Most traces included all
information in the CSV file. Only traces l04t01 and l12t01
have been filtered to exclude varbind values and thus the trace
files contain less information and are somewhat smaller.

trace size [MB] messages SNMPv1 SNMPv2 SNMPv3
l01t02 6369 51772136 100.0% - -
l01t05 14043 40072529 - 100.0% 0.0%
l02t01 77789 258010521 5.5% 94.5% -
l03t02 130858 871361365 95.0% 5.0% -
l04t01 10 15099 35.7% 64.3% -
l05t01 2898 25298667 100.0% - -
l06t01 24683 89277889 57.4% 42.6% -
l12t01 312 2619884 32.3% 67.7% -

TABLE II

GENERAL CHARACTERIZATION OF THE TRACES

Table II shows the SNMP versions found in the traces.
Despite the fact that the status of SNMPv1 and SNMPv2
is historic and only SNMPv3 is full standard, it turns out
that SNMPv3 is not really used in any of our traces. Trace
l01t05 contains a very few SNMPv3 messages but they do not
contribute significantly to the trace; it seems that someone was
experimenting with SNMPv3 while the traces were collected.

This result did not come as a surprise since earlier dis-
cussions with operators already showed that, besides for
(DOCSIS) cable modem management, SNMPv3 is still not
widely deployed. A second interesting observation is that some
trace locations still seem to rely solely on SNMPv1, whereas

326

the management traffic at other locations is dominated by
SNMPv2.

B. Protocol Operations

Table III shows for every trace the usage of the different
protocol operations. In general, the overall traffic is domi-
nated by Get, GetNext, and GetBulk operations and their
responses. Some traces do not contain any notifications and
only trace l06t01 contains acknowledged notification.

trace Get Next Bulk Set Trap Inform Resp
l01t02 0.0 50.0 - 0.0 - - 50.0
l01t05 0.0 - 50.0 - - - 50.0
l02t01 0.1 2.4 47.1 0.0 0.7 - 49.6
l03t02 0.3 49.8 - 0.0 0.0 - 49.9
l04t01 32.8 3.8 22.9 - - - 40.5
l05t01 50.0 0.0 - - 0.0 - 50.0
l06t01 12.1 31.4 6.5 - 0.0 0.0 50.0
l12t01 1.0 49.0 - - 0.0 - 49.9

TABLE III

USAGE OF PROTOCOL OPERATIONS (IN %)

The traces l01t02, l02t01, and l03t02 contain a Set op-
erations but due to the small number, they do not play a
significant role in the overall traffic mix. A closer look at
trace l01t02 revealed that all recorded Set operations were
trying to modify the sysLocation scalar with a value of
type Integer32, which obviously leads to an error response
due to a type mismatch, if authentication and access control
would have been successful. In trace l02t01, we observe Set
requests to two proprietary MIB modules, which allow to copy
configuration files to/from a device. In trace l03t02, we found
that Set operations are used to trigger the download of a
VLAN membership policy specification.

Table III also reveals that trace l04t01 contains significantly
more requests than responses. One possible explanation could
be packet loss. Upon further investigation and discussion with
the network operators, we learned, however, that the day the
traces were collected some systems were switched off for
maintenance purposes.

trace Get Next Bulk max-reps non-reps
l01t02 37.5% 99.3% - - -
l01t05 100.0% - 100.0% 10/50 0
l02t01 56.3% 99.9% 100.0% 1/10/20/25 0
l03t02 1.6% 99.9% - - -
l04t01 100.0% 100.0% 100.0% 1000 0
l05t01 99.9% 95.6% - - -
l06t01 8.7% 2.6% 0.0% 12 0
l12t01 100.0% 99.9% - - -

TABLE IV

PERCENTAGE OF SINGLE VARBIND GET , GETNEXT , AND GETBULK

OPERATIONS AND GETBULK PARAMETERS

Since the traffic is dominated by data retrieval operations,
it makes sense to take a closer look how data retrieval
is performed. Columns 2, 3, and 4 of Table IV show the
percentage of Get, GetNext, and GetBulk requests that

contain only one varbind in the varbind list. Except for trace
l06t01, single varbind GetNext and GetBulk operations
clearly dominate. In four traces, even the Get operations
tend to be single varbind operations. In trace l06t01 we find
that 86.5% of the GetBulk operations contain two varbinds
and the remaining 13.5% contain eight varbinds. Furthermore,
85.8% of the GetNext operations contain two varbinds. A
conclusion from this analysis is that except in trace l06t01,
table retrieval is usually realized in column-by-column mode.

