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Abstract—In addition to Spectrum Sensing (SS) capability SS techniques for sensing the presence of a Primary User
required by a Cognitive Radio (CR), Signal to Noise Ratio (SNR) (PU) that appear in the literature are matched filter degecti
estimation of the primary signals at the CR receiver is crucial Energy Detection (ED) and cyclostationary feature detecti

in order to adapt its coverage area dynamically using underlay . . .
techniques. In rE)ractical scenarios, channel and noise may be [1]. Matched filter and cyclostationary methods require the

correlated due to various reasons and SNR estimation techniques Prior knowledge about the PU signal to decide about the
with the assumption of white noise and uncorrelated channel presence or absence of on-going primary transmissions. The
may not be suitable for estimating the primary SNR. In this ED technique does not require any knowledge of PU signals
paper, firstly, we study the performance of different eigenvalue but the performance of this method relies on the accurate

based SS techniques in the presence of channel or/and noisq( led f th . 41, Eurth eralrdive
correlation. Secondly, we carry out detailed theoretical analysis nowledge of the noise power [4]. Furthermore, sev v

of the signal plus noise hypothesis to derive the asymptotic Sity €nhancing techniques such as multi-antenna, coaperat
eigenvalue probability distribution function (a.e.p.d.f.) of the and oversampled techniques have been introduced in the
received signal’s covariance matrix under the following two cases: |iterature to enhance SS efficiency in wireless fading chan-
(i) correlated channel and white noise, and (ii) correlated channel nels [5—7]. Most of aforementioned methods involve dedisio

and correlated noise, which is the main contribution of this .- . L
paper. Finally, an SNR estimation technique based on the derived statistics calculated based on the eigenvalue distributidhe

a.e.p.d.f is proposed in the presence of channel/noise correlation"€ceived signal’'s covariance matrix and use recent refolts
and its performance is evaluated in terms of normalized Mean Random Matrix Theory (RMT) [8,9]. The eigenvalue-based
Square Error (MSE). It is shown that the PU SNR can be SS technique does not require any prior information of the
reliably estl_mated whe_n the CR sensing module is aware of the PU’s signal and it outperforms ED techniques, especially in
channel/noise correlation. . . .
the presence of noise covariance uncertainty [5].

Index Terms— Cognitive Radio, Spectrum Sensing (SS), Signal

to Noise Ratio (SNR) Estimation, Channel/Noise Correlation,

Random Matrix Theory (RMT)) A. Motivation and Contributions
In the context of eigenvalue-based SS techniques, the
. INTRODUCTION following three practical scenarios have been considered i

URING the last decade, the demand for high speekle literature with respect to the receive dimensions of the
wireless connections has constantly been increasing doR node: (i) Cooperative SS scenario [7], (i) Multiantenna
to the proliferation of multimedia services. However, th&S scenario [5,10], and (iii) Oversampled SS scenario [5].
available frequency resources are becoming scarce duelriothis paper, we consider a multi-dimensional framework
spectrum segmentation and dedicated frequency allocatighich can be applicable to all these scenarios. The main
of standardized wireless systems. In this context, Cognitiproblems that may arise in these practical scenarios ar¢hina
Radio (CR) is considered a promising candidate for enhgnciohannel may be correlated across the receive dimensiorte due
the spectrum efficiency of communication systems becaussgufficient scattering in the propagation path [11] andualt
it is aware of its operating environments and can adjust it®upling between antennas [12] and the noise may also be
parameters dynamically [1, 2]. For practical implemewntatif correlated due to imperfections in filtering and oversanpli
a CR, it is extremely important to explore efficient Spectrurim the receiver [5]. Due to physical constraints of antenna
Sensing (SS) techniques which can detect the presencesgdcing in Multiple Input Multiple Output (MIMO) systems
signals reliably. In addition to SS capability required et and lack of rich scattering, it is not always feasible to cdes
CR, estimating the Signal to Noise Ratio (SNR) of the Pihdependent MIMO channels in practice. In this contextais h
signals accurately is crucial in order to allow the spectrdeen shown in [13] that spatial correlation may degrade the
coexistence of primary and secondary systems using uyderp@rformance of wireless systems. Under these condititves, t
techniques. channel matrix may become ill-conditioned and the maximum
Several SS techniques have been proposed in the literatiarehe minimum eigenvalue ratio, called Standard Condition
for CR based systems [3] and they have different operationimber (SCN), can be used to describe the ill-conditionihg o
requirements, advantages and disadvantages. The three raakireless channel [14]. Since the performance of eigesvalu
, o , . based techniques is affected by the SCN of the channel
The authors are with the Interdisciplinary Centre for SiguReliability . . . . .
and Trust (SnT), University of Luxembourg (http://www.satandtrust.lu) covariance matrix, we investigate the behavior of RMT based
email: {shree.sharma, symeon.chatzinotas, bjorn.otter@emi.lu. techniques in the presence of channel correlation as wéll as
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the presence of both channel/noise correlation. In thisesttn the CR to adjust its coverage area. More specifically, in the
we use a SCN-based approach to model the correlation 1e88 only techniques, the noise only hypothesis is decided if
and study the effect of channel/noise correlation on multlNR < A;, A\; being the decision threshold and the signal
dimensional SS techniques. plus noise hypothesis is decided SNR > ;. When we
Furthermore, most SS related works focus on a dual hgembine SS with the SNR estimation, we can introduce
pothesis test to decide the presence or absence of primangther threshold\, under the signal plus noise hypothesis
on-going transmissions. If the CR is able to estimate the SNiRthe following way. IfSNR < Ao, then the CR can transmit
of the primary signals, defined as the ratio of the receivaéa the same channel using the power control algorithm based
primary power to the noise power at the CR receiver, it cam the interference threshold of the PU and the CR must
dynamically adapt its coverage area using underlay tedlesiq stop its transmission whe®INR > \,. Furthermore, the PU
In order to implement underlay techniques such as pow8NR knowledge provides channel quality information for the
control at the CR, we need to know the SNR threshokkcondary system, which can be further used for implemgntin
required for the power control algorithm. Furthermore, tadaptive techniques such as adaptive bit loading, handoff
calculate the SNR threshold, we need to calculate the distamlgorithms and optimal soft value calculation for impraythe
between the Primary Receiver (PR) and the CR. We consigerformance of channel decoders [17]. Despite its importan
Effective Isotropic Radiated Power (EIRP) of the Primargpplications, only a few contributions in the literaturedesbs
Transmitter (PT) as the cognition information at the CR artie SNR estimation problem in the context of a CR [18-21].
assume a Line of Sight (LoS) reciprocal channel. Based &urthermore, the SNR estimation techniques proposed under
EIRP limits of the PT and estimated received SNR of ththe assumption of the white noise and uncorrelated channel
primary signals, the spatial distance between the PT ascknario may not perform well in the presence of channeénoi
the CR can be estimated and subsequently, based on tmeelation. Taking the above into account, exploring &ffit
estimated distance, the secondary network can apply destanSNR estimation techniques in the presence of channel/noise
based adaptive power control mechanism to adjust its cgeeraorrelation is an important research challenge.
area. To clarify the above scheme, the following two sce@sari In contrast to the application of the eigenvalue-based-anal
can be considered. The first scenario assumes duplex mgdis for SS in most of the contributions [5-7], the focus
of transmission for the PUs i.e., each user interchangeabliythis paper is not on SS. The theoretical analysis carried
transmits and receives over time. If we fix the SNR threshottlit in this paper has been inspired by the multi-dimensional
based on estimated SNR over multiple time slots, we caigenvalue-based SS model [22] and it has been applied for
also protect the weakest one assuming they have the s@iNR estimation application by carrying out analysis under
interference threshold [15]. The second scenario corsideignal plus noise hypothests In our previous work [22], the
the simplex mode of transmission for the PUs and a shaffect of noise correlation on eigenvalue-based SS tedesiq
range wireless communication for both primary and secgnddras been studied and the a.e.p.d.f of the received sigr@al's ¢
systems provided that interference levels from one systerariance matrix has been derived in the presence of coecklat
to another are at a similar level. In practice, it may be thaise. In this paper, we focus on studying the SNR estimation
case that a spectrum resource is completely left unusednwitproblem in the presence of channel correlation and in the
a sufficiently large network coverage area. In this contexiresence of both channel/noise correlation. For this m&po
the optimal exploitation of spectrum holes depends on thee need the expressions for a.e.p.d.f. of the received I&gna
maximally acceptable coverage area of secondary tranemisscovariance matrix under above mentioned scenarios. Howeve
while protecting the primary rate [9]. In such type of syssemthese expressions are not available in the current litexatu
it can be assumed that setting SNR threshold for the PTiigluding [22]. In this context, we derive the expressioos f
a reasonable strategy for protecting the PR as well. In thlee a.e.p.d.f. of the received signal's covariance matnix i
context, based on the estimated PU SNR, suitable underthg presence of channel correlation and in the presence of
techniques such as exclusion zone [16] can be applied. both channel/noise correlation using RMT. This is the main
In the context of CR networks, SNR estimation can beontribution of this paper. Furthermore, we use these d.&.p
very useful in switching between underlay and interweawxpressions in order to estimate the PU SNR in the presence of
(SS) modes adaptively. In the SS only technique, the Sidsannel correlation and in the presence of both channeknoi
are not allowed to access a particular PU channel when tt@relation based on the maximum eigenvalue. Moreover, the
channel is found to be occupied. In this scheme, the secpndperformance of the proposed technique is evaluated in terms
network may have very low throughput specifically in heavilpf normalized Mean Square Error (MSE).
occupied spectrum regions. If the CR node has the capability
of estimating the PU SNR along with its sensing ability, thg gy cture and Notation

