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ABSTRACT

This paper explores the limits of audio ranging on mobile devices
in the context of a keystroke snooping scenario. Acoustic keystroke
snooping is challenging because it requires distinguishing and
labeling sounds generated by tens of keys in very close proximity.
Existing work on acoustic keystroke recognition relies on training
with labeled data, linguistic context, or multiple phones placed
around a keyboard — requirements that limit usefulness in an
adversarial context.

In this work, we show that mobile audio hardware advances
can be exploited to discriminate mm-level position differences
and that this makes it feasible to locate the origin of keystrokes
from only a single phone behind the keyboard. The technique
clusters keystrokes using time-difference of arrival measurements
as well as acoustic features to identify multiple strokes of the
same key. It then computes the origin of these sounds precise
enough to identify and label each key. By locating keystrokes this
technique avoids the need for labeled training data or linguistic
context. Experiments with three types of keyboards and off-
the-shelf smartphones demonstrate scenarios where our system
can recover 94% of keystrokes, which to our knowledge, is the
first single-device technique that enables acoustic snooping of
passwords.

Categories and Subject Descriptors

K.6.5 [Security and Protection]: Unauthorized access

Keywords

Keystroke Snooping, Time Difference of Arrival (TDoA), Audio
Ranging, Single Phone

1. INTRODUCTION
Mobile device hardware is increasingly supporting high def-

inition audio capabilities targeted at audiophiles. In particular,
this includes microphone arrays for stereo recording and noise
cancellation as well as 4x improvement in audio sampling rates.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

MobiCom’15, September 7-11, 2015, Paris, France.

c© 2015 ACM. ISBN 978-1-4503-3543-0/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790122.

 !"#$#$%&#$'($)#'*+,&'!"#$#$%
-,. /#%0

-,
.

/
#%
0

1
(
2,
%
$
#'
#,
$
&3
22
4
!"
2*

 !"#!"$!%$&'($)*+
,-./0%1-23&0!4
51-%1.6&"723&0!4

89/$!%$&'($):+
,-./0%1-23&0!4
;/'%12<9.6!

54!&.,!6
,-./0%1-23&0!4

89/&6#$!%$&'($)=+
,-./0%1-23&0!4

>31?$)@+
,-./0%1-23&0!4

,0.6.A$!%$&'($)B+
,-./0%1-23&0!4

C0<D1<9.6!$)EF+
G13"&%1.623&0!4

H.6%!I%2J"!!

H.6%!I%23&0!4

Figure 1: Design Space: comparing to related work.

For example, the Samsung Galaxy Note 3 includes three micro-
phones and its audio chips are capable of 192kHz playback and
recording. One can debate whether all these advances actually lead
to improvements in music playback and audio recording quality
that are perceivable by the human auditory system and not all
these hardware capabilities are currently made available by drivers
and operating system software. Such advances, however, could
have a significant impact on the accuracy of audio ranging and
localization.

Audio localization has been explored with mobile devices to
achieve centimeter level accuracy in various applications, such as
phone-to-phone ranging and 3D localization [1, 2], mobile motion
games [3], and driver phone use detection [4]. Will advanced
mobile audio hardware capabilities lead to order of magnitude
improvements and let us achieve mm-level accuracy or do the
limiting factors lie in multipath distortions and the accuracy of
signal detection techniques?

We explore these questions in the context of keystroke snooping,
a particularly challenging localization technique and one with
important security implications. To eavesdrop on keystrokes, an
adversary can inconspicuously leave a phone near a keyboard of
the target user. Or, an adversary can co-opt the target users
own phone, for example by adding malware into an app with
microphone access. Keystroke snooping is particularly challenging
because of the large number of different keys to distinguish and
the small cm-level separation between individual keys. It has
important security implications because using keyboard is still an
important way of entering sensitive information into computing
systems and crucially, passwords remain the primary means to
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authenticate with remote systems, including financial- and health-
related services. Besides these security and privacy breaches
there is also potential to create improved input methods for mo-
bile devices that do not directly require typing on the confined
mobile screens. Additionally, the proposed solution also has the
capacity to facilitate other applications that benefit from fine-
grained localization, such as extending interactions with the touch
screen of a mobile device to its adjacent surfaces for controlling
music players or video games; tracking speakers in multiparty
conversations in a meeting room; and locating trapped disaster
victims. The proposed audio ranging solution leveraging geometry
based information (i.e., time difference of arrival) and unique
acoustic characteristics extracted from potential sound sources
could deal with many limitations of mobile devices, such as only
two stereo recording microphones, limited sampling rate, and
restrained distance between two microphones.

Prior work. Existing research has already recognized the
significance of this question and found limited potential to recover
keystrokes from audio recordings. In particular, Asonov et al. [5]
conducted an initial study that observed that each key produces
unique acoustic emanations and designed a supervised learning
method to recognize individual keys. UbiK [6] improves accuracy
for keystrokes on solid surfaces (i.e., a paper keyboard on a
table) fingerprinting acoustic differences due to multi-path fading.
These approaches require extensive labeled training data from the
exact keyboard setting to learn the acoustic profiles for each key,
which can be challenging to obtain in adversarial scenarios. Later,
Zhuang et al. [7] propose to add language constraints to improve
recognition accuracy. Berger et al. [8] further trades off training
requirements for accuracy through a dictionary-based approach
that leverages the similarity of acoustic signals from nearby keys.
Such methods, however, improve keystroke recognition only for
natural language and fail for strong passwords composed of random
characters. Zhu et al. [9] proposes to utilize microphones on
three phones to identify keystrokes of a nearby keyboard based on
time difference of arrival (TDoA) measurements. The requirements
of three collaborating phones and the achieved moderate accuracy
make their approach less feasible for real attack scenarios. There is
also a related line of work that has explored vibrations sensing of
keystrokes using accelerometers such as (e.g., [10]). The accuracy
of such approaches generally remains lower than that of audio
sensing. Figure 1 illustrates the design space and the results offered
by existing work. Due to the limited accuracy, the use of multiple
recording devices, the need for linguistic context, or training with
extensive labeled data, none of these techniques can easily be
applied to snoop on passwords.

Approach. This paper demonstrates that the mobile audio
hardware advances can indeed be exploited for high accuracy mm-
level ranging and that practical scenarios exist where it is possible
to localize keystroke sounds with an accuracy sufficient to snoop
on passwords. It explores a novel point in the keystroke recognition
design space by showing the feasibility of keystroke snooping that
is (i) training-free, (ii) context-free, (iii) based on single phone.
The approach is training-free because it does not require a-priori
labeled training data, which is often difficult to obtain for an
adversary. Comparing to the training-based keystroke recovering
solutions, e.g., using labeled keystroke data to train a neural
network to recognize subsequent keystrokes [5], our work develops
unsupervised algorithms without any labeled data to cluster a set of
keystrokes. The approach is context-free because it does not require
on any linguistic models such as letter, letter sequence (n-gram),
or word likelihoods and can therefore be applied to random key
sequences such as passwords. And the approach is based on a single

phone because it does not require multiple phones or recording
devices to be placed around the keyboard; it only relies on two
microphones in a single phone.

