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Abstract—This letter addresses the problem of instantaneous
signal-to-noise ratio (SNR) estimation during speech activity for
the purpose of improving the performance of speech enhancement
algorithms. It is shown that the kurtosis of noisy speech may
be used to individually estimate speech and noise energies when
speech is divided into narrow bands. Based on this concept, a
novel method is proposed to continuously estimate the SNR across
the frequency bands without the need for a speech detector. The
derivations are based on a sinusoidal model for speech and a
Gaussian assumption about the noise. Experimental results using
recorded speech and noise show that the model and the deriva-
tions are valid, though not entirely accurate across the whole
spectrum; it is also found that many noise types encountered in
mobile telephony are not far from Gaussianity as far as higher
statistics are concerned, making this scheme quite effective.

Index Terms— Higher-order statistics, signal-to-noise ratio,
speech processing.

I. INTRODUCTION

SPEECH enhancement algorithms based on spectral decom-
position, such as Wiener filtering and maximum likelihood

[1], rely on an accurate estimation of the background noise
energy and the signal-to-noise ratio (SNR) in the various
frequency bands. Traditionally, the noise spectrum is estimated
during segments of nonspeech activity and used for SNR
computations. In practice, this is seldom sufficient as the noise
spectrum changes during speech. The resulting poor SNR
estimation limits the effectiveness of the suppression filters
and often results in noise artifacts.

A number of approaches have been proposed to estimate
the SNR without the need for a speech detector, but the
problem is far from being closed: The iterative estimation
proposed in [2] works well in most situations, but being based
on relative energy levels, cannot distinguish between rising
noise energy and the presence of speech. The spectral analysis
method in [3] requires a long segment of speech and a good
frequency resolution to work effectively and overcome the
discrete Fourier transform (DFT) windowing errors.

Higher-order statistics (HOS) have shown promising results
in a number of applications and are of particular value when
dealing with a mixture of Gaussian and non-Gaussian pro-
cesses [4]. In [5], we explored some of the peculiarities of the
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third-order statistics of speech and showed how it may be used
to estimate the pitch and detect voicing.

The idea of using HOS for SNR estimation hinges on being
able to separate signal and noise energies based on these
statistics. In this letter, we show that the fourth-order statistics,
along with a subbanding scheme, allows us to do just that
when speech is divided into narrow bands, such that at most
one harmonic falls in a given band. The expression for the
kurtosis of subbanded speech is derived assuming a sinusoidal
model [6], and is shown to be a function of the speech energy.
This, coupled with the kurtosis of noise being zero, allows one
to individually estimate speech and noise energies from the
kurtosis and variance of noisy speech. The resulting scheme
is attractive in allowing a continuous estimation of the SNR
during both speech and nonspeech segments.

II. A M ODEL FOR SUBBANDED SPEECH

The zero-phase harmonic representationproposed in [6] is
among the simplest sinusoidal models for speech analysis and
synthesis. Its elegance is in the use of the same expression
for both voiced and unvoiced speech and allowing for a soft
decision whereby a frame may contain both types. A short-
term segment of speech is expressed as a sum of sine waves
that are coherent (in-phase) during steady voiced speech and
incoherent during unvoiced speech, as follows:

(1)

where is the voice onset time, the number of sinusoids,
the amplitude, and the excitation frequency of the

th sine wave. The first phase term is due to the onset time
of the pitch pulse; the second depends on a frequency

cutoff and a voicing probability, , so the higher the
voicing probability the more sine waves are declared voiced
with zero phase. The third phase component is the system
phase along frequency track , often assumed zero or a
linear function of the frequency.

Given that speech is divided in narrow bands such that at
most one harmonic falls in each band, then in light of the
model, voiced speech in a given band is modeled as a single
sinusoid with deterministic phase, whereas unvoiced speech is
modeled as a sinusoid with random phase.