SU can access the channel with full power in case of anTh. is structured as foll - Section Il revi ind
idle channel and access the channel with controlled power IS paper s structured as 1oflows. Section 11 Teviews 1n de

in case of the occupied channel. Based on the link budglﬁll prior work r::lat_ed ;thS ar;d SN'T ?stlmgmotr_] teclzlrg:q:qnem
analysis and the interference constraint, proper SNR tibids € presggceg r_10|sr-|3 c Zn'?e c?jr:(e ?hlon. ec '?n th p
can be determined to guarantee the protection of the PU r&&? considered signal models and further presents thesatise
Subsequently, by comparing the e_St'mated SN_R with the SNRIn this context, no methods for improving probability of detes in the
threshold, power control mechanism can be implemented padsence of correlation have been included in this paper.
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channel and noise correlation in practical scenariosi@ellY complex Wishart matrices with arbitrary dimensions haverbe
reviews different eigenvalue-based blind SS techniques: Sderived and the derived analytical results are used to fiad th
tion V presents channel correlation analysis under sighe pdecision threshold for a blind Generalized Likelihood RBati
noise hypothesis using RMT. Section VI provides the maifest (GLRT) detector. Furthermore, free probability thyeor
analytical results for signal plus noise case in the presefic which is a valuable tool for describing the asymptotic bétrav
noise and/or channel correlation and further presents the Bf multiple systems, has also received attention in the SS
SNR estimation method using the derived a.e.p.d.f. exprdiserature [31, 32].
sions. Section VII studies the performance of eigenvakset In [18], an SNR estimation method has been proposed
SS techniques in the presence of correlation and evaluaf@s ultra-wideband CR systems using computer simulations
the performance of the proposed SNR estimation technigaled this method is specific only for multiband orthogonal
with numerical simulations. Section VIII concludes the gap frequency division multiplexing-based systems. In [19], a
The appendix includes some preliminaries on random matgseudo bit error rate based SNR estimation has been proposed
transforms and proofs of the theorems. for the ED scheme. The contribution in [20] utilizes the prio
Throughout this paper, boldface upper and lower case dettknowledge of SNR, which can be obtained using estimation
are used to denote matrices and vectors respectiiglyde- techniques, for realizing the adaptive SS techniques.|&ilyi
notes expectatior; denotes complex numbers)” and(-)# in [21], a cooperative SS scheme has been proposed based on
denote the transpose and the conjugate transpose regpgectithe SNR estimation and the energy combining method, where
(-)* represents the complex conjugaledenotes the identity the combining weights for the received energies of cooperat
matrix, (2)* denotesnax(0, z), Rx represents the covariancesensors are determined at the fusion center for making tak fin
matrix of X, Rx represents the sample covarianceXafSx ~ decision.
represents the Stieltjes transform Xf Rx represents the R Moreover, most of the multi-dimensional SS techniques
transforn?, £x represents th& transform andjx represents proposed in the literature do not consider the effect of nean
the n transform [8]. correlation. Some contributions in the literature have-ana
lyzed the performance of the ED technique with correlated
Il. RELATED WORK multiple antennas. In [33], the authors analyzed the sgnsin

. . . . ._performance of an energy detector when multiple antenreas ar
RMT has been used in the literature in various apphc%— 9y P

i h deling t it/ . lation in IBIM orrelated and it was verified that the sensing performaifice o
(:Krjlginseulg ai?j mrr?ulzl:rslgr rl\aﬂr:iﬂrg ;zgﬁ:\ée[ggrg? I?tn rl:is alstehe energy detector is degraded when the channels arellspatia
. . o T rrelat nd th rforman radation is propoition

received considerable attention in the CR research contypu orrelated and the performance degradation is propottiona

o . ) . Mhe level of correlation. In 34], the detection performanc
specifically in the eigenvalue-based SS literature [5, G258 of an ED based SS in a CER ]with multi-antennpa correlated

The M_a>.<|mum t.o Minimum Elgenvalu_e (MME) and Energychannels has been investigated in Nakagami-m fading channe
with Minimum Eigenvalue (EME) algorithms for SS have been In [35], a weighted ED technique and a correlated GLRT

proposed in [5] and approximate expressions for probatuht detector have been proposed for SS with multi-antenna cor-

af"".'se a'af”(Pf) and probability Of. detectionfy) have been related channels. In the context of eigenvalue-based &S, th
gen\t/ed Lli/sllli? 9 det/lT' '_I'het.SSbtech quq;as b a\s/\?g on MT"’:/r\?hzméch'ect of spatial correlation in the performance of prestict
tr%SLJtLi]cr)n( anc)j T(rea?:;/mvl\r/]ilosloﬁ gﬁr?isz, (T:/?/%/)- dilst(?irgut(ion )ha\'/zggenvalue threshold based SS is analyzed in [13] and it is

e g hown that the detection performance improves in the poesen
been proposed in [25], [5] and [26] respectively. Moreotes, P P P