Our work achieves this by discriminating keystrokes based on
the time-difference-of-arrival (TDoA) of the keystroke sound at
the two phone microphones and by refining such estimates us-
ing acoustic differences in the sound emitted by each key. For
certain placements of the phone, relative to the keyboard, there
exist measurable differences in TDoA value between most keys.
Different from general acoustic TDoA localization approaches
which require at least three distributed microphones, our work
only uses two microphones with highly constrained distances
on a single phone, which produce a limited range of single-
dimensional TDoA measurements for locating the keystroke. While
a single TDoA measurement will not allow determining a unique
2D location for the keystroke, it does restrict the possible locations
for this keystroke to a hyperbola. Given multiple keystrokes of
the same key and information about the keyboard geometry, this
hyperbola can be placed with mm-level precision so that it uniquely
identifies a key. To obtain multiple audio samples of the same key,
even under random typing, the approach clusters keystrokes based
on the observed TDoA and mel-frequency cepstral coefficients
(MFCCs), which capture (slightly) different acoustic signatures
of each keystroke such as those due to physical imperfections
across keys. Since the acoustic signatures are only used for
improving clustering, there is no need for training of acoustic
signatures. Further, since the final TDoA values describe relative
locations, they can be directly used to label keystrokes if the
keyboard geometry and phone position is known (e.g., keyboard
with phone/tablet stand) or if it can be inferred (i.e., enough
keystrokes can be observed to derive the key layout). The labeling
process only requires finding a best match between the measured
TDoA and the expected TDoA for each key, given the geometry
and placement.

The contributions of our work are summarized as follows:

• We demonstrate that a single off-the-shelf phone can recover
keystrokes by exploiting mm-level acoustic ranging and
fine-grained acoustic features. We develop a training-free
approach on a smartphone that does not require a linguistic
model, allowing it to recover random keystrokes (e.g., ran-
dom passwords).

• We exploit recent mobile audio hardware advances to stretch
the limits towards mm-level audio localization accuracy.

• We develop a keystroke snooping framework, which lever-
ages hardware advances (i.e., stereo recording with high
sampling rate) of off-the-shelf mobile devices to narrow
down possible positions of a keystroke. The framework
further exploits the geometry-based information (i.e., TDoA)
and unique acoustic signatures of keystrokes to ping-point
their positions on a keyboard.

• We conduct extensive experiments with three kinds of key-
boards to show that an off-the-shelf phone with 48kHz
microphone sampling rate can accurately identify a set of
keystrokes with over 85% accuracy. With higher sampling
rate (e.g., 192kHz), the accuracy could be increased to over
94% accuracy. Even for a single keystroke input, our system
can achieve 97% accuracy of identifying keystrokes in the
top-3 candidate keys with 48kHz sampling rate. We believe
that these are the first results to raise serious concerns about
acoustic password snooping.
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(b) Theoretical key groups and correspond-
ing half hyperbolas.

Figure 2: Illustration of the geometrical TDoA on a single-

phone and theoretical key groups.

2. ATTACK MODEL & LIMITS OF TDOA

WITH A SINGLE PHONE
In this section, we introduce the attack scenarios and the rationale

for their selection. We also analyze key factors affecting the
accuracy of keystroke snooping when using a single phone and
define basic concepts.

2.1 Attack Model
We consider a scenario where an adversary seeks to identify each

entered character in a sequence of keystrokes from the acoustic
signal generated by depressing a key ("typing sound"). We assume
that adversaries have the access to stereo audio recordings from
a single mobile device (e.g., smartphone or tablet) that is placed
close to a victim’s keyboard. Two representative scenarios where
this is plausible are: (1) the adversary inconspicuously leaves a
prepared recording device next to the victim’s keyboard, perhaps
in a confined setting such as library seats where physical proximity
is not suspicious; (2) the adversary gains software access to the
microphones of the victim’s phone, perhaps through a malicious
app, and waits until the victim places the phone next to a keyboard.
We note that it is not uncommon for users to place their phone on
the desk while working on a laptop keyboard. Moreover, tablets and
large phones are frequently used with external Bluetooth keyboards,
where the device is placed directly behind the keyboard. We believe
that this latter scenario is particularly likely and use it as the primary
example in this paper.

We do not assume any particular structure in the typed infor-
mation. This means that adversary seeks to identify not only text
input matching a known linguistic model but also seeks to identify

random input strings such as strong passwords. We also explicitly
do not assume that the adversary has access to labeled training data
(i.e., audio recordings for each key, where it is known which key
was pressed). Such training data is specific to a particular phone-
keyboard combination, the exact placement, and the exact acoustic
environment. It would therefore be challenging to obtain in many
adversarial settings.

2.2 Basic Concepts of Single Phone TDoA Lo-
calization

The selection of the attack model is rooted in an understanding of
the fundamental limits of acoustic localization. To avoid the need
for labeled training data we disregard fingerprinting techniques and
focus on time-of-flight measurements, which are attractive given
the relatively low propagation speeds of audio signals. Since we
do not know when a particular keystroke sound is emitted, we rely
on measuring the time-difference-of-arrival (TDoA) of this sound
across the two microphones of the device.

A TDoA measurement reveals information about the direction of
the incoming sound. Determining an exact position of origin for the
sound normally requires triangulation, that is at least two direction
measurements from different locations. In the keyboard snooping
scenario, however, there is a discrete and relatively small set of
candidate positions from which the sound can emanate: the center
of each key. If the relative phone position and keyboard geometry
is known, it is therefore possible to locate the sound even with a
single TDoA measurement by finding the best match between the
direction estimate and the expected direction for each key.

This process, however, requires mm-level accuracy, which is an
order of magnitude beyond the cm-level accuracies that have been
previously demonstrated in audio localization. Operating at this
level of accuracy involves estimating precise hyberbolas instead
of coarse direction estimates. Consider our primary scenario as
illustrated in Figure 2(a). Let’s denote the distance between two
microphones as d, and the distance between the sound source (i.e.,
the keystroke made on the keyboard) to that of two microphones as
r1 and r2, respectively. Suppose ∆t is the TDoA measured at two
microphones, the derived distance difference ∆r from the pressed
key to two microphones can be represented as:

∆r = r1− r2 = ∆t · s0, (1)

where s0 is the velocity of sound. All possible locations that satisfy
∆r lie on a hyperbola as illustrated by the red curve in Figure 2(a).
This hyperbola typically crosses several keys on the keyboard as
indicated by the darker keys in the figure (and one key may also be
crossed by more than one hyperbola). Narrowing this to a single
key therefore involves determining the closest key center to this
hyperbola. As can be seen in the figure, shifting the hyperbola by
only a few mm would bring it closer to the center of a different
key. For this reason, the process require mm-level precision and
accuracy.

