
Snow as an Important Natural Reservoir for Runoff

and Soil Moisture in Northeast China

Wei Qi1,2,3 , Lian Feng1,2,3 , Junguo Liu1,2,3 , and Hong Yang4,5

1School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China,
2Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China, 3State

Environmental Protection Key Laboratory of Integrated SurfaceWater‐Groundwater Pollution Control, Shenzhen, China,
4Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland, 5Department of

Environmental Science, MGU, University of Basel, Basel, Switzerland

Abstract As one of the major agricultural regions in the world, water scarcity problems in Northeast

China have drawn much attention recently. Because of cold and long winter period, snow is an

important component in the hydrological system. Yet few studies have been conducted to systematically

assess its role. This study quantified the effects of snow on runoff and soil moisture in the entire region

in a 30‐year time period (1982–2011) for the first time. A water and energy budget‐based distributed

biosphere hydrological model with improved snow physics after calibration and validation is employed. A

Standardized Snow depth Index (SSdI) is also proposed to quantify snow variations. Result shows that

snow contributes 11% to runoff annually on average and 66% and 33% in April and May (main months for

crop planting). Soil moisture could decrease by at least 20% in March–May if there would be no snow, and

the major agriculture area suffers more than other regions. We also found that SSdI is indicative of

standardized soil moisture index and standardized runoff index in spring, particularly useful for supporting

water management in agriculture. These results indicate that snow performs like an important reservoir:

redistribute water resources among months. This study provides unique insights into the importance of

snow in the entire region. The results improve the awareness of the importance of snow to water resources

management and indicate that it is worth paying attention to snow in water resources management in

this region.

Plain Language Summary Because of cold and long winter period in Northeast China, snow

plays a role as natural reservoir to store water in winter and to release water to ameliorate water shortage in

spring. In addition, snow can influence agriculture through affecting soil moisture. However, studies on

the role of snow in the region are limited so far. Here, we evaluate the importance of snow as a reservoir in

entire Northeast China for the first time. We found on average snow contributes 11% to the annual

runoff and 66% and 33% in April and May (the main crop planting months). Soil moisture in the region can

decrease by at least 20% in March–May if there would be no snow, and the major agriculture area

suffers more than other regions. Therefore, snow is an important source of water resources in this region and

worth paying attention to in water resources management.

1. Introduction

Northeast China covers a total area of around 1.22 million km2 and is an important region for agricultural

production, such as soybean, maize, and rice. Due to increasing population and intensification of agricul-

tural production, the water shortage problems in the region have drawn much attention recently.

Because of cold and long winter period in Northeast China, snow plays a role as natural reservoir to store

water in winter and to release water to ameliorate water shortage in spring. In addition, snow also can influ-

ence agriculture through affecting soil moisture (Long et al., 2019). It is, hence, necessary to understand the

role of snow inNortheast China for supporting thewater resourcesmanagement in this region. However, stu-

dies on the role of snow in the region are limited so far. Zhang et al. (2010) used the Moderate‐resolution

Imaging Spectro‐radiometer (MODIS) snow cover product to investigate snow cover variations in Liaoning

Province, which is located in southern part of Northeast China and covers an area of only about 12% of the

total area of Northeast China. Ding and Gao (2015) studied the number of snow days in Northeast China
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based onmeteorological station data. Feng andChen (2016) investigated snow intensity changes inNortheast

China based on meteorological station data. Tian et al. (2018) studied snow changes in the upper Second

Songhua River basin in Northeast China, which has an area of only about 1.5% of the total area of

Northeast China. Despite the progresses, the previous studies did not analyze snow influence on runoff/soil

moisture specifically or investigated regions that only cover a small fraction of Northeast China. A systematic

study on snow contribution to runoff and influence on soil moisture covering the entire region is not

available.