III. H IGHER MOMENTS OF SUBBANDED SPEECH

A. Definitions

If , , is a real stationary
discrete-time signal and its moments up to orderexist, then
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its th-order moment function is given by

and depends only on the time differences. For a determinis-
tic signal, the statistical expectation is replaced by a time
summation (or averaging for power signals). Theth moment
of is found by setting all lags to zero:

(2)

The cumulant functions of may be written in terms of
the moment functions, [4]. The kurtosis is obtained by
setting all lags to zero in the fourth cumulant:

(3)

B. Voiced Speech—Deterministic Phase

Given a signal consisting of a single sinusoid of determinis-
tic amplitude, frequency and phase: ,
where is the sampling period. Its higher-order moments
computed over a length- segment are

for integer values of . The above is evaluated for and
by first noting the identity

for real values of and . Thus, the second moment is

(4)

and the fourth moment1

(5)

In the above expressions, the trigonometric terms vanish
whenever is a multiple of the signal period (
or is large enough. The bias error due to these terms is
bounded by ( ). If the effect of these terms is removed,
the expressions for the moments simplify to

and (6)

Thus, the kurtosis may be written in terms of the second
moment , or signal energy, using (3) and (6), as follows:

(7)
1We use the identitycos4 (A) = 1

8
cos 4A+ 1

2
cos (2A) + 3

8
.

where denotes speech energy: . It is to note here
that another way to eliminate the bias terms is to compute the
higher moments for few overlapping frames then average the
results prior to computing the kurtosis (7). This is equivalent
to integrating the results over the entire range of the phase
(assumed uniform over [ ]) in (4) and (5). It is easy to
see from the equations above that this integration will result
in a zero bias term.

C. Unvoiced Speech—Random Phase

Given a signal consisting of a single sinusoid of determinis-
tic amplitude and frequency and uniformly distributed random
phase, , where is the sampling
period. Its higher-order moments are

for integer values of . We first note that

for integer values of . Therefore, the second moment is

(8)

and the fourth moment is

(9)

The kurtosis is therefore the same as in the deterministic case
given by (7).

IV. SNR ESTIMATION FROM THE KURTOSIS

The energy and kurtosis in each bandare computed using
-point segments

(10)

(11)

Since cumulants are cumulative and since the kurtosis of
Gaussian noise is zero [7], then when the signal consists of
both speech and noise, the second moment is the sum of the
two moments (or energies), whereas the kurtosis is simply that
of speech and, from (7), is expressed in terms of speech energy:

(12)

(13)

Therefore, in a given band, speech energy is estimated using
and (13)

otherwise.
(14)
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Fig. 1. Actual versus estimated SNR in a lower band (Gaussian).

The noise energy is [from (12)]

(15)

To smooth out the variance, both estimators are averaged using
the autoregressive scheme

(16)

(17)

where denotes the iteration index andand are integration
constants; simulation shows that values of and

give best results. The SNR in band is then
estimated using (16) and (17) as

SNR (18)

V. SIMULATION RESULTS

Clean speech recorded and sampled at 8 kHz is used and
mixed with different noise sources. The resulting signal is
subbanded using 50 cosine-modulated filters [8]. Analysis in
each band is done using 100 points, with 30% overlap. The
actual and estimated SNR are computed and limited to the
range [ 2, 30] dB, which is the main region of operation for
most suppression filters used in speech enhancement [1], [9].
Figs. 1 and 2 compare the two quantities in one of the lower
bands when Gaussian and street noise are used, respectively.
The estimation errors, though not very significant, are partly
due to the smoothing effects of theand coefficients in (16)
and (17), and partly to the estimation errors when computing
the HOS of a signal from finite data length. In the context
of speech enhancement, however, these errors, which happen
mostly at the edge of the SNR range, do not significantly affect
the suppression filters, particularly when the SNR smoothing
scheme in [9] is used. When the higher bands are examined
however, the results have slightly degraded (Fig. 3). A possible
explanation is that the sinusoidal model does not hold as well
in the higher frequencies making the proposed scheme less
effective. As a result, the estimation errors will mostly affect

Fig. 2. Actual versus estimated SNR in a lower band (Street).

Fig. 3. Actual versus estimated SNR in a high band (Gaussian).

unvoiced speech, where energy is concentrated in the higher
bands, but will not be as significant for voiced speech.

VI. CONCLUSIONS

We showed that by using a subbanding scheme, it is
possible to separate signal and noise energies using the kurtosis
and variance of noisy speech, and provide a continuous
estimation of the SNR. We verified that the derivations of the
higher moments and the underlying model are valid, though
some degradation is noticed in the upper spectrum. Since the
proposed scheme relies on higher statistics and not energy, it is
effective in conditions where the noise energy changes, as long
as the noise remains Gaussian-like. As part of future work,
the algorithm is being incorporated in a speech enhancement
system based on [9], and will be assessed in mobile telephony
environments.
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