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Reductions in the cost of sequencing have enabled whole-genome sequencing to identify sequence variants segregating in

a population. An efficient approach is to sequence many samples at low coverage, then to combine data across samples to

detect shared variants. Here, we present methods to discover and genotype single-nucleotide polymorphism (SNP) sites

from low-coverage sequencing data, making use of shared haplotype (linkage disequilibrium) information. For each

population, we first collect SNP candidates based on independent sequence calls per site. We then use MARGARITA with

genotype or phased haplotype data from the same samples to collect 20 ancestral recombination graphs (ARGs). We refine

the posterior probability of SNP candidates by considering possible mutations at internal branches of the 40 marginal

ancestral trees inferred from the 20 ARGs at the left and right flanking genotype sites. Using a population genetic prior

distribution on tree-branch length and Bayesian inference, we determine a posterior probability of the SNP being real and

also the most probable phased genotype call for each individual. We present experiments on both simulation data and real

data from the 1000 Genomes Project to prove the applicability of the methods.We also explore the relative tradeoff between

sequencing depth and the number of sequenced samples.

[Software to implement the methods is available in the QCALL package from ftp://ftp.sanger.ac.uk/pub/rd/QCALL.]

Recent advances in sequencing technologies enable the sequenc-

ing of personal genomes to identify most genetic variations pres-

ent in one sample (Venter et al. 2001; Levy et al. 2007; Wang et al.

2008; Wheeler et al. 2008; Kim et al. 2009). To achieve high ac-

curacy at almost all of the accessible sites requires high average

depth; for example, the average depth in Kim et al. (2009) is 27.83.

This high depth is expensive and limits the number of samples that

can be sequenced. An alternative strategy to find sequence variants

shared in a population was introduced in Liti et al. (2009), where

70 haploid yeast samples were sequencedwith only 1–43 coverage

to find sequence variants. The 1000 Genomes Project (2010) is tak-

ing a similar approach and in its low-coverage pilot has sequenced

179 samples at an average 3.73 coverage.

Severalmethods have been introduced to detect variants from

sequencing individual genomes (Li et al. 2008; H Li et al. 2009).

The standard approach is to estimate the likelihood of sequencing

data given possible genotypes, and then convert to the probability

of genotypes given data using Bayes’ rulewith an assumption about

the prior probability of heterozygous and homozygous sequence

variants. These methods work well with high-coverage data, but

have low power and unacceptable false-positive rates (FPRs) when

applied to individual samples with low-coverage sequencing data.

For example, R Li et al. (2009) reported 0.04% FPRs per base pair

for a single sample with 43 coverage data, implying that cumu-

lative FPRs would go up to 1�(1�0.0004)100 » 4% per base pair, or

40 per kilobasewhen applied to 100 independent samples. The rate

of true SNPs would be expected to be approximately six SNPs per

kilobase u+199
i=1 1=i=5:873 3 10�3

� �

, meaning that false-positives

would outnumber true SNP calls by approximately seven to one,

giving;87% false discovery rate (FDR). Consistentwith this, when

we use SAMtools (H Li et al. 2009) separately on 100 samples with

43 coverage as described below,we see cumulative false-positive rates

of 5% per base pair (see below).Moreover, genotype error rateswhen

analyzing low-coverage samples independently are, not surprisingly,

high: 0.041, 0.283, and 0.030 for homozygous reference, heterozy-

gous, and homozygous non-reference genotypes, respectively.

In this study, we present two new methods to discover SNPs

from low-coverage sequencing data by combining data across

samples, which were developed to detect SNPs in the low-coverage

pilot in the 1000Genomes Project. In the firstmethod, nonlinkage

disequilibrium analysis (NLDA), we apply a dynamic programming

algorithm to estimate the posterior probability of k non-reference

alleles in 2m chromosomes inO(m2) time for all values of k from 1 to

2m� 1.Having obtained the posterior probability of knon-reference

alleles in 2m chromosomes, we calculate the probability of a SNP

at a site by the probability of k > 0, given assumptions about variant

frequency and allele frequency distribution. This method can be

applied to the whole genome of hundreds of samples in reasonable

computing time.