: S _ of spatial correlation at the multi-antenna secondary .user
ap pr0?<|mate .’:_md exact d_lstr|but|ons ofthe SCN of the rebiv wever, the theoretical analysis of the effect of channel
signal’s covariance matrix have been used for SS purposes

- ; rrelation in the performance of the proposed technique is
27’2f8]' Admtong all e>f<|st|rl;? tgchnlques, SCfN b{:\sed met_ho Bt presented in [13]. In [36], a new decision threshold for
3;?:63:::“)/ ?6] € preferabie in presence ot noise covanangt purpose of SS has been proposed in the presence of noise

T . .__correlation and in [22] the a.e.p.d.f. of the received signa
Recently, the_dlstrlbqtlon_ of the SC'\.I of Wishart matrlceéovariance matrix has been derived under signal plus noise
has been considered in signal detection for a CR [14]. se. Furthermore, in [37], asymptotic analysis of eigtereva
this context, two types of condition numbers i.e., SCN a ’ ’

i . . based blind SS techniques such as Scaled Largest Eigenvalue
Demmel Cond|.t|on Number (DCN) (the ratio of the matrl)iSLE), signal condition number, John’s detection, splaric

o 184t based detection has been carried out and the perfoemanc

. . . 'bf these technigues has been evaluated in the presence of
Euncﬂon (CDF) of the SCN of different Classesiof Wlshart M3oise correlation numerically. Moreover, the contribatiim
trices has been presented. In [29], the exact distributidhe 15] uses the RMT in order to estimate the transmit power
DCN for random matrices with arbitrary dimensions has be multiple signal sources blindly in multiantenna fading
presented. In [30], analytical expressions for the Prdibabi channels.

Density Function (PDF) and Cumulative Distribution Fuonti
(CDF) of the ratio of the largest eigenvalue to the trace of 1. SIGNAL MODEL

2Readers should not confuse the R transform notalonith the covariance VW& consider a single PU for simplicity of analysis. L&t
matrix notationR. be the number of samples analyzed by the cognitive user for
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the decision process andthe sensing duration. Lét/ be the are independent and identically distributed (i.i.d.) cterp
number of receive dimensions in the cognitive receivernfrocircularly symmetric (c.c.s.) Gaussian symbols. For case

a system-model point of view, this factor can be considerdlde covariance of the transmitted signal can be written as:
to be the number of antennas in a multiantenna based ®R = E[s?] = 1. Similarly, for case4, Rs, = E[S;S¥]| =1
receiver, number of cooperative users with single anteriha Rssuming that for each sample we get an i.i.d. c.c.s. symbol
chain in a cooperative sensing CR systeamd the number with E[s?] = 1. We denote the hypotheses of the presence
of oversampled branches in an oversampling based sensimgl absence of the PU signal i, and H, respectively.
model as considered in [5,26]. THe x N received signal A binary hypothesis testing problem for multi-dimensional
matrix Y in the considered multi-dimensional framework casensing techniques can be formulated as:

be written as:

Ho:Y = Z
i @) Hy Y J/pHs +Z Case 2
: = S ase
¥2 y2(1)  52(2) ... 3a(N) ' - .
Y = . = ) ) . _ . (@) = pHS;+Z Case 4 (2)
y;w ym (1) ym(2) .. yu(N) Assuming that the source signal is independent from the

noise, the covariance matrix of received sigia{ can be
The signal model presented in this paper is generic and candaéculated as [5]:
applicable to all the considered multi-dimensional sciexsar R R .
The PU transmitted signal may suffer from slow or fastRy = E[YY?|=E (\/ﬁHS)(\/ﬁHS)H} + E[Z2Z])
fading depending on the nature of wireless fading channel. B NN
Furthermore, the channel effect on the transmitted symbol = PpEHH"]+R;, ©)

may remain constant or vary depending on the transmi

_ — E[ZZH i i
data rate and the sampling rate applied at the CR recei\%here Ry = E[ZZ7]. Let us define the sample covariance

Moreover, a constant symbol or random symbols may appdagirices of the received signal and noise &y (N) =
Y 4 y appedy U andR,(N) = 1221,

in the receiver depending on the relation between sensing
durationT and transmitted symbol duratidh,. Depending on
the appearance of constant or random symbol and the nature )
of wireless channels, the following cases can be consideréd Causes of Correlation
for modeling the received PU signal at a cognitive terminal. | practical implementation of a CR, noise and channel
Case 1.7 < T and channel coefficients vary across receigay pe correlated due to various reasons. Depending on the
(i-e., spatial) dimensions but remain constant across @eahp considered multi-dimensional scenario, the causes ofredan
dimension:Y = ,/ph - s - 1 + Z, whereh is an M x 1 gnd noise correlation may be different. Table | summarilzes t
correlated §2a”n§LV§Ct.0r ieh = [A(1),h(2),....h(M)]", types and causes of noise and channel correlation.
Z = [21,2y,...2y]" is M x N correlated noise with 9y cayses of Channel correlation: The channel correlation
Zm = [ Zn(1) 2m(2) ... Zm(N) Jwithm =1,2,... M, j5 MiMO/Single Input Multiple Output (SIMO) systems de-
s is a constant transmitted symbap, is the power of pends on the following two components.
transmitted symboll is an1 x N vector with all elements 3y gpatial Correlation: In wireless multipath environnserie
being 1. Since we assume normalized noise varianCgnannels are not always independent from each other but can
SNR = p. . be correlated due to poor scattering in the propagation. path
Case 2: 7 < T, and channel coefficients varyThs type of correlation can be referred as spatial correiat
across  both  (spatial Aang Atgmpq?ral) R TdT'mer_]S'O”ﬁﬁ such environments, multipath signals tend to leave the
Y = pHs + Z, where H = [hy by, ... hy]" With  yansmit antenna array in a range of angular directions and
hy 2 [ (1) hn(2) -0 h(N) 1. tend to arrive at the receive antenna array from a range
Case 3:7 > T, and channel coefficients vary across spatigk angular directions rather than a single angular directio
dimension but remain constant across temporal dimensigthe rich scattering in the propagation path decreases the
Y = /phs + Z, wheres is an1 x N PU transmitted signal gpatial correlation by spreading the signal such that peathi
vector. components are received from many different spatial dast
Case 4.7 > T and channel coefficients vary across botfy 1], The smaller spacing between antennas in the transmit a
dimensionsY = ,/pHS.+Z, whereS, is anN x N diagonal recejve sides increases the spatial correlation sincecetja
transmitted signal matrix with the diagonalk= [s(1)...s(N)]. antennas receive similar signal components.
b) Antenna Mutual Coupling: Channel correlation also arise

We are interested in analyzing cases 2 and 4 in thigie to mutual coupling between the transmit and/or receive

papef. For our analysis, we assume that transmitted symbe{fitenna elements [12,38]. In the transmitter antenna ,array
antenna mutual coupling causes the input signals to be cou-

°In this context, we consider the PU signal detection phastetooper- plaq with the neighbouring antennas. Similarly, the channe
ative system assuming perfect reporting channels as in [26]. . . .

