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Abstract

This paper considers the problem of detecting the presence/absence of signals in low SNR environments. The

context is cognitive radios trying to opportunistically share spectrum along with potential primary users that must

be detected in order to avoid causing harmful interference. Small modeling uncertainties are unavoidable in any

practical system and so robustness to modeling uncertainties is a fundamentally important performance metric.

We propose simple mathematical models for these uncertainties and establish two main results. If we have no

knowledge of the modulation scheme of the signal we are trying to detect, then there exists an absolute “SNR

wall” below which every detector will fail to be robust, no matter how long the detector can observe the channel.

Upper and lower bounds are computed that show any detector is essentially as non-robust as the radiometer. Given

knowledge of the signal, we prove that both coherent and cyclostationary feature detectors are also non-robust to

model uncertainties when channel coherence times are finite. The scaling of the SNR wall with coherence time is

worse than for cyclostationary detectors as compared to coherent detectors. These results strongly suggest that all

detectors are non-robust.

This has implications for wireless spectrum regulators. We argue that the tension between primary and secondary

users is captured by the technical question of computing the optimal tradeoff between capacity and robustness as

quantified by the SNR wall. This is an open problem, but we compute this tradeoff for some simple detectors.

I. INTRODUCTION

In order to reuse underutilized spectrum, the operation of unlicensed secondary devices within licensed primary

bands such as “unused” television broadcast bands has been proposed [5]. The main constraint for opportunistic

secondary devices/cognitive radios is guaranteeing non-interference to the primary system. One possibility is to

align the secondary transmissions such that the resulting interference is mostly orthogonal to the primary’s received

signal [6] or by having the secondary counteract its own interference in the direction of the primary signals [7].

Such design strategies face several practical problems. The two systems must be jointly engineered and may require

This work builds upon our previous work in [1] presented at the IEEE Dynamic Spectrum Access Networks conference, 2007. and in [2]

presented at Wireless Communications conference, 2005. In particular, the robustness results for non-coherent detectors and matched filters

proved in this paper build upon our previous work in [3], [4].
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a huge overhead in terms of the amount of coordination between the primary and secondary systems. Furthermore,

simple phase uncertainties can significantly lower the performance of such collaborative designs [8].

Another possible strategy is for the secondary to sense the primary signal and opportunistically use the primary

channel only if the sensing declares the channel to be vacant. This approach has the advantage of minimal

coordination with the primary system and hence is more flexible. This flexibility comes at the cost of lower

performance when the primary is present. The opportunistic approach is also fair in the sense that the onus is on

the secondary system to sense for the primary if it wants to use the spectrum. However, in order to guarantee

non-interference with potentially hidden primary receivers, the cognitive radio system needs to be able to detect the

presence/absence of very weak primary signals [3], [9]. The IEEE 802.22 is the first international standards process

for a cognitive-radio based PHY/MAC/air interface for use by license-exempt devices on a non-interfering basis in

spectrum that is allocated to Television Broadcasts. Under the currently understood requirements, secondary devices

(CPEs) must be able to sense TV transmissions as low as −116 dBm (SNR = −22 dB) [10], [11].

This paper focuses on the latter approach for designing a cognitive radio system: we assume that the secondary

must sense for potential primary users before using the spectrum. The goal is to design detection algorithms that

meet a given ‘receiver operating characteristic’ (ROC) constraint at very low SNR. Classical detection theory

[12], [13] tells us that degradation in the ROC due to reduced SNR can be countered by running the detection

algorithm for longer sensing times. Hence, the sensing performance of a system is considered to be limited by

sensing time constraints. These constraints usually arise from higher layer design considerations. For instance, the

QoS requirements of an application drive the protocol layer design, which in turn dictates the time for sensing by

the physical layer. This implies that a cognitive radio system can be engineered at the cost of slightly relaxed QoS

requirements.

This paper argues that the degradation in QoS may be complete once the primary SNR that must be detected is

low enough. We argue that model uncertainties exist in any practical system and they impose fundamental limitations

on detection performance. These limitations cannot be countered by increasing the sensing duration. At very low

SNRs, the ergodic view of the world is no longer valid, i.e., one cannot count on infinite averaging to combat the

relevant uncertainty.