In the secondmethod, linkage disequilibrium analysis (LDA),

we make use of shared haplotype structure to estimate posterior

probabilities of SNPs and genotypes. To do this, we build a set of

possible ancestral recombination graphs (ARG) for samples using

MARGARITA (Minichiello and Durbin 2006) on genotypes or

phased haplotypes at previously genotyped sites. For example, we

built 20 ARGs for samples in the low-coverage pilot data of the

1000 Genomes Project from genotypes/phased haplotypes from

the HapMap 3 project (The International HapMap 3 Consortium

2010). Having built the ARGs, for each candidate SNP site, we

collect marginal ancestral trees inferred at the left and right

flanking genotyped sites, 40 in total.We estimate the SNPposterior

probability by evaluating the likelihood of the observed sequenc-

ing data for all possible mutations in the 40 trees, assuming that

any sequence variant in the m samples is caused by a single mu-

tation. Both simulated and real data show that LDA has the same

SNP discovery rate as NLDA and produces lower false-positive

rates. However, the complexity of LDA, O(NAm
2nt) with number

of nucleotides NA = 4 and the number of trees nt = 40, makes
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LDA inapplicable to analyze the whole

genome with hundreds of samples. For-

tunately, we found that very few sites

with low NLDA posterior probability have

high LDA posterior probability, and so we

adopt a strategy in which we first collect

potential SNP candidates using NLDA

with a threshold selected to ensure that

the SNP candidate set is feasible for LDA.

Then we apply LDA to the SNP candidate

set and use the posterior probability of

LDA to determine SNPs at a chosen

threshold. We filter false-positive calls

by removing sites where there are three

SNP calls within 10 bp (FW10) (Li et al.

2008). We can impute genotypes and

phased haplotypes ofm samples under the

same LDA framework. These methods

have been used to provide one of the pri-

mary call sets for the low-coverage pilot

of The 1000 Genomes Project (2010).

Results

We implemented QCALL as described in

the Methods section.

NLDA and LDA comparison

on simulation data

We simulated 3000 haplotypes across a 5-Mbp region of chromo-

some 20 as described in the Data section of the Methods. Then we

created five nested populations with 16003 sequencing coverage

in total, 50 samples with 323 coverage, 100 samples with 163

coverage, 200 samples with 83 coverage, 266 samples with 63

coverage, and 400 samples with 43 coverage. There are 24,289,

28,181, 31,675, 32,807, and 34,807 SNPs, respectively, in these

simulated populations. We also simulate a population of 60 sam-

ples that have the same sequencingdepths (3.73 average coverage)

as the 60 CEU samples from the low-coverage pilot of the 1000

Genomes Project (CEU samples are from Utah residents with

Northern and Western European ancestry).

We applied both NLDA and LDA methods (see Methods sec-

tion) to the 400 samples with 43 coverage to understand perfor-

mance of these two methods in SNP calling (Fig. 1). It is clear that

LDA is better than NLDA in detecting SNPs, as it provides a lower

false-positive rate and a higher discovery rate. We applied a filter

to remove sets of three ormore SNP callswithin 10 bases (FW10), as

we found that most of the calls are false-positives caused by mis-

alignment of reads around short insertions or deletions (indels).

FW10 helps to lower the false-positive rates and keeps almost the

same power in detecting true SNPs. In Table 1 we show the number

of false-positives for each sequencing strategy at a 0.99 posterior

confidence level (Q20) with a FW10 filter to obtain the false-pos-

itives of each strategy (Table 1). We found that false-positives in

simulated data are mainly caused by indels, e.g., 929/942 false-

positives of 400 samples with 43 happen within 5 bp of indels

(Table 2). A stronger filter, FW5,which removes sets of two SNP calls

within 5 bp reduces the false-positive number further to 510, but

also removes many more true positives (overall loss of 9.8% true

positives). An alternative way to filter false-positives around indels

would be to realign reads around indels, as is possible with DIndel

(Albers et al. 2010) and GATK (McKenna et al. 2010). If these re-

moved all false-positives around indels, then we could in theory

obtain a false-positive rate in simulated data of about 1/Mbp (13 5/

24,804 ; 0.0002 FDR) for 50 samples with 323 or about 2.6/Mbp

(2.6 3 5/29,823 ; 0.0004 FDR) for 400 samples with 43.

Number of sequenced samples versus sequencing depth

With low-coverage sequencing data, it is difficult to detect SNPs

with low non-reference allele frequency (the total number of non-

reference allele among 2m haplotypes of m samples-nrAF), as the

lower the nrAF, the smaller the chance to observe sequencing data

that supports the non-reference (alternative) allele (Fig. 2). This

issue becomesmore serious for heterozygous SNPs when they need

data to support both alleles. For example, the marginal rate of de-

tecting singleton SNPs drops from 99% with 323 coverage data

to 18% with 43 coverage data. However, for a fixed sequencing

budget, one can sequence more samples with low coverage than

at high coverage. Below, we show that we can increase the total

number of population variants found by decreasing coverage and

increasing the number of sequenced samples.