4Casesl and3 involve unit rank Wishart matrices which are straightforsvar correlation may arise due to antenna mutual coupling effect
to analyze. the receiving antenna arrays.
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TABLE [: Causes of channel/noise correlation in multi-dimensional scenarios

Cases Channel Correlation Noise Correlation
Type Cause Type Cause
Spatial Correlation Multipath
propagation Filtering Autocorrelation
Multi-antenna function of the
SS . . filter
Antenna mutual Transmit/receive
coupling Antenna
separation
Oversampled Oversampling Oversampling Filtering Autocorrelation
SS operation function of the
filter
Filtering Autocorrelation Oversampling Oversampling
function of filter operation
Cooperative SS | Spatial correlation Collocated nodes |irFiltering Autocorrelation
CR network function of the
filter

2) Causes of Noise correlation: The noise correlation in uncorrelated Wishart distribution i.e4Z% ~ Wy (Rz, N).
the receiver may arise due to the following reasons. To ensure tha® does not affect the noise power, the normal-
a) Filtering: In practice, the received signal is passedufh ization (1/M)trace{®} = 1 is considered.
a pulse shaping filter before further processing in the CRSince the output autocorrelation function of the RC filter
receiver. In this case, the noise which is added to the sigmasembles an exponential function, we define the components
before the filter is also filtered out and it becomes affecter ® using an exponential covariance model, which is given
by the autocorrelation function of the filter. For examplehy [23];
when a white noise input process with power spectral density cb=d), i<
Ny/2 is the input to a RC filter with time constaiC, the 0ij (g(ifj))* i>j
noise is affected by the autocorrelation function of the RC ’
filter and it becomes colored. The RC filter transforms th&here 6;; is the ¢, j)th element of® and¢ € C is the
input autocorrelation function of white noise into the auttp correlation coefficient with ¢ [< 1.
autocorrelation function given by [39R, (v) = ﬁ%e—%.
b) Oversampling: Let the pulse shaping filter has a bandwidfh Channel Correlation Modeling

of W Hz, which is usually equal to the bandwidth of the As in [24], we use the one-sided correlation model to model
signal. If we sample at a rate higher than the Nyquist rate i.@hannel correlation. In this paper, we focus on the coiiceat
2W Hz, the noise process in the output becomes correlaigghoss channel receive dimensions and not on the temporal
even if the input noise process is white. correlation. We model the channel a#l = ®'/2H, where

3) Causes of both channel/noise correlation: The filtering § js an A7 x N matrix with c.c.s. i.i.d. Gaussian entries with
and oversampling operations may also cause channel corrélsg mean and unit variance a@d/2®/2 — & — E[HHY].
tion in addition to noise correlation since the receivechalg |t can be noted that SincEl ~ CN(0,1), HH follows

passes through the same filter and the same oversamplipgorrelated Wishart distribution i.dJH? ~ Wi (Ra, N).
operation. If we want to include the effect of filtering andro ensure that® does not affect the channel power, we
oversampling operations in the performance of the SS apgnsider the following normalization(l /M )trace{®} = 1,

need to be considered in the analysis. covariance model given by (4).

“4)

B. Noise Correlation Modeling IV. EIGENVALUE-BASED SS TECHNIQUES

To analyze the noise correlation, we consider noise correlaIn [5], the TW distribution is used as a statistical model
tion across the receive dimensions and not across the tempésr the largest eigenvalue and a combination of the TW based
dimension. To model this scenario, we consider the onedsidend the MP-based approaches is used to find the approximate
noise correlation model as in [22]. We model the correlatefistribution of random SCN. Subsequently, this distributi
noise as:Z = ®'/2Z, whereZ is an M x N matrix with

c.c.s. i.i.d. Gaussian entries with zero mean and unit neda 5The analysis presented in this paper can be straightfolyasdended to

. . . A~ the time correlated noise/channel case assuming the exjanentrelation
2@l/2 — @ — H
representing the white noise a@f'/2©'/2 = © = E[ZZ"]. model still holds. In this case, the one-sided correlation ehoeln be applied

It can be noted that sinc& ~ CN(0,1), ZZ" follows an on the right hand side of the noise/channel matrix insteag:fofiand side.
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is used to derive the relationship between an expressicovariance matrix [5]. The binary hypothesis testing peatbl
for Py and the threshold. The difference between MP-basedsed on EME technique can be written as:

approach and TW approach is that MP-based approach uses e ey (R (V)

deterministic asymptotic bounds for the a.e.p.d.f. suppbile decision = Ho, if m =M (8)
the TW approach uses the pdf of the maximum/minimum H;, otherwise

elgen\{alue for.f|n|te dlmenS|ons.. In the following subsecs, here~, is the decision threshold for the EME method, which
we briefly review the asymptotic MP-based approach [Zg\ﬁ given by [5];

semi-asymptotic MME and EME approaches [5] for their use '

in our context. (]2 N
72-( MNQ (Pf)"’_l) (\/N_\/M)Q’ )

A. Maxi Mini Ei MME . . .
adimum to Minimum Eigenvalue ( ) where Q! represents the inverse Q-function wi(t) =

The decision statistic for the MME method is the ratio of the 1 oo ,—u?/2,
maximum eigenvalue to the minimum eigenvalue i.e., SCN“Remark 4.1: It can be noted that GLRT like algorithms such

Based on the distribution used for analyzing the bounds g g| £ (j.e., maximum eigenvalue/average eigenvalue) have
the maximum and the minimum eigenvalues, this techniqygen investigated in [40, 41]. Furthermore, the effect dé@o
can be categorized into the following sub-techniques.  ¢oprelation on different eigenvalue-based blind techesgin-

1) Asymptotic MME: In this approach, both the maximumc,,ging the SLE detector has been analyzed in [37], where it
and the minimium eigenvalues are calculated based on {heshown that the SLE technique performs better than other
asymptotical properties of Wishart matrices. The minimugigenyalue-based techniques for a variety of scenarios and
and the maximum eigenvalues @y (N) asymptotically eyen in the presence of noise correlation. Therefore, wplgim
converge almost surely o= (1—/3)? andb = (1+v5)*  provide an overview of MME/EME techniques and evaluate

respectively, in the limith/, N' — oo with ratio index5 =  tneir performances in the presence of channel/noise atioel
N/M [8]. The parameters. and b can be regarded as thenumerically in Section VII.

bounds of the MP distribution and based on these MP bounds,
the absence or presence of a PU signal can be decided unde(/ CHANNEL CORRELATION ANALYSIS USING RMT

the white noise scenario [25]. Under white noise scenarios, ,
the decision statistic can be calculated using the MP law ad OF the purpose of completeness, we state the following

[22]: RMT theorem which is going to be used in our analysis.
) Theorem 5.1: [24] Let ® be a positive definite matrix
decision{ Ho, if % <t ©) which is normalized as(1/M)trace{®} = 1, and whose
H;, otherwise asymptotic spectrum has the p.d.f.

where )\max(RY(N)) and /\miﬂ,(RAY(N)) denote the maxi- f@()\) _ 1 \/(/\ _ 1) (1 _ /\> (10)
mum and minimum eigenvalues 8y (V) respectively. This 22 o1 P
asymptotic approach does not have Constant False Alarm Rate )
(CFAR) property since the threshold is not a function of theith o1 < X\ < o, and p = %- If Fis an
false alarm rate. M x N standard complex Gaussian matrix ap#F* follows