To illustrate the limitations caused by model uncertainties, consider a simple thought experiment. Imagine a

cognitive radio running a detection algorithm to sense for the presence/absence of the primary signal. Assume that

the detector computes a test-statistic and compares it to a threshold to decide if the primary is present/absent. The

threshold is set such that the target false alarm probability (PFA) is met using the nominal noise model. Now, we

take this detector and deploy it in several physically distinct scenarios (with their own slight variations in local noise

characteristics). An example of such a plot for the energy detector is given in Figure 1. The plot clearly illustrates
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the limitations due to the uncertainty in the noise model. The performance achieved when the detector is deployed

in the field deviate significantly. In fact, below a certain SNR threshold, at least one of the error probabilities can

be worse than 1
2 . We call this sort of failure a lack of robustness in the detector. The nominal SNR threshold below

which this phenomenon manifests is called the SNR wall for the detector. Such robustness limits were first shown

in the context of radiometric (energy) detection of spread spectrum signals [14].
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Fig. 1. The dashed (black) line is the theoretical ROC for the energy detector. The solid (red) curves are the ROC curves when this

detector is deployed in the field with SNR’s varying between −9 dB and −11 dB (x = 1 in Sec III-A).

The conjecture that this paper explores is that every detection algorithm suffers from similar robustness limitations

in low SNR environments. The problem is posed in Section II and Section III proposes tractable mathematical models

for practical wireless system uncertainties in noise and fading. These uncertainty models generalize the simple noise

power uncertainty model of [14]. Section IV then explores the robustness of two extreme cases for signal detection

— non-coherent detectors and matched filters. The former corresponds to very limited knowledge about the primary

signaling scheme whereas the latter corresponds to complete knowledge of the primary’s potential signal. Both these

detectors suffer from SNR walls under model uncertainties. In particular the best possible non-coherent detector is

as non-robust as the energy detector. In the coherent case, the wall is pushed back, but only to an extent limited

by the finite coherence time Tc of the fading. These SNR wall effects have been experimentally verified in [15].

It is natural to wonder whether there is anything between the two extremes of nearly total ignorance and complete

knowledge. Section V considers the robustness properties of a double-sideband signal to illustrate what is possible

when the primary signal is constrained in some way that prevents it from filling all degrees of freedom. Noise

calibration is identified as a way to overcome some of the a priori model uncertainty. This example also motivates the

progression to general cyclostationary feature detection (first proposed by William Gardner [16], [17]) in Section VI.

There, we derive one of the main results of this paper — the non-robustness of feature detection to uncertainties
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at low SNR when the fading is frequency selective.

A summary of the results is given in Table I. The energy detector makes minimal assumptions on the signal but

as a consequence is the least robust to noise uncertainty. This manifests as a stringent SNR wall that is insensitive

to the channel coherence time. The matched filter makes maximal assumptions on the signal and hence its SNR

wall is lower than that of the energy detector. The location of the SNR wall scales proportional to 1
Nc

, where Nc is

the guaranteed coherence time of the channel. Feature detectors occupy an intermediate position in that they make

structural assumptions on the signal that quantify how the primary signal does not fully occupy all its potential

degrees of freedom. This gives rise to an SNR wall that is lower than that of the energy detector, but which scales

only as 1√
Nc

with the relevant coherence time.