2.3 Factors Affecting Accuracy
The achievable accuracy and precision with TDoA measure-

ments depend on several key factors.
Sampling Rate. When recording the keystroke sound, the sound

is digitized by an Analog to Digital Converter (ADC) with a fixed
sampling rate before it becomes accessible to applications. This
therefore limits the resolution with which the time difference of
arrival can be measured by application software. While signal
processing techniques exist that promise sub-sample accuracy, this
time resolution serves as a useful guideline.
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Figure 3: Good phone locations for keystroke snooping.

Warmer color indicates locations from which a higher range

of TDOA values can be observed over different keys.

Current state-of-the-art audio hardware on mobile devices sup-
ports up to 192kHz sampling rate but drivers and or operating
system usually still limit this to 48kHz. At a speed of sound of
343m/s, this results in a resolution for the distance difference ∆r of
≈ 1.8mm and ≈ 7.15mm for the two sampling rates, respectively.

Distance between Two Mics. The number of distinguishable
hyberbolas also depends on the range of possible TDoA mea-
surements. The range is bounded by the distance between two
microphones on the phone. It can be calculated based on the
triangle inequality theorem. As can be inferred from Figure 2(a),
the range of ∆r is [−d,+d]. The TDoA value ∆t then falls into
the range of [−d/s0,+d/s0], which corresponds to the number
of distinguishable hyberbolas N at the sample level as expressed
below:

N = ⌈
2d · fs
s0

⌉. (2)

For example, the distance between the two microphones of the
Samsung Galaxy Note 3 smartphone is d = 15.3cm. With a
sampling rate fs = 48kHz, this yields 42 hyperbolas that can be
discriminated at the sample level.

Placement of the Mobile Device. In practice, only a subset of
these N hyperbolas may actually cross the keyboard and be useful
for distinguishing keystrokes. The size of this subset depends on
the size of the keyboard and the relative location of the recording
device. Figure 3 shows the size of this subset depending on
the phone position around the keyboard, for two different phone
orientations. Warm colors indicate good phone positions relative
to the keyboard. Horizontal phone orientation means that a line
connecting the two microphones would be parallel to the long
side of the keyboard (as also the case in Figure 2(a)). Vertical
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orientation means that the phone is rotated 90 degrees to the left,
so that the line is parallel to the short side of the keyboard. This
analysis assumes a sampling rate of 48kHz, a keyboard size of
28cm × 13cm (as for the Apple wireless keyboard MC184LL/A)
and microphone distance of d = 15.3cm (as on the Samsung
Galaxy Note 3). The results show that a vertically placed phone
on the side needs to be in very close proximity but a horizontally
placed phone behind the keyboard offers a bit more flexibility. Such
placements are consistent, however, with the attack scenarios that
we have identified earlier. In our primary scenario (e.g., a Samsung
Galaxy Note 3 is placed behind an apple keyboard as illustrated
in Figure 2(a)), in particular, this leaves us with 31 hyperbolas
crossing the 26 alphabetic keys.

2.4 Theoretical TDoA and Key Groups
Given known keyboard geometry and phone placement, keystroke

snooping can be simplified as a matching process between mea-
sured TDoA values and expected TDoA values for each key. By
solving for ∆t in Equation (1), it is possible to compute an expected
TDoA value for each key, which we also refer to as the theoretical
TDoA value for a key.

In addition to the limiting measurement factors discussed earlier,
measurements will be affected by noise. This further limits the
distinguishability of keys and leads us to introduce the notion of
theoretical key groups, which are groups of keys whose expected
TDoA values are so close that we would expect them to be difficult
to distinguish. For instance, the 26 alphabetic keys in our primary
scenario are grouped into 13 theoretical key groups, each illustrated
through a separate color in Figure 2(b).

These key groups are established as follows. We first sort the
keys based on their theoretical TDoAs. We then link any pair of
keys whose difference in theoretical TDoA is less than a threshold
τ . Based on our experiments with different keyboards and sampling
rates, we empirically determine τ as 1

480
ms (which corresponds

to 1, 2, 4 TDoA samples corresponding to 48kHz, 96kHz and
192kHz). Each connected set of keys is then considered as one
theoretical key group, as illustrated in Figure 4.

We will explain how to use these concepts and how to achieve
accuracy below the level of a theoretical key group next.

3. SYSTEM OVERVIEW
To accurately recover keystrokes using a single mobile device,

we design an approach that leverages TDoA measurements and
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Figure 5: System architecture: single-keystroke based

processing.

fine-grained acoustic signatures of keystrokes. In this section, we
discuss the challenges and architecture of our system design.

3.1 Challenges
To achieve the goal of accurately recognizing keystrokes by

utilizing a single mobile device without relying on training and
contextual information, the design and implementation of our
system involve a number of challenges:

Sensing with Single Mobile Device. Using one single mobile
device to recover keystrokes is challenging as most commercial mo-
bile devices only support stereo recording with two microphones,
while general acoustic TDoA localization approaches require at
least three microphones to create multiple half-hyperbolas to locate
a sound source. Moreover, the distance between two microphones
in a phone is highly constrained, which limits the range of pos-
sible TDoA values. Although some mobile devices have three
microphones, for example iPhone 5s and Samsung Galaxy Note 3,
neither Apple nor Google provides API to record 3-channel audio
with three microphones. Therefore, our system must be designed in
a way that it can accurately identify keystrokes based on the stereo
recording of two microphones.

Imperfect measurement of TDoA. Different from some recent
TDoA localization studies [1–4] that utilize customized acous-
tic signals, such as a high frequency narrow band signal, our
work locates more challenging sound sources, i.e., keystrokes,
which cannot be controlled and contain rich frequency components.
Meanwhile, the range of possible TDoA values is limited by
the distance between two microphones and is affected by the
placement of the mobile device. Also, the sampling frequency
limits the resolution with which the time difference of arrival can be
measured. Moreover, the measured TDoA may also be affected by
multipath effects and environmental noises. These factors result in
imperfect measurements of TDoA which make it hard to uniquely
locate each keystroke.