2) Semi-asymptotic MME: This MME approach is semi- the MP law [8], then asM, N — oo with % — 3, the
asymptotic in nature since the bound for the maximum eigeasymptotic eigenvalue distribution 8V = @1/2FFH©!/2
value is calculated based on the TW distribution instead bés the following p.d.f.
the asymptotic distribution while the minimum eigenvalue
is evaluated based on asymptotic analysis [26]. The binary

NCEDTOET

— +
hypothesis testing problem for this technique can be writte Fw(d) =0 =BT + 2 A(1 4 ) (11)
as: ) ~
. Hy, if Jmex@®¥M) wherea = 1+ 8+ 2uB — 2B/ (A + )1+ pp), b =
decision = Amin (B (N)) 6) 14 8+2u8+2vB /(1 + 1)+ puB), 8(.) is a Dirac delta
H;, otherwise
’ function and(1 — 8)" §(\) represents the cardinality of zero

where~, is the decision threshold for MME method, WhiCI’Eigenvajues which can occur ¥/ > N. The parameterg

can be written as [26]: andb correspond to\%s;, and A%, respectively and the ratio
_ b/a defines the SCN oW.
AT\ —2/3
= b . (1 + (\/N]J\;Mf\//-? FITI/lVQ(l — pf)> ., (M Proof: For detailed proof, see [24]. u
a The above theorem is applicable for noise covariance matrix

©® in case of noise correlation and for channel covariance

matrix ® in case of channel correlation. The eigenvalue spread

) o ] of ® or ® is related to the degree of noise or channel

B. Energy with Minimum Eigenvalue (EME) covariance i.e., a zero eigenvalue spread corresponds to a
The average power of the received signal is nearly sarmero-covariance model and higher spreads are associatied wi

as the average eigenvalue.{;) of the received signal’s higher covariance models. In (11), the paramgteontrols the

where Fi;,, is the inverse Tracy-Widom CDF of order
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degree of covariance and varies the support of the disiibut ZZ" is a Wishart matrix. As a resulHH” and ZZ"
ie,fory =0 a=aandb=b wherea = (1 — /B)? are asymptotically free due to unitarily invariance [9].€hh
andb = (1 + /B)? are the supports of the MP distributionthe combined R transform dRy can be found from the R
[8]. For the exponential covariance model as stated in [24tansforms ofRz and pRﬁ using additive free convolution
the parameter: is related to thze correlation coefficientwith  property of R transform in the following way [45].

the following relation:p = ——. Furthermore, the SCN is

1—¢2"
related tos with the relationSCN — == To calculatey Ray (2) = R, (2) + Ryp,, (2).
In a practical cognitive receiver, the value offor noise SinceRz follows MP law, its R transform can be written as
correlation case can be determined based on some empiq&é‘l R trzmsform of the |\/]P law and is given by (24). Using
model constructed from measurements such as [22] and s :
value for channel correlation case can be determined us

th2 transformations as described in the preliminaries, ate g
channel estimation techniques like [42]. The received aign

I Stielties transform oRy (See Appendix B for detailed
. . : prgocedure). The Stieltjes transforms obtained for difiere
matrix under correlated channel and white noise case can pe . . . .
written as: cor[elated scenarios are provided in Section VI. The ad.p.
) of Ry is then obtained by determining the imaginary part of
the Stieltjes transforrﬁﬁY for real arguments in the following

Assuming that signal and noise are independent, for veway.

(15)

Y = \/p®HS, + Z. (12)

Ie}rge value ofN, the sample covariance matrix of received f(z) = lim *IIH{SRY (z + jy)}. (16)
signal under considered scenario in the presence of channel y—0+ T
correlation can be approximated as [5]:
) . 1 Hal o VI. MAIN ANALYTICAL RESULTS
A}lm Ry(N)=p®:2HH" $2 + Ry. (13)
—00

In this section, firstly, we mention two theorems (Theorems
6.1 and 6.2) for the white and correlated noise cases frofn [22
A. Methodology These results will be used in our numerical analysis in otaler

The a.e.p.d.f. of the received signal's covariance matroompare the performance of the considered cases in this.pape
under theH; hypothesis can be used to estimate the PU SNFhen we present the main results of our analysis (Theorems
by a CR. To calculate the a.e.p.d.f. ﬁfY(N), we need to 6.3 and 6.4). The proofs of these theorems are postponed to
know the Stieltjes transform of its asymptotic density fiime. the Appendix to improve the continuity of this manuscript.

In this subsection, we provide a generalized methodology toTheorem 6.1: The Stieltjes transforn&g = of the asymp-
derive the a.e.p.d.f. foRy (V) in the presence of channeltotic distribution of eigenvalues O%YY% where Y =
correlation referring to the case considered in (13). HS, + Z can be obtained for any € C by solving a cubic

Due to noncommutative nature of random matrices, itjsolymonial having the following coefficients
not straightforward to calculate the eigenvalue distidng of

the received signaY by knowing the eigenvalue distribution co=1,

of covariance matrices o®, H and Z in (13). Using free caa=01-8)10-p)+z

probability analysis, the asymptotic spectrum of the sum o =p(—28+z2+1) +z,

or product can be obtained from the individual asymptotic —— 17)

spectra without involving the structure of the eigenvestor
of the matrices [8] under a asymptotic freeness conditiowherec, is thenth order coefficient of the polymonia$, = &
The asymptotic eigenvalue distribution 8 in our context andp is the SNR of the transmitted PU signal.

can be obtained by applying transform and R transform Proof: The proof of this theorem can be found in [22].
[8]. In (13), since® is a deterministic matrix an#ITH" is ]

a Wishart random matrix, they are asymptotically free (see Theorem 6.2: The Stieltjes transfornsy — of the asymp-
Example 2.34, [8]). As a result, the combined a.e.p.d.f. ¢dtic distribution of eigenvalues O%YY where Y =
the termp@%HHHqﬁ in (13) can be obtained by applyingHS, + Z can be obtained for any € C by solving a quartic
multiplicative free convolution property o transform in the Polymonial with the following coefficients

following way [44]. co=1+p,

Y a (2)=%s(2)-2 & (2), 14) < =201 +p(l =) +2(1+2u) -1 +p)+1,
ity () = 20 (2] E, (2 _(, ) P B+ 1= 8) 4 201+ 2 (2= ) 45— 39+
whereXs and 2 Ry are theX transforms of the densities of ., _ 2zup(z — pB) + P> (1 + 221 + z — 2B) + 22p,
eigenvalues ofp andpRy respectively. Sinceb is a square ¢, = zp2(1 + ), (18)
matrix, ®'/2HH &1/2 and ®HH*’ have identical eigenval- )
ues [8]. FurthermorepPHH* andZZ" are independent and Wherep = =, defines the degree of covariance of the noise
covariance matrix®.