In snow‐covered regions, snow plays an important role in spring to ameliorate water shortage (Dierauer

et al., 2019; Li et al., 2017; Milly et al., 2020). Staudinger et al. (2014) introduced a standardizedmelt and rain-

fall index to consider snow influence on runoff. This standardized melt and rainfall index was based on the

sum of precipitation and snowmelt water and therefore can consider snow influence. However, it is not indi-

cative of soil moisture deficit. Zhang et al. (2019) developed a standardized moisture anomaly index, which

incorporates snowmelt runoff in soil moisture anomaly analysis. Despite the progress in considering snow,

the previous studies are generally based on snowmelt water. It represents the situation that water has been

released from storage and is not indicative of how much water is stored as a solid form at present for future

use. Therefore, the snowmelt‐based index is weak in predicting snow‐induced water shortage. Thus, it is use-

ful to develop a snow related index that is indicative of snow‐related water resources changes in the coming

months of a year.

The overall objective of this study is to evaluate the contribution of snow to runoff/discharge and influence

of snow on soil moisture in Northeast China. A Standardized Snow depth Index (SSdI) is proposed to quan-

tify snow depth variations, which represents water stored at present for future potential use. The larger the

snow storage, the greater the capacity of the natural reservoir to ameliorate later water shortage. This paper

is unique in that, for the first time ever, it evaluates the importance of snow as a reservoir in entire Northeast

China.

2. Study Region and Data Sets

2.1. Northeast China

Figure 1 shows the location of Northeast China. Its western and northwestern parts are the Greater Khingan

Range, and its eastern and southeastern parts are the Lesser Khingan Mountains and Changbai Mountain.

The southern parts are the Yanshan Mountain, Bohai Sea, and Huanghai Sea. There are two large rivers in

Northeast China: Liao River and Songhua River. Liao River is located in the southern parts of Northeast

China; Songhua River is located in the northern and eastern parts and is the largest tributary of the

Heilongjiang River (the Amur River). The Heilongjiang River forms the national boundary between

Russia and China. The Songliao Plain is located in central parts of Northeast China, and the Sanjiang

Plain is located in the eastern parts. The Songliao Plain and Sanjiang Plain form the largest plain in

China, that is, Northeast China Plain. It is one of the largest chernozem regions in the world and is also

one of the major regions for soybean and maize production (Kent et al., 2017; Yang et al., 2007). Because

Northeast China is a heavily managed region for agriculture and industry, the water resources' utilization

rate is higher than 40% according to the report of the Songliao Water Conservancy Committee of the

Ministry of Water Resources of China (http://www.slwr.gov.cn/szy2011/). There are many reservoirs

along the main rivers for hydropower generation and irrigation, as well as urban uses.

2.2. Data Sets

The Asian Precipitation‐Highly Resolved Observational Data Integration Towards Evaluation of Water

Resources (APHRODITE) (Xie et al., 2007; Yatagai et al., 2012) data are used. APHRODITE is purely based

on precipitation gauge data, and it used data from both Northeast China and the Russian Far East.

APHRODITE is considered the best precipitation data and has been used in many studies (e.g., Chen

et al., 2018; Pritchard, 2019; Qi, Zhang, Fu, Sweetapple, et al., 2016). Downward shortwave and longwave

radiation, specific humidity, wind speed, and air temperature are from the China Meteorological Forcing

Dataset (CMFD) developed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences

(He et al., 2020). APHRODITE and CMFD data from 1982 to 2011 (30 years) are used in the study. CMFD

has a spatial resolution of 0.1°, and APHRODITE has a spatial resolution of 0.25°. Soil hydraulic property

data are from the Future Water's Global Maps of Soil Hydraulic Property product (http://www.
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futurewater.eu/). The vegetation Leaf Area Index (LAI) and Fraction vegetation absorbed

Photosynthetically Active Radiation (FPAR) were utilized to represent vegetation dynamic. The LAI and

FPAR data are available from July 1981 to December 2011 developed by Zhu et al. (2013) and have a

monthly temporal resolution and a (1/12)° spatial resolution. Land‐use data were collected from the U.S.

Geological Survey (http://edc2.usgs.gov/glcc/glcc.php). Digital elevation model (30‐m resolution) is

collected from the NASA Shuttle Radar Topographic Mission (Rabus et al., 2003). The remote

sensing‐based snow depth data were collected from Che (2015) (http://www.tpdc.ac.cn/zh‐hans/data/

df40346a‐0202‐4ed2‐bb07‐b65dfcda9368/). It was developed specifically for China on the basis of different

microwave remote sensing data sets (Che et al., 2008; Dai et al., 2012, 2015). The global monthly

MOD10CM data from MODIS are available after March 2000 and have a spatial resolution of 0.05°.

MOD10CM data from 2001 to 2011 are used to evaluate modeled snow cover fraction. The spatially distrib-

uted rain‐snow temperature threshold data set developed by Jennings et al. (2018) is used in the model. The

Global Land Evaporation Amsterdam Model (GLEAM) data set is based on reanalysis and remote

sensing‐based soil moisture data, and available after 1980. GLEAM has a spatial resolution of 0.25° and

has been used in many studies (Jung et al., 2010; Li et al., 2019; Martens et al., 2016, 2017; Miralles

et al., 2011). Therefore, GLEAM is used in his study to evaluate model performance in soil moisture simula-

tion. All the data are regridded into 0.1° cells in this study.

3. Methodology

3.1. WEB‐DHM‐S Model, Calibration, and Validation

The Water and Energy Budget‐based Distributed biosphere Hydrological Model with improved Snow phy-

sics (WEB‐DHM‐S) is used in this study. It combined the Simple Biosphere scheme (SiB2) land surface

model, the hydrological model based on geomorphology developed by Yang (1998), and a physically based

snowmelt module (Shrestha et al., 2010; Wang et al., 2017; Wang, Koike, D. W. Yang, & K. Yang, 2009;

Wang, Koike, D. Yang, Jackson, et al., 2009; Wang, Koike, K. Yang, & Yeh, 2009). The snowmelt is calculated

based on water and energy balances in snow layers. The snowmelt module uses a three‐layer snowmelt

simulation approach from the Simplified Simple Biosphere 3 (SSiB3) and the Biosphere‐Atmosphere

Transfer Scheme (BATS) albedo scheme (Qi, Wang, et al., 2019; Shrestha et al., 2010, 2015). This model

Figure 1. The study region (the cropland distribution is from http://waterdata.iwmi.org/applications/irri_area/).
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has been used in many studies and shows good performance generally (Qi et al., 2015; Qi, Zhang, Fu,

Sweetapple, et al., 2016, 2018; Qi, J. Liu, et al., 2019; Shrestha et al., 2010; Wang et al., 2017). WEB‐DHM‐

S input data include precipitation, air temperature, downward solar and longwave radiation, air pressure,

wind speed, and humidity (see section 2.2).

We used 16 river basins off the main rivers and cropland to calibrate WEB‐DHM‐S. These river basins

are located in the upper streams or in water resources conservation areas (Figure 1) and therefore are

less influenced by human activities than the regions close to the main rivers and cropland. The

Dynamically Dimensioned Search algorithm was used in the calibration because of its high efficiency

(Qi, Zhang, Fu, Zhou, 2016; Tolson et al., 2009; Tolson & Shoemaker, 2008). The calibration was carried

out on a monthly scale due to the unavailability of daily scale observed runoff data. There are 16 years

of data in the Suolun hydrological gauge (1982–1997) and 20 years of data in the Yichun and Chenming

hydrological gauges (1982–2001). To ensure there are several years of discharge data for model valida-

tion in each hydrological gauge, the discharge data from 1982 to 1990 were used to calibrate WEB‐

DHM‐S parameters, and the discharge data after 1991 are kept for model validation. Time periods of

available discharge data for calibration and validation are shown in Table S1 in the supporting

information.

Nash‐Sutcliffe efficiency (NSE) and relative bias (RB) are the most commonly used criteria for discharge

simulation evaluations, and they are equally important for such purpose (e.g., Qi, J. Liu, et al., 2019;

Wang et al., 2016). The evaluation standard for hydrological information and hydrological forecasting in

China also recommends using NSE and RB as criteria (People's Republic of China, 2008). The value of

NSE ranges between –∞ and 1, and |RB| ranges between 0 and ∞. As both criteria are important, we used

a combination of them in the objective function for model parameter calibration. In this study, the objective

function is set as

minimize mean NSE‐1j jð Þ þmean RBj jð Þ½ �; (1)

where “mean” represents the average in the 16 river basins. The range of |NSE‐1| is from 0 to ∞, matching

the range of |RB|. Both |NSE‐1| and |RB| reach their best values when they are zeros; therefore, their mag-

nitudes are comparable in terms of their best values. |NSE−1| and |RB| are used in the objection function

with equal weights. The minimum value of the objective function is sought in evaluating the simulation

performance. The advantage of using this objective function is that the model performance evaluation

simultaneously considered the two criteria. Similar objective function has been successfully used in hydro-

logical model calibration in previous studies (e.g., Qi et al., 2018, 2020). The lower the objective function

values, the better the parameter values. The calibration repeated 1,000 times, and the parameter sets with

the lowest objective function values are selected.

3.2. Standardized Snow Depth Index

Analogous to nonparametric standardized precipitation index (Farahmand & AghaKouchak, 2015; Hao

et al., 2014), the nonparametric SSdI is based on standardized snow depth data to quantify snow variations.

There are two steps to calculate SSdI. First, empirical probability of snow depth is calculated based on

empirical Gringorten plotting position as follows:

p xið Þ ¼
i − 0:44

nþ 0:12
; (2)

where n is the sample size, i is the rank of snow depth data from the smallest, x represents snow depth,

and p represents corresponding empirical probability. Second, the SSdI is calculated using the following

equation:

SSdI ¼ f −1 pð Þ; (3)

where f represents the standard normal distribution function. The snow shortage comparison in different

magnitude is facilitated by using the normal distribution transformation. The correlation between SSdI

and Standardized Soil moisture Index (SSI)/Standardized Runoff Index (SRI) is calculated based on the

following equation:
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R ¼ corr SSdI i; n − m; Si þ m; n

� �

; (4)

where corr represents the function of correlation coefficient, S represents SSI and SRI, m represents

time lag between calculated SSdI and SSI/SRI time series, and i represents accumulation time of calcu-

lated SSdI, SSI, and SRI. SSI and SRI are based on the study by Hao et al. (2014) and Farahmand and

AghaKouchak (2015). SSI and SRI represent soil moisture and runoff variations. The correlation analysis

can evaluate the influence of accumulated snowpack (i.e., snow depth) on later soil moisture and

runoff.

Our study is based on the data stretching over a range of 30 years. This time span is common in climatology

studies. For example, Donat et al. (2016) studied precipitation changes using 30‐year moving time window;

Padrón et al. (2020) and Konapala et al. (2020) used 30‐year time periods to investigate water availability

changes; Livneh et al. (2020) used 30‐year time periods to study snow variations under climate change.

Building on these studies, we believe that the 30‐year time period covered in our study is sufficient for simu-

lating snow contributions to runoff.

3.3. Criteria for Assessment

NSE and RB used in discharge simulation evaluation are as below:

NSE ¼ 1 −

∑
n

i¼1

Qpi − Qti

� �

2

∑
n

i¼1

Qti − Qt

� �2

; (5)

RB ¼

∑
n

i¼1

Qpi − ∑
n

i¼1

Qti

∑
n

i¼1

Qti

× 100%; (6)

Figure 2. Comparisons between observed and simulated discharge in the time periods studied.
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where Qpi and Qti represent simulated and observed discharge at time i and Qt represents average of

observed discharge.

Correlation coefficient (R), root mean square error (RMSE), NSE, and RB are commonly used in snow

related evaluations (Chen et al., 2017; Han et al., 2019; Henn et al., 2018; Koch et al., 2019), and therefore,

they are used in the snow simulation evaluations in this study:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1

X si − Xoið Þ2

n

v

u

u

u

t

; (7)

where Xsi and Xoi represent simulation data and observation at time i and n represents the number of data

points.

4. Result and Discussion

4.1. Model Evaluation

The calibrated model parameters are shown in Table S2. The average model performances in discharge

simulation are shown Table S3, and performances for every selected subbasins are shown in Table S4. The
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(c) (d)

Figure 3. (a and b) Average snow depth and snow cover fraction (snow covered area/total area) comparison between

model simulation and remote sensing data on a multiyear mean monthly scale. (c and d) Comparison of surface zone

soil moisture between model simulation and GLEAM data sets. Panels (a), (c), and (d) are based on results from 1982 to

2011. Surface soil = 5 cm. MODIS = Moderate‐resolution Imaging Spectro‐radiometer; GLEAM = Global Land

Evaporation Amsterdam Model; NSE = Nash‐Sutcliffe efficiency coefficient; RB = relative bias;R = correlation

coefficient; RMSE = root mean square error.
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performances are acceptable in both calibration and validation periods, with |RB| being 8.0% and 11.0%,

respectively (Table S2). The overall |RB| value is 7.8%, and NSE value is 0.81. The overall NSE values are

over 0.9 in some subbasins, such as Shalizhai, Lishugou, and Wendegen (Table S4). The overall NSE value

is 0.64 in Suolun gauge, which may be because the available data are from 1982 to 1997 and are less than

other gauges. The comparisons between observed discharge and simulation are shown in Figure 2.

Observed and simulated hydrographs in the calibration and validation periods are shown in Figures S1

and S2. In sum, the overall model performance is satisfactory in discharge simulation. These results

indicate that the objective function (i.e., Equation 1) used in the model parameter calibration is appropriate.

Figures 3a and 3b show average snow depth and snow cover fraction comparison between model simulation

and remote sensing data on a multiyear meanmonthly scale. The model simulation and remote sensing data

agree well. NSE, RB, R, and RMSE are 0.69, 2.0%, 0.85, and 2.28 in terms of snow depth and are 0.85, −1.0%,

0.96, and 0.13 in terms of snow cover fraction. Figures 3c and 3d show the comparison of surface zone soil

moisture between the WEB‐DHM‐S model simulation and the GLEAM data set. The model simulates the

seasonal variations of soil moisture well. The R values are up to 0.87 and 0.86 for average surface zone soil

moisture in Northeast China and on the cropland in the region, respectively. The model also simulates crop-

land surface soil moisture well. The average surface soil moisture in cropland is 0.39 and 0.34 m3/m3 for the

model simulation and GLEAM, respectively. In April andMay, the average surface soil moisture in cropland

is 0.35 and 0.31 m3/m3 for model simulation and GLEAM, respectively. The model simulates the surface

zone soil moisture at 5‐cm depth, and the surface zone soil moisture from GLEAM is at 10‐cm depth. The

differences in the soil depth may contribute the differences in the soil moisture content. Overall, the model

can simulate the soil moisture well.

In this study, the saturated water content data set is from the Future Water's Global Maps of Soil Hydraulic

Property product (http://www.futurewater.eu/). This product shows the saturated water content ranges

from 0.3 to 0.9. The uncertainty of the saturated water content parameter value used in this study may

Figure 4. Spatial distribution of simulated river discharge based on results from 1982 to 2011.
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result from this product. However, the model parameter value used is between the minimum andmaximum

values, and therefore, the parameter value used in this study is appropriate. Chen et al. (2017) developed a

two‐stage approach to calibrate a hydrological model against snow cover fraction, snow water equivalent,

total water storage, and streamflow in the Upper Brahmaputra River basin in the Tibetan Plateau.

Similarly, several recent studies are also suggested using multiple data sets in model calibration and

validation (Dembélé et al., 2020; Henn et al., 2018; Ko et al., 2019; Long et al., 2020). In our study, we

used streamflow in the model calibration combined with an observation based rain‐snow temperature

threshold data product. Validations using observed streamflow, snow depth, snow cover fraction, and

satellite‐based soil moisture show that the performance of the model is satisfactory. This result implies

that the model used and the combination of the model and the observation data sets for discharge, soil

moisture, and snow simulations are appropriate. In addition, this result also indicates that the model used

is robust: one constraint leads to satisfactory simulation results for several variables, which, to some

degree, may be because streamflow is one of the most sensitive variables to uncertainty in a model

simulation chain (Qi et al., 2020).

4.2. Importance of Snow to Runoff and Discharge

Figure 4 shows the spatial distribution of river discharge. The average discharge in July–September is larger

than averages in other periods, and the river discharge in the Songhuajiang River is generally larger than

that in the Liao River. Figure 5 shows the spatial distribution of snow discharge. The average snow dis-

charges in April–June and October–December are higher than other periods. In the summer period

(July–September), most of the precipitation is from rainfall due to high air temperature, and therefore,

snow discharge during this period is lower than other periods.

Figure 6a and 6b show the temporal changes of snowmelt runoff and its contribution to total runoff.

Snowmelt runoff is higher in April and October than other months, that is, two snowmelt runoff peaks,

Figure 5. Spatial distribution of simulated snow discharge based on results from 1982 to 2011.
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which is similar to a study in the Upper Yangtze River in the Tibetan Plateau (Han et al., 2019). The

snowmelt runoff contribution to total runoff is higher in April and November. Although the snowmelt

runoff is higher in October than November, the total runoff in November is much smaller than October,

which may lead to the higher snowmelt runoff contribution than October. On average, snowmelt runoff

contributes 11.3% to the annual total runoff, which is about 21.8 billion m3 water resources. This volume

of water is equivalent to about 55.5% of the total storage capacity of the Three Gorges reservoir, the largest

reservoir in the world. In April and May (the major crop planting months), snowmelt runoff contributes

at least 33.1% to the runoff. In April, the contribution reaches the highest values up to 65.5%.

Figures 6c–6f show the spatial distribution of snowmelt discharge contributions to total river discharge. The

snow discharge contribution changes dramatically in both temporal and spatial scales. The average in

January–March is generally high (25.2%) with the exception in some regions in southwest part, which

may be because the region is very dry with very low snow/precipitation in January–March. Compared to

Figure 6. Temporal changes of snowmelt runoff and contribution to total runoff (a, b) and spatial distribution of snow

discharge contributions to discharge (c–f). The results are based on data from 1982 to 2011.
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other time periods, the average snow discharge contribution in

July–September is lower (0.8%), which may be due to the existence

of precipitation as rainfall in this period.

Figure 7 shows mean precipitation, mean snowfall, mean air tem-

perature, and minimum and maximum air temperature in different

months in Northeast China. It can be seen that there are two snowfall

peaks (April and October). They are resulted from the combined

effects of precipitation and air temperature. In April and October,

there are plenty of precipitation when temperature is not high,

whereas either air temperature is very high or precipitation is low

in other months resulting in less snowfall than April and October.

The two snowmelt runoff peaks in April and October are because of

the two snowfall peaks and relatively high air temperate in these

2 months. In December–February, it can be seen that the maximum

air temperature are about/above 0° although the mean air tempera-

ture is much lower than 0°, which results in snowmelt in some

regions in Northeast China. In addition, the total runoff is little in

December–February because of little precipitation. The combined

effects of precipitation, snowfall, and air temperature in

December–February result in the relatively large snowmelt runoff

contribution to the total runoff.

4.3. Importance of Snow to Soil Moisture

To evaluate the importance of snow to soil moisture, we compared the soil moisture of “no snow scenario”

and “normal simulation.” Here, the “no snow scenario” assumes that the snowfall is replaced by rainfall.

Figures 8a–8d show the spatial distribution of surface soil moisture and changes when snow exists, that is,

under the “normal simulation.” The “change” is calculated as soil moistureno snow scenario minus soil

moisturenormal simulation. It can be seen that the Songliao Plain has lower soil moisture than the surrounding

high mountain areas. This is likely because the high mountain areas are covered by trees and/or dense

shrubs, which can prevent evaporation of surface soil moisture. In the “no snow scenario,” the surface soil

gets dryer generally, especially in the plain regions, which is also shown in the “change.” Therefore, the plain

regions (the main cropland areas) suffer more than other regions when snow does not exist.

Figures 8e and 8f show the average surface zone soil moisture changes in Northeast China and on the crop-

land area. The surface zone soil gets dryer generally when no snow exists. In March–May, the soil moisture

decreases by 20.1%, 23.5%, and 22.4%, which equal to −0.08, −0.09, and −0.07 m3/m3, respectively. Because

soil moisture is an important source of water for agriculture, the decreases may lead to drought and increase

in irrigation requirement. This result suggests that snow can ameliorate water shortage problems in the

region.

4.4. Standardized Snow Depth Index

There are time lags between snow depth and soil water and/or streamflow volumes. Table 1 shows the cor-

relation coefficient between SSdI, SRI, and SSI. The correlation coefficient is calculated based on Equation 3.

Comparisons among SRI, SSI, and SSdI under different accumulation time are shown in Figure S4. Results

from 1 to 7 months are shown in Table 1. The correlation coefficient values become very small under the

7‐month situation, and therefore, we did not investigate the situations after 7 months. The correlation is

evaluated at a 0.05 a significance level.

It is noticed that R is decreasing with increasing time lags and 1‐month time lag has the largest R values gen-

erally. For example, for the 1‐month accumulation time, R between SSdI and SSI decreases from 0.35 to 0.12

before the correlation becomes nonsignificant, and R between SSdI and SRI decreases from 0.30 to 0.14. In

addition, it can be seen thatR between SSdI and SSI is the highest (0.37) when accumulation time is 2months

and time lag is 1 month. This indicates that snow in January and February has large influence on soil moist-

ure in February and March. For SRI, the R value is the highest (0.39) when accumulation time are 2 and

3 months and time lag is 1 month. It indicates that snow in January and February has large influence on
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China based on data from 1982–2011.

10.1029/2020JD033086Journal of Geophysical Research: Atmospheres

QI ET AL. 10 of 15



runoff in February and March and that snow in January–March has large influence on runoff in

February–April. The 4‐month SSdI and SRI have an R of 0.37, higher than other accumulation time

situations except for the 2‐ and 3‐month cases, which indicates that snow in January–April have large

influence on runoff in February–May. In the 4‐month accumulation time, 1‐ to 3‐month lags have

significant correlation, and the correlation becomes nonsignificant for SRI when time lag is 4 months.

Overall, the results indicate that 1‐month lag has the largest influence, the influence is decreasing with

increasing time lag, and the correlation is significant with a time lag of 1–3 months.

Figure 8. Spatial distribution of surface soil moisture (a–d). In the “no snow scenario,” the snow is assumed to fall as

rain. Change = soil moistureno snow scenario− soil moisturenormal simulation. Change < 0 means the surface soil

gets dryer when no snow; change > 0 means the surface soil gets wetter when there is no snow. (e and f) Average surface

zone soil moisture changes in Northeast China and on the cropland in the region. The results are based on data from

1982 to 2011.
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The snow‐related indexes developed by Staudinger et al. (2014) and Zhang et al. (2019) are based on snow-

melt water and therefore are not indicative of snow stored water in solid form for future potential use.

Compared to the previous indexes, SSdI represents snow depth variations, indicating stored solid water

resources which could melt in coming months for use. Dai et al. (2004) and Dai (2011) suggested that the

Palmer Drought Severity Index (PDSI) and soil moisture in the coming months have significant correlations

and therefore PDSI is considered as a proxy to predict soil moisture‐induced drought in the coming months.

Similarly, the significant correlation between SSdI and SSI/SRI with a time lag of 1–3 months also gives SSdI

an ability to predict the soil moisture and stream discharge condition in spring. Hence, SSdI can be highly

important to support agriculture production and water management, particularly during the planting sea-

son. Although PDSI can be used to predict soil moisture deficit, it did not consider snow influence.

Compared to PDSI, SSdI can consider snow influence and therefore is superior to PDSI in snow covered

regions. It is recorded that from December 2019 to early April 2020, Northeast China had received little

snow. SSdI during this period suggested drought during the spring. Fortunately, in late April 2020, there

have been several major snow events covering most areas of Northeast China. SSdI is able to quantify the

effects of these snow events to ameliorate the drought situation in May in the region.

5. Conclusions

As an important area for agricultural production in China, including soybean, maize, and rice, and the lar-

gest chernozem region in the world, water resource problems in Northeast China have drawn much atten-

tion. Because of cold and long winter period, snow plays an important role in water resources in this region.

However, studies on snow in Northeast China are quite few, and investigations into snow in entire Northeast

China are rare. This study addressed the importance of snow by evaluating the contribution of snowmelt to

discharge/runoff and influence of snow on soil moisture in a 30‐year time period (1982–2011) in the whole of

Northeast China for the first time. The SSdI method is proposed to quantify snow depth variations. A water

Table 1

Correlation Coefficient (R) Values and Significance Level (in the parentheses) Between SSdI and SSI/SRI

Accumulation time Time lag (month) 1 2 3 4 5 6 7 8

1 month

(Jan)

SSI 0.35

(0.00)

0.31

(0.00)

0.26

(0.00)

0.23

(0.00)

0.19

(0.00)

0.12

(0.02)

0.12

(0.03)

0.06

(0.25)

SRI 0.30

(0.00)

0.29

(0.00)

0.20

(0.00)

0.14

(0.01)

0.04

(0.47)

2 months

(Jan‐Feb)

SSI 0.37

(0.00)

0.32

(0.00)

0.25

(0.00)

0.21

(0.00)

0.16

(0.00)

0.10

(0.06)

SRI 0.39

(0.00)

0.25

(0.00)

0.20

(0.00)

0.11

(0.04)

0.03

(0.57)

3 months

(Jan–Mar)

SSI 0.35

(0.00)

0.31

(0.00)

0.25

(0.00)

0.19

(0.00)

0.14

(0.01)

0.09

(0.10)

SRI 0.39

(0.00)

0.30

(0.00)

0.17

(0.00)

0.11

(0.04)

0.04

(0.50)

4 months

(Jan–Apr)

SSI 0.31

(0.00)

0.28

(0.00)

0.24

(0.00)

0.19

(0.00)

0.13

(0.01)

0.08

(0.15)

SRI 0.37

(0.00)

0.30

(0.00)

0.21

(0.00)

0.10

(0.06)

5 months

(Jan–May)

SSI 0.28

(0.00)

0.25

(0.00)

0.20

(0.00)

0.16

(0.00)

0.11

(0.05)

0.05

(0.32)

SRI 0.31

(0.00)

0.27

(0.00)

0.21

(0.00)

0.13

(0.01)

0.03

(0.54)

6 months

(Jan–Jun)

SSI 0.23

(0.00)

0.21

(0.00)

0.18

(0.00)

0.14

(0.01)

0.10

(0.07)

SRI 0.23

(0.00)

0.21

(0.00)

0.18

(0.00)

0.12

(0.03)

0.05

(0.36)

7 months

(Jan–Jul)

SSI 0.18

(0.00)

0.18

(0.00)

0.15

(0.00)

0.12

(0.02)

0.09

(0.09)

SRI 0.18

(0.00)

0.16

(0.00)

0.14

(0.01)

0.12

(0.03)

0.07

(0.19)
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and energy budget‐based distributed biosphere hydrological model with improved snow physics after cali-

bration and validation is employed. The following conclusions are presented on the basis of this study.

First, snow contributes a large proportion to runoff in the entire Northeast China region. On average, it con-

tributes 11.3% to the total runoff on an annual basis. In April and May, snowmelt runoff contributes 65.5%

and 33.1% to the runoff during the period.

Second, snow plays an important role in keeping soil moisture. In March–May, the soil moisture would

decrease at least 20.1% when there is no snow. The Northeast China Plain (the main cropland area) suffers

more than surrounding areas when snow does not exist.

Third, SSdI developed in this study is indicative of SSI and SRI in spring. The correlation between SSdI and

SSI/SRI is decreasing with increasing time lag, and it is significant with a time lag of 1–3 months. The time

lag between SSdI and SSI/SRI enables a use of SSdI to predict the soil moisture and runoff conditions in

spring, the planting season of Northeast China.

Data Availability Statement

The forcing data set used in this study (i.e., CMFD) was developed by the Data Assimilation and

Modeling Center for Tibetan Multi‐spheres, the Institute of Tibetan Plateau Research, Chinese Academy

of Sciences (http://westdc.westgis.ac.cn/data/7a35329c‐c53f‐4267‐aa07‐e0037d913a21). The discharge data

in Northeast China are from hydrology bureaus and can be found by contacting Songliao Water Resources

Commission (http://www.slwr.gov.cn/slwjj/slwgk/).
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