Starting with the 24,289 SNPs in the first 50 samples (100

haplotypes), we detect 24,029 (98.9%) SNPs from 323 coverage se-

quencing data. Themarginal discovery rate (the fraction of SNPs with

a particular nrAF that are discovered) is therefore 99% for singleton

SNPs (Fig. 1).Wemiss 240SNPs,most ofwhichare singletons.When

we sequence more samples with lower coverage, we start to miss

some SNPs from the 100 haplotypes of the first 50 samples, but we

gain SNPs in the additional sequenced samples. For example, when

we reduce the sequencing depth from323 to 163, we lose 187 SNPs

from the first 100 haplotypes, but gain 3628 new SNPs from the 100

new sequenced haplotypes. Table 2 shows how these net gains

Figure 1. Discovery and false-positive rates of QCALL for 400 samples with 4.03 coverage se-
quencing data. LDA and LDA,FW10 stand for linkage disequilibrium analysis without FW10 and with
FW10. The same notation is applied to NLDA.
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progress as we sequence more samples at a lower depth. The most

variants are found when we sequence 400 samples of 43 coverage.

If we look at detection power as a function of nrAF calculated

from all 3000 sequences in the simulation, 400 samples at 43 also

show the best power to detect SNPswith 1%nrAF, although at lower

population frequencies, 266 samples at 63 give slightly higher

power (Fig. 3). The strategy of 50 samples with 323 coverage shows

the worst performance at low nrAF; for example, it detects ;40%

SNPs with 0.005 nrAF, while that of 400 samples with 43 is about

75%. The simulation results indicate that the strategy of sequencing

a large number of samples with low depths (43–63) is better than

that of sequencing a small number of samples with high depths in

detecting rare SNPs. However, there is no difference between these

strategies in detectinghighnrAF SNPs, e.g., all strategies get to 100%

discovery rates for SNPs with nrAF > 5%.

CEU samples of Pilot 1 in the 1000 Genomes Project

Weanalyze the same5-Mbp region on chromosome20 (43,000,000–

48,000,000) in 60 samples from the CEU population of the low-

coverage pilot of the 1000 Genomes Project (see Data section in

Methods). The corresponding call set on the full genome contributed

to the results from the low-coverage pilot of The 1000 Genomes Proj-

ect Consortium (2010). We first applied NLDA to select 61,308 SNP

candidateswith1%threshold. ThenweusedLDA to select 16,954 SNP

calls with 90% threshold (Q10). Of these calls, 31% are in HapMap 2

and 67% are in dbSNP, equivalent to 33% novel calls. The calls show

a ratio between transitions (mutations between A and G, or between

C and T) and transversions (mutations from A or G to C or T, or vice

versa) of 2.28, which is consistent with the value of 2.30 for the final

1000 Genomes Project call set in this interval (The 1000 Genomes

ProjectConsortium2010), thoughabove the genomeaverage of;2.1.

We applied NLDA and LDA to the 60 simulated samples that

have the same depths as the CEU samples from the low-coverage

pilot of the 1000Genomes Project. Results on these simulation data

show that we are able to detect about 19,077 SNPs from 25,268

SNPs from 60 samples with 3.73 coverage data (;75%). We called

456 false-positives, equivalent to 456/(53 106) ; 10�4 FPR or 456/

19533 ; 2.33% FDR. We also compare the marginal discovery rate

of QCALL as a function of the non-reference allele frequency on

simulation data and real data, using the 43 samples in the 1000

Genomes Project CEU sample for which there is HapMap 2 geno-

type data to provide the truth for the real data calls. The power as

a function of allele frequency is remarkably similar (see Fig. 4).

Genotype accuracy

One advantage of the LDA method is the ability to provide more

accurate genotypes estimated from low-coverage data based on

a local structure haplotype. For example, the NLDA genotype es-

timator, which generates the posterior probability of genotypes by

using Bayes’ rule, has an error rate of about 0.424 for heterozygous

SNPs. LDA, however, assigns genotypes/haplotypes for samples by

averaging over sets of calls that are consistent with local haplotype

structure (see Genotyping section in Methods).

Empirical experiments on the CEU population 1000 Genomes

Project data comparing with HapMap II genotypes not at HapMap

3 sites (which were used to build the ARGs) give an overall geno-

type FDR for LDA of 2.7%, corresponding to 1.4%, 3.9%, 4.2% FDR

for homozygous, heterozygous, and homozygous non-reference ge-

notypes, respectively (see Table 3). These FDRs are competitive with

those of Beagle (Browning and Yu 2009), which is another hap-

lotype-based approach to genotype calling from likelihood data

comparable to LDA (2.8% overall, 0.8%, 5.7%, 3.4% by genotype

category).

For simulation data, the overall genotype FDR of QCALL drops

from 2.56% to 1.94% when we increase the number of sequenced

samples from 50 to 400. We believe this decrease under-represents

the potential of the tree-based calling approach of QCALL, and is

instead limited by the ability of MARGARITA to scale effectively

to large sample sets, since we have noticed that for 400 samples,

MARGARITA,which implements a greedy algorithm, gets locked into

incorrect structures.We are exploring other approaches to generating

ARGs to avoid this problem.

Discussion

Detecting SNPs frommultiple sampleswith low-coverage data is an

efficient approach to detect low-frequency SNPs in a population.

Experimental results show that QCALL with NLDA and LDA

methods detects shared variants from multiple samples better than

analyzing individual samples independently. In particular, the ge-

notype accuracy is substantially improved.

The probability of detecting a SNP at a site depends on the

number of non-reference alleles present in the sequencing sam-

ples and the evidence in the sequencing data for the observation.

The strategy of sequencing a large number of samples with low

coverage increases the expected number of non-reference alleles

in the sample, but lowers confidence of the evidence for seeing

them compared with the strategy of sequencing a small number of

sampleswith high coverage. The best strategy for a particular nrAF is

a tradeoff between the two factors. For example, at 0.005 nrAF the

probability of there being at least one non-reference allele in 50

samples (100 haplotypes) is 0.3942, and so the resulting discov-

ery rate cannot be higher than 0.3942, even at very high depth.

Table 1. Distribution of false-positives as a function of base pair
distance from the nearest indel

Distance
50

Samples
100

Samples
200

Samples
266

Samples
400

Samples

0 419 457 468 473 472
1 275 313 320 323 334
2 49 71 81 80 77
3 18 23 28 28 34
4 3 4 5 5 5
5 5 5 4 3 7
6 1 1 1 1
7 2 1 1 2 2
8 1 1 1 1
9 1 1
14 1 1
60 1
>200 1 3 7 4 6
Total 774 877 916 922 942

Table 2. Discovery rates with different sequencing strategies

Number of samples/Average coverage

50 100 200 266 400

No. of SNPs 323 163 83 63 43

100 Haps 24,289 24,029 23,842 23,438 23,267 23,148
200 Haps 28,181 27,470 26,521 26,156 25,942
400 Haps 31,674 28,877 28,251 27.891
532 Haps 32,807 28793 28353
800 Haps 34,807 28,880
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However, the probability of there being at least one non-reference

allele in 400 samples (800 haplotypes) is 0.9819, and it is likely that

there will be more than one, so the discovery rate at 43 is ;73%.

However, there is almost no difference between two strategies for

high nrAF SNPs (common SNPs), as both strategies achieve near

100% power. Even when the overall power to detect variants is

similar, there are circumstances in which sequencing a larger

number of samples at lower depth can be preferable so as to better

characterize the allele frequency of variants, or when phenotyped

samples are being sequenced for an association study and increasing

the number of sequenced samples increases statistical power.

Many false-positive calls are caused by short indels, where se-

quencing reads are mapped wrongly to the reference, particularly

when the indels occur at the beginning or end of the reads. Thus, we

often found a set of false-positives around an indel. FW10 is a simple

and quite efficient method to remove the false-positives, as they

are often very dense around the indel. However, FW10 cannot solve

the problem when there are fewer than three false-positives or the

false-positives are separated by more than 10 bp. An alternative solu-

tion is to realign reads around indels, as is possiblewithDindel (Albers

et al. 2010) and GATK (McKenna et al. 2010). LDA gives good quality

SNP calls, but it has two main limitations; first, it is computationally

expensive; and second, it requires ARGs to have been previously cre-

ated from genotyped data. The computational cost can be overcome

by prescreening with NLDA to filter out sites without evidence of

being SNPs. QCALL takes about 10 h for 1 Mbp segment of 400

samples, but a proportion of the 10 h are used to prepare likelihoods

of sequencing data frommultiple samples. To solve the requirement

for genotype data, we are developing methods to add new samples

into existing ARGs or build ARGs directly from sequencing data.

Although our discussion of the method and results has been

in the context of full-genome shotgun data, QCALL can also be

used on targeted sequencing data, such as from exome projects

(Ng et al. 2010), given that genotype data are available fromwhich

to build ARGs with MARGARITA. Furthermore, it can be used for

other types of bi-allelic variant that are in local linkage disequi-

librium with SNPs, such as small insertions or deletions (indels),

by limiting to two possible states rather than the four bases. For

these other uses it is possible to change the prior expectation of the

transition to transversion ratio from 2, which is typical for human

whole-genome SNPs, to, for example, 3.5, which is typical of cod-

ing regions, or 1 when encoding other variant types. QCALL was

used for calling short indel genotypes for the 1000 Genomes Proj-

ect pilot (The 1000 Genomes Project Consortium 2010).

Finally, the LDA approachwe discussedhere is related to other

haplotype-sharing imputation methods such as BEAGLE (Browning

and Yu 2009) mentioned above, IMPUTE (Howie et al. 2009), or

MACH (Li et al. 2010). These can all be adapted for variant calling

from low-coverage sequencing and, in fact, both BEAGLE and

MACH have been also used in the 1000 Genomes Project, with the

results being combined with those from QCALL to provide final

consensus calls (The 1000 Genomes Project Consortium 2010).