6The analysis carried out in this paper is based on the assumitat Proof: The proof of this theorem can be found in [22].
both dimensionsV/ and N go to infinity with some finite ratig@ = N/M. -
However, as noted in [25] and [43], the asymptotic analysvige valid . e A
approximations even for finite dimensions while providing man&ctable Theorem 6.3: The Stleltjes tranSformSR of the asymp-

solutions. totic distribution of eigenvalues of}vYY% where Y =
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HS, + Z can be obtained for any € C by solving a quartic is calculated based on (18). Similarly, for correlated ctein

polymonial with the following coefficients plus white noise case is obtained using polymoriig) énd for
co=1+p, both correlated case is obtained using polymoriig).(It can
c1=2u(z+1-8)—Bp+1)+p+2+2, be noted that the value offor correlated channel can be found
ca=p(z—38+2) +B(u(B—22—2)— 1)+ pu(z(z+p) +1) + 2z, with channel estimation methods such as [42] and its value fo
c3=—=2p(B—2)+22u(1 =B+ 2)+p+2, correlated noise can be found by carrying out measurements
c4 = 2(p + pz), (19) in the sensing module like [22]. Since we know the valug of

and we can measure the valuespfve can estimate the value
Sfp by sensing the maximum eigenvalueR¥,. Furthermore,
it can be noted that the parametér§ N and¢ are assumed
as operating parameters of the CR sensing module.

For convenience, a lookup table (Table Il) is provided
in order to estimate the PU SNR (see Section VII). In

where the parameter defines the degree of covariance of th
channel covariance matrig.

Proof: See Appendix B. [ |
Theorem 6.4: The Stieltjes transfornsy_ of the asymp-

totic distribution of eigenvalues O%YY where Y =
HS, + Z can be obtained for any € C by solving a quartic

polymonial with the following coefficients the lookup table, we present the maximum eigenvalues of
) received signal’s covariance matrix for the above four sase
co = plp 2 +1) K for different values of SNR ang. With the help of this
= _“(’“L, D((=4p” =8u = 2)z + (14 p) (26 =2 —3+26),  apje, we can estimate PU SNR based on the maximum
o2 = p(617 = 22((2p +2)B — 62 — 3(p + 1))* + (52 eigenvalue of received signal's covariance matrix. Based o
+ (=201 +p)(=5+28))z + (p — 1?8 + (0 +1)*(1 - 28) +p) this estimated SNR, we could potentially design suitable
+p*°(1-B)+ (32— 68+4)p+32+1—p), underlay transmission strategy for secondary transnmissio
3 = pp? (14 2(1 + 2u) — 28) + p*B(—22(1 4 p)* — 22%u(1 + p)) as described in Section 1. In Section VI, we provide the
+ pz(1+ 4zp(1 + 3p)) + 2 + p222((1 + p) (5 + 6p) + 4u22), normalized MSE versus SNR plot to evaluate the performance
ca = 2202 (1 +p)2 + p+ 2zp) + zup(p + 22%p2 + 1) + 244, of this estimation technique. To clarify the above process,

(20)  we include algorithms for lookup table formation and for PU
where the parameter defines the degree of covariance of th&NR estimation below.
noise covariance matri® and the channel covariance matrix
P. Algorithm for lookup table formation

Proof: A ix C.
roof: See Appendix C " 1) SelectN, M and calculates = N/M.

Remark 6.1: The polymonial for calculating the Stieltjes %) Find . h | estimai d noi
transform considering different values @f for noise and ) Find¢ using channe estimation and noise measurement
methods like [422] [22].

channel covariance matrices can be obtained using similar) Calculatey .
. . L . =S

SL(;C(:ST;‘; \(/)\]{eSS;Cth include this polymonial in this paper 4) Selecty rangele..gg., 10 dB to 5 dB.

Remark 6.2: We can find the roots of the above polymo- 5) E_vaIuateSRY using (19).
nials (18), (19) and (20) in closed forms. The closed form is 6) Find Anax(Ry) using (16). .
not specifically written in this paper because it includesyna ) Store allAnax(Ry) and corresponding e.g., Table Il
terms which provide no further insight. In practice, we can Algorithm for SNR estimation
just solve these polymonials with a mathematical software f —
finding the Stieltjes transforms under considered scesario 1) Calculate instantaneod®y (N) = x YY"

2) Calculateh.x (Ry).

A. SNR Estimation Method 3) Find p corresponding to\,,»x from lookup table.
) Use suitable interpolation for any intermediatg.,.

Based on the analysis presented in the above section,,first!\,'4
we present the SNR estimation method for estimating the PU
SNR in the presence of channel correlation and in the presenc
of both channel/noise correlation. Then for evaluatingSh&R A, Performance Metrics
estimation performance, we consider the following fouresas
() uncorrelated channel plus white noise, (ii) uncorretat
channel plus correlated noise, (iii) correlated channeis pl
white noise, and (iv) correlated channel plus correlateédeno

For comparison purpose, we consider both uncorrelated(Cegyaction and (i) probability of a false alarm. These riostr

!) and noise correlated (Case If) cases from [22]. can be defined in the following way. Lét(H;;H;) indicate

3 Ba;ed on the polym_onials of the Stieltjes transforms SP&fie probability of deciding hypothesil, when hypothesis
ified in the above section, the supports for the corresp@wdlﬁj is true with {i, j} € {0, 1}. The probability of detection

a.e.p.d.f. are obtained using (16yhe support for the a.e.p.d.f.(Pd) can be defined as?; = P(H,;;H,) and the P can
of Ry under uncorrelated channel plus correlated noise c3se yofined asP; = P(Hy(HO) [46] 1lhen the probability of

We select the imaginary root which complies with the definitand COTTeCt decision is defined dg?(H.léHl)ﬂ‘P(HmHO))/Q i.e.,
properties of Stieltjes transform (See Appendix A). Py + (1—Py)/2. In other words, it depicts how many correct

VIl. NUMERICAL RESULTS

In this section, firstly, we study the performance of
eigenvalue-based SS techniques in the presence of noi&e and
channel correlation. The performance metrics used are (i)

robability of correct decision, (ii) probability of cowe
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decisions are made out of the total considered realizatioofsthe signal eigenvalues is improved in comparison to the
under both hypothes&sin the presented simulation resultspoise eigenvalues in the presence of spatial correlatiom, t
10 realizations were considered. We consider Rayleigh fagrobability of detection improves in the presence of spatia
ing channel in our simulation model and the coefficients @rrelation in eigenvalue-based techniques.
uncorrelated channdll are generated from random complex Remark 7.1: As noted in [33, 35], the performance of the
numbers whose real and imaginary components are i.i€D technique degrades in the presence of spatial cormelatio
Gaussian variables. Furthermore, the correlated chadnisl The different effects in the performances of the ED and the
generated by applying the covariance maibix MME/EME techniques due to the presence of spatial correla-
To evaluate the performance of the proposed SNR d®mn come from the fact that in the ED, noise power is deter-
timation method in the presence of noise or/and chanmained completely by thé&l, hypothesis while the denominator
correlation, normalized MSE is used and it is defined as: term in MME/EME techniques (i.e., the minimum eigenvalue)
E[(p - p)?] is determined from the received s.i.gnal’s.covariance matrix
(21) under theH; hypothesis. More specifically, in the EME/MME
techniques, both the numerator and denominator terms mary i
wherep is the estimated SNR with the proposed method anlle presence of spatial correlation while the noise powesdo
p is the actual SNR. not depend on the spatial correlation for the case of ED.