Training-free Keystroke Recognition. Without the cooperation
of the targeted user, developing training-free keystroke recognition
is critical when performing keystroke snooping, especially when an
adversary seeks to derive the user’s sensitive typing information.
Our system aims to recognize keystrokes without training efforts
that involve target users (e.g., requiring the target user to type each
key repeatedly to label the data beforehand).

Recovering Keystrokes without Linguistic Model. Users may
type not only sentences following English language constraints
(e.g., emails and articles), but also random letters or numbers
(e.g., passwords and credit card numbers). Our developed method
should have the ability to recover sensitive information consisting
of random combination of letters and numbers. This requires our
system to recognize keystrokes without relying on linguistic models
or dictionaries.

3.2 System Architecture
The basic idea of our system is to perform keystroke snooping

leveraging the dual-microphone on a single smartphone through
studying the fine-grained acoustic signatures inherent from key
typing sounds. In particular, we consider two processing approach-
es, namely Single-keystroke Based Processing and Set-keystroke

Based Processing. These two approaches seek to cover various
practical scenarios that have different requirements on the accuracy
and response time. The Single-keystroke Based Processing can
be applied to even a small set of recovered keystrokes, since
it can process each keystroke individually. The Set-keystroke

Based Processing exploits a larger set of keystroke samples to
improve the recognition accuracy. It reduces the effect of imperfect
measurement of TDoA by combining multiple keystroke samples
from the same key. It can identify strokes of the same key by
extracting the acoustic cepstral features of keystrokes as well as
by using coarse TDoA matching.

In our proposed system, we assume the relative position of the
mobile device to the keyboard is known. This information can
be obtained if an adversary intentionally places the mobile device
close to the keyboard, or when the external keyboard is attached to
the mobile device (e.g., Microsoft Surface). There are also other
means to obtain such information. For example, the adversary may
take a picture of the setting of the keyboard and mobile device. The
adversary may also estimate the setting using a bunch of collected
keystrokes of multiple keys. It is important to note that such
process does not need the participation of the target user as in the
traditional training phase. Additionally, we discuss how to derive
such information when the relative position the mobile device is
unknown in Section 5.3.

Single-keystroke Based Processing. A quick way to recover
each individual keystroke is to leverage the theoretical calculated
TDoAs based on the relative position between the mobile device
and keyboard. The Single-keystroke Based Processing method
compares the measured TDoA derived from the input keystroke
to the computed theoretical values and determine which key has
been pressed. The main steps of this method are depicted in
Figure 5 and described as follows: For each captured keystroke
sound, this method first perform Keystroke Audio Detection &

Segmentation to extract the audio signals corresponding to the press
and release phases of the keystroke. It then derives the TDoA based
on the extracted keystroke acoustic signal using signal processing
techniques. Next, it determines which key has been pressed by
finding the top-w keys that have the theoretical TDoAs closest to
that of the input keystroke (i.e., Finding the Nearest Theoretical

TDoA).
Set-keystroke Based Processing. This method aims to reduce

the impact of the imperfect TDoA measurement by examining a
set of input keystrokes and study the statistics of the fine-grained
acoustic features in addition to pure TDoA computation. Figure 6
illustrates the steps of the Set-keystroke Processing approach. This
method first takes as input a set of different keystroke sounds
recorded by a nearby mobile device. It then extracts the audio
signals corresponding to the keystrokes and derives the TDoAs.
Next, it performs Pre-grouping of Keystrokes Using TDoA to
categorize the input keystrokes to multiple key groups based on the
pre-calculated theoretical key groups in Section 2. To overcome
the limited accuracy, this method then extracts the cepstral features
(e.g., Mel Frequency Cepstral Coefficients (MFCCs)) from the
keystroke sounds through the Keystroke Acoustic Features (MFCC-

s) Extraction component. The MFCC features are utilized to further
cluster the keystrokes in the same key group so that each cluster
only contains strokes of the same key. This allows calculation
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Figure 6: System architecture: set-keystroke based processing.

of mean TDoA values over several strokes of the key, which
helps reduce measurement noise. Finally, the system performs key
labeling of each cluster to recover each keystroke by examining the
distance difference between the mean TDoA of each cluster to that
of the theoretical TDoAs. We discuss the details of this approach in
Section 4.

4. SET-KEYSTROKE BASED PROCESSING

4.1 Pre-grouping Keystrokes Into Theoretical
Key Groups

After a set of keystrokes are collected, the Set-keystroke Based
Processing approach first obtains the TDoA of each keystroke based
on the techniques described in Section 5. It then utilizes these
derived TDoA values to assign each keystroke into a theoretical key
group based on the discussion in Section 2. We denote each key as
Kn

i , where i is the key ID and n is the corresponding theoretical
key group ID (e.g., K1

1 is the key “Q” and K12
19 is the key “L”). We

further denote the theoretical TDoAs of keys with the theoretical
key group ID n as Dn = {∆tni }, where i is the key ID and ∆tni
is the theoretical TDoA of the key Kn

i . We then put each input
keystroke into one of the theoretical key group by comparing its
measured TDoA ∆t with the theoretical TDoAs ∆tni . The input
keystroke will be assigned to the theoretical key group n, if the
differential TDoA between ∆t and ∆tni is the minimum as shown
below:

G = argmin
n

|∆t− ∀∆tni ∈ Dn|. (3)

At the end, each input keystroke is assigned with a theoretical key
group ID.

4.2 MFCC Based K-means Clustering
We next explore the acoustic features of keystroke sound to

further separate the keystrokes within the same key group.
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Figure 7: Pearson Correlation between MFCC features of three

keys within a group: same key shows higher correlation, while

different keys present lower correlation.

MFCC Feature Extraction. In our experiments, we find
that the Mel-Frequency Cepstral Coefficients (MFCCs) [11, 12]
of keystroke sounds capture acoustic signatures of different keys
within the same theoretical key group. MFCC utilizes the magni-
tude of the Fourier Transform of the time-domain speech frames
to analyze acoustic signals. The rationale of using MFCC to
distinguish different keystrokes in the same theoretical key group is
that physical uniqueness of each key component results in slightly
different keystroke sounds for different keys. In addition, the
keystroke sounds of keys at different locations experience different
multipath effects. In particular, we extract the MFCC features
from the entire duration of a keystroke sound. The number of
filterbank channels is set to 32, and 16th-order cepstral coefficients
are computed in each 10ms Hanning window, shifting 2.5ms
each time. To exclude the frequency range of ambient noise, we
only consider acoustic signal from 400Hz to 14kHz for MFCC
extraction.

To illustrate the effectiveness of using the MFCC features to
distinguish different keystrokes within a key group, we repeatedly
type “E”,“D”, and “X” keys (which are within the same theoretical
key group) 10 times respectively and examine the correlation
between the MFCC features extracted from the keystrokes. Figure 7
shows the Pearson correlation coefficient [13] between any two
MFCC features derived from those keystrokes. We observe that
the MFCC features of the same key present higher correlation than
that of different keys. It thus appears promising to use MFCC
features to distinguish keystrokes within a group. We note only one
channel of the keystroke sound is used to extract MFCC features. If
dual-microphones have different characteristics, we could combine
parallel features to improve the clustering performance [14].

In-group K-means based Clustering. To reduce the effect
of the imperfect measurement of TDoA and minimize the impact
of environmental noise, we further cluster keystrokes within a
group into different clusters based on the MFCC features (if the
corresponding theoretical key group contains multiple keys). In
particular, we use the cityblock distance to measure the distance
between MFCC features of different keystrokes using K-means
clustering [15]. In order to obtain the optimal clustering results,
we minimize the variances of the MFCC features of keystrokes in
each cluster by satisfying:

argmin
C

K
∑

k=1

Nk
∑

n=1

|mk
i − µk|

2, (4)
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where Nk represents the number of keystrokes in the kth cluster,
mk

n denotes the MFCC features of the nth keystroke in the kth

cluster, and µk is the mean value of the MFCC features in the kth

cluster.

4.3 Cluster Based Letter Labeling
Finally we label each cluster. We leverage the statistical in-

formation of TDoAs in each cluster to determine which key the
cluster belongs to. In practice, the TDoA measured from multiple
keystrokes for the same key may have slightly different values as
the touch point may change slightly each time. In our experiments,
we find that keystroke sounds emitted from different keys within
group have different distributions of TDoAs which result in slightly
different mean TDoA. Moreover, the mean TDoA of the keystroke
sounds emitted by the same key is very close to the corresponding
theoretical TDoA. Thus, we compare the mean values of the
measured TDoAs of each cluster to the theoretical TDoAs. The
keystrokes in the cluster will be labeled as the key whose theoretical
TDoA has the minimum distance to the mean TDoA of that cluster.

5. IMPLEMENTATION

5.1 Keystroke Segmentation
A typical keystroke acoustic signal can be divided into three

parts [5, 7]: touch peak, hit peak and release peak. These
peaks correspond to touch, hit and release the key respectively.
Figure 8 shows an example of these three peaks from two different
keyboards (i.e., Apple wireless keyboard and Razer Black Widow
keyboard).

In order to extract the acoustic sound of a keystroke, we first
examine the energy levels of the acoustic signal to determine the
starting point of the keystroke sound [6, 7, 9]. Particularly, we
calculate the energy levels of a keystroke sound by accumulating
the square of the signal amplitude in a sliding time window as
shown below:

A(t) =

t+W
∑

n=t

r2(n), (5)

where W is the length of the time window and r(n) is the amplitude
of the sound signal within the time window. We empirically
determine the length of the sliding window as W = 2ms (i.e., 96
samples with 48kHz sampling rate). Figure 8 illustrates the energy
levels of the keystroke signals from two keyboards.

We identify the starting point of the keystroke sound when the
energy level exceeds a threshold. An empirical threshold of 0.05
is used in our work to determine the starting point ps. We find the
length of keystrokes is typically about 100 milliseconds. We thus
extract the keystroke sound as the acoustic signal between [ps −
5ms, ps + 100ms]. Note that our system uses the entire keystroke
sound to generate MFCC features, whereas the system only uses
about first 20ms segment roughly corresponding to touch peak and
hit peak to calculate the TDoA as these two peaks result in more
accurate TDoA estimation than using the whole keystroke sound.

5.2 TDoA Derivation
Once we have input keystroke segment, we could find out

how many delayed samples between two digital audio signals
recorded at two microphones at a mobile device to obtain the time
delay between two microphones when receiving keystroke sound.
Suppose the acoustic signal of a keystroke is recorded at the two
microphones as r1(n) and r2(n) with length L respectively, where
n = 1, . . . , L. We use cross-correlation between the two recorded
signals to derive the TDoA. Cross-correlation is a standard signal
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Figure 8: Keystroke acoustic signals emitted from two

keyboards and corresponding short-time energy, keyboard-1

(Apple wireless keyboard) and keyboard-2 (Razer Blackwidow

keyboard).

processing technique to measure the similarity between two signals
and is calculated as:

cc(d) =

∑

n
[(r1(n)− µr1) · (r2(n− d)− µr2)]

√
∑

n
(r1(n)− µr1)

2 ·
∑

n
(r2(n− d)− µr2)

2
, (6)

where µr1 and µr2 are the means of the corresponding signals.
cc(d) provides the similarity between r1(n) and shifted (delayed)
copies of r2(n − d). If the Equation 6 is computed for all delays
d = 0, 1, . . . , L − 1 then it results in a cross correlation series of
the original r1(n) or r2(n). Then, the TDoA ∆t (i.e., time delay)
between r1(n) and r2(n) can be obtained as:

∆t =
1

fs
· (argmax

d

cc(d)− L). (7)

5.3 Relative Position Estimation
The relative position of the phone to the keyboard is needed in

our method to calculate the ground truth of TDoA (i.e., theoretical
TDoA values). This information could be obtained if the adversary
intentionally places the phone at a pre-identified location or if the
phone/tablet is used in a tablet stand. If the adversary plants a
malware into the victim’s smartphone, such information could be
inferred based on the keyboard layout and the measured TDoA of
keystrokes.

Keyboard layout can be obtained offline as long as the keyboard
model is known. The keyboard model could be detected by cap-
turing Bluetooth identifiers or through manual visual identification.
With the keyboard layout, we then can define the coordinates of
keys. For the sake of simplicity, we assume there are m keys Ki

with known coordinate or location loci, where i = 1, 2, ...,m.
Given the measured TDoA of a collection of keystrokes, we have
the TDoA value of each key to that of two microphones with certain
measurement error. We assume the measured TODA of each key to
that of two microphones is ∆̂ti, and the sorted one is ∆̂tj , with
j = 1, 2, ...,m.

With the above information, we can estimate the locations of two
microphones M1 and M2, with the constraint ‖M1 − M2‖ = d,
where d is the known distance between two microphones. With the
arbitrary locations of microphones and known location of the key
loci, we can calculate the theoretical TDoA of each key to that of
two microphones as ∆ti, with the sorted one ∆tj . The optimal
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location of the two microphones thus can be estimated as follow:

argmin
M1,M2

j=m
∑

j=1

‖∆̂tj −∆tj‖, (8)

where ‖∆̂tj −∆tj‖ represents squared distance between ∆̂tj and
∆tj .