Methods

Data

All experimental results were obtained on a 5-Mbp region of chro-

mosome 20 (43,000,001–48,000,000) in NCBI 36 human reference

(International Human Genome Consortium 2006, Build 36, hg18).

Figure 2. SNP discovery power for different sequencing strategies, all using 16003 data, plotted as a function of the number of non-reference alleles
present in the sequenced samples.
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Simulation data

We simulated 3000 haplotypes using MaCs with the same pop-
ulation parameters provided in Chen et al. (2009). We used MAQ

to simulate 51-bp paired-end reads for 800 haplotypes with

error parameters estimated from one Illumina lane of NA12750

(The 1000 Genomes Project Consortium 2010). We mapped the
reads to Human Genome reference NCBI 36 using BWA (Li and

Durbin 2009) and stored the output in BAM format. We build

simulated ‘‘HapMap 3’’ sites by identifying SNPs from 10 haplo-
types and selected the same number of sites as in HapMap 3 data,

taking the nearest site seen twice in the 10 simulated haplotypes to

each true HapMap 3 site. We simulated five sets of data with a total

16003 coverage: 50 samples with 323 coverage, 100 samples with
163 coverage, 200 samples with 83 coverage, 266 samples with

63 coverage, and 400 samples with 43 coverage. We also simu-

lated 60 samples with 3.73 to model the data from the 60 CEU

samples of the low-coverage pilot in the 1000 Genomes Project.

Real data

We used the same 5-Mbp region (chromosome 20, 43–48 Mbp)
of the CEU population in the low-coverage pilot of the 1000 Ge-

nomes Project.

Nonlinkage disequilibrium analysis (NLDA)

Assume we have observed dataD = (d1,. . .,dm) ofm samples at site s

and likelihoods p(di | gi) for di given possible genotype g. p(di | gi) can

be estimated using SAMtools (H Li et al. 2009) or GATK (McKenna
et al. 2010). For example, SAMtools uses the method of Li et al.

(2008), where homozygous likelihoods p(di | gi = aa) are calculated

as the product of estimated base errors for non-a bases from the

sequencing quality values, corrected for nonindependence of er-

rors, and heterozygous liklelihoods p(di | gi = ab) as 1=2na+nb times
the product of estimated base errors for non-ab bases, since there is

a half chance of observing an a or b (see SAMtools [H Li et al. 2009]

and MAQ [Li et al. 2008] for more detail).

Assume the haplotypes of m samples at a site come from bi-
allelic alleles, a and b. Obviously, the posterior probability of a SNP

at s given observed dataD, p(s = SNP |D) is 1—the probability of 2m

haplotypes being equal to the reference allele r at s.

pðs= SNP jDÞ=1� pðg = ðg1; . . . ; gnÞ : g i = rr jDÞ

=1�
pðD jgÞpðgÞ

+
g0

pðD jg0Þpðg0Þ
; ð1Þ

where a configuration g = (g1,. . .,gm) is the genotypes ofm samples,
p(g) and p(D | g) are the prior probability of g and the probability

of D given genotypes g. The prior probability of a configuration is

considered as the prior probability of a mutation that results in g,

pðkÞ; u
k, where u is the population scaled mutation rate and k is

the number of mutant alleles in g. Denote na to be the number of

allele a in g,

pðgÞ=

u

2

1

na
+

1

2m� na

� �

1

C2m
na ðgÞ

2m>na >0

1

2
1� u+2m�1

i=1

1

i

� �

otherwise

8

>

>

>

<

>

>

>

:

We set u = 0.001 for standard human SNP calling. It can be set as

a program parameter for other uses of QCALL.
Assuming that the sequencing data is independent between

samples, the probability of D given m genotypes g = (g1,. . .,gm),

p(D | g), is calculated as

p½D jg = ðg1; . . . ; gmÞ� =
Y

m

i=1

pðdi j g iÞ: ð2Þ

Figure 3. SNP discovery power for different sequencing strategies as a function of the non-reference allele frequency in the population. The continuous
lines show empirical results from the simulation with the allele frequency estimated from all 3000 simulated haplotypes, and the dashed lines present
calculations based on sampling with marginal discovery rates per sample from Figure 2.
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The key to calculating p(s = SNP |D) inEquation1 is to compute

the normalization factor,

+
g

pðD jgÞpðgÞ:

We have

+
g

pðD jgÞ= +
k

pðkÞ +
g:naðgÞ= k

pðD jgÞ= +
k

pðkÞQm;k;

where

pðkÞ= u
1

k
+

1

2m� k

� �

1

C2m
k

and

Qm;k = +
g:naðgÞ= k

pðD jgÞ

is the total probability of all possible genotype configurations g

of m samples such that the number of a alleles in g is equal to k.