MSE = -~
P

1 ; Y 4 A

B. Results

Figure 1 shows the performance of MME and EME tech-
niques for correlated channel and white noise case in terms
of P; versus SNR{CN = 3). For the comparison of MME
and EME techniques in the presence of channel correlation,
the fixed false alarm rate df.07 was considered and the
detection threshold was calculated using eqns. (7) and (9)
respectively. Then the value @t; was calculated numerically
based on the calculated thresholds for different SNR values
in the considered range (from-15 dB to 5 dB). From

09

0.8

o
3

o
=
T

Probability of detection
o o
> 3
T

o
w
T
-

o
)
T

= # — MME channel correlated
—#— MME channel uncorrelated
— A - EME channel correlated

I
e

the figure, it can be noted that the detection performance & | [ A EME channel uncorrelated
improves in the presence of channel correlation as condlude 1 1o SNR B 0 °

in [13]. It was noted m. [22] that the sensing performanc.eFig. 1: P, versus SNR (dB) for MME and EME techniques in channel
of the MME/EME techniques and the MP-based asymptotic uncorrelated and correlated scenarios

technique degrades in the presence of noise correlatigord-i (8 =6,P; =0.07,SCN = 3, N = 60)
2 shows the performance of the asymptotic MME technique
for different cases with the MP bounds i.eq,/] and new

bounds proposed in [22] i.e.ip] in terms of probability 1 PP PP
of correct decision. The decision for the MME technique 0sst BreeeTeTaTETe e
using the MP bounds was calculated based on (5). Similarly, .

the decision for the MME technique using new bounds was
calculated usin@/d, obtained from the supports of (11), as the
decision threshold instead 6f«a in (5). The detailed analysis
for this decision process can be found in [22]. From the figure
it can be noted that the MP bounds do not perform well in
presence of noise correlation and new bounds provide better

0.75 T
/ —#— MP bound, white noise

—— MP bound, correlated noise
New bound, correlated noise

Probaility of correct decision

sensing performance in this scenario. In the presence tiikpa 06f —&— MP bound, correlated channel [
correlation, the sensing performance improves with the MP oss] e S WP bount bom e
bounds and the performance becomes slightly worse with new e ;L= 8 = New bound, both conrelated

bounds. Furthermore, it can be noted that the sensing with - e snR, a5 ’ °

new bounds increases sensing performance in the preser,;q@_ 2: Probability of correct decision versus SNR for asymptotic EIM
of both channel/noise correlation. Similar to the perfonoce method 3 = 6,SCN = 3, N = 60)

results obtained in [13], we note that the performance of
the considered eigenvalue-based techniques improve in th‘%’able Il shows the lookup table for different values of SCN
presence of spatial correlation. This is due to the reasan th

: . : of the channel/noise covariance matrix and SNRs. For all
the presence of spatial correlation strengthens the eidjses . ; : )
. . ) . . the considered cases, the maximum eigenvalue corresgpndin
of the received signal's matrix under thE; hypothesis

. .~ 1o the particular value of SNR was obtained by solving the
compared to the uncorrelated case. Since the contr|but|onI . . . . . ,
polymonial expressions provided in Section VI with the help
8Since threshold is fixed in our scenario and noise correlaitects the Of @ Mathematical software. This table can be used tP esimat
value of Py, we consider number of correct decisions under both hypethesthe PU SNR on the values of SCN agidor all the considered
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—+— Corrolated channelt correlated oo | © ‘ | is higher for both correlated case than other cases. From
Uncorrelated cha 1+ ¢ lated nois . .
16l = Comeated chanmele. white noise. ¢ | the curves for correlated channel plus white noise case and
—&— Uncorrelated channel+ white noise

uncorrelated channel plus correlated noise case, it cantee n
that the effect of noise correlation is dominant at loweueal
of SNR and the channel correlation effect becomes more than
that of noise correlation at high SNR values (aftedB in
Fig. 4). Furthermore, it can be noted that at the value of
SNR= 0 dB i.e.,p = 1, effects of channel correlation and
noise correlation are equivalent for identical

Figure 6 shows the normalized MSE versus SNR with and
without the knowledge of noise or/and channel correlation
10 1 (B =1, SCN = 4, N = 100). In this case, we consider

qN the correlated case with the presence of both channel/noise

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ correlation. In this simulation setting, we generate the in

S O S o stances ofY according to case IV shown in Table Il and
Fig. 3: Maximum Eigenvalue versus SCN of covariance matrix for We- eva-luate the knOWIedge of correlation on the PU SNR

"7 different casesf{ — 1. N — 100, SNR — 3 dB) estlmgtmn perfor.mance using (21). To evaluate the knayded
of noise correlation only, we use case Il of the table and to
evaluate the knowledge of channel correlation only, we use

case lll. Similarly, to evaluate performance without kneede

cases. For example, if the value of SCN2isg3 is 1 and the of both channel/noise correlation, we use case | and to atelu
maximum eigenvalue of sample covariance matrix of receivge knowledge of both channel/noise correlation, we use
signali.e.,.+; YY is 4.79 in case Il, we can then estimate thatase IV of the table. From the figure, it can be noted that
PU SNR is 2 dB and intermediate values can be calculatefle performance is optimal assuming the knowledge of both

15

14r

13-

12

Maximum Eigenvalue (A (Ry (IV)))

through interpolation. channel/noise correlation. Moreover, the MSE performance
with knowledge of noise correlation becomes better thah wit
13 T T T T T T i
—— Comelatod channel._comelaiod mone the knowledge of channel correlathn at lower SNR values
12| T Gt chamels it s % i and the phenomenon reverses for higher SNR values-{
—=— Uncorrelated channel+ white noise dB SNR in the figure). Therefore, it can be concluded that

[N
[
T

the PU SNR can be reliably estimated if we have the perfect
knowledge of both channel/noise correlation at the CR s@nsi
module.

Furthermore, to evaluate the performance of the proposed
technigue in case of the imperfect correlation model, we
consider 10% static deviation in the considered value of
the correlation coefficient for both the channel and noise
correlation. Subsequently, we carry out SNR estimatioredbas
on the procedure mentioned in Section VI and evaluate the
performance using (21) in terms of the normalized MSE
versus SNR plot shown in Fig. 6. From the figure, it can

-0 -8 I N 0 2 4 be noted that the PU SNR can be estimated with less than
' 2.5% normalized MSE error up to the SNR value @fdB
Fig. 4: Maximum Eigenvalue versus SNR for different cases while consideringl0 % imperfect correlation knowledge. At
(8 =1,N=100,SCN = 4) the same value of SNR i.e() dB, the normalized MSE

Figure 3 shows the maximum eigenvalue of the receivelror is about2.5 % while considering perfect knowledge
signal’s covariance matrix versus SCN of the covariana# both channel/noise correlation. Thus the normalized MSE
matrix for different casesd = 1, N = 100, SNR = 3 dB). performance degradation in casel6f% imperfect correlation
From the figure, it can be noted that the maximum eigenvallkpowledge is about.7 % at the SNR value df dB. Moreover,
increases with the SCN for all correlated cases and the rétean be noted that this performance degradation increases
of increase for both channel/noise correlated case is higlier lower SNR values and decreases for higher SNR values
than other two individually correlated cases. Furthermtive following performance of the perfect correlation knowledg
rate of increase of the maximum eigenvalue is higher for tlrase beyond the SNR value ®fdB.
channel correlated case than the noise correlated caseRat SNFigure 7 shows the normalized MSE versus SNR for
value of3 dB. Figure 4 shows the maximum eigenvalue versudnsidered cases with the simulation paramet@rs=( 1,