Note that we may not get the measured TDoA of each key in
practice. Even so we can calculate the location of two microphones
as long as we obtain several measured TDoA values. Moreover,
the measured TDoA of different keystrokes for the same key may
be different slightly. Empirical study shows that the difference is
small (i.e., about one or two samples). We could then group similar
TDoA values together and use the averaged value to represent the
TDoA of one key.

6. SYSTEM EVALUATION
In this section, we first present the experimental methodology,

and then evaluate the performance of both set-keystroke based and
single-keystroke based approaches. We also discuss the impact of
multipath propagation on the keystroke snooping.

6.1 Experimental Methodology

6.1.1 Keyboard & Phone

Keyboard. Although we do not study the sound intensity
level of each key, we evaluate our system with three different
kinds of keyboards (i.e., an Apple wireless keyboard MC184LL/A,
a Microsoft surface keyboard and a mechanical keyboard Razer
Black Widow Ultimate) that produce different keystroke sound
intensity levels. In particular, the keystroke sound from the
mechanical keyboard is much louder than that from the Apple
keyboard. And the keystroke sound from the Microsoft surface
keyboard is the weakest. These keyboards have different designs
and dimensions resulting in different layout of keyboards and
different characteristics of keystroke sounds. Specifically, the
Apple wireless keyboard and Microsoft surface keyboard have
comparable dimension (i.e., ∼ 28mm × 13mm), whereas Razer
keyboard is much larger (i.e., ∼ 47mm × 17mm). Moreover,
the depth of key caps on the Apple and Microsoft keyboards (i.e.,
∼ 2mm) is much smaller than that of the Razer keyboard (i.e.,
∼ 6mm).

Mobile Phone. In our experiments, we utilize the Samsung
Galaxy Note 3 as the mobile device to launch attacks. The operating
system of the phone is Android 4.4.2. Although the Samsung
Galaxy Note 3 has equipped with three microphones on the top,
bottom and right bottom, the microphone on the right bottom edge
is only used for noise cancelation. We thus use the top and bottom
microphones to record the keystroke sound. The distance between
these two microphones is about 15.3cm.

6.1.2 Sampling Rate

The audio chipset on smartphone (i.e., Samsung Galaxy Note
3) is Qualcomm Snapdragon 800 MSM8974 [16], which supports
24bit nominal quantization at 192kHz sampling rate. Although
the Android 4.4.2 system only supports up to 48kHz sampling rate,
Smartphone Operating Systems are increasingly supporting higher
sampling rate, for example recently released Android 5.0 claims it
could support up to 96kHz sampling rate [17]. We thus envision
that the software restriction on the sampling rate will be loosed and
the smartphone could use 192kHz for audio recording in a near
future. In the evaluation, we study the impact of different sampling
rates on the performance of keystroke snooping. We simulate the
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Figure 9: Three typical placements of the phone to the

keyboard in the experiments.

high sampling rate (i.g., 96kHz and 192kHz) by utilizing a pair
of omni-directional microphones connected to a laptop through a
USB adapter (i.e., Diamond Tube). We place the two microphones
15.3cm apart from each other to simulate the Samsung Galaxy
Note 3 with 96kHz and 192kHz sampling rates.

6.1.3 Placement

We concentrate on the primary usage scenario, where the mobile
device is placed behind the keyboard. We further study two more
placement scenarios, where the mobile device is typically placed by
the user when using the keyboards: in front of the keyboard and left
side of the keyboard. These three placements are shown in Figure 9.

6.1.4 Data Collection

We focus on experiment on the 26 alphabet letters, but our
method also applies to the whole keyboard. Three participants are
involved to randomly type the 26 keys a-z on keyboards in typical
office environments (i.e., two laboratory rooms with ambient noise
(e.g., HVAC noise)). For each experimental setup (i.e., a specific
type of keyboard, placement, and sampling rate), 520 keystrokes
are collected. In total there are 3, 640 keystrokes from three
participants for our experimental evaluation.

6.1.5 Metrics

We use the following three metrics to evaluate the performance
of keystroke snooping:

Precision. Given Nk keystrokes of a key k, precision of

recognizing the key k is defined as Pk =
NT

k

NT
k

+MF
k

, where NT
k

is number of keystrokes correctly recognized as the key k, MF
k is

the number of keystrokes corresponding to other keys mistakenly
recognized as the key k.

Recall. Recall of the key k is defined as the percentage of the
keystrokes that are correctly recognized as the key k among all

keystrokes of the key k, which is Rk =
NT

k

Nk
.

Top-w Accuracy. Given w identified key candidates, we want
to know whether the pressed key is among these w candidates.
The top-w accuracy measures overall performance of the keystroke
recognition. Assuming the number of keys on keyboard is K, the

top-w accuracy is defined as A =
∑K

k=1
P

T,w

k∑
K
k=1

Nk
, where PT

k is the

number of the keystrokes that are correctly identified as one of
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Figure 10: Performance of set-keystroke based processing using three keyboards and off-the-shelf phone (48kHz).

the keys among the top-w candidates, Nk is the total number of
keystrokes for key k.

6.2 Performance of Set-keystroke Based Pro-
cessing

6.2.1 Overall Performance

We evaluate the overall performance of the set-keystroke based
processing with the primary attack scenario (i.e, the phone is
placed behind the keyboard). The sampling rate is set as 48kHz.
Figure 10(a) shows the overall accuracy for keystroke identification
with three different keyboards. We find that the phone can capture
different levels of keystroke sound intensity from all three key-
boards when the mobile phone is placed close to the keyboard. We
observe that all three keyboards have comparable high accuracies.
In particular, the top-1 accuracy is about 85.5%, whereas the top-
2 and top-3 accuracy increase to 94.9% and 97.6%, respectively.
These results show that our training-free and context-free approach
provides sufficient accuracy to snoop on passwords composed of
random characters.

Figure 10(b) plots the confusion matrix for the keystroke recog-
nition after combining the results from three keyboards. We find
that there are only few keystrokes are mistakenly identified as
incorrect keys. These mistakenly recognized keystrokes usually
correspond to the neighboring keys that have the same TDoA
value. For example, a few keystrokes of the key w are mistakenly
recognized as the key a which is crossed by the same hyperbola
as that of the key w, as shown in Figure 2(b). Moreover, two
neighboring keys may produce similar keystroke sounds resulting
in high similarity of MFCC features. This could also lead to a few
keystrokes mistakenly recognized as different keys.

The precision and recall of recognizing each alphabetic key
is shown in Figure 10(c). It combines the results for all three
keyboards. Overall, the average precision is about 87% and the
average recall is about 85%. This result shows that our system
could recognize each individual alphabetic letter without linguistic
model. Thus, our system could recover passwords consisting of
random combination of letters.

6.2.2 TDoA Ranging

We next study how accurately we can measure TDoAs with
the phone’s microphone capability of 192kHz sampling rate. We
compare the measured distance difference (i.e., measured TDoA
multiplies velocity of sound) of the keystroke sound to the true
distance difference of the key at the two phone microphones. We
use Apple wireless keyboard and each alphabet key is typed ten
times in the experiment. Figure 11 illustrates mean and standard
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Figure 11: Differential between measured TDoA and theoreti-

cal TDoA with 192kHz sampling rate.

deviation of error for each key. We observe that the average ranging
error is about 2mm indicating that mm-level accuracy could be
achieved at 192kHz which is the frequency supported by the
smartphone audio hardware.

6.2.3 Effect of Sampling Rate

The impact of the sampling rate on the recognition accuracy is
shown in Figure 12(a). The Microsoft surface keyboard is used
in the experiment with the sampling rates of 48kHz, 96kHz and
192kHz. From Figure 12(a), we observe that higher sampling
rate indeed improves the recognition accuracy as it provides higher
TDoA resolution to discriminate the close by keys. In particular,
the accuracy is improved from about 84.8% to 94.2% for top-
1 candidate when increases the sampling rate from 48kHz to
192kHz. However, the improvement on the top-3 candidates is
marginal since these top-3 candidates usually covers these keys
are spaced closely with the similar TDoA. The improved sampling
frequency thus has limited improvement for the top-3 candidates.

Figure 12(b) and Figure 12(c) show the precision and recall
for each key, respectively. We find higher sampling frequency
in general improves the precision and recall, especially for the
keys that hard to be distinguished at lower sampling frequency.
For example, the keys w and a are physically close and the
corresponding recalls and precisions are very low (at around 50%)
when the sampling frequency is 48kHz. They are improved to
over 90% for both w and a at the sampling frequency of 192kHz.
This is also because higher sampling rate provides better TDoA
resolution to distinguish close by keys.

6.2.4 Effect of Phone’s Placement

Next, we study the performance under different phone place-
ments. As shown in Figure 9, the phone is placed at three different
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Figure 12: Performance of set-keystroke based processing using different sampling rates.
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Figure 13: Top-w accuracy of set-keystroke processing with

different placements of the phone to the keyboard.

positions (i.e.,behind, front and left) close to the Apple wireless
keyboard. Figure 13 depicts the top-w accuracy for three phone
placements. We observe that the placements of front and behind
result in higher accuracy than that of left. This is inline with our
analysis on phone placement shown in Figure 3(a). This also shows
that the primary placement of phone-keyboard (i.e., behind) when
the users use external keyboard is more vulnerable to keystroke
snooping. In particular, top-1 2 and 3 accuracies are about 84.8%,
95%, and 95.7% for the primary placement respectively, whereas
they are about 80.1%, 95.7%, and 99% for front placement
respectively.

6.3 Performance of Single-keystroke Based Pro-
cessing

We evaluate the naive approach, the single-keystroke based
processing, by using the same dataset as we used for the set-
keystroke based processing. Figure 14 shows the overall accuracy
under different sampling rates. As expected, the naive approach has
worse performance for top-1 accuracy when comparing to the set-
keystroke based processing. This is because the single-keystroke
based processing identifies keys based on a single TDoA value
without exploiting acoustic features and statistic information of
keystrokes of the same key. In particular, the top-1 accuracy of the
single-keystroke based processing is about 60% at 48kHz. The
accuracy however increases dramatically to 89.6% for the top-2
accuracy and to 97.7% for the top-3 accuracy. This is due to that
the top-2 and top-3 candidates usually cover the close-by keys that
are hard to distinguish with one single TDoA.

In addition, the accuracy can be further improved by increasing
the sampling rate to 96kHz or 192kHz. With 192kHz, the single-
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Figure 15: Precision and recall of single-keystroke processing

with 48kHz sampling rate.

keystroke based processing can achieve 95% and 98% accuracy for
top-2 and 3 candidates respectively. Figure 15 further shows the
precision and recall of each key at 48kHz sampling rate. Since
the single-keystroke based processing is hard to distinguish two
keys with theoretical TDoAs within one sample, several keys are
mistakenly recognized as others, such as keys w,g,h,c and m shown
in Figure 15.

6.4 Multi-path Investigation
Multi-path Effects through Keys . Like many other wireless

signals, multi-path effects may change the characteristics of acous-
tic signal. For keystrokes, because the sound sources are mostly
inside each key and always below neighboring keys, it is important
to understand the impact of multipath on the TDoA estimation in
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(a) Keyboard with keycaps.
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(b) Keyboard without keycaps.

Figure 16: Experimental Setups for multi-path investigation.
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Figure 17: Differential TDoA between higher multi-path

keyboard and lower multi-path keyboard (removed keys).

our system. Particularly, we conduct following experiments: as
shown in Figure 16(a), we first use the Samsung Galaxy Note 3
to play a pre-recorded chirp sound signal via a earbud, which is
to make sure the sound comes below neighboring key caps and
thus has multipath effects, for 20 times at each target key’s position
on a regular keyboard. Next, we repeat the same experiment, but
remove the neighboring key caps as shown in Figure 16(b). Note
that the phone is placed at 90 degree angle with the keyboard and
the microphones are at a higher level than the keys on the keyboard
to better study the multipath effects through keys. We remove all
the keys between the earbud and the phone in order to simulate a
lower multi-path environment. Figure 17 shows the difference of
measured TDoA between such keyboards with different levels of
multi-path effects. The average difference is only about 1 sample,
and we thus conclude that the impact of multi-path (key caps on
keyboard) does not have much influence on the TDoA estimation.

Non Line of Sight Effects. In the experiment, we use two mobile
phones(i.e., Samsung Galaxy Note 3 and HTC Evo 4G) on two
tripod at heights 1 meter above the ground as shown in Figure18(a).
Similarly, we use the Samsung phone to record the chirp sound
played by the HTC phone for 20 times. We align two phones to
make sure the measured TDoA is close to 0 in the line-of-sight
scenario. Next, we repeat the experiment, but with a thick card
board separator placed in between the two phones to simulate the

(a) Line-of-sight(LOS) environment.

(b) Non-line-of-sight(NLOS) environ-
ment.

Figure 18: Experimental Setups for multi-path investigation.
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Figure 19: TDoA estimation for LOS and NLOS environment.

non-line-of-sight scenario as shown in Figure 18(b). Figure 19(a)
shows the overall statistics of TDoAs in both the line-of-sight(LOS)
scenario and non-line-of-sight(NLOS) scenario. Figure 19(b) is the
enlarged part within the circle in Figure 19(a). Compared to the
LOS scenario, the measured TDoAs increase dramatically in the
NLOS scenario.

7. DISCUSSION
Environmental Accuracy. There are several factors that have

an important effect on accuracy including phone placement, multi-
path, and noise. Our system has been evaluated with different phone
placements close to the keyboard. Accuracy would significantly
degrade for recordings taken at larger distances and meter-level
distances would require much larger microphone separation, for
example by using multiple cooperating devices. We believe, how-
ever, that close proximity is possible even in adversarial settings,
for example if the adversary co-opts the users own phone or if the
attack takes place in relatively confined space (e.g., airplane). As
any time-of-arrival related localization technique, our system relies
on a detectable signal arriving on the line-of-sight path. If this path
is significantly attenuated by an obstacle, our system will measure a
reflected signal which leads to errors too large to allow for recovery
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of keystrokes (as illustrated in section 6.4). Phone placement
close to the keyboard makes such an obstacle unlikely, however.
We evaluate our system in typical office environments (i.e., two
laboratory rooms with ambient noises (e.g., HVAC noise)), and our
results show little impact under such ambient noises. Although
we observe that loud noises (e.g., people talking) could impact the
detection accuracy, we believe that additional filtering or context-
based word correction could further improve the accuracy.

Security Concerns. To our knowledge, this is the first demon-
stration of acoustic keystroke recovery that raises more serious
concerns regarding password snooping. It appears practical that
malicious background apps with microphone access could recover
passwords entered from a nearby keyboard (either an associated
Bluetooth keyboard or a keyboard used for another device). If
high definition stereo audio trickles down from professional video
conference systems, to voice over ip and video calling apps, keys
typed during a call could potentially be recovered by the remote
party. It may also be possible for an adversary to inconspicuously
place a phone near a victim’s keyboard, particularly in tight settings
such as an airplane. That said, the attack is currently only
possible with select phone models that expose stereo recording
and have large microphone separation and even at future expected
sampling rates of 192kHz there is only a moderate chance of
accurately capturing a long random password on first attempt. Still,
this significantly reduces the password entropy to a small set of
candidates that can be brute-forced and the accuracies would be
sufficiently higher for the many weaker passwords in use, when
combining the keystroke recognition results with knowledge about
common password patterns.

While there is already considerable awareness of privacy risks
associated with microphones, this awareness usually extends on-
ly to spoken words and not necessarily to keystrokes. Users
might therefore type sensitive information even if they know that
recording devices are present. Overall, these results indicate that
microphone access on mobile device should be tightly controlled
and we hope to raise awareness to that the recoverable information
from mobile device audio recordings extends far beyond spoken
conversations.

Localization Implications. More generally, the results show
that low-multipath scenarios exist where mobile audio enable mm-
level ranging and localization. Such high accuracies could be
exploited for numerous applications from motion tracking [3], over
driver phone use detection [4], to user interface improvements [18].
Currently, app-level access to these audio capabilities is still very
limited; the capabilities are primarily used for specific functions
such as noise cancellation during calls or high definition audio
playback. In light of these localization results, we argue that app-
level software access to multiple microphones and high sampling
rates for localization purposes should become a higher priority.

8. RELATED WORK
There have been active research efforts in keystroke recognition

based on the acoustic emanation or vibration of the keystroke [5–
10, 19–21]. Acoustic emanation based approaches [5, 7–9] mainly
rely on the observation that each key produces unique acoustic sig-
nal when typed, whereas the vibration based methods [10, 19–21]
capture the correlation between the vibration of the keystroke and
the location of the keystroke occurred. Vibration based methods
all require training efforts to label the keystrokes and usually have
less recognition accuracy than that of acoustic emanation based
approaches.

In particular, Asonov et al. [5] observe that the sound of keystrokes
differs slightly from key to key and build a supervised learning

based approach to recognize keystrokes. This problem is then
revisited by Zhuang et al. [7] through adding the language mod-
eling to boost the English text recognition. Berger et al. [8]
propose a dictionary-based approach leveraging the observation
the keystroke sounds correlate to their physical positions on the
keyboard. UbiK [6] proposes to locate the location of keystrokes
made on solid surfaces leveraging multi-path fading with moderate
training efforts. More recently, Zhu et al. [9] proposes to utilize
microphones on three phones to identify the keystroke of nearby
keyboard. The requirements of three phones and the achieved
accuracy (i.e., 72.2%) make their approach less feasible for real
attack scenarios. Comparing to the above research efforts, our
approach is able to achieve high keystroke recognition accuracy by
using a single phone without any training.

Another body of related work is smartphone based localization
or ranging using acoustic signals [1–4, 22–29]. Beepbeep [1]
and SwordFight [3] propose phone-to-phone ranging systems that
can achieve centimeter level accuracy. Qiu et al. [2] develops a
3D continuous localization system for phone-to-phone scenarios
with about 10 cm accuracy. The above work however requires
application-level communication between two involved phones.
Yang et al. [4] introduces an acoustic relative-ranging system that
classifies phone’s position inside the car. This approach relies on
customized beep sound for acoustic signal detection. Tarzia et

al. [22] introduces a technique based on ambient sound fingerprint
achieve room-level accuracy. Constandache et al. [23] deploys
extra acoustic infrastructure inside the building for correcting users’
movement traces captured by the accelerometer and compass. In
our work, we exploit dual microphones on smartphone to locate
the keystroke with high accuracy without customized beep sound
or phone-to-phone communication.

9. CONCLUSION
In this paper, we show that microphones on a single off-the-shelf

phone can be used to discriminate mm-level position differences,
which not only creates potential security and privacy concerns
related to recovering keystrokes being typed on a nearby keyboard,
but could also benefits a broad range of applications relying on
fine-grained localization (e.g., sensing touch interaction on surfaces
around mobile devices and tracking speakers in multiparty conver-
sations in a meeting room). The implemented system does not
require any training or linguistic model, which makes it applicable
in real-world adversarial context and has the capability to recover
random typing (e.g., passwords). In particular, our system exploits
digital acoustic signals received at the microphones from an off-the-
shelf phone and leverages the integration of geometry-based TDoA
and fine-grained acoustic signatures to exceed the resolution limit
of TDoA and accurately identify keystrokes. Extensive experiments
involving three types of keyboards demonstrate that, with 48kHz
sampling rate, our proposed system can accurately identify a set of
keystrokes with over 85% accuracy. The accuracy of our system
can achieve as high as 94% with the higher sampling rate (i.e.,
192kHz). Additionally, our system can snoop even a single
keystroke input at the accuracy of 97% among the top-3 candidate
keys with 48kHz sampling rate.
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