Signal model Channel model Strategy SNR wall location

Unknown signal Arbitrary and unknown Energy detection Energy detection wall

(See Section IV-A)

with a power constraint frequency selective fading Optimal non-coherent detection Almost energy detection wall

(See Theorem 1)

Unknown signal with Arbitrary and unknown Energy detection Energy detection wall

(See Section IV-A)

deterministic component frequency selective fading Coherent detection 1

Nc
improvement in the SNR wall

(See Section IV-B)

Double side band Phase changes randomly Noise Calibration 1
√

Nc
improvement

carrier modulation from one coherence time in the SNR wall

in phase only to another using coherence time (See Section V-A)

Cyclostationary signal Flat fading Feature detection No SNR wall

ignoring coherence time

(See Theorem 3)

Frequency-selective fading Feature detector, but

using coherence time 1
√

Nc
improvement in the SNR wall

(See Theorem 5)

TABLE I

THE ROBUSTNESS RESULTS FOR THE CASES CONSIDERED IN THIS PAPER ARE SUMMARIZED IN THIS TABLE. THE RESULTS (IN THE

LAST COLUMN) ARE STATED IN TERMS OF THE LOCATION OF THE SNR WALL.

The robustness results in this paper have significant implications for policymakers. Suppose that the Federal Com-

munications Cooperation (FCC) decides to open a band of spectrum for cognitive use. This must be accompanied

by rules governing the band. The rules must be flexible enough to allow interoperability with future technologies

while also being compatible with high performance. One can think of a simple and flexible rule: the primary can

transmit any signal within a given spectral mask, similarly the secondary should be able to robustly sense the

primary with high probability of detection. In this case the primary could potentially use all its degrees of freedom

by transmitting a ‘white’ signal. As shown in Section IV-A, the secondary is then forced to non-coherently detect for

the primary, and such detection algorithms are highly non-robust. Complete flexibility for the primary user comes
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at a cost of inefficient spectral usage (the secondary systems face SNR limitations and hence will be forced to

presumptively shut-up since they cannot robustly detect the absence of potential primary signals). But, if the rules

are written such that the primary is mandated to transmit a known pilot tone at a certain power, then the secondary

systems can operate more easily. The general tradeoff can be posed technically as the Capacity robustness tradeoff.

We briefly discuss this tradeoff in Section VII-C for some of the detectors considered here.

II. PROBLEM FORMULATION

Let X(t) denote the band-limited signal we are trying to sense, and let the additive noise be denoted by W (t).

Most of this paper focuses on real-valued signals. The analysis easily extends to complex signals. The discrete-time

version is obtained by sampling the received signal at the appropriate rate. The sensing problem can be formulated

as a binary hypothesis testing problem with the following hypotheses:

H0 : Y [n] = W [n] n = 1, . . . , N

H1 : Y [n] = X[n] + W [n] n = 1, . . . , N. (1)

Here X[n] are the samples of the signal of interest, W [n] are samples of noise and Y [n] are the received signal

samples. Throughout this paper, the signal is assumed to be independent of the noise. The distribution of X[n]

depends on the particular signal model considered in the problem. The noise samples are modeled as having any

distribution W from a set of possible distributions Wx. This set is called the noise uncertainty set and a model for

the distributions in this set is given in Section III-A.

Any detection strategy/algorithm can be written as a possibly random function F : RN → {0, 1}, where F maps

the N dimensional received vector Y = (Y [1], Y [2], · · · , Y [N ]) onto the set {0, 1}. Here ‘0’ stands for the decision

that the received signal is noise and ‘1’ stands for the decision that the received signal is signal plus noise. For

each choice of a noise distribution W ∈ Wx, the error probabilities are

PFA(W ) = EW

[
1{F=1}|H0

]
; PMD(W ) = EW

[
1{F=0}|H1

]
.

• A decision strategy robustly achieves a given target probability of false alarm, PFA, and probability of missed

detection, PMD if the algorithm satisfies

max
W∈Wx

PFA(W ) ≤ PFA; max
W∈Wx

PMD(W ) ≤ PMD.

• The average signal to noise ratio is defined as

SNR =
P

σ2
n

, where P = lim
N→∞

1

N

N∑

i=1

X[n]2.
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Although the actual noise variance might vary over distributions in the set Wx, we assume that there is a

single nominal noise variance σ2
n associated with the noise uncertainty set Wx.

• A detection algorithm is non-robust at a fixed SNR if the algorithm cannot robustly achieve any pair

(PFA, PMD), where 0 ≤ PFA < 1
2 and 0 ≤ PMD < 1

2 , irrespective of the sampling duration N .

• Suppose there exists a signal to noise ratio threshold, SNRt, such that the detector is non-robust for all

SNR ≤ SNRt. The maximum value of such a threshold is defined as the SNR wall for the detector.

SNRwall = max{SNRt}, s.t., the detector is non-robust for all SNR ≤ SNRt.

An equivalent condition for testing robustness of a detector can be given in terms of the test-statistic T (Y) for

the detector. The detector is non-robust iff the sets of means of T (Y) under both hypotheses overlap [18], [19].

Mathematically, for a fixed N , define AN := {EW [T (Y)|H0] : W ∈ Wx} and BN := {EW [T (Y)|H1] : W ∈

Wx}. The detector is non-robust iff AN ∩ BN 6= ∅ for all N > 0. Furthermore, if the set of distributions for the

observations Y under both hypotheses overlap then every detection algorithm will be non-robust. This criterion

is used throughout this paper to verify if a given detection algorithm is non-robust. The goal of this paper is to

analyze detection algorithms and prove the existence of SNR walls.

III. MODELING UNCERTAINTIES

There are aspects of the system that admit statistical models, but it is unrealistic to assume complete knowledge

of their parameters to infinite precision. Instead, we assume knowledge of the model to within some bounds

and are interested in worst case performance of detection algorithms over the distributions within these bounds.1

Background noise falls under this category. Noise is an aggregation of various sources like thermal noise, leakage

of signals from other bands due to receiver non-linearity, aliasing from imperfect front end filters, interference due

to transmissions from licensed users far away, interference from other opportunistic systems in the vicinity, etc. A

Gaussian assumption is only an approximation2 and it is reasonable to assume that there is always some residual

uncertainty in our noise estimate, even after run-time calibration.

Fading is modeled with the same philosophy. The fading process is considered a linear time varying filter, where

the filter coefficients vary on the time-scale given by the channel coherence time. Lacking any further model, we

adopt a block-fading perspective that the fading process takes independent realizations after each coherent time.

1If a Bayesian perspective is taken and a prior is assumed over these parameters, then nothing much changes. The prior turns into a set

of possible parameter values once a desired probability of missed detection and false alarm are set. Having a prior just makes the notation

and definitions more complicated and so we do not assume priors here for system parameters.
2In information theory, it turns out that the Gaussian distribution is a saddle point for many interesting optimization problems. Therefore,

we are sometimes safe in ignoring the distributional uncertainty and just overbounding with a worst case Gaussian. However, this is not true

in our case.
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Furthermore, it is unreasonable to assume that the true channel coherence time is known exactly. All we can hope

for are bounds on it.

Finally, uncertainty arises due to intentional under-modeling of system parameters. For instance, we can model

the primary signal by imposing a cap on its power spectral density, instead of actually modeling its specific signal

constellation, waveform, etc. The advantage of under-modeling can be two-fold. Firstly, it leads to less complex

systems. Secondly, intentional under-modeling is done to keep the model flexible. For example, a simple power

spectral density cap on a chunk of spectrum is advantageous because it gives the user flexibility to choose from a

diverse set of signaling strategies. This property is useful for ease of system evolution.

To summarize, we have statistical models for things which we believe to be modeled accurately, and have

uncertainty sets for parameters that are not modeled exactly.

A. Noise uncertainty model

To keep the analysis tractable we propose a bounded moment noise uncertainty model. A noise distribution

Wa ∈ Wx if:

• The noise process is ‘white’ and symmetric, EW 2k−1
a = 0,∀k = 1, 2, . . ..

• Even moments of the noise must be close to the nominal noise moments in that EW 2k
a ∈ [ 1

ρk EW 2k
n , ρk EW 2k

n ],

where Wn ∼ N (0, σ2
n) is a nominal Gaussian noise random variable and ρ = 10x/10 > 1.

The parameter x is used to quantify the amount of uncertainty in the noise power, i.e., we allow for x dB of

uncertainty in the noise variance. We believe that our model is reasonable for the following reasons:

• Suppose the nominal noise distribution is believed to be Wn ∼ N (0, σ2
n). Then, any reasonable uncertainty

model must include Gaussian distributions with variance slightly different than σ2
n, i.e., any Gaussian with

variance σ2 ∈ (1
ρσ2

n, ρσ2
n), for some ρ > 1.

• Background noise also includes weak signals from potential interferers and other random disturbances. This

means that a perfectly Gaussian noise uncertainty model is unrealistic. It is reasonable to include other

distributions that are close to Gaussian. For mathematical convenience, closeness to Gaussian distributions

is expressed in terms of the moments. See Figure 2(a) for a pictorial description of the noise uncertainty set.

B. Fading model and coherence time

The signal to be detected is received over a wireless channel, so it will be faded at the cognitive user. As we

are interested in the low SNR regime, we cannot assume that the fading coefficients can be tracked. We model

the wireless channel as an L tap fading channel with the fading coefficients hl, l = 0, 1, · · · , L− 1 that are locally

constant, but vary on the time scale of the channel coherence time. The actual coherence time is unknown, but is

assumed to be lower bounded by Tc (in seconds) or Nc (in number of samples).
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Fig. 2. Figure (a) is an example of a noise uncertainty set Wx, for x = 10 log10 2. The shaded region is the set of all possible pdfs for the

noise random variable. The bold curve inside the region is the pdf of a nominal Gaussian, Wn. The dashed curve is the pdf of X + Wn for

the case when X is BPSK modulated at SNR = −6dB. It is clear from this example that at low signal powers, it is impossible to robustly

distinguish the signal from noise. Figure (b) helps understand noise uncertainty in the case of a radiometer. The shaded area in the figure

represents the uncertainty in the noise power.

IV. DETECTOR ROBUSTNESS: TWO EXTREME CASES

A. Unknown signal structure

Consider a situation where the cognitive radio detector knows very little about the primary signal. Assume that

the primary signaling scheme is unknown, except with a known power within the band of interest. This corresponds

to a primary licensee that has absolute freedom to choose its signaling strategy with only the bandwidth and power

specified in the license. To robustly detect such a primary user, a single detector must be able to detect the presence

of any possible primary signal that satisfies the power and bandwidth constraint.

Under this limited information, the intuitively hardest signal to detect is a zero-mean white signal in the frequency

band of interest. Hence, in this section we assume that X[n]’s in (1) are zero-mean iid random variables taking

values from an unknown signal constellation X . To keep the analysis simple, we assume that the signal constellation

is finite and has a peak amplitude constraint.

1) Radiometer robustness: It is useful to review the radiometer (energy detector) under noise level uncertainty

[14]. The test-statistic is given by T (Y) = 1
N

∑N
i=1 Y [n]2. Since the radiometer only sees energy, the distributional

uncertainty of noise can be summarized in a single interval [1ρσ2
n, ρσ2

n] where σ2
n is the nominal noise power. As

illustrated in Figure 2(b), it is clear that the radiometer will not be able to robustly detect the signal iff the signal

power is less than the uncertainty in the noise power, i.e., P ≤ (ρ − 1
ρ)σ2

n.

The presence of the signal is indistinguishable from a slightly larger value for the noise. Hence,

SNRenergy
wall =

ρ2 − 1

ρ
. (2)

Figure 3 plots the SNR wall for the radiometer as a function of the noise uncertainty and also shows what happens

to the number of samples required to meet a performance target in the vicinity of the SNR wall. Extensive
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simulations results showing the limits on radiometer performance under noise uncertainty have been done in [20].
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Fig. 3. Figure (a) plots the SNR
energy
wall in (2) as a function of noise level uncertainty x where ρ = 10x/10. The point marked by a “x” on

the plot corresponds to x=1 dB of device level noise uncertainty. This shows that the radiometer is highly non-robust, even to simple device

noise level uncertainties. Figure (b) shows how the sample complexity for energy detection varies as the SNR approaches the SNR wall.

From the plot we can see that the sample complexity goes to infinity as we approach the SNR wall.

2) Optimal non-coherent detection: It turns out that the radiometer is not unique — all detectors will suffer

from an SNR wall under these assumptions.

Theorem 1: Consider the robust hypothesis testing problem defined in Eqn. (1). Assume that the signal samples

X[n] satisfy the following properties.

1) X[n] are independent of the noise samples W [n].

2) X[n] are independent and identically distributed as a random variable X taking values in a finite set X .

3) X is zero-mean and all its odd moments are zero, i.e., E[X2k−1] = 0 for all k = 1, 2, · · ·

Define SNRpeak = Ppeak

σ2
n

, where Ppeak = maxx∈X x2. Under these assumptions, there exists an SNR threshold

SNR∗
wall such that robust detection is impossible if SNRpeak ≤ SNR∗

wall.

Proof: For k ≥ 1, define f(k, SNR) to be the following uni-variate degree k polynomial

f(k, SNR) :=

[
k∑

i=0

(
2k

2k − 2i

)(
1

ρk−i

)(
1 · 3 · 5 · · · (2k − 2i − 1)

1 · 3 · 5 · · · (2k − 1)

)
SNRi

]
. (3)

Note that all the coefficients of f(k, SNR) are non-negative and hence f(k, SNR) is monotonically increasing

in SNR. This means that the equation f(k, SNR) = ρk has a unique real valued root SNR
(2k)
wall. Because f(k, 0) =

1
ρk < ρk since ρ > 1, the root SNR

(2k)
wall > 0 for all k. Define SNR∗

wall to be

SNR∗
wall := inf

k=1,2,3,···∞
SNR

(2k)
wall. (4)
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Let Wn ∼ N (0, σ2
n), W1 ∼ 1√

ρWn. Let W2 := X + W1. If W1 ∈ Wx, and W2 ∈ Wx, then it is clear that robust

detection is impossible. We now prove that W2 ∈ Wx by showing that EW 2k−1
2 = 0 and 1

ρk EW 2k
n ≤ EW 2k

2 ≤

ρkEW 2k
n ∀ k.

Since E[X2k−1] = 0 and W2 =: X + W1, we have EW 2k−1
2 = 0 and EW 2k

2 ≥ 1
ρk EW 2k

n . Therefore, W2 ∈ Wx

⇔ EW 2k
2 ≤ ρk EW 2k

n

⇔ E(X + W1)
2k

EW 2k
n

≤ ρk

⇔
k∑

i=0

(
2k

2k − 2i

)
EW 2k−2i

1

EW 2k
n

EX2i ≤ ρk

⇔
k∑

i=0

(
2k

2k − 2i

)(
1

ρk−i

)(
1 · 3 · 5 · · · (2k − 2i − 1) σ2k−2i

n

1 · 3 · 5 · · · (2k − 1) σ2k
n

)
EX2i ≤ ρk

⇔
k∑

i=0

(
2k

2k − 2i

)(
1

ρk−i

)(
1 · 3 · 5 · · · (2k − 2i − 1)

1 · 3 · 5 · · · (2k − 1)

)
EX2i

σ2i
n

≤ ρk ∀ k = 1, 2, · · · (5)

So, we just need to show that the last inequality in (5) is true.

By definition of ‘peak SNR’, we have EX2i

σ2i
n

≤ SNRi
peak. Now, if SNRpeak ≤ SNR∗

wall, by the monotonicity

of f(k, SNR), we have

k∑

i=0

(
2k

2k − 2i

)(
1

ρk−i

)(
1 · 3 · 5 · · · (2k − 2i − 1)

1 · 3 · 5 · · · (2k − 1)

)
EX2i

σ2i
n

≤
k∑

i=0

(
2k

2k − 2i

)(
1

ρk−i

)(
1 · 3 · 5 · · · (2k − 2i − 1)

1 · 3 · 5 · · · (2k − 1)

)
SNRi

peak

= f(k, SNRpeak)

≤ f(k, SNR∗
wall) = ρk.

which is the last inequality in (5).

3) Bounds on SