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Approach With Examples From MODIS
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Abstract— Spectral mixture analysis has a history in mapping
snow, especially where mixed pixels prevail. Using multiple
spectral bands rather than band ratios or band indices, retrievals
of snow properties that affect its albedo lead to more accu-
rate estimates than widely used age-based models of albedo
evolution. Nevertheless, there is substantial room for improve-
ment. We present the Snow Property Inversion from Remote
Sensing (SPIReS) approach, offering the following improve-
ments: 1) Solutions for grain size and concentrations of light
absorbing particles are computed simultaneously; 2) Only snow
and snow-free endmembers are employed; 3) Cloud-masking
and smoothing are integrated; 4) Similar spectra are grouped
together and interpolants are used to reduce computation time.
The source codes are available in an open repository. Com-
putation is fast enough that users can process imagery on
demand. Validation of retrievals from Landsat 8 operational land
imager (OLI) and moderate-resolution imaging spectroradiome-
ter (MODIS) against WorldView-2/3 and the Airborne Snow
Observatory shows accurate detection of snow and estimates
of fractional snow cover. Validation of albedo shows low errors
using terrain-corrected in si tu measurements. We conclude by
discussing the applicability of this approach to any airborne or
spaceborne multispectral sensor and options to further improve
retrievals.

Index Terms— Albedo, Landsat, moderate-resolution imaging
spectroradiometer (MODIS), multispectral imaging, snow, spec-
tral mixing.

I. INTRODUCTION

S
NOW affects regional and global climate, provides water

resources over significant parts of the world, and sustains

diverse ecosystems. Internationally, mapping of snow cover

is among 50 recommended essential climate variables [1].

In the U.S., the recent Decadal Survey for Earth Science
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and Applications [2] ranked snow accumulation, melt, and

sublimation among the “Most Important” objectives.

Remote sensing of snow from aerial and spaceborne sensors

for runoff forecasts has a long history going back to the

1950s [3]. A longstanding approach applied to multispectral

instruments, the Normalized Difference Snow Index (NDSI)

that Dozier [4] introduced, is

NDSI =
Rλ(VIS) − Rλ(SWIR)

Rλ(VIS) + Rλ(SWIR)
(1)

Rλ is the apparent planetary reflectance, i.e., the directional-

hemispherical reflectance [5] if angular distribution of the

reflected radiation is assumed isotropic. VIS identifies a band

in a visible wavelength, and SWIR identifies a band in the

shortwave infrared. In the original formula for the Landsat 5

Thematic Mapper, the VIS band was TM2 (0.525–0.625 µm)

and the SWIR band was TM5 (1.55–1.75 µm); similar spectral

bands are used when applied to other sensors. The NDSI was

the first spectral index designed specifically to identify snow

from space and is still widely used to classify snow cover, for

example, the moderate-resolution imaging spectroradiometer

(MODIS) algorithm in NASA’s Earth Observing System [6].

Snow-covered pixels at resolutions greater than a few

meters often contain rock, soil, or vegetation (e.g., Fig. 1),

so techniques to account for mixed pixels must be used [7].

For MODIS, a regression-based approach was developed to

convert NDSI to fractional (i.e., subpixel) snow-covered area

( fsca) [8], but this technique showed high root mean square

error (RMSE) values [9] so the MODIS data system no longer

provides a fractional snow product. A nonlinear (sigmoid)

regression of fSCA derived from the high resolution (0.5–

2 m) Pléiades constellation versus NDSI calculated from the

Sentinel-2 satellites showed RMSE values of 0.25–0.38 in the

Pyrenees, with the least certain results in regions of rugged

topography [10].

The NDSI approach is attractive because of its simplicity,

but using only two bands does not take advantage of all

available spectral information and provides no information

on other relevant snow properties such as grain size or the

presence of light absorbing particles (LAPs).

Spectral mixture analysis [11] has been successfully used to

map snow cover with multispectral sensors such as the Landsat

Thematic Mapper [12] or MODIS [13] and spectroscopic
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Fig. 1. WorldView-3 RGB image, pan-sharpened to 0.5-m resolution, from
Big Margaret Lake (37.4587, −119.0322) acquired 10 February 2020 show-
ing: snow, trees, rocks, and shadows. The 30-m scale bar has 1-m markings.
2020 ©DigitalGlobe NextView License.

airborne instruments such as airborne visible and infrared

imaging spectrometer (AVIRIS) [14]. An independent study

identified spectral analysis as providing more accurate results

than regression against NDSI [15].

Analyses of the spectra also provide information about

snow grain size [16], [17] and LAP [18]. Retrievals of albedo

from spectral unmixing have been shown to be more accurate

for estimating broadband snow albedo when compared with

commonly used models based on aging [19].

II. SPECTRAL UNMIXING APPROACHES

Spectral mixture analysis was created to identify chemical

components in mixtures [20] and has since been applied to

many studies including subpixel vegetation mapping [11] and

geologic classification of rocks [21]. The reflectance Rλ of

a heterogeneous instantaneous field-of-view at wavelength λ

comprising N endmembers k each with reflectance rk,λ and

fractional coverage fk is

Rλ = ελ +

N
X

k=1

fkrk,λ. (2)

The residual error at wavelength λ is ελ. Equation (2) can

be written as a system of linear equations, e.g., for M bands

where M ≥ N
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By minimizing ελ simultaneously across all bands, for

example, through sum of least squares, and careful endmember

selection, modeled spectral mixtures are computed. Additional

usual constraints are that 0 ≤ f k ≤ 1 and
P

fk = 1.

A. Decision Trees

Rosenthal and Dozier [12] applied spectral unmixing to the

Landsat 5 Thematic Mapper using empirical endmembers for:

coarse grain snow, fine grain snow, shaded snow, rock, and

vegetation. From the modeled fsca, they used classification

and regression trees to mask clouds and map the fsca as a

faster alternative than iteratively solving (3) for every pixel in

a scene.

B. MODSCAG and MODDRFS

In MODSCAG, the MODIS Snow-Covered Area and Grain

size algorithm [13], the modeled snow reflectance, i.e., rk,λ

for the snow endmember in (2), is computed from Mie scat-

tering [22] and the discrete ordinates radiative transfer (DIS-

ORT) model [23]. From these known reflectance values, three

endmember fractions ( fk) are estimated by minimizing
P

ε2:

snow-covered area ( fsca), rock/soil ( frock) or vegetation ( fveg),

and photometric shade ( fshade). The observed reflectance Rλ

comprises the MOD09GA surface reflectance product [24].

The rock/soil and vegetation endmembers are from field and

laboratory measurements.

MODSCAG assumes the snow is clean and that the

reflectance rsnow,λ of the snow endmember varies as a function

of the grain radius rg , illumination, and viewing geometry

rsnow,λ = f
(

rg, φ − φv , µ,µv , ζatm

)

(4)

φ is the solar azimuth, µ the cosine of the illumination angle,

φv the sensor view azimuth, µv the sensor zenith cosine,

and ζatm atmospheric absorption and scattering properties.

Generally, directional effects of the reflected radiation can be

ignored [25], so set φ − φv = 0 and µv = 1.

Most snow contains dust or soot in sufficient quanti-

ties to degrade its visible albedo [26]–[29]. To account for

LAP, MODDRFS—MODIS Dust and Radiative Forcing in

Snow [18]—accounts for degradation of albedo by LAP at

wavelengths up to 0.876 µm. The MODDRFS product is

created by comparing observed dirty snow spectral reflectance

and modeled clean snow spectral reflectance, using pixels with

nearly 100% snow cover, to estimate broadband albedo based

on the integration of differences across visible bands. Rather

than using the grain size from MODSCAG, MODDRFS com-

putes a Normalized Difference Grain Size Index (NDGSI)

NDGSI =

�

MODIS2 − MODIS5

MODIS2 + MODIS5



(5)

MODIS2 and MODIS5 are MODIS bands 2 (0.841–0.876 µm)

and 5 (1.23–1.25 µm). Then an optical grain size is computed

using a logarithmic relationship

rg = Fr (NDGSI, µ). (6)

From this grain size, a clean snow reflectance is com-

puted using (4). Unlike in MODSCAG, directional effects

for reflected radiation are not ignored in MODDRFS. Using

scalar values that are not provided, r
(clean)
snow,λ and the observed

reflectance Rλ are converted to spectral albedos α
(clean)
snow,λ and

α
(dirty)
snow,λ. Finally, the difference between the observed dirty
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snow reflectance from MODIS and the modeled clean snow,

integrated across the visible spectrum, is expressed as 1vis

1vis =

Z 0.876µm

0.35µm

�

α
(clean)
snow,λ − α

(dirty)
snow,λ

�

dλ. (7)

These quantities can be used to calculate broadband snow

albedo as α = α(clean)
snow −c1vis, where c = 0.63 [19], the fraction

of solar energy in the spectral range of (7).

C. MODImLAB

Instead of using a surface reflectance product, the solution

from the MODIS Image Laboratory [30] at the University of

Otago starts with top-of-atmosphere MODIS Terra Level-1B

swath products and applies atmospheric and topographic cor-

rections that account for shadows and multiple reflections

at the surface. Using pixels with positive NDSI only, (3) is

solved iteratively using four snow endmembers (ice, medium

granular, coarse granular, and “transformed,” apparently dirty).

Two vegetation endmembers (pasture, rain forest + brush)

were also used. Because the study focused on glacierized areas

of New Zealand, glacier debris and rock endmembers were

also used for a total of eight endmembers.

After snow and other endmember fractions are computed,

a final cleaning step is applied. Pixels with Euclidean norms of

ελ that exceed the Euclidean norm of Rλ are set to zero fsca.

A 3 × 3 majority filter is applied to a mask of the snow

cover. Then image dilation and intersection with the fsca values

remove isolated spurious snow-covered pixels.

III. SPIRES APPROACH

Snow Property Inversion from Remote Sensing (SPIReS)

builds on these previous spectral unmixing approaches in

snow, optimizes processing for large numbers of pixels, and

solves for LAP and grain size (thereby albedo) simultaneously.

SPIReS estimates surface properties and fractional cover of the

snowpack, adaptable to any multispectral sensor that includes

visible through shortwave-infrared bands. Therefore, solutions

are obtained through a direct, physically based approach that

removes the need for empirical relationships.

A. Surface Reflectance

The standard surface reflectance product MOD09GA Col-

lection 6 for MODIS [24] and the on-demand surface

reflectance product Collection 1 for Landsat 8 operational

land imager (OLI) [31] are used. The Landsat Analysis Ready

Data Surface Reflectance product [32] can also be used. While

there are limitations of these surface reflectance products in

complex snow-covered terrain, such as not accounting for

multiple reflections [30] and problems with aerosol optical

thickness [33], we find that the utility of these mature products

and their global availability outweigh their limitations.

Snow albedo, a hemispherical measure at the receiving

instrument, and the directional estimate of surface reflectance

at the receiving instrument, is assumed equivalent. Since

neither MODIS nor the Landsat 8 OLI sensors measure the

entire hemisphere, this assumption is not correct, but the

standard atmospherically corrected reflectance products do

not provide the reflectance distribution function. Moreover,

for sensors of ∼30-m spatial resolution (e.g., for Landsat 8

OLI), digital elevation models are not of sufficient quality

globally to correctly calculate the φ and µ terms in (4).

Whereas these terms are accurate on flat terrain, uncertainty in

slope and aspect leads to larger errors in mountainous terrain.

At even finer spatial resolution such as measured by lidar or

photogrammetry [34], the slope and aspect of snow-covered

terrain are different from the snow-free surface below.

For sensors of coarser (250–1000 m) resolution, the pixel-

averaged values of the φ and µ terms in (4) are better

estimated, but the terrain slope and aspect vary across the

pixel. Calculating the albedo rather than the hemispherical-

directional reflectance factor [HDRF, 5] introduces less error

given the geometric uncertainties in lighting geometry and

uncertainties in ζatm in (4). Sirguey et al. [30] make the

same assumption, reasoning that the computational cost of

implementing a model that calculates the HDRF is not worth

the benefit.

B. Cloud and Other Masks

Because both clouds and snow are bright and cold, cloud-

snow discrimination remains an unsolved problem in remote

sensing [35]. Because of the differences in spatial and tem-

poral resolution, we apply different cloud masking procedures

to MODIS and Landsat 8 OLI imagery. Other masks used

include the water mask MOD44W for MODIS [36] and the

National Land Cover Database [37] for Landsat 8 OLI, so that

water-covered pixels are not processed. We use the National

Hydrography Data set [38] to add additional water bodies

missed by the standard products. Some dry lakes that falsely

showed persistent snow cover were manually masked.

Contrary to approaches that assume only positive NDSI for

pixels containing snow [30], pixels with small but detectable

snow fractions can have negative NDSI values [39]. Thus, all

pixels containing N DSI ≥ −0.5 are processed, while those

with N DSI < −0.5 are skipped.

1) Landsat 8 OLI: Whereas some cloud cover issues

in MODIS can be addressed using temporal interpolation

(Section III-N), long periods between repeat acquisitions

(16 days) for Landsat 8 OLI make temporal interpolation less

useful. Therefore, users must supply a cloud mask for Landsat

8 OLI, or they can select cloud-free imagery.

2) Initial Cloud Mask for MODIS: For MODIS, an initial

cloud mask C
(initial)
MODIS is applied using the MOD09GA supplied

mask and an additional criterion

C
(initial)
MODIS = C

(cloudy)
MOD09GA ∧ (R6 > tSWIR) (8)

C
(cloudy)
MOD09GA is the MOD09GA cloud mask, obtained from the

MODIS quality flags for that pixel’s reflectance value; ∧ is the

logical AND operator; R6 is the reflectance from MODIS band

6 (1.628–1.652 µm); and tSWIR is an SWIR threshold, set to

0.2. Because no cloud mask accurately discriminates clouds

from snow in MODIS based on reflectance alone [35], this

approach was developed using trial-and-error experimenting

with different values.
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C. Modeled Snow Endmembers

The modeled reflectance of the snow endmember assumes:

1) Scattering properties of individual snow grains can be

estimated from Mie theory with the properties of a non-

spherical scatterer mimicked by the equivalent radius of the

sphere with the same specific surface area [40]. 2) The radia-

tive transfer equation applies, whereby the center-to-center

spacing between the snow grains is large enough, compared

to the wavelength, that near-field effects can be ignored, as

Warren [41] discusses extensively. 3) The LAP can be treated

as independent scatterers, recognizing that absorbers within a

snow grain will cause more absorption than absorbers between

grains [42]. Limitations are: 4) For the same mass concentra-

tion, LAP of a smaller size causes more absorption; therefore;

the objective is to mimic the degradation of absorbers on snow

albedo rather than to estimate the actual concentration, size,

or even species of the absorbers. 5) When absorbers are within

the instantaneous field-of-view, ascertaining whether they are

in the snow, next to the snow, or beneath a shallow snowpack

is difficult with multispectral imagers such as MODIS or

Landsat 8 OLI.

With these constraints, the scattering properties of individ-

ual snow grains and light-absorbing particles are computed

using Mie theory. Snow grains are large compared to the

wavelengths of shortwave radiation (i.e., the Mie parameter,

the ratio of the circumference to the wavelength, is large),

so the complex angular momentum (CAM) approximation [43]

provides efficiently computed results that smooth out some

wiggles in Mie calculations that otherwise require integration

over a size distribution of snow grains. For small Mie parame-

ters, less than ∼20, the CAM approximations loses accuracy,

so for the LAP, which are smaller, Wiscombe’s [22] method

is used. In either case, the needed wavelength-dependent

variables comprise the scattering Qsca and extinction Qext

efficiencies, the single scattering albedo $ = Qsca/Qext, and

the Mie asymmetry parameter g. The calculations use the

complex refractive indices of ice [44] and the contaminating

absorber, dust [45] (for dust from the Colorado Plateau),

or black carbon [46].

To calculate the scattering properties of the snow-LAP

mixture, the mass fractions are treated as dimensionless num-

bers that sum to 1, and the volume fractions V j are the

mass fractions divided by the densities. For each component,

the geometric cross section is G j = 3V j/r j , and the weighted

averages are

hgi =

P

j g j G j Qsca, j
P

j G j Qsca, j

h$ i =
hQscai

hQext i
. (9)

To compute the spectral albedo from a snowpack, whereby

the reflected radiance is integrated over the upwelling hemi-

sphere, the two-stream approximations are appropriate [47].

Especially for forward-scattering, optically thick media like a

snowpack, the delta-Eddington variation provides results that

closely match more computationally intensive methods [48].

The scattering properties are modified as follows:

g∗ =
hgi

1 + hgi

$ ∗ =
h$ i

(

1 − hgi2
)

1 − h$ ihgi2
. (10)

For a deep snowpack, “semiinfinite” in the radiative transfer

sense, the equations for direct and diffuse albedo, where µ is

the cosine of the local illumination angle, are [49]

A∗ = 1 − $ ∗g∗

B∗ =
g∗

A∗

ξ2 = 3A∗
(

1 − $ ∗
)

P =
2ξ

3A∗

R(µ) =
$ ∗(1 − ξ B∗µ)

(1 + P)(1 + ξµ)

Rdiffuse =
2$ ∗

1 + P

�

(1 + B∗)[ξ − ln(1 + ξ)]

ξ2
−

B∗

2

�

. (11)

Similar analytic equations are available for shallow

snow [49]. The optical depth τ0 of snow is

τ0 =
3W Qext

4rgρice

(12)

W is the snow water equivalent (kg m−2), rg the grain

radius (m), and ρice the density of ice (kg m−3).

To model the snow reflectance over band passes, the spectral

reflectance is convolved with the spectrum of the solar direct

and diffuse irradiance. For a band b extending from λ1 to λ2

with total spectral irradiance Sλ and diffuse fraction qλ (both

varying with solar zenith angle cos−1 µ0), the reflectance at

local illumination cosine µ is

Rb(µ) =
1

R λ2

λ1
Sλdλ

×

�
Z λ2

λ1

Rλ(µ)Sλ(1 − qλ)dλ +

Z λ2

λ1

Rλ,diffuse Sλqλdλ

�

. (13)

For the spectral distributions of Sλ and qλ, we apply the

SMARTS model [50] with a mid-latitude winter atmosphere

at 3000-m elevation and a rural aerosol specification. For

narrower band passes, such as those in the MOD09GA or

Landsat 8 OLI surface reflectance products, a simpler approach

can be taken using the spectral reflectance of the central

wavelength for each band.

D. Mixture Model

A linear mixture model (2) is used. The RMSE ελ is

then minimized using a nonlinear optimization subject to the

constraints that 0 ≤ f k ≤ 1 and
P

k fk = 1 to estimate

endmember fractions fk and other variables. The attained solu-

tion uses the Sequential Quadratic Programming Method [51].

The following four variables are solved: fsca, fshade, rg , and δ,

where δ is the dust concentration in ppmw. Limits for fsca

and fshade are set at 0 to 1, while limits for the grain radius rg

(30 and 1200 µm) are set slightly below and slightly above
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realistic values such that solutions at the upper or lower limits

can be identified and removed at a later step. Limits for the

dust δ concentrations are set to 0 and 1000 ppmw.

For both MODIS and Landsat 8 OLI, seven bands from the

surface reflectance products are used; thus, there are nine equa-

tions for each pixel, seven from (3) plus the two constraints

on the fractions. This creates an overdetermined system with

five more equations than unknown variables. In the presence

of nonnegligible residuals, usually the case with scientific

measurements, increasing the difference between the number

equations and unknowns effectively minimizes residuals [52].

Linear mixing assumes single interactions between incom-

ing light and a target, therefore, invalid under more complex

interactions involving multiple reflections and/or transmission,

for example in tree canopies [11]. For mapping snow, Rosen-

thal and Dozier [12] suggest that anisotropic reflectance and

topographic illumination might comprise additional potential

sources of nonlinear mixing, but Painter et al. [13] asserted

that nonlinear effects in canopies can be treated in linear

models using canopy-level endmembers up to canopy den-

sities where no direct sunlight reaches the snow beneath.

Quintano et al. [53] wrote that nonlinear mixing models have

not been widely used in remote sensing because they are dif-

ficult to implement because of missing information and math-

ematical complexity, whereas linear mixing models have been

successfully used for a wide range of applications, including

those with nonlinear effects. To the best of our knowledge, all

previous subpixel snow mapping studies [12], [14], [30], [54]

use the linear assumption.

For the number of endmembers used, Occam’s razor advises

parsimony in endmember selection with 4 or fewer sug-

gested [55]. Thus, two initial endmembers are used, with

reflectances R (snow-covered) and snow-free R0 (snow-free).

These endmembers differ from traditional endmembers in that

they are not pure substances, but rather mixtures. However,

since an overarching goal of our approach is to map snow, not

other substances, we find the approach justified. Furthermore,

the use of a snow-free background measurement from the

sensor as an endmember should account for some nonlinear

effects, such as canopy transmission [13].

E. Shade Model

A third endmember, fshade, is used for shaded areas

and shadows [21]. Based on the “ideal black surface” of

Smith et al. [56], a value of zero reflectance is used in all

bands for the shade spectra. Reflectances from shadows have

different spectra based on what is being shaded, and some evi-

dence shows that using multiple shade endmembers increases

accuracy [57]. Thus, multiple shade endmembers could be a

future improvement.

F. Adjustment for Perennial Snow and Ice

In glacierized areas or areas with perennial snow and ice,

R0 cannot be snow-free. If unaccounted for, the fsca estimates

will be too low in these areas. Thus, fice, the fraction of ice or

permanent snow in a pixel, is estimated using GLIMS, Global

Land Ice Measurements from Space [58]. Glacier outlines are

Fig. 2. Measured reflectance for Landsat 8 OLI: R (snow-covered) and R0

(snow-free) bands 1 to 7 and reflectance from the SPIReS solution. SPIReS

solution values are: f
(obs)
sca = 0.39, fshade = 0, rg = 619 µm, δ =7 ppmw.

converted to a binary mask with lower spatial resolution than

the target sensor (e.g., 100 m for a 463-m MODIS pixel or

10 m for a 30-m Landsat 8 OLI pixel), then converted to

a fractional value through upscaling via Gaussian pyramid

reduction [59], creating a fractional ice estimate. For areas

where the GLIMS database entries are created from Landsat

imagery, this approach does not resolve at 10-m resolution,

but for many areas of the Western U.S., glacier outlines are

available at 10 m [60].

G. Canopy Cover

To account for snow hidden by a forest canopy, it is

assumed that snow detected within canopy gaps persists below

the canopy cover as well. To estimate the canopy fraction,

the viewable gap fraction (VGF) is used, representing the frac-

tion of the surface between the canopy gaps that contributes

to the reflectance of the pixel.

The VGF varies with canopy structure, topography, and

satellite view angle. To adjust the VGF based on the MODIS

viewing geometry, we use the Geometrical Optical model [61].

For the canopy crown shape parameter b/r , the ratio of the

average vertical crown radius (b) to the average horizontal

crown radius (r), we use a value of 2.7, based on mean values

for Lodgepole Pine measured during the NASA Cold Land

Processes Experiment [62]. Static fractional canopy cover

estimates f (static)
cc are from the MODIS Global Vegetation

Yearly product [63]. As the MODIS off-nadir view angle

increases, the canopy cover viewed by the sensor increases

and the VGF decreases [64]; therefore, for MODIS, a dynamic

fcc estimate is computed that changes daily as the viewing

geometry changes (Section III-N).

The observed snow-covered area f (obs)
sca is adjusted to fsca

in a single step with the estimates of shade, perennial snow

and ice, and canopy cover. Fig. 2 shows how the values affect

the estimate of the fractional snow cover

fsca = min

�

1,
f (obs)
sca

1 − fshade − fice − fcc



. (14)



BAIR et al.: SNOW PROPERTY INVERSION FROM REMOTE SENSING (SPIReS) 7275

Fig. 3. Degenerate reflectance for patchy snow versus optically thin snow.
The second endmember is the Manzanita shrub (Arctostaphylos) from the
ECOSTRESS library [83]. In the snow/shrub mix, the fsca = 0.6, but the
snow is optically thick, while in the shrub under snow, fsca = 1 but has only
1 mm of water equivalent. Other relevant parameters are: rg = 44 µm and
µ = 2/3. MODIS band passes are shown in gray.

For Landsat 8 OLI, the Global Forest Cover Change prod-

uct [65] is used, and a more aggressive correction is employed.

If snow is detected in a pixel with canopy, i.e., f (obs)
sca > f

(min)

sca ,

with f (min)
sca as a minimum detection threshold (Section III-K),

then it is set to fsca = 1. This correction yielded nearly

unbiased results for Landsat 8 OLI (Section V), but the same

correction caused large positive biases with MODIS.

H. Interpolants

Mie scattering calculations and the iterative inversion

process (3) are computationally intensive. To speed computa-

tion, linear interpolants are used to estimate the Mie scattering

parameters for snow, dust, and soot at a range of radii of the

scatterer.

Interpolants were created for each MODIS or Landsat OLI

band used in the analyses from (13), for a range of grain sizes,

illumination angles, and dust or soot concentrations. Some

assumptions are necessary to effectively use the interpolants.

1) An optically thick snowpack is assumed. This is often

not the case, for example, near the snow line. The spectral

albedo of thin snow can be modeled, but the reflectance

spectra for patchy thick snow and continuous thin snow are

too similar to distinguish in the inversion (Fig. 3). 2) It is

assumed that albedo reduction from LAP occurs from dust

with a radius of 3 µm with measured complex refractive

indices from the Colorado Plateau [45] for the Mie scattering

calculations. This approach sometimes produces unrealistic

LAP concentrations, and usually both dust and black carbon

are present throughout the season at levels high enough to

affect the snow albedo [28], [66]. Like shallow snow, the effect

of LAP mixtures on the snow can be modeled, but adding an

additional unknown to an inversion with a multispectral sensor

is unlikely to improve LAP estimates. Moreover, considering

just one absorber mimics effects of multiple absorbers on snow

albedo, and the objective is to estimate albedo rather than

size and concentrations of absorbers. For the multispectral

instruments tested (MODIS and Landsat 8 OLI), almost iden-

tical albedo estimates are produced when varying the absorber

Fig. 4. Degenerate visible and near-infrared reflectance for dusty and sooty
snow. For the dusty snow, the concentration is 5 ppmw modeled with a 3-µm
dust radius. For the sooty snow, the concentration is 0.1 ppmw with a 0.5-µm
radius. Other parameters are: rg = 50 µm and µ = 2/3. MODIS band passes
are shown in gray.

(dust or soot) and particle size, owing to degenerate spectra for

many combinations of dust and black carbon in snow (Fig. 4).

I. Clustering

To further reduce computation time, pixels with similar

characteristics are grouped. Reflectance values in each scene

are rounded to the nearest hundredth and arranged into matri-

ces R (measured reflectance) and R0 (background or snow-free

reflectance), each of size N × M . The M columns cover the

bands and µ (the cosine of the illumination angle for R). There

are N rows, one for each pixel. A unique row function Fu

selects the pixels that are unique within a scalar tolerance tu
h

U, Eiu

i

= F
u

(�

R0, R, Eµ
�

, tu
)

. (15)

The Fu function compares each row to all the other rows and

only keeps those that have one or more columns that differ by

±tu . The result matrix U contains many fewer rows, with each

row having one or more columns with values that are unique

above tolerance tu , which was set at 0.05. The function also

returns vector Eiu , which contains indices for all rows to the

quasi-unique rows.

Each row in U is then solved for fsca, fshade, rg , and δ. The

remaining rows in the image that were part of R are then filled

in using Eiu . This approach is about 50× faster than iterating

over every pixel. The broadband albedo can then be calculated

using rg , δ, and µ [19].

J. Limitations When Solving for LAPs and Grain Size

With relatively coarse spectral resolution, multispectral sen-

sors such as MODIS and Landsat 8 OLI cannot distinguish

between dark objects in the visible wavelengths that emerge

as the snowpack recedes (such as vegetation) and increasing

LAP concentrations at the surface. Both phenomena typically

occur in the spring as local sources are uncovered [18], [67].

Likewise, analysis of MODIS time series results from SPIReS

of mixed pixels sometimes shows a grain size reduction

with decreasing fsca, a physically implausible result. The

explanation is that in mixed pixels with receding snow,

reflectance values in the SWIR bands increase as soil or

vegetation is exposed. Thus, dirty snow can sometimes be
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confused with fine grained snow which has elevated SWIR

reflectance compared to coarse-grained snow. Mixed pixels

with fine and coarse snow have different spectra, but the

MODIS and Landsat 8 OLI sensors lack the spectral accuracy

and resolution to distinguish between them, resulting in the

implausible receding fine-grained snow. Moreover, MODIS

often mistakes clouds for fine-grained snow, which further

causes a potential negative grain size bias. A related problem

is that grain size estimates are too small when compared with

in situ estimates [19] when the shade endmember is used.

This artifact results from darkening in the SWIR bands, which

grain growth causes, being mistakenly attributed to the shade

endmember during unmixing.

To address these problems, 1) Relatively pure pixels

( fshade < 0.01 and f (obs)
sca ≥ 0.90) are used to interpolate rg and

δ to pixels that are more heavily mixed; 2) LAP concentrations

are set to zero for smaller grain sizes (rg < 400 µm) since

LAP degradation of snow albedo increases with grain size [68]

and occurs more frequently at larger grain sizes [69]; 3) During

melt out, the MODIS estimated rg is fixed at a measured peak

value; 4) Likewise, the value of δ is fixed at that time, given

the difficulty of accurately measuring LAP concentration and

rg during rapid ablation.

K. Detection Limits

If no lower threshold is applied, any spectral unmixing

approach will map small portions of snow everywhere. Under

ideal conditions, SPIReS can detect snow down to 0.01 for

MODIS and 0.07 snow cover for Landsat 8 OLI (Section V).

However, because of clouds, skewed viewing geometry, and

sensor noise, we apply a conservative f (min)
sca = 0.10 to the

MODIS retrievals and set all pixels below this threshold to

fsca = 0. The Landsat 8 OLI f (min)
sca was set to 0.07. Grain

sizes and dust concentrations are then set to null for values of

zero fsca.

L. Elevation Filter

Without an elevation filter, persistently cloudy areas are

often mapped as snow, such as the California coast or Cal-

ifornia’s Central Valley during Tule fog. Thus, a minimum

elevation filter is used. For example, for the Sierra Nevada, all

pixels below 1000-m elevation are set to fsca = 0.

M. Persistence Filter

The daily temporal resolution of MODIS is leveraged

to reduce errors through persistence filters and time-space

smoothing.

Even after filtering for detection limits and elevation, invari-

ably some pixels that contain clouds are misidentified as snow.

Since clouds tend to persist for shorter periods than snow,

a persistence filter is applied to eliminate false positives (FPs)

for snow. The persistence filter Fp creates a 3-D logical

matrix (mask) P with dimensions x , y, and time. Starting with

an initial mask P0, and operating along the time dimension,

the filter modifies the mask using a centered moving window.

Pixels that fail to show snow for at least tp total days are

set to false across the window. Initial P0 is set with fsca ≥
f (min)
sca ∧ r > rg,min as snow (true) and false otherwise. The

minimum grain radius rg,min is set to 40 µm. The threshold

tp is set at 13 days of snow cover and the window size is set

at 45 days in the forward and reverse time (90 total days).

Pixels that fail the persistence filter are assigned fsca = 0.

For regions like the Eastern Himalaya that experience frequent

snow cover of short duration during the summer monsoon [70],

these thresholds likely require adjustment.

N. Smoothing Over Time

Temporal smoothing uses weighted splines for each pixel,

with weights based on viewing geometry and other sources.

Weights, normalized from 0 to 1, are computed from

the following attributes: cloud, cloud shadow, land versus

water, aerosol specification at 550 nm, presence of cirrus,

atmospheric correction, and adjacency. Viewing geometry is

specified by a pixel weight wp = (pk p⊥)−1 that penalizes

off-nadir views. The weights depend on the normalized along-

track pk and cross-track p⊥ dimensions of the pixel [71].

These pixel weights are then used to smooth fsca, rg , and

δ in the time dimension. Because MODIS is a scanning

instrument, considerable spatial distortion already occurs in

the projected MOD09GA values, and since rg and δ are

already interpolated spatially (Section III-J), we minimize

spatial smearing by smoothing only in the time dimension.

fsca is smoothed first with splines. Grain sizes rg and δ outside

realistic ranges are set to null values to be interpolated. For

rg , the acceptable range was set at 40–1190 µm. Although

snow grains can be smaller, grains below 40 µm could be ice

clouds instead. The upper 1190-µm limit was selected to be

just below the maximum value of 1200 µm, which identifies a

poor numerical solution. Similarly, for δ, the range was set at

0–950 ppmw, just below the 1000-ppmw maximum to iden-

tify poor solutions. After interpolation, any remaining values

above/below the limits were set to the maximum/minimum

values.

IV. VALIDATION

Validation focuses on: 1) viewable snow-covered area f (obs)
sca ;

2) snow cover fsca (including under canopy and shadowed

areas), i.e., from (14), and (3) broadband snow albedo.

f (obs)
sca for Landsat 8 OLI and MODIS is validated with nine

days of fine-spatial resolution multispectral optical data from

WorldView-2 and -3. This approach directly compares f (obs)
sca

from SPIReS with f (obs)
sca from WorldView. To validate snow

cover even beneath trees, we use snow depths measured from

the Airborne Snow Observatory (ASO) at 3-m spacing. fsca

from SPIReS using Landsat 8 OLI is compared with 5 ASO

flights, the low number owing to the lack of Landsat 8 imagery

on the days of ASO acquisition. fsca from SPIReS using

MODIS is compared with 71 ASO flights. ASO only collects

data in the spring.

Albedo is validated with terrain-corrected measurements

from CUES, the CRREL-UCSB Energy Site [72] on Mam-

moth Mountain, California (CRREL is the U.S. Army Cold
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Regions Research and Engineering Laboratory, UCSB is the

University of California, Santa Barbara).

To validate snow detection, fsca was converted to a binary

mask, true when fsca > 0. To validate viewable snow

detection, f (obs)
sca was converted to a binary mask, with lower

values set to zero using a range of f (min)
sca . From the mask,

identifications of TP (true positive), TN (true negative), FP, and

FN (false negative) support calculations of Precision, Recall,

and the F statistic

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F = 2 ×
Precision × Recall

Precision + Recall
. (16)

All measures vary from 0 to 1. High Precision indicates

few FPs (a pixel mistakenly classified as snow-covered). High

Recall indicates few FNs (a pixel mistakenly classified as not

snow-covered). The F statistic balances Precision and Recall.

Optimal f (min)
sca values were determined by maximizing the F

statistic.

To account for geolocational uncertainty, SPIReS output

is coarsened spatially by a factor of 4: 120 × 120 m2 for

Landsat 8 OLI and 2 × 2 km2 for MODIS. Validation data

from WorldView are available at about 0.5-m resolution; ASO

data are available at 3-m resolution.

A. Validation of Per-Pixel Viewable Snow Cover

To validate f (obs)
sca , panchromatically sharpened cloud-free

WorldView-2 and -3 data within 2 days of a Landsat 8

OLI acquisition or near-nadir MODIS acquisition were used.

We manually checked imagery to verify no snow fell between

the two acquisitions. The spatial resolution of these validation

data ranges from 0.34 to 0.55 m, depending on the view angle

of WorldView. Table I shows the summary statistics for nine

combinations of WorldView, Landsat 8, and MODIS scenes.

Validation images from December to June were selected to

account for variability in illumination conditions, snow cover,

and snow albedo. The imagery spans diverse locations across

California’s Sierra Nevada that represent heavily forested

western slopes, higher elevations, and drier eastern slopes. The

WorldView images range from well illuminated alpine scenes

above the tree line in June to heavily shadowed scenes below

the tree line in December. The snow-covered WorldView pixels

are assumed to be pure endmembers of 100% snow, which

are then coarsened to Landsat or MODIS spatial resolutions.

Neither WorldView, Landsat, nor MODIS can see through

thick tree canopies, so the validation compares snow that an

optical sensor identifies.

The volume of the WorldView data (e.g., 16 million 0.5-m

pixels comprise a 2-km pixel) and the size of the WorldView

scenes (on average 4.3 billion pixels) mean validation data

cannot efficiently be generated via manual classification of

pixels by an analyst. Two prior studies [7], [73] demon-

strated that pan-sharpened RGB WorldView data product can

be used to validate fsca, but both were limited to mostly

unvegetated, sunlit, snow-covered slopes in alpine regions.

Here, multispectral (including near-infrared bands) WorldView

data are used, extending the use of this imagery for snow

cover validation in more complex scenes with shade and

forest cover. These multispectral data are delivered as an

8-band product at ∼2-m resolution alongside a panchromatic

band at ∼0.5-m resolution. The 2-m data were pan-sharpened

using the Gram-Schmidt mode 2 algorithm with Generalized

Laplacian Pyramid decomposition (GS2-GLP) available in

the MATLAB pan sharpening toolbox v1.3 [74]. WorldView-

2 and -3 bands 2–7 overlap the bandpass of the 0.45–0.80-µm

panchromatic band, so only these five bands were sharpened.

The WorldView-3 multispectral bands include a red-edge band

from 0.706 to 0.746 µm and a near-infrared band from

0.772 to 0.890 µm, aiding in classification of snow cover.

A k-means classification was used with a final manual

adjustment to automate most pixel classifications and retain

the ability to fine-tune pixel output classes. This approach

balanced validation accuracy with data volume to quickly

generate a large library of diverse validation scenes.

A small fraction of each WorldView scene was randomly

subsampled and run through a cluster evaluation algorithm that

performed 5 replicates of k-means with 5–30 clusters. For each

replicate and each set of clusters, the Caliński–Harabasz eval-

uation criterion [75] was calculated. This criterion, the ratio

between the within cluster variance and the between clus-

ter variance, is largest at the number of clusters where

within-cluster variance is minimized and between-cluster vari-

ance is maximized. The maximum of this score during cluster

evaluation was used to determine the optimal number of

clusters for generating the validation data. Once the optimal

number of clusters was determined, k-means was run on a

data subset to determine the final centroids for each cluster.

These centroids were then used to classify the entire image into

individual clusters. To account for the range of illumination

in each scene and to accurately cluster all the viewable snow

pixels separately from other land cover types, multiple classes

for snow cover were used within each scene. To assign these

individual snow clusters to the final snow mask, each cluster

was classified as snow-covered or snow-free using random

subsamples of 5000 × 5000 pixels, with masks of the individ-

ual clusters to guide the decisions. This reduced the manual

classification burden from billions of decisions for individual

pixels within a scene to a maximum of 30 classification deci-

sions per image. The final validation snow mask generated was

the combination of all clusters that mapped snow in the image.

B. Validation of Snow Cover Even Under Trees

The ASO maps snow depth and models snow density to

calculate snow water equivalent (SWE) using a comounted

lidar and a spectrometer [76]. Estimated snow depth and

SWE for specific watersheds across the Western U.S. are

publicly available at the National Snow and Ice Data Center.

We mapped snow cover using the snow depth product at 3-m

resolution [77]. The lidar can penetrate forest canopies, and

returns are unaffected by terrain illumination, thus providing

the best available map of snow. The ASO 3-m snow depths

were treated as snow cover if depth exceeded 0.1 m; then,
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Fig. 5. SPIReS calculations of snow properties from MODIS over the California Sierra Nevada for 15 June 2019. Shown are: (a) fractional snow-covered
area fsca, (b) grain radius rg , (c) dust concentration δ, and (d) albedo, computed from (b) and (c). The gray area in each image shows the extent of the greater
Sierra Nevada watersheds.

they were coarsened to the analysis resolution and compared

to fsca. ASO limits its acquisitions to mostly high-altitude

basins in the spring when water managers plan releases from

reservoirs, but snow exists within the images across a range of

canopy covers. TN values ( fsca,ASO = 0) were excluded from

the RMSE because some scenes contain large snow-free areas

and most snow mapping algorithms work well at identifying

them [9].

C. Validation of Snow Albedo

Broadband snow albedo measurements were estimated from

radiometer measurements at CUES over the 2017–2019 water

years. Since the snow surface seen by the down looking

radiometer is rarely flat or level in windy areas, the incoming

radiometer measurements were corrected to the slope and

aspect of the snow surface [78] using hourly scans from a

terrestrial laser scanner that operates automatically. We applied

other filters to eliminate shadows cast by trees and to remove

times with diffuse lighting. Details are provided in [79] with

the following changes: 1) only broadband albedos at the local

MODIS overpass time (∼10:30 AM) were measured; 2) an

adjustable self-leveling boom was used to keep the down

looking radiometer about 1 m above the snow surface such

that trees and other objects were out of the field of view;

3) measurements when the snow surface was heavily sun

cupped (usually beginning in June) were discarded. Previous

work [19] shows that these features cause unrealistically dark

snow and nullify the plane assumption for the snow surface

correction. Also, to account for geolocational uncertainty and

spatial variability of the snowpack, the closest match from a

9-pixel neighborhood around CUES was used. Albedo from

Landsat 8 OLI was not validated since none of the coincident

WorldView or ASO scenes covered CUES.
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TABLE I

SUMMARY VALIDATION OF VIEWABLE SNOW COVER FOR LANDSAT 8 OLI AND MODIS USING 9 WORLDVIEW-2/3 SCENES.

Fig. 6. SPIReS calculations of snow properties from Landsat 8 OLI over Mount Shasta, California on 2 April 2017. Shown are: (a) false color RGB
image (bands 6, 5, 3), (b) fractional snow-covered area fsca , (c) grain radius rg , and (d) broadband albedo computed from (c) and the dust concentration δ
(not shown).

V. RESULTS

Fig. 5(a)–(d) shows fsca, rg , δ, and broadband snow albedo

over the Sierra Nevada for 15 June 2019 from MODIS.

Fig. 6(a)–(d) shows a false color image, fsca, rg , and broadband

snow albedo over Mount Shasta in northern California for

2 April 2017 from Landsat 8 OLI.

The WorldView snow masks are used to determine the lower

detection limit of f (obs)
sca , classifying snow only from the optical

properties of an individual pixel and the detection performance

with this lower threshold. The f (obs)
sca values have no other

thresholds or adjustments applied: no minimum elevation,

canopy cover, or ice fraction adjustments. To determine the

lower detection limit, the F statistic is calculated with a lower

detection limit threshold set on both WorldView and MODIS

or Landsat 8 OLI data at the sensor resolution. Pixels with

snow-covered area below the threshold in either data set were

considered free of snow, and any at or above the threshold

were considered snow-covered.

Fig. 7 shows the F statistic across a range of possible

limits for the lower detection limit of SPIReS from 0.01 to

0.20 snow-covered area for Landsat 8 OLI and MODIS.

Table I summarizes the binary statistics from the WorldView

scene validation for both Landsat 8 and MODIS at their

corresponding lower detection limits determined in Fig. 7.
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TABLE II

ERROR STATISTICS FOR SNOW COVER FROM MODIS, VALIDATED USING THE ASO.

Fig. 7. Lower detection limit of SPIReS for MODIS is maximized at a
0.01 lower threshold at F = 0.858 and for Landsat 8 OLI is maximized at a
0.07 threshold at F = 0.900.

Fig. 8. For all ASO scenes in the study, comparison of SPIReS calculation
of fractional snow cover to that measured by the ASO. (a) Comparison at
2-km resolution of MODIS to ASO. (b) Comparison at 120-m resolution of
Landsat 8 OLI to ASO.

The F statistic is maximized at 0.858 for a detection threshold

of 0.01 snow-covered area for the MODIS sensor at 463-m res-

olution. The F statistic is maximized at 0.900 for a detection

threshold of 0.07 snow-covered area for the Landsat 8 OLI

sensor at 30-m resolution.

SPIReS fsca values were validated against the ASO-derived

fsca with no lower detection limit applied to the ASO data.

Fig. 9. Variation of the F statistic with snow-covered area and canopy density
of SPIReS-calculated snow cover compared to snow cover derived from the
ASO. (a) MODIS. (b) Landsat 8 OLI.

Fig. 8(a) and Table II summarize the validation for 71 MODIS

images that corresponded to an ASO image, and Fig. 8(b) and

Table III show validation statistics for the five Landsat 8 OLI

scenes that corresponded to an ASO image. Fig. 9 shows the F

statistic across binned values of snow-covered area and canopy

cover. For both MODIS and Landsat, the F statistic improves

slightly with fsca. The F statistic decreases as canopy cover

increases because the canopy obfuscates the snow. The RMSE

and bias do not show trends related to either snow-covered area

or canopy density.

Albedo was validated at CUES for water years

2017–2019 across all 186 days with valid measurements. The

mean bias is 0.67% and the mean RMSE across all days and

all years is 4.6% (Fig. 10). The remotely sensed albedo tracks

with measurements during accumulation and throughout the

melt season, though it tends to underestimate the higher

values earlier in the season and overestimate the lower values

later in the season. Some of these differences owe from the

coarser pixel scale of the SPIReS estimate versus the plot

scale of the CUES data.
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TABLE III

ERROR STATISTICS FOR SNOW COVER FROM LANDSAT 8 OLI, VALIDATED USING THE ASO

Fig. 10. Validation of terrain-corrected snow albedo from MODIS at CUES on Mammoth Mountain, California for water years 2017 to 2019. Gaps result
from clouds or periods of insufficient snow cover.

VI. DISCUSSION AND CONCLUSION

For mapping snow, SPIReS performs favorably using a

physics-based approach that generates the “right answer for

right reason” [80]. In other approaches, the quality of the

validation data and error metrics used vary, making intercom-

paring difficult. Seemingly subtle differences can greatly affect

results, such as including areas with no snow in RMSE calcula-

tion. Here, extensive fine-resolution snow cover validation data

have been employed, derived from multiple platforms. As with

all approaches using passive optical measurements, the ability

to detect snow degrades as canopy cover increases. In forests

and in other areas of low illumination, adjustments are made

that assume similar snow cover to areas that can be observed.

Likewise, the broadband albedo errors compare closely with

those from MODSCAG/MODDRFS in an extensive validation

study that uses terrain-corrected albedos that are more accurate

than those from empirical age-based formulae [19].

New in SPIRES are: 1) the ability to measure concentration

of LAPs; 2) use of only snow and snow-free endmembers;

3) integrated cloud masking and smoothing; and 4) inter-

polants and clustering to reduce computation time. Since

the source code is available in a version-controlled open

repository, the improvements allow users to process imagery

on demand.

We will expand the use of SPIReS to other multispectral and

hyperspectral sensors. Future improvements include treatment

of shadows, sophisticated methods for selecting snow-free

endmembers, and sensor fusion.

DATA STATEMENT

The source code for v1.0 release of SPIRES is at

https://github.com/edwardbair/SPIRES/releases/tag/v1.0. The

spacetime cubes of fractional snow cover, grain size, and
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dust concentration covering the Sierra Nevada for water

years 2001–2019 (October through September) are in the

IEEE Dataport [81], along with an expanded Excel file that

shows statistics for all scenes in Tables I and II. WorldView-

2/3 scenes and corresponding MODIS and Landsat images are

in Zenodo [82]. Snow depths at 3-m spatial resolution from

the ASO images are available from the National Snow and Ice

Data Center [77]. Landsat 8 OLI and MODIS data are avail-

able from several sources, for example, the U.S. Geological

Survey Earth Explorer (https://earthexplorer.usgs.gov/).

ACKNOWLEDGMENT

We appreciate insightful, timely comments from two

reviewers and the editor.

REFERENCES

[1] S. Gascoin, M. Grizonnet, M. Bouchet, G. Salgues, and O. Hagolle,
“Theia snow collection: high-resolution operational snow cover maps
from Sentinel-2 and Landsat-8 data,” Earth Syst. Sci. Data, vol. 11,
no. 2, pp. 493–514, Apr. 2019, doi: 10.5194/essd-11-493-2019.

[2] National Academies of Sciences, Engineering, and Medicine, Thriving

on Our Changing Planet: A Decadal Strategy for Earth Observation

from Space, National Academies Press, Washington, DC, USA, 2018,
p. 716.

[3] N. P. Molotch, M. T. Durand, B. Guan, S. A. Margulis, and R. E. Davis,
“Snow cover depletion curves and snow water equivalent reconstruc-
tion,” in Remote Sensing of the Terrestrial Water Cycle, V. Lakshmi
et al., Eds. Washington, DC, USA: Amer. Geophys. Union, 2014,
pp. 157–173, doi: 10.1002/9781118872086.ch10.

[4] J. Dozier, “Spectral signature of alpine snow cover from the Landsat the-
matic mapper,” Remote Sens. Environ., vol. 28, pp. 9–22, Apr./Jun. 1989,
doi: 10.1016/0034-4257(89)90101-6.

[5] G. Schaepman-Strub, M. E. Schaepman, T. H. Painter, S. Dangel, and
J. V. Martonchik, “Reflectance quantities in optical remote sensing—
Definitions and case studies,” Remote Sens. Environ., vol. 103, no. 1,
pp. 27–42, Jul. 2006, doi: 10.1016/j.rse.2006.03.002.

[6] D. K. Hall, G. A. Riggs, J. L. Foster, and S. V. Kumar, “Development
and evaluation of a cloud-gap-filled MODIS daily snow-cover product,”
Remote Sens. Environ., vol. 114, no. 3, pp. 496–503, Mar. 2010, doi:
10.1016/j.rse.2009.10.007.

[7] D. Selkowitz, R. Forster, and M. Caldwell, “Prevalence of pure versus
mixed snow cover pixels across spatial resolutions in alpine environ-
ments,” Remote Sens., vol. 6, no. 12, pp. 12478–12508, Dec. 2014, doi:
10.3390/rs61212478.

[8] V. V. Salomonson and I. Appel, “Development of the Aqua MODIS
NDSI fractional snow cover algorithm and validation results,” IEEE

Trans. Geosci. Remote Sens., vol. 44, no. 7, pp. 1747–1756, Jul. 2006,
doi: 10.1109/TGRS.2006.876029.

[9] K. Rittger, T. H. Painter, and J. Dozier, “Assessment of methods
for mapping snow cover from MODIS,” Adv. Water Resour., vol. 51,
pp. 367–380, Jan. 2013, doi: 10.1016/j.advwatres.2012.03.002.

[10] S. Gascoin et al., “Estimating fractional snow cover in open terrain from
Sentinel-2 using the normalized difference snow index,” Remote Sens.,
vol. 12, no. 18, p. 2904, Sep. 2020, doi: 10.3390/rs12182904.

[11] D. A. Roberts, M. O. Smith, and J. B. Adams, “Green vegeta-
tion, nonphotosynthetic vegetation, and soils in AVIRIS data,” Remote

Sens. Environ., vol. 44, nos. 2–3, pp. 255–269, 1993, doi: 10.1016/
0034-4257(93)90020-X.

[12] W. Rosenthal and J. Dozier, “Automated mapping of montane snow
cover at subpixel resolution from the landsat thematic mapper,” Water

Resour. Res., vol. 32, no. 1, pp. 115–130, Jan. 1996, doi: 10.1029/
95WR02718.

[13] T. H. Painter, K. Rittger, C. McKenzie, P. Slaughter, R. E. Davis,
and J. Dozier, “Retrieval of subpixel snow covered area, grain size,
and albedo from MODIS,” Remote Sens. Environ., vol. 113, no. 4,
pp. 868–879, Apr. 2009, doi: 10.1016/j.rse.2009.01.001.

[14] A. W. Nolin, J. Dozier, and L. A. K. Mertes, “Mapping alpine snow
using a spectral mixture modeling technique,” Ann. Glaciology, vol. 17,
pp. 121–124, 1993.

[15] K. Aalstad, S. Westermann, and L. Bertino, “Evaluating satellite
retrieved fractional snow-covered area at a high-arctic site using ter-
restrial photography,” Remote Sens. Environ., vol. 239, Mar. 2020,
Art. no. 111618, doi: 10.1016/j.rse.2019.111618.

[16] A. W. Nolin and J. Dozier, “A hyperspectral method for remotely sensing
the grain size of snow,” Remote Sens. Environ., vol. 74, pp. 207–216,
Nov. 2000, doi: 10.1016/S0034-4257(00)00111-5.

[17] T. H. Painter, J. Dozier, D. A. Roberts, R. E. Davis, and R. O. Green,
“Retrieval of subpixel snow-covered area and grain size from imag-
ing spectrometer data,” Remote Sens. Environ., vol. 85, pp. 64–77,
Apr. 2003, doi: 10.1016/S0034-4257(02)00187-6.

[18] T. H. Painter, A. C. Bryant, and S. M. Skiles, “Radiative forcing by light
absorbing impurities in snow from MODIS surface reflectance data,”
Geophys. Res. Lett., vol. 39, no. 17, Sep. 2012, Art. no. L17502, doi:
10.1029/2012GL052457.

[19] E. H. Bair, K. Rittger, S. M. Skiles, and J. Dozier, “An examination
of snow albedo estimates from MODIS and their impact on snow
water equivalent reconstruction,” Water Resour. Res., vol. 55, no. 9,
pp. 7826–7842, Sep. 2019, doi: 10.1029/2019wr024810.

[20] W. J. Lawton and E. A. Sylvestre, “Self modeling curve resolution,”
Technometrics, vol. 13, no. 3, pp. 617–633, 1971, doi: 10.2307/1267173.

[21] J. B. Adams, M. O. Smith, and P. E. Johnson, “Spectral mixture
modeling: A new analysis of rock and soil types at the Viking Lander 1
site,” J. Geophys., vol. 91, no. B8, pp. 8098–8112, 1986, doi: 10.1029/
JB091iB08p08098.

[22] W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt.,
vol. 19, no. 9, pp. 1505–1509, 1980, doi: 10.1364/AO.19.001505.

[23] K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically
stable algorithm for discrete-ordinate-method radiative transfer in mul-
tiple scattering and emitting layered media,” Appl. Opt., vol. 27, no. 12,
pp. 2502–2509, 1988, doi: 10.1364/AO.27.002502.

[24] E. F. Vermote and A. Vermeulen. (1999). MODIS Algorithm The-

oretical Background Document, Atmospheric Correction Algorithm:
Spectral Reflectances (MOD09GA) Version 4.0. NASA. Accessed:
Oct. 20, 2020. [Online]. Available: https://modis.gsfc.nasa.gov/data/atbd/
atbd_mod08.pdf

[25] T. H. Painter and J. Dozier, “The effect of anisotropic reflectance
on imaging spectroscopy of snow properties,” Remote Sens. Environ.,
vol. 89, no. 4, pp. 409–422, Feb. 2004, doi: 10.1016/j.rse.2003.09.007.

[26] S. G. Warren and A. D. Clarke, “Soot in the atmosphere and snow sur-
face of Antarctica,” J. Geophys. Res., vol. 95, pp. 1811–1816, Feb. 1990,
doi: 10.1029/JD095iD02p01811.

[27] S. M. Skiles, M. Flanner, J. M. Cook, M. Dumont, and T. H. Painter,
“Radiative forcing by light-absorbing particles in snow,” Nature Climate

Change, vol. 8, no. 11, pp. 964–971, Nov. 2018, doi: 10.1038/s41558-
018-0296-5.

[28] R. Gautam, N. C. Hsu, W. K.-M. Lau, and T. J. Yasunari, “Satellite
observations of desert dust-induced Himalayan snow darkening,” Geo-

phys. Res. Lett., vol. 40, no. 5, pp. 988–993, Mar. 2013, doi: 10.1002/grl.
50226.

[29] C. Sarangi et al., “Dust dominates high-altitude snow darkening and
melt over high-mountain Asia,” Nature Climate Change, vol. 10, no. 11,
pp. 1045–1051, Nov. 2020, doi: 10.1038/s41558-020-00909-3.

[30] P. Sirguey, R. Mathieu, and Y. Arnaud, “Subpixel monitoring of the sea-
sonal snow cover with MODIS at 250 m spatial resolution in the southern
alps of New Zealand: Methodology and accuracy assessment,” Remote

Sens. Environ., vol. 113, no. 1, pp. 160–181, Jan. 2009, doi: 10.1016/j.
rse.2008.09.008.

[31] E. Vermote, C. Justice, M. Claverie, and B. Franch, “Preliminary analysis
of the performance of the landsat 8/OLI land surface reflectance prod-
uct,” Remote Sens. Environ., vol. 185, pp. 46–56, Nov. 2016, doi: 10.
1016/j.rse.2016.04.008.

[32] J. L. Dwyer, D. P. Roy, B. Sauer, C. B. Jenkerson, H. K. Zhang, and
L. Lymburner, “Analysis ready data: Enabling analysis of the Landsat
archive,” Remote Sens., vol. 10, p. 1363, Sep. 2018, doi: 10.3390/
rs10091363.

[33] E. F. Vermote, N. Z. E. Saleous, and C. O. Justice, “Atmospheric
correction of MODIS data in the visible to middle infrared: First results,”
Remote Sens. Environ., vol. 83, pp. 97–111, Nov. 2002, doi: 10.1016/
S0034-4257(02)00089-5.

[34] T. S. Kostadinov et al., “Watershed-scale mapping of fractional snow
cover under conifer forest canopy using lidar,” Remote Sens. Environ.,
vol. 222, pp. 34–49, Mar. 2019, doi: 10.1016/j.rse.2018.11.037.

[35] T. Stillinger, D. A. Roberts, N. M. Collar, and J. Dozier, “Cloud masking
for landsat 8 and MODIS Terra over snow-covered terrain: Error analysis
and spectral similarity between snow and cloud,” Water Resour. Res.,
vol. 55, no. 7, pp. 6169–6184, Jul. 2019, doi: 10.1029/2019wr024932.

http://dx.doi.org/10.5194/essd-11-493-2019
http://dx.doi.org/10.1002/9781118872086.ch10
http://dx.doi.org/10.1016/0034-4257(89)90101-6
http://dx.doi.org/10.1016/j.rse.2006.03.002
http://dx.doi.org/10.1016/j.rse.2009.10.007
http://dx.doi.org/10.3390/rs61212478
http://dx.doi.org/10.1109/TGRS.2006.876029
http://dx.doi.org/10.1016/j.advwatres.2012.03.002
http://dx.doi.org/10.3390/rs12182904
http://dx.doi.org/10.1016/j.rse.2009.01.001
http://dx.doi.org/10.1016/j.rse.2019.111618
http://dx.doi.org/10.1016/S0034-4257(00)00111-5
http://dx.doi.org/10.1016/S0034-4257(02)00187-6
http://dx.doi.org/10.1029/2012GL052457
http://dx.doi.org/10.1029/2019wr024810
http://dx.doi.org/10.2307/1267173
http://dx.doi.org/10.1364/AO.19.001505
http://dx.doi.org/10.1364/AO.27.002502
http://dx.doi.org/10.1016/j.rse.2003.09.007
http://dx.doi.org/10.1029/JD095iD02p01811
http://dx.doi.org/10.1038/s41558-018-0296-5
http://dx.doi.org/10.1038/s41558-018-0296-5
http://dx.doi.org/10.1038/s41558-020-00909-3
http://dx.doi.org/10.1016/j.rse.2018.11.037
http://dx.doi.org/10.1029/2019wr024932
http://dx.doi.org/10.1016/0034-4257(93)90020-X
http://dx.doi.org/10.1016/0034-4257(93)90020-X
http://dx.doi.org/10.1029/95WR02718
http://dx.doi.org/10.1029/95WR02718
http://dx.doi.org/10.1029/JB091iB08p08098
http://dx.doi.org/10.1029/JB091iB08p08098
http://dx.doi.org/10.1002/grl.50226
http://dx.doi.org/10.1002/grl.50226
http://dx.doi.org/10.1016/j.rse.2008.09.008
http://dx.doi.org/10.1016/j.rse.2008.09.008
http://dx.doi.org/10.1016/j.rse.2016.04.008
http://dx.doi.org/10.1016/j.rse.2016.04.008
http://dx.doi.org/10.3390/rs10091363
http://dx.doi.org/10.3390/rs10091363
http://dx.doi.org/10.1016/S0034-4257(02)00089-5
http://dx.doi.org/10.1016/S0034-4257(02)00089-5


BAIR et al.: SNOW PROPERTY INVERSION FROM REMOTE SENSING (SPIReS) 7283

[36] M. L. Carroll, C. M. DiMiceli, M. R. Wooten, A. B. Hubbard,
R. A. Sohlberg, and J. R. G. Townshend, MOD44W v006: MODIS/Terra

Land Water Mask Derived From MODIS and SRTM L3 Global 250m SIN
Grid. Washington, DC, USA: NASA EOSDIS Land Processes DAAC,
2017, doi: 10.5067/MODIS/MOD44W.006.

[37] L. Yang et al., “A new generation of the united states national land cover
database: Requirements, research priorities, design, and implementation
strategies,” ISPRS J. Photogramm. Remote Sens., vol. 146, pp. 108–123,
Dec. 2018, doi: 10.1016/j.isprsjprs.2018.09.006.

[38] U.S. Geological Survey. USGS National Hydrography Dataset (NHD)

Downloadable Data Collection, USGS National Geospatial Technical

Operations Center. [Online]. Available: http://nhd.usgs.gov

[39] V. V. Salomonson and I. Appel, “Estimating fractional snow cover from
MODIS using the normalized difference snow index,” Remote Sens.
Environ., vol. 89, no. 3, pp. 351–360, Feb. 2004, doi: 10.1016/j.rse.2003.
10.016.

[40] S. G. Warren, “Optical properties of ice and snow,” Phil. Trans.
Roy. Soc. A, Math., Phys. Eng. Sci., vol. 377, no. 2146, Jun. 2019,
Art. no. 20180161, doi: 10.1098/rsta.2018.0161.

[41] S. G. Warren, “Optical properties of snow,” Rev. Geophys., vol. 20, no. 1,
pp. 67–89, 1982, doi: 10.1029/RG020i001p00067.

[42] C. F. Bohren, “Applicability of effective-medium theories to problems
of scattering and absorption by nonhomogeneous atmospheric particles,”
J. Atmos. Sci., vol. 43, pp. 468–475, Mar. 1986, doi: 10.1175/1520-
0469(1986)043<0468:AOEMTT>2.0.CO.2.

[43] H. M. Nussenzveig and W. J. Wiscombe, “Complex angular momen-
tum approximation to hard-core scattering,” Phys. Rev. A, Gen. Phys.,
vol. 43, no. 5, pp. 2093–2112, Mar. 1991, doi: 10.1103/PhysRevA.43.
2093.

[44] S. G. Warren and R. E. Brandt, “Optical constants of ice from
the ultraviolet to the microwave: A revised compilation,” J. Geo-
phys. Res., vol. 113, no. D14, 2008, Art. no. D14220, doi: 10.1029/
2007JD009744.

[45] S. M. Skiles, T. Painter, and G. S. Okin, “A method to retrieve the
spectral complex refractive index and single scattering optical properties
of dust deposited in mountain snow,” J. Glaciology, vol. 63, no. 237,
pp. 133–147, Feb. 2017, doi: 10.1017/jog.2016.126.

[46] T. C. Bond and R. W. Bergstrom, “Light absorption by carbonaceous
particles: An investigative review,” Aerosol Sci. Technol., vol. 40, no. 1,
pp. 27–67, Jan. 2006, doi: 10.1080/02786820500421521.

[47] W. E. Meador and W. R. Weaver, “Two-stream approximations to
radiative transfer in planetary atmospheres—A unified description of
existing methods and a new improvement,” J. Atmos. Sci., vol. 37,
pp. 630–643, Mar. 1980, doi: 10.1175/1520-0469(1980)037<0630:
TSATRT>2.0.CO.2.

[48] J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, “The delta-eddington
approximation for radiative flux transfer,” J. Atmos. Sci., vol. 33,
no. 12, pp. 2452–2459, Dec. 1976, doi: 10.1175/1520-0469(1976)033<
2452:TDEAFR>2.0.CO.2.

[49] W. J. Wiscombe and S. G. Warren, “A model for the spectral albedo
of snow, I, pure snow,” J. Atmos. Sci., vol. 37, no. 12, pp. 2712–2733,
1980, doi: 10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO.2.

[50] C. A. Gueymard, “The SMARTS spectral irradiance model after
25 years: New developments and validation of reference spectra,”
Sol. Energy, vol. 187, pp. 233–253, Jul. 2019, doi: 10.1016/j.solener.
2019.05.048.

[51] J. Nocedal and S. Wright, Numerical Optimization. New York, NY, USA:
Springer, 2006, p. 664.

[52] R. L. Branham, “Introduction to overdetermined systems,” in Sci-
entific Data Analysis: An Introduction to Overdetermined Systems,
R. L. Branham Ed. New York, NY, USA: Springer, 1990, pp. 67–83,
doi: 10.1007/978-1-4612-3362-6_4.

[53] C. Quintano, A. Fernández-Manso, Y. E. Shimabukuro, and G. Pereira,
“Spectral unmixing,” Int. J. Remote Sens., vol. 33, no. 17,
pp. 5307–5340, Sep. 2012, doi: 10.1080/01431161.2012.661095.

[54] T. H. Painter, D. A. Roberts, R. O. Green, and J. Dozier, “The effect
of grain size on spectral mixture analysis of snow-covered area from
AVIRIS data,” Remote Sens. Environ., vol. 65, pp. 320–332, Sep. 1998,
doi: 10.1016/S0034-4257(98)00041-8.

[55] J. B. Adams and A. R. Gillespie, Remote Sensing of Landscapes with

Spectral Images: A Physical Modeling Approach. Cambridge, U.K.:
Cambridge Univ. Press, 2006, p. 378.

[56] M. O. Smith, S. L. Ustin, J. B. Adams, and A. R. Gillespie, “Vegetation
in deserts: I. A regional measure of abundance from multispectral
images,” Remote Sens. Environ., vol. 31, pp. 1–26, Jan. 1990, doi: 10.
1016/0034-4257(90)90074-V.

[57] G. J. Fitzgerald, P. J. Pinter, D. J. Hunsaker, and T. R. Clarke, “Multiple
shadow fractions in spectral mixture analysis of a cotton canopy,”
Remote Sens. Environ., vol. 97, no. 4, pp. 526–539, Sep. 2005, doi:
10.1016/j.rse.2005.05.020.

[58] B. Raup, A. Racoviteanu, S. J. S. Khalsa, C. Helm, R. Armstrong, and
Y. Arnaud, “The GLIMS geospatial glacier database: A new tool for
studying glacier change,” Global Planet. Change, vol. 56, nos. 1–2,
pp. 101–110, Mar. 2007, doi: 10.1016/j.gloplacha.2006.07.018.

[59] P. Burt and E. Adelson, “The Laplacian pyramid as a compact image
code,” IEEE Trans. Commun., vol. 31, no. 4, pp. 532–540, Apr. 1983,
doi: 10.1109/TCOM.1983.1095851.

[60] A. G. Fountain, B. Glenn, and H. J. Basagic, “The geography of glaciers
and perennial snowfields in the American west,” Arctic, Antarctic, Alpine

Res., vol. 49, no. 3, pp. 391–410, Aug. 2017, doi: 10.1657/AAAR0017-
003.

[61] J. Liu, R. A. Melloh, C. E. Woodcock, R. E. Davis, and E. S. Ochs,
“The effect of viewing geometry and topography on viewable gap
fractions through forest canopies,” Hydrolog. Processes, vol. 18, no. 18,
pp. 3595–3607, Dec. 2004, doi: 10.1002/hyp.5802.

[62] J. Liu, C. E. Woodcock, R. A. Melloh, R. E. Davis, C. McKenzie, and
T. H. Painter, “Modeling the view angle dependence of gap fractions
in forest canopies: Implications for mapping fractional snow cover
using optical remote sensing,” J. Hydrometeorology, vol. 9, no. 5,
pp. 1005–1019, Oct. 2008, doi: 10.1175/2008JHM866.1.

[63] C. Dimiceli, M. Carroll, R. Sohlberg, D. H. Kim, M. Kelly, and
J. R. G. Townshend, MOD44B v006: MODIS/Terra Vegetation Contin-

uous Fields Yearly L3 Global 250m SIN Grid. Washington, DC, USA:
NASA. EOSDIS Land Processes DAAC, 2015, doi: 10.5067/MODIS/
MOD44B.006.

[64] K. Rittger, M. S. Raleigh, J. Dozier, A. F. Hill, J. A. Lutz, and
T. H. Painter, “Canopy adjustment and improved cloud detection for
remotely sensed snow cover mapping,” Water Resour. Res., vol. 56, no. 6,
Jun. 2020, Art. no. e2019WR024914, doi: 10.1029/2019WR024914.

[65] J. Townshend, GFCC30TC V003: Global Forest Cover Change (GFCC)

Tree Cover Multi-Year Global 30 m. Washington, DC, USA: NASA
EOSDIS Land Processes DAAC, 2015, doi: 10.5067/MEaSUREs/
GFCC/GFCC30TC.003.

[66] K. M. Sterle, J. R. McConnell, J. Dozier, R. Edwards, and
M. G. Flanner, “Retention and radiative forcing of black carbon in
Eastern Sierra Nevada snow,” Cryosphere, vol. 7, no. 1, pp. 365–374,
Feb. 2013, doi: 10.5194/tc-7-365-2013.

[67] S. G. Warren, “Can black carbon in snow be detected by remote
sensing?” J. Geophys. Res., Atmos., vol. 118, no. 2, pp. 779–786,
Jan. 2013, doi: 10.1029/2012jd018476.

[68] S. G. Warren and W. J. Wiscombe, “A model for the spectral albedo
of snow, II, snow containing atmospheric aerosols,” J. Atmos. Sci.,
vol. 37, pp. 2734–2745, Dec. 1980, doi: 10.1175/1520-0469(1980)037<
2734:AMFTSA>2.0.CO.2.

[69] S. M. Skiles and T. H. Painter, “Toward understanding direct absorption
and grain size feedbacks by dust radiative forcing in snow with coupled
snow physical and radiative transfer modeling,” Water Resour. Res.,
vol. 55, no. 8, pp. 7362–7378, Aug. 2019, doi: 10.1029/2018wr024573.

[70] E. Johnson and S. Rupper, “An examination of physical processes
that trigger the albedo-feedback on glacier surfaces and implications
for regional glacier mass balance across high Mountain Asia,” Fron-

tiers Earth Sci., vol. 8, p. 129, Apr. 2020, doi: 10.3389/feart.2020.
00129.

[71] J. Dozier, T. H. Painter, K. Rittger, and J. E. Frew, “Time–space
continuity of daily maps of fractional snow cover and albedo from
MODIS,” Adv. Water Resour., vol. 31, no. 11, pp. 1515–1526, Nov. 2008,
doi: 10.1016/j.advwatres.2008.08.011.

[72] E. H. Bair, J. Dozier, R. E. Davis, M. T. Colee, and K. J. Claffey,
“CUES—A study site for measuring snowpack energy balance in the
Sierra Nevada,” Frontiers Earth Sci., vol. 3, p. 58, Sep. 2015, doi: 10.
3389/feart.2015.00058.

[73] E. H. Bair, K. Rittger, R. E. Davis, T. H. Painter, and J. Dozier,
“Validating reconstruction of snow water equivalent in California’s
Sierra Nevada using measurements from the NASA airborne snow obser-
vatory,” Water Resour. Res., vol. 52, no. 11, pp. 8437–8460, Nov. 2016,
doi: 10.1002/2016wr018704.

[74] G. Vivone et al., “A critical comparison among pansharpening
algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5,
pp. 2565–2586, May 2015, doi: 10.1109/Tgrs.2014.2361734.

[75] T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Commun. Statist. Theory Methods, vol. 3, no. 1, pp. 1–27, 1974, doi:
10.1080/03610927408827101.

http://dx.doi.org/10.5067/MODIS/MOD44W.006
http://dx.doi.org/10.1016/j.isprsjprs.2018.09.006
http://dx.doi.org/10.1098/rsta.2018.0161
http://dx.doi.org/10.1029/RG020i001p00067
http://dx.doi.org/10.1175/1520-0469(1986)043<0468:AOEMTT>2.0.CO.2
http://dx.doi.org/10.1175/1520-0469(1986)043<0468:AOEMTT>2.0.CO.2
http://dx.doi.org/10.1017/jog.2016.126
http://dx.doi.org/10.1080/02786820500421521
http://dx.doi.org/10.1175/1520-0469(1980)037<2712:AMFTSA>2.0.CO.2
http://dx.doi.org/10.1007/978-1-4612-3362-6_4
http://dx.doi.org/10.1080/01431161.2012.661095
http://dx.doi.org/10.1016/S0034-4257(98)00041-8
http://dx.doi.org/10.1016/j.rse.2005.05.020
http://dx.doi.org/10.1016/j.gloplacha.2006.07.018
http://dx.doi.org/10.1109/TCOM.1983.1095851
http://dx.doi.org/10.1657/AAAR0017-003
http://dx.doi.org/10.1657/AAAR0017-003
http://dx.doi.org/10.1657/AAAR0017-003
http://dx.doi.org/10.1657/AAAR0017-003
http://dx.doi.org/10.1002/hyp.5802
http://dx.doi.org/10.1175/2008JHM866.1
http://dx.doi.org/10.1029/2019WR024914
http://dx.doi.org/10.5194/tc-7-365-2013
http://dx.doi.org/10.1029/2012jd018476
http://dx.doi.org/10.1029/2018wr024573
http://dx.doi.org/10.1016/j.advwatres.2008.08.011
http://dx.doi.org/10.1002/2016wr018704
http://dx.doi.org/10.1109/Tgrs.2014.2361734
http://dx.doi.org/10.1080/03610927408827101
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1016/j.rse.2003.10.016
http://dx.doi.org/10.1103/PhysRevA.43.2093
http://dx.doi.org/10.1103/PhysRevA.43.2093
http://dx.doi.org/10.1029/2007JD009744
http://dx.doi.org/10.1029/2007JD009744
http://dx.doi.org/10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO.2
http://dx.doi.org/10.1175/1520-0469(1980)037<0630:TSATRT>2.0.CO.2
http://dx.doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO.2
http://dx.doi.org/10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO.2
http://dx.doi.org/10.1016/j.solener.2019.05.048
http://dx.doi.org/10.1016/j.solener.2019.05.048
http://dx.doi.org/10.1016/0034-4257(90)90074-V
http://dx.doi.org/10.1016/0034-4257(90)90074-V
http://dx.doi.org/10.5067/MODIS/MOD44B.006
http://dx.doi.org/10.5067/MODIS/MOD44B.006
http://dx.doi.org/10.5067/MEaSUREs/GFCC/GFCC30TC.003
http://dx.doi.org/10.5067/MEaSUREs/GFCC/GFCC30TC.003
http://dx.doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO.2
http://dx.doi.org/10.1175/1520-0469(1980)037<2734:AMFTSA>2.0.CO.2
http://dx.doi.org/10.3389/feart.2020.00129
http://dx.doi.org/10.3389/feart.2020.00129
http://dx.doi.org/10.3389/feart.2015.00058
http://dx.doi.org/10.3389/feart.2015.00058


7284 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 9, SEPTEMBER 2021

[76] T. H. Painter et al., “The airborne snow observatory: Fusion of scanning
lidar, imaging spectrometer, and physically-based modeling for map-
ping snow water equivalent and snow albedo,” Remote Sens. Environ.,
vol. 184, pp. 139–152, Oct. 2016, doi: 10.1016/j.rse.2016.06.018.

[77] T. Painter. ASO L4 Lidar Snow Depth 3m UTM Grid, Version 1. NASA,
Washington, DC, USA: National Snow and Ice Data Center, 2018, doi:
10.5067/KIE9QNVG7HP0.

[78] T. H. Painter, S. M. Skiles, J. S. Deems, A. C. Bryant, and C. C. Landry,
“Dust radiative forcing in snow of the upper colorado river basin: 1. A 6
year record of energy balance, radiation, and dust concentrations,” Water
Resour. Res., vol. 48, no. 7, Jul. 2012, doi: 10.1029/2012wr011985.

[79] E. H. Bair, R. E. Davis, and J. Dozier, “Hourly mass and snow
energy balance measurements from Mammoth mountain, CA USA,
2011–2017,” Earth Syst. Sci. Data, vol. 10, no. 1, pp. 549–563,
Mar. 2018, doi: 10.5194/essd-10-549-2018.

[80] J. W. Kirchner, “Getting the right answers for the right reasons: Linking
measurements, analyses, and models to advance the science of hydrol-
ogy,” Water Resour. Res., vol. 42, no. 3, Mar. 2006, Art. no. W03S04,
doi: 10.1029/2005WR004362.

[81] E. H. Bair, T. Stillinger, and J. Dozier, “Sierra Nevada snow 2001-
2019, validation for SPIReS,” IEEE Dataport, to be published, doi:
10.21227/w6xt-8y49.

[82] T. Stillinger and N. Bair, Viewable Snow Covered Area Valida-

tion Masks Over Rugged and Forested Terrain. Zenodo, 2020, doi:
10.5281/zenodo.4031446.

[83] S. K. Meerdink, S. J. Hook, D. A. Roberts, and E. A. Abbott, “The
ECOSTRESS spectral library version 1.0,” Remote Sens. Environ.,
vol. 230, Sep. 2019, Art. no. 111196, doi: 10.1016/j.rse.2019.05.015.

Edward H. (Ned) Bair received the B.A. degree
(magna cum laude) in economics from Bowdoin
College, Brunswick, ME, USA, in 2003, and the
Ph.D. degree in environmental science and man-
agement from the University of California, Santa
Barbara, CA, USA, in 2011.

He has been a member of the Research Faculty
at UC Santa Barbara since 2011. He uses remote
sensing and field techniques to study the snow-
pack. He specializes in snow mapping, energy bal-
ance modeling, and avalanche formation in Montane

regions. His work spans a range of scales, from a few meters at the plot scale
to thousands of square kilometers at the basin and mountain range scale. He
has over 50 publications on snow hydrology and snow avalanches. He has
worked for the US Army Corps of Engineers and as a Consultant.

Dr. Bair is a member of the American Geophysical Union and a Professional
Member of the American Avalanche Association and its Research Chair.
In 2015, he received the Best Oral Paper Award from the Western Snow
Conference.

Timbo Stillinger (Member, IEEE) received the B.S.
degree in molecular environmental biology from
the University of California, Berkeley, CA, USA,
in 2010, and the M.E.S.M and Ph.D. degrees in
environmental science and management from the
University of California, Santa Barbara, CA, USA,
in 2014 and 2019, respectively.

He is a Post-Doctoral Scholar with the Univer-
sity of California, Santa Barbara where he works
on improving real-time forecasts and climatological
understanding of water supplies stored as ice and

seasonal snow. His research is on both the physical science of measuring
water from space and the linkages between hydrology and how humans
manage their demand for water. His Ph.D. dissertation focused on the long-
standing and difficult classification problem of snow and cloud discrimination
in multispectral satellite data and the impact of runoff forecast uncertainty on
reservoir management. His research now focuses on fusing data from modeling
and measuring physical properties of the Earth system with machine learning
and computer vision techniques to identify snow, ice, and clouds in satellite
imagery and predict water supply volumes stored as seasonal snow.

Dr. Stillinger received the 2019 Bren School Student Teacher Award
for Excellence in Teaching in addition to research and the campus wide
2017 UCSB Graduate Student Association Excellence in Teaching Award.

Jeff Dozier (Life Senior Member, IEEE) received
the B.A. degree in geography from California State
University, Hayward, CA, USA, in 1968, and the
M.S. and Ph.D. degrees in geography from the
University of Michigan, Ann Arbor, MI, USA,
in 1969 and 1973, respectively.

He is a Distinguished Professor Emeritus with
the University of California, Santa Barbara, CA,
USA, having retired in 2018. He has been a Faculty
Member at UC Santa Barbara since 1974, and he
founded the Bren School of Environmental Science

and Management and served as its first dean for 6 years. From 1987 to 1990,
he worked part-time with Jet Propulsion Laboratory as a Senior Member of the
Technical Staff, and from 1990 to 1992, he was the Senior Project Scientist for
NASA’s Earth Observing System at the NASA Goddard Spaceflight Center.

Prof. Dozier received the IEEE GRSS Transactions Prize Paper Award in
1988. He is a Fellow of the American Geophysical Union and the American
Association for the Advancement of Science, and he is a Distinguished
Scientist in the Chinese Academy of Sciences. He was a recipient of the
NASA/Department of Interior William T. Pecora Award in 2005 and the
NASA Public Service Medal in 1993, and he received the 2009 Jim Gray
Award from Microsoft for his achievements in data-intensive science. He was
selected as the 2010 Nye Lecturer for the American Geophysical Union,
the 2018 Jeremy Grantham Lecturer at the Indian Institute of Science,
and the 2020 Dawdy Lecturer at San Francisco State University. In 2016,
he was the Burges Distinguished Visiting Professor at the University of
Washington, Seattle, WA, USA.

http://dx.doi.org/10.1016/j.rse.2016.06.018
http://dx.doi.org/10.5067/KIE9QNVG7HP0
http://dx.doi.org/10.1029/2012wr011985
http://dx.doi.org/10.5194/essd-10-549-2018
http://dx.doi.org/10.1029/2005WR004362
http://dx.doi.org/10.21227/w6xt-8y49
http://dx.doi.org/10.5281/zenodo.4031446
http://dx.doi.org/10.1016/j.rse.2019.05.015