Columns 5 and 6 of Table IV indicate the max-repetitions
(max-reps) and the non-repeaters (non-reps) parameters
of the GetBulk operations. The first interesting observation
is that none of the GetBulk operation used non-repeaters.
In traces l01t05 and l02t01, almost 100% of the GetBulk
requests use 10 max-reps. The GetBulk requests in trace
l04t01 always use 1000 max-reps while the requests in trace
l06t01 always use the 12 max-reps.

C. Response Size Distribution

Figure 2 shows the cumulative distribution of the sizes of
the response messages. The vast majority of the response
messages are about 100 bytes long for traces that do not
include the GetBulk operation. The corresponding requests
are usually even smaller since they do not contain any values.
As we will see later, most of the objects retrieved are actually
simple numbers whose encoding is relatively compact.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400

of

 r
es

po
ns

e
m

es
sa

ge
s

[p
er

ce
nt

]

response message size [bytes]

response message size distribution (cdf)

l01t02
l01t05
l02t01
l03t02
l04t01
l05t01
l06t01
l12t01

Fig. 2. Response message size distribution (cdf)

The traces that include GetBulk requests contain larger
response messages. Although almost all GetBulk response
sizes could be observed, no response message was larger
than roughly 1400 bytes. This implies that no fragmentation
occurred on a path with an Ethernet MTU.

When comparing the four GetBulk traces, one can ob-
serve that trace l04t01 achieves a much higher percentage
of large response messages. This is due to the fact that
this particular management application gives the agent more
freedom to generate large response messages by using a large
max-repetitions parameter (1000). We have observed
responses with up to 74 repetitions for l04t01. As explained

327

above, traces l01t05 and l02t01 prefer a max-repetitions pa-
rameter of 10 and we also observe a matching number of
responses with 10 varbinds. According to Figure 2, this leads
to most responses being about 300 bytes long. Trace l06t01
uses the max-repetitions parameter 12 and retrieves multiple
varbinds, which leads to some slightly better performance. We
conclude that the setting of the max-repetitions parameter can
be improved in three out of four locations and we also observe
that implementations obviously do not try to dynamically
adjust the max-repetitions parameter.

D. Flow Analysis

To further analyze the traces, it is useful to look at individual
flows. Table V lists in columns 2 and 3 the number of CG/CR
flows and the number of NO/NR flows we have identified
in the traces. The remaining columns list the number of
CG/CR/NO/NR interfaces that were identified. Note that we
identify interfaces and not managers or agents. Hence, it is
possible that, for example, multiple CGs are running on a
single multi-homed host. From discussions with operators, we
know that management systems are indeed often multi-homed
(and many routers are by their very nature). In particular, we
know that trace l06t01 was obtained from a single management
system.

trace cg/cr flows no/nr flows cg cr no nr
l01t02 203 - 3 178 - -
l01t05 8 - 2 8 - -
l02t01 258 197 5 240 197 1
l03t02 42 20 25 20 17 2
l04t01 34 - 3 34 - -
l05t01 117 2 9 99 2 2
l06t01 288 125 3 260 125 2
l12t01 30 6 5 26 6 1

TABLE V

CHARACTERISTICS OF CG/CR AND NO/NR FLOWS

The traffic is not evenly distributed across the flows. In fact,
all traces have a relatively small number of dominating flows.
Figure 3 shows the number of messages per minute and the
number of bytes per minute exchanged in the various flows of
trace l01t02. The flows were sorted by descending number of
messages per minute.

The solid curve in Figure 3 shows that there are some high
volume flows with up to 300 messages per minutes (mpm)
but also many flows with less than 20 messages per minutes.
The dashed curve shows that the traffic peeks at almost 18000
bytes per minute (bpm) but goes down to less than 1000 bytes
per minute for many flows. The figure also indicates that the
number of messages and the number of bytes transferred are
strongly correlated in this trace. This is not too surprising
since we know that most requests are single varbind GetNext
requests in this trace (and we will see later that most of them
retrieve numbers).

The strong correlation between the number of requests and
the bandwidth consumed surely cannot be expected for flows
that make heavy usage of the GetBulk operation. From

 0

 50

 100

 150

 200

 250

 300

 350

 0 50 100 150 200 250 300 350
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

m
es

sa
ge

s
pe

r
m

in
ut

e

by
te

s
pe

r
m

in
ut

e

flows (sorted by descending number of messages per minute)

"l01t02-snmp-mpm.data"
"l01t02-snmp-bpm.data"

Fig. 3. Traffic intensity of the flows in trace l01t02

Figure 2, we already know that trace l04t01 makes efficient
use of GetBulk operations by setting the max-repetitions
parameter to 1000. The traffic intensity of the flows in this
trace shown in Figure 4 prove this.

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45
 0

 200

 400

 600

 800

 1000

 1200
m

es
sa

ge
s

pe
r

m
in

ut
e

by
te

s
pe

r
m

in
ut

e

flows (sorted by descending number of messages per minute)

"l04t01-snmp-mpm.data"
"l04t01-snmp-bpm.data"

Fig. 4. Traffic intensity of the flows in trace l04t01

The computation of the traffic flows for trace l03t02 revealed
that there is one very high intensity flow, which contains 94.3%
of all messages in this trace. Figure 5 shows the traffic intensity
of the flows in logarithmic scale. This heavy flow generated
close to 90,000 messages per minute. By inspecting this flow,
we found that a management application got caught in a time-
filtered table.

The time-filter mechanism, which was introduced in
RMON2-MIB [14], can be used to retrieve only those rows
of a time filtered table that have changed since a particular
time. This is achieved by inserting a time-filter component
in the index and excluding rows from the view that have
not changed since the time-filter provided in the request. The
original time-filter specification favored an implementation
style where management applications that do not understand
time-filtered tables could potentially run into a long laster
or potentially endless loop (if the table changes faster than
data can be retrieved). The update of the original time-filter

328

definition now suggests to implement time-filtered tables in a
way that avoids these problems [14].

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 10 20 30 40 50 60 70
 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

m
es

sa
ge

s
pe

r
m

in
ut

e

by
te

s
pe

r
m

in
ut

e

flows (sorted by descending number of messages per minute)

"l03t02-snmp-mpm.data"
"l03t02-snmp-bpm.data"

Fig. 5. Traffic intensity of the flows in trace l03t02

E. Flow Topologies

Based on the extracted flows, it is possible to draw graphs
visualizing the flow topology between CGs, CRs, NOs, and
NRs. Since there are typically much more CRs than CGs, we
decided to draw management systems (nodes that host CGs
and/or NRs) as larger circles and managed elements (nodes
that host CRs and/or NOs) as small dots. We indicate CG/CR
flows with solid green arrows pointing the the CR and we use
dashed red arrows for NO/NR flows. Furthermore, we indicate
the relative amount of traffic at a node (as indicated by the
number of messages per minute) by its gray level (black means
high traffic intensity.

m1

m0

m2

Fig. 6. Flow topology of trace l04t01

Figure 6, visualizing the trace l04t01, shows a typical simple
monitoring flow topology. Management interface m0 is mon-
itoring two agents, management interface m2 is monitoring
5 agents, and the remaining 27 agents are monitored by m1.
A more complex monitoring topology is show in Figure 7
where we again see a rather simple low volume setup around
management interface m1 plus a rather complex setup around

the management interfaces m0 and m2. Surprisingly, a number
of managed elements are connected to both m0 and m2.

m1

m0

m2

Fig. 7. Flow topology of trace l01t02

Another interesting plot which also includes a significant
number of NO/NR flows is shown in Figure 8. Management
interface m3 acts solely as a notification receiver while man-
agement interface m1 acts as both command generator and
notification receiver. The management interface m0 acts as a
pure commands generator. The single dark dot and the dark
coloring of m0 indicates that the traffic is dominated by a
single flow between m0 and the dark managed element. As
mentioned above, we know that all management interfaces in
trace l01t02 belong to a single multi-homed machine.

m0

m3

m2

m1

Fig. 8. Flow topology of trace l06t01

The flow topology shown in Figure 9 belongs to trace
l03t02 and looks kind of surprising. We see as many as 18

329

management interfaces talking to a single managed element
interface. A closer inspection of the traces reveals that these
18 flows start consecutively, although some of them overlap.
A further analysis of the flows reveals that the CRs retrieve
information about printer supplies from the network element,
which therefore likely is a somewhat important printer in the
faculty network. We assume that the printer supply monitoring
application is running on systems which get IP addresses
assigned dynamically.

m26

m13

m8

m0

m24 m15

m19

m9

m23

m17
m14

m25

m6

m11
m21

m1

m2

m4

m12

m10 m3

m22

m18

m5

m20

m7

m16

Fig. 9. Flow topology of trace l03t02

In Figure 9, we also see two notification receiver interfaces
and there seem to be three nodes sending notifications to both
notification receiver interfaces. The high volume time-filter
traffic is exchanged between management interface m2 and
the dark dot.

F. Traffic Pattern

It is generally assumed that tools like MRTG [15], which
fetch MIB variables at regular intervals, like every 5 minutes,
generate most SNMP traffic. If such traffic were plotted as
a figure that shows the average number of SNMP packets
as function of the time, a straight line would be the result,
provided the time interval is taken sufficiently large, for
example 24 hours.

While many flows show a quite regular traffic intensity, it
is important to note that this is not generally true. Figure 10
shows the time series for one of the highest volume flows in
trace l06t01. While the regular periodic component can easily
be identified, we also see significant variations. We know that
the network had three major events (fibre cuts, power outages)
during the measurement period. Such events clearly affect the
observed monitoring traffic. It is also interesting to see that the
average polling intensity seems to have changed after almost
five days.

To our surprise, we found that many notification flows
also carry periodic traffic, however typically at a much lower
rate. Devices seem to regularly report device states (e.g.,
fan failures, printing engine problems) or unusual protocol

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

987654321

m
es

sa
ge

s
pe

r
m

in
ut

e

time in days (relative to the start of the trace)

traffic intensity (cg/cr flow in l06t01)

l06t01 cg/cr flow m0-a5

Fig. 10. CG/CR flow traffic intensity over time l06t01

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

987654321

m
es

sa
ge

s
pe

r
m

in
ut

e

time in days (relative to the start of the trace)

traffic intensity (no/nr flow in l06t01)

l06t01 no/nr flow a151-m1

Fig. 11. NO/NR flow traffic intensity over time l06t01

states (e.g., PIM routing losses) that are not fixed. Figure 11
shows the traffic intensity of a notification flow which at the
beginning has a constant flow of one notification per minute.
After three days, however, significantly more notifications are
generated and then the flow terminates. Unfortunately, we do
not have access to the notification details. All we know is that
this device is an optical fibre system and that there were fibre
cuts during the data collection period.

We further investigated how typical manager–agent inter-
actions look like. Figure 12 shows 30 seconds of GetNext
interactions for a specific CR in trace l02t01. The figure shows
that the manager retrieves approximately 170 MIB objects;
these objects are lexicographically ordered and represented
vertically as numbers 0 to 170. The first observation is
that a significant performance gain, in bandwidth as well as
response time, would be possible if this GetNext sequence
would be changed into a GetBulk sequence. The second
observation is that the same objects are retrieved repeatedly.
Further investigation has shown that many of these objects are
relatively static (such as ifDescription); further perfor-
mance improvements are therefore possible if more intelligent
management tools would be used that cache such variables,
instead of retrieving them over and over again.

330

 0

 20

 40

 60

 80

 100

 120

 140

 160

12:33:05

12:33:10

12:33:15

12:33:20

12:33:25

12:33:30

12:33:35

packet # ->

Fig. 12. Typical GetNext sequence at l02t01

G. Data Types

Table VI shows the data types seen in response messages.
The column exc lists the number of exceptions that have been
seen. Response messages that include a null type are SNMP
error messages (actually all noSuchName errors). However,
there are also some traces where error responses contain data,
especially in trace l05t01. A closer inspection revealed that
this trace contains many Get requests that have values in the
varbind list and it seems these requests are simply echoed back
when an operation fails, without removing varbind values. We
also noted that almost all requests in trace l05t01 use 0 as the
request identifier — something rather dubious. We checked the
other traces and found that some SNMP stacks use random
request identifier while others simply increment the request
identifier, which means they are predictable.

trace int32 uint32 uint64 oct oid ip null exc
l01t02 48.1 3.2 - 39.6 0.3 8.6 0.2 -
l01t05 13.4 21.0 52.7 12.9 0.0 0.0 - 0.0
l02t01 22.4 45.1 18.4 11.7 2.4 0.0 0.0 0.0
l03t02 2.5 95.0 - 2.4 0.1 0.0 0.0 -
l04t01 0.7 0.5 98.8 - - - - -
l05t01 2.6 80.1 - 17.0 0.0 0.0 - -
l06t01 37.9 23.8 7.5 30.7 0.0 0.0 0.0 0.0
l12t01 48.3 51.5 0.0 0.1 0.1 0.0 0.0 -

TABLE VI

BASE DATA TYPE USAGE (IN %)

Table VI shows strong dominance of integral data types.
This is consistent with our earlier observation that message
sizes are relatively small, even when GetBulk operations
with 10 or 12 max-repetitions are used. Some traces contain
in addition a significant portion of octet string data. However,
it seems questionable why some read-only string objects (e.g.,
ifDescr) are retrieved over and over again.

H. Managed Objects

The varbind names contained in response messages can be
classified by matching them to MIB modules with contain the
object definitions. Table VII shows the percentage of varbind
names that belong to the IF-MIB (IF), the BRIDGE-MIB

(BR), the BGP4-MIB (BGP), the HOST-RESOURCES-MIB
(HR), and the ENTITY-MIB (ENT). The last two columns
aggregate names belonging to Cisco (CIS) and Centerpoint
(CP) MIB modules. Note that we removed the looping time-
filter flow from trace l03t02 since otherwise the RMON2-MIB
would have reached 93.7%.

trace IF BR BGP HR ENT CIS CP
l01t02 40.1 - 17.6 - 10.3 30.4 -
l01t05 99.7 - - 0.0 - - -
l02t01 93.5 5.5 0.0 - 0.1 0.0 -
l03t02 33.3 65.1 0.0 0.0 0.0 0.1 -
l04t01 99.7 - - - - - -
l05t01 80.1 - - - - - 17.0
l06t01 91.3 0.0 0.0 - 0.0 2.0 -
l12t01 50.4 0.0 - 47.7 - - -

TABLE VII

MIB MODULE USAGE IN RESPONSE MESSAGES (IN %)

The IF-MIB clearly dominates in our traces. Still, the
traces show differences how the IF-MIB is used. The mes-
sages collected in trace l01t05, for example, retrieve regularly
all 64-bit counters plus the interface names, their types,
alias and discontinuity time. In trace l06t01, 32-bit counters
dominate and the discontinuity indicator is ignored. Trace
l02t01 shows that all columns of the ifTable and the
ifXTable are retrieved regularly (including deprecated and
index columns). A more precise analysis on how data retrieval
takes place and how to infer the data retrieval logic of
management applications is beyond the scope of this paper.

I. Notifications

Five traces contain Trap or Inform messages carrying
event notifications. In trace l02t01, about 52.1% of the notifica-
tions are fan failure notifications that are repeated periodically.
Some 42.2% are interface up/down notifications while the
remaining notifications are HP and Avaya specific. In trace
l03t02, we found that all notifications were reporting printer
problems. Trace l05t01 contains only Cisco notifications re-
lated to TCP session teardowns and configuration changes.

Trace l06t01 has 26.1% BGP and 8.1% PIM routing re-
lated notifications. Some 20.0% are sensor threshold crossing
notifications while 13.2% are Cisco notifications related to
TCP session teardowns. Note, however, that 21.3% of the
notifications in this trace could not be analyzed due to a data
conversion error. Trace l12t01 contains 68.5% authentication
failure, 14.8% cold start and 16.7% shut down notifications.

VI. RELATED WORK

Several recent papers discuss the performance of SNMP
[3]–[5], [7], [8], [16]. This work is complementary as it aims at
providing empirical data about the usage of SNMP in produc-
tion network. This data is needed to select realistic scenarios
and models for evaluating SNMP performance. Perhaps some
of the papers mentioned above need to be revisited once we
better understand how SNMP is used in production networks.

A static (compile time) analysis of MIB module definitions
is reported in [17]. One conclusion was that MIB modules

331

contain a large number of integral data types. So far, our traces
also show a strong usage of integral types. The analysis in [17]
also showed that advanced router vendors prefer these days
to define 64-bit counters and it seems that 64-bit counters
are also preferred in some of the traces. The compiler back-
end described in [17] makes certain assumptions about the
behavior of SNMP implementations, for example to predict
likely encoding sizes. The work reported in this paper helps
to provide a basis for these assumptions.

The anonymization performed by the snmpdump tool is
similar to the approach described in [18] in the sense that we
deal with the anonymization of complete payloads. However,
in contrast to [18], our tool is specialized to deal with SNMP
traffic and we are not interested to regenerate frames.

VII. CONCLUSIONS AND FUTURE WORK

After more than fifteen years of operational experience with
SNMP, it is important to capture and analyze SNMP traffic
traces to learn how SNMP is used in practice. Such knowledge
is valuable for IETF protocol and MIB designers to understand
which protocol features are used (or not) in practice, equip-
ment vendors for optimizing their SNMP implementations,
tool developers to identify potential improvements in their
tools as well as researchers who compare new management
technologies to that of SNMP or analyze modifications of
SNMP.

This paper presents an approach to capture and analyze
such traces. As part of our research, we have developed
some analysis tools, which are openly available, and we
collected traces from several different locations. Our results
show that SNMP is primarily used for monitoring, and not for
configuration purposes. Despite the fact that the IETF declared
SNMPv1 and SNMPv2 as historic and SNMPv3 as standard,
we were unable to capture many SNMPv3 packets. Some
locations still rely on SNMPv1, whereas others have moved
to SNMPv2 to take advantage of the GetBulk operation to
improve performance and 64-bit data types. Although in many
cases the flow of SNMP data is relatively constant, there are
also locations where SNMP is used in some very short bursts.
We also observed that a significant portion of SNMP walks
use a single varbind element and that discontinuity objects are
seldom used to deal with counter discontinuities. We found
that the IF-MIB is by far the most popular MIB module and
that integral data types are heavily used.

This paper describes work in progress. More research is
needed to develop statistically sound traffic models and inves-
tigate, for example, errors, use of advanced protocol options,
retrieval of outdated MIB objects and the way current tools
implement table retrieval. Preliminary results indicate that
significant performance improvements are possible.

The most important step, however, is to collect and analyze
more traces. We hope this paper turns out to be useful
in convincing operators of the merits of our research and
to collect more traces. Partners within the European IST-
EMANICS Network of Excellence (NoE) already agreed to

collect additional traces; other operators will be approached
via the IRTF-NMRG.

VIII. ACKNOWLEDGMENTS

The work reported in this paper was supported in part by the
EC IST-EMANICS Network of Excellence (#26854) and the
SURFnet Gigaport Research on Networking (RoN) project.
We would like to thank SURFnet and the other network
operators who gave us the possibility to collect and analyze
traces. Thanks also to Tiago Fioreze for his support.

REFERENCES

[1] V. Cerf, “IAB Recommendations for the Development of Internet
Network Management Standards,” Network Information Center, SRI
International, RFC 1052, Apr. 1988.

[2] D. Harrington, R. Presuhn, and B. Wijnen, “An Architecture for De-
scribing Simple Network Management Protocol (SNMP) Management
Frameworks,” Enterasys Networks, BMC Software, Lucent Technolo-
gies, RFC 3411, Dec. 2002.

[3] C. Pattinson, “A study of the behaviour of the simple network man-
agement protocol,” in Proc. 12th IFIP/IEEE Workshop on Distributed
Systems: Operations and Management, Nancy, Oct. 2001.

[4] X. Du, M. Shayman, and M. Rozenblit, “Implementation and Perfor-
mance Analysis of SNMP on a TLS/TCP Base,” in Proc. 7th IFIP/IEEE
International Symposium on Integrated Network Management, Seattle,
May 2001, pp. 453–466.

[5] A. Corrente and L. Tura, “Security Performance Analysis of SNMPv3
with Respect to SNMPv2c,” in Proc. 2004 IEEE/IFIP Network Opera-
tions and Management Symposium, Seoul, Apr. 2004, pp. 729–742.

[6] T. Drevers, R. van de Meent, and A. Pras, “Prototyping Web Services
based Network Monitoring,” in Proc. 10th Open European Summer
School (EUNICE 2004) and IFIP WG 6.3 Workshop, Tampere, June
2004, pp. 135–142.

[7] A. Pras, T. Drevers, R. van de Meent, and D. Quartel, “Comparing the
Performance of SNMP and Web Services based Management,” IEEE
electronic Transactions on Network and Service Management, vol. 1,
no. 2, Nov. 2004.

[8] G. Pavlou, P. Flegkas, S. Gouveris, and A. Liotta, “On Management
Technologies and the Potential of Web Services,” IEEE Communications
Magazine, vol. 42, no. 7, pp. 58–66, July 2004.

[9] K. McCloghrie and F. Kastenholz, “The Interfaces Group MIB,” Cisco
Systems, Argon Networks, RFC 2863, June 2000.

[10] R. Raghunarayan, “Management Information Base for the Transmission
Control Protocol (TCP),” Cisco Systems, RFC 4022, Mar. 2005.

[11] J. Schönwälder, “SNMP Traffic Measurements and Trace Exchange
Formats,” International University Bremen, Internet Draft (work in
progress) <draft-irtf-nmrg-snmp-measure-01.txt>, Jan. 2007.

[12] R. Frye, D. Levi, S. Routhier, and B. Wijnen, “Coexistence between
Version 1, Version 2, and Version 3 of the Internet-standard Network
Management Framework,” Vibrant Solutions, Nortel Networks, Wind
River Systems, Lucent Technologies, RFC 3584, Aug. 2003.

[13] M. Harvan and J. Schönwälder, “Prefix- and Lexicographical-order-
preserving IP Address Anonymization,” in 10th IEEE/IFIP Network
Operations and Management Symposium, Apr. 2006, pp. 519–526.

[14] S. Waldbusser, “Remote Network Monitoring Management Information
Base Version 2,” RFC 4502, May 2006.

[15] T. Oetiker, “MRTG - Multi Router Traffic Grapher,” in Proc. 12th
Conference on Large Installation System Administration (LISA XII),
Boston, Dec. 1998.

[16] V. Marinov and J. Schönwälder, “Performance Analysis of SNMP over
SSH,” in Proc. DSOM 2006. Dublin: Springer LNCS 4269, Oct. 2006,
pp. 25–36.

[17] J. Schönwälder, “Characterization of SNMP MIB Modules,” in Proc.
9th IFIP/IEEE International Symposium on Integrated Network Man-
agement. IEEE, May 2005, pp. 615–628.

[18] R. Pang and V. Paxson, “A High-level Programming Environment for
Packet Trace Anonymization and Transformation,” in Proceedings of
the ACM SIGCOMM 2003 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications. ACM,
2003.

332