Qm;k = +
g = ðg1 ;...;gmÞ:naðgÞ = k

pðD jgÞ

= +
gm�1 :naðgm�1Þ= k�2

pðDm�1 jgm�1Þpðdm j gm = aaÞ

+23 +
gm�1:naðgm�1Þ = k�1

pðDm�1 jgm�1Þpðdm j gm = abÞ

+ +
gm�1:naðgm�1Þ = k

pðDm�1 jgm�1Þpðdm j gm = bbÞ

=Qm�1;k�2 pðdm j gm = aaÞ +2Qm�1;k�1pðdm j gm = abÞ

+Qm�1;kpðdm j gm = bbÞ;

where Qm�1,k presents for the total probability of all figurations of

m � 1 samples such that the number of allele a among m � 1
samples equals k.

Using this recursion, we can calculate Qm,k from the in-

dividual genotype likelihoods p(di | gi) in O(m2) steps by dynamic
programming. Having obtained Qm,k, we can easily estimate

+
g

pðD jgÞpðgÞ

in Equation 1.

Linkage disequilibrium analysis

First, we give an informal description, then the technical details.

We assume that genetic variants are caused by a single mutation
on a coalescent tree during evolution. Figure 5 shows an example

of an ancestral tree at some sites for four samples, s1, s2,s3, and s4.

Assuming for the moment that this tree is correct, and that we
know the ancestral base value and the position of a mutation on

the tree, for example, the mutation from A to C shown in Figure 5,

we can infer the base for each haplotype at the site, and hence,

the genotypes of the individuals. Given the genotypes, we can

Table 3. Average genotype error rates according to HapMap 2
genotypes of 5 Mbp on chromosome 20 (20:43,000,000–
48,000,000) of 43 samples that are the overlapped samples
between the 60 CEU samples and HapMap 2 samples

QCALL

Hom Het Hom-nonref Error rate

HapMap 2
Hom 55,277 766 28 0.014
Het 876 32,107 411 0.038
Hom-nonref 334 681 23,141 0.042

Error rates are calculated on 2711 QCALL sites that are in HapMap 2, but
not in HapMap 3. (Hom: homozygous reference; Het: heterozygous;
Hom-nonref: homozygous nonreference.)

Figure 4. Marginal discovery rates as a function of non-reference allele count in 43 samples, from the CEU simulation and from 1000 Genomes Project
data evaluated at HapMap 2 sites not in HapMap 3, on the 43 sequenced samples overlapping HapMap 2.
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calculate the likelihood of the sequencing data D given the tree,
the root value, and the mutation. Since we do not know the root

value and the mutation site, we integrate over them, weighting

the mutation probabilities by the expected branch length under

a population genetic prior, and then we average over a sample of
trees to provide an estimate of the total likelihood of data D given

that there was a mutation. Conditional on there being a mutation,

we marginalize over genotypes to generate genotype posteriors.
To find the coalescent trees, we useMARGARITA (Minichiello

and Durbin 2006) to estimate ancestral recombination graphs

(ARGs) from known genotypes or phased haplotypes at samples

at sites genotyped on SNPs. We prefer phased haplotypes to un-
phased genotypes because MARGARITA works better with phased

data. However, it can work on unphased genotype data, or a mix-

ture. For example, for the low-coverage pilot of the 1000 Genomes

Project we used phased haplotypes from HapMap 3 for most sam-
ples, but genotypes for a few samples for which phased haplotypes

were not available. For the simulation data we used phased haplo-

types at a subset of sites selected to correspond to HapMap 3 sites as
described above.

MARGARITA (Minichiello and Durbin 2006) can only handle

a limited number of SNPs (markers) in terms of running time and

memory, and therefore we cut the whole genome into 1-Mbp
segments. To make ARGs consistent at the ends of the 1-Mbp

segments, we expanded 0.5 Mbp at each end of each 1-Mbp seg-

ment, so MARGARITA was run across overlapping intervals of

2Mb.Wekept20ARGs for further analysis as a compromise between
QCALL’s accuracy and running time. A higher number of ARGs does

not improve the performanceofQCALLmuchbut increases running

time linearly. For example, MARGARITA takes, on average, ;8 h to
build 20 ARGs for 400 samples on one 2-Mb segment.

MARGARITA only gives trees at the sites that were used to

build it. We approximated coalescent trees at candidate SNP sites s

by the trees T at the left and right flanking genotyped sites. Let D
and D be the two cases where there is one and nomutation at s. We

compute the probability of a mutation at s given D by Bayes’ rule:

pðD jD;TÞ =
pðD jD;TÞpðD jTÞ

pðD jD;TÞpðD jTÞ+ pðD jD;TÞpðD jTÞ
; ð3Þ

where the priors pðD jTÞ = u +
2m

i=1

1

i
and pðD jTÞ=1� pðD jTÞ are de-

rived from standard neutral population genetics theory.
We start solving Equation 3 by estimating the probability ofD

given no mutation,pðDjD;TÞ. To handle the situation where there

are errors in the reference sequence, we set

pðD jD;TÞ= +
r

pðD jD;T; rÞpðrÞ;

where r is the true (ancestral) unmutated reference

pðrÞ =
1� e r = reference allele of NCBI 36
e=3 otherwise

�

; ð4Þ

where e is the error rate in the observed reference, which we set to

e = 23 10�5 based on empirical experiments in the 1000 Genomes

Project. Given true base r and no mutation at s, all genotypes ofm

samples must be rr, leading to

pðD jD;TÞ = +
r

pðrÞ
Y

m

i=1

pðdi j g i = rrÞ:

To estimate p(D | D,T), we scan all possible mutations on trees
of T and integrate the probabilities of D given these mutations

weighted by a prior distribution over mutations. Let us start with

reference r,

pðD jD;TÞ = +
r

pðrÞpðD jD;T; rÞ

= +
r

pðrÞ+
tk

pðD jD; tk; rÞpðtkÞ ; ð5Þ

where tk is a tree at a flanking site of s. We assume trees tk are

independent and have the same prior probability,pðtkÞ=1=jTj.
To estimate +

tk

pðD jD; tk; rÞ, we scan all possible mutations in

tk such that the reference r must exist among m genotypes. We

also consider the case where r is not represented in them observed

samples and was caused by a mutation outside tk.

pðD jD; tk; rÞ =m +
a6¼r

pða; rÞpðD j g i = aa : i =1::mÞ

+ ð1� mÞ +
e2tk

1

2
pðe j tkÞ +

a6¼r

pða; rÞpðD j earÞð

+ pðr; aÞpðD j eraÞÞ; ð6Þ

where m is the prior probability of an externalmutation from a to r,
set to that of a mutation at a leaf branch of 2m + 1 leaves, p(a,r)

is the prior probability of a mutation from a to r, p(e | tk) is the

prior probability of a mutation happening on edge e, and p(D | ear)

[ p(D | era)] is the probability of data given a mutation from a to r

(r to a) at edge e.

The first part of Equation 6 allows for an external mutation

from a to r outside tk and the second part handles the case

where a mutation happens at an edge in tk. m is set proportional
to 1/(2m + 1) and normalized with

+
2m+1

i=1

1

i
:

The prior probability of a mutation from a to r, p(a,r), can be
set to allow for an arbitrary transition to transversion ratio. For

standard genome-wide calls we set this to be 2.0:

pða; rÞ=
4=24 ðarÞ 2 transition= fðAGÞ; ðGAÞ; ðCTÞ; ðTCÞg
1=24 otherwiseðtransversionÞ

�

:

p(D | gi = aa : i = 1..m) is simply estimated as

pðD j g i = aa : i =1::mÞ=
Y

m

i=1

pðdi j g i = aaÞ:

The prior probability of a mutation happening at e is set such

that the more recent mutations have lower prior probability.

Figure 5. An illustrative example of a coalescent tree for four samples
(eight haplotypes). Given a value at the root, A in this example, and
a mutation from A to C in this example, we can infer genotypes for the
four samples and, hence, compute the probability of data D conditional
on this configuration. We estimate the likelihood of D given a tree t, p(D |
t), by summing over all possible root values and mutations in t.
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pðeÞ}
1

na
+

1

2m� na

� �

1

NðnaÞ
;

where na is the number of haplotype a at the leaveswhenmutation

a ! b happens at edge e, and N(na) is the number of possible mu-

tations in tk that result in na haplotype a at the leaves. We nor-
malize p(e | tk) such that

+
e

pðe j tkÞ =1:

Let g = (g1,. . .,gm) be the genotypes of m samples that result

from mutation a ! r (or r ! a) at edge e,

pðD j earÞ=
Y

m

i=1

pðdi j g iÞ:

Merging Equations 5 and 6, we have

pðD jD;TÞ = pðD jD; tk; rÞ=m +
a6¼r

pða; rÞpðD jg =aaÞ

+

ð1� mÞ

2
+

r;a6¼r;tk;e2tk

pðrÞpðtkÞpðe j tkÞ pða; rÞpðD j earÞð

+ pðr; aÞpðD j eraÞÞ ð7Þ

Wenote that the complexity of computing p(D |D,T) in Equation 7

isO(NAm
2nt), where the number of nucleotides,NA = 4, and number

of flanking trees, nt =40.

Genotyping

Let g = (g1,. . .,gm) be the genotypes of m samples at s. Given a mu-

tation at s, we calculate the posterior probability for gi as follows:

pðg i = ab jD;D;TÞ = +
r

pðrÞpðg i = ab jD;D;T; rÞ;

where r is the reference allele and p(r) is the prior probability esti-
mated as in Equation 4. p(gi = ab | D,D,T,r) is given by

pðg i = ab jD;D;T; rÞ=
pðD; g i = ab jD;T; rÞ

+
a0b0

pðD; g i = a
0b0 jD;T; rÞ

;

where

pðD; g i =ab jD;T; rÞ=
0 a 6¼ b;a 6¼ r;b 6¼ r

+
tk

pðtkÞpðD; g i =ab jD;tk; rÞ otherwise

(

:

Let E
j
ik be the set of edges in tk, where j ( j = 0,1, or 2) haplo-

type(s) of sample i are mutants caused by a mutation at e 2 E
j
ik.

p(D,gi = ab | D,tk,r) is estimated under the following cases:

If a = b = r, then p(D,gi = aa | r = a,tk,D) is the sum of proba-

bilities of all possiblemutations from a to x on edge e 2 E0
ik, or from

x to a on edge e 2 E2
ik:

pðD; g i = aa j r = a; tk;DÞ = +
e2E0ik

pðe j tkÞ +
x6¼a

pða; xÞpðD j eaxÞ

+ +
e2E2

ik

pðe j tkÞ +
x6¼a

pðx; aÞpðD j exaÞ:

If a = b 6¼ r, then p(D,gi = aa | r 6¼ a,tk,D) is the sum of proba-

bilities of mutations from a to r on edges outside tk or on edge

e 2 E0
ik or from r to a on edge e 2 E2

ik:

pðD; g i =aa j r 6¼ a;tk;DÞ=mpða; rÞpðD jg=aaÞ

+ ð1�mÞ +
e2E0ik

pðe jtkÞpða; rÞpðD j earÞ+ +
e2E2ik

pðe j tkÞpðr;aÞpðD j eraÞ

2

4

3

5:

If a 6¼ b, then p(D,gi = ab | r,tk,D) is the sum of a mutation from

a to b or b to a on edge e 2 E1
ik. r must be either a or b:

pðD; g i = ab j r; tk;DÞ = +
e2E1ik

1

2
pða; bÞpðD j eabÞ+ pðb; aÞpðD j ebaÞ½ �:

Having obtained posterior genotype probabilities p(gi = ab |

D,D,T), we determine the genotype of sample i as the maximum
likelihood genotype:

g i = argmax
ab

pðg i = ab jD;D;TÞf g:

Haplotype phasing

Let h = (h1,. . .,h2m) be the 2m haplotypes ofm samples at site s. We

compute the posterior probability of hi = a given a mutation D,
observed data D, marginal coalescent trees T as:

pðhi = a jD;T;DÞ= +
r

pðrÞpðhi = a jD;T;D; rÞ;

where r is the reference allele and p(r) is the prior probability esti-

mated as in Equation 4.

p(hi = a | D,T,D,r) is calculated as

pðhi = a jD;T ;D; rÞ =
pðD;hi = a jT;D; rÞ

+
b

pðD;hi = b jT;D; rÞ
;

where

pðD jhi = a;T;D; rÞ= +
tk

pðtkÞpðD;hi = a j tk;D; rÞ:

Denote Ei,k be the set of edges in tk, such that a mutation
e 2 Eikresults in hi.

pðD;hi = a j r = a; tk;D;DÞ = +
e2Eik

pðe j tkÞ +
x6¼a

pðx; aÞpðD j exaÞ

+ +
e=2Eik

pðe j tkÞ +
x 6¼a

pða; xÞpðD j eaxÞ

and

pðD;hi =a j r 6¼ a;tk;D;DÞ=mpðD jh=aÞ

+ ð1�mÞ +
e2Eik

pðe jtkÞpðr;aÞpðD j eraÞ+ +
e=2Eik

pðe jtkÞpða; rÞpðD j earÞ

" #

:

Having obtained p(hi = a | D,T,D), we determine the haplotype of

sample i as the maximum likelihood allele

hi = argmax
a

pðhi = a jD;T;DÞf g:

Issue with singletons and haplotype phasing

Singletons are a special case where a mutation happens at leaf
branches. For each singleton, there are two possible mutations at

leaf branches resulting in the same genotype configuration (Fig. 6).

This results in an equal posterior probability for both alleles at the
singleton. Thus, we cannot phase singletons. In practice, when our
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genotype calls indicate there is a singleton (all homozygous except

one that is heterozygous) we only give a genotype call for the

heterozygous sample and do not attempt to phase it.
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Figure 6. Two mutations at two edges of a singleton (edges connected to haplotypes fourth or
eighth) lead to the same genotype configuration.
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