SNR for different casesf(= 1, SCN = 4, N=100). From the SCN = 4 and N = 100). In this simulation setting, we
figure, it can be noted that the maximum eigenvalue increaggmerate instances &f according to the considered case and
with the SNR for all considered cases with the higher ratee evaluate the MSE performance with (21) by considering
in the high SNR region. Furthermore, the rate of increasikke same case from the table. From the figure, it can be noted

=
(=] ~ @ © o
T T T T T

Maximum Eigenvalue (Apqs (Ry (N)))

[$))
T
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TABLE II: Lookup table for SNR estimation

Case | Case Il Case lll Case IV
SCN | B | SNR(B) | Amax(HSq +2Z) | Amax(HSq +2) | Amax(HSq +Z) | Amax(HSq + Z)
2 1 4 10.77 10.78 11.03 11.15
2 1 2 7.45 7.47 7.58 7.73
2 1 0 5.59 5.65 5.65 5.82
2 1 -2 4.70 4.79 471 4.88
2 1 -4 4.29 4.38 4.29 4.43
2 1 -6 4.08 4.19 4.08 4.21
2 1 -8 3.96 4.07 3.96 4.09
2 1 -10 3.90 4.01 3.90 4.01
3 1 4 10.77 10.82 11.45 11.77
3 1 2 7.45 7.52 7.82 8.19
3 1 0 5.59 5.75 5.75 6.18
3 1 -2 4.70 4.93 4.75 5.17
3 1 -4 4.29 4.55 4.30 4.68
3 1 -6 4.08 4.35 4.08 4.42
3 1 -8 3.96 4.24 3.97 4.29
3 1 -10 3.90 4.18 3.90 4.20
4 1 4 10.77 10.83 11.86 12.38
4 1 2 7.45 7.57 8.05 8.65
4 1 0 5.59 5.86 5.86 6.55
4 1 -2 4.70 5.08 4.78 5.45
4 1 -4 4.29 4.72 4.31 4.92
4 1 -6 4.08 4.52 4.08 4.63
4 1 -8 3.96 4.42 3.97 4.48
4 1 -10 3.90 4.35 3.90 4.39
0.71 “Af\’\’itht‘mt l(m)“"ledge of (‘:orrelatio‘n ‘ ‘ W|th 0.2 % nOI’ma“ZEd MSE aftel’ SNR Va|Ue Ode a.t SCN
With perfect knowledge of noise correlation

—a— With perfect knowledge of channel correlation
—— With perfect knowledge of both correlation
- o - With imperfect knowledge of both correlation (10 % error

Normalized MSE

0
SNR, dB

value of 4. For the case of presence of both channel/noise
correlation, SNR can be estimated with® % normalized
MSE at —2 dB and with0.5 % normalized MSE at-1 dB.
Moreover, it can be noted that at lower SNR values, noise
correlated case has higher normalized MSE than other cases
and at higher values of SNR, noise correlated case provides
better MSE performance than channel correlated case ahd bot
correlated case.

VIII. CONCLUSION

In this paper, spectrum sensing and SNR estimation prob-
lems in the presence of channel/noise correlation have been
considered in the context of a CR. The performance of

Fig. 5: Normalized MSE versus SNR with and without knowledge of eigenvalue-based SS techniques has been studied in the pres

channel/noise correlatiom3(= 1, SCN = 4, N = 100)

0.01

T T T T
—+— Correlated channel + correlated noise
—+— Uncorrelated channel + correlated noise|
0.014- Correlated channel + white noise,

. —&— Uncorrelated channel 4+ white noise

1 2
SNR, dB

Fig. 6: Normalized MSE versus SNR for different cases
(8=1,SCN = 4, N = 100)

ence of noise/channel correlation. It has been noted thiaé no
correlation degrades the performance and channel coorelat
enhances the performance of the SCN-based SS technigues.
Furthermore, theoretical expressions for a.e.p.d.f of réhe
ceived signal’'s covariance matrix have been derived under
signal plus noise hypothesis in the presence of channet-corr
lation and in the presence of both channel/noise correlatio
Moreover, an SNR estimation technique based on the max-
imum eigenvalue of the received signal’'s covariance matrix
has been presented in order to estimate the PU SNR in the
presence of both channel/noise correlation. The perfocman
of the proposed technique has been evaluated in terms of
normalized MSE. It can be concluded that the PU SNR can
be reliably estimated using the proposed technique when the
CR sensing module is aware of the channel/noise correlation
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APPENDIX A The inverse Stieltjes transform can be obtained by applying
Random Matrix Theory Preliminaries (32) on (23) and then the Stieltjes transform can be obtained

Let Fx(x) be the eigenvalue probability density function of ekl)y solving the quartic polymonial given by (19).

matrix X. APPENDIX C
Theorem 8.1: The Stieltjes transforn&x (z) of a positive Proof of Theorem 6.4

semidefinite matrixX is defined by [8]: Using the similar arguments as in Appendix B, the following

_ 1 (1 approximation can be written for the case of presence of both
Sx(2) =E X—-z] [m A— zdFX(A)' (22) channelinoise correlation.
Theorem 8.2: The R transform is related to the inverse of

Stieltjes transform as [8]: ngnoo Ry (N) ~ pHH" + Ry (N). (33)
Rx(z) = Sxt(—2) — 1. (23) The Stieltjes transform oR; andRy are same and can be
X . written as [24]:
Theorem 8.3: For a Wishart random matriX, the R trans-
form of the density of eigenvalues &t is defined as [8]: 5. (:)=s, (s)= T 211" B+ V- (4B —48(1+p2)
a z 22(1 4 pz)
__h ) . (34)
Rx(2) = 1— 2" (24) The R transforms ofR;; and R, can be found by using
For anya > 0, (23) and (34). The matriceRy and R, are independent
Raox = aRx (az). (25) and any of these matrices can be written using eigenvalue
Theorem 8.4: For a Wishart random matriX, the s trans-  decomposition aUAU™, where the elements ok are the
form of the density of eigenvalues & is defined as [8]: eigenvalues which are distributed according to Theorem 5.1
1 with compact supports. As a resuR,; andR,, are unitarily
Yx(z) = ——. (26) invariant and asymptotically free. Then the R transform of
Theorem 8.5: TheX. transform of the density of eigenvaluei’RFI can then be found by using (25) and can be written as:
of X is related to the Stieltjes transform by the following p(pz—1+ \/(p2z2 — 2pz + 1 — 4ufpz))
relation [8]: Rog, () = =5 :
a upz
1+2z 4 ) . ) (35)
Yx(z) = - nx (1+2). (27)  Then the combined R transform f#ty can be written as:
Theorem 8.6: Then transform of the density of eigenvalues BRI e e
of X is related to the Stieltjes transform by the following Rgr. (2) = *g(pz Vi upzpz #bpz))
relation [8]: S(=1) 11+ /(P2 11— 4upa) )
nx(z) = == (28) 2 e :
APPENDI; 5 The inverse Stieltjes transform can be obtained by applying

(36) on (23) and then the Stieltjes transform can be obtained
by solving the quartic polymonial given by (20).
Assuming that signal and noise are uncorrelated to each, othe

Proof of Theorem 6.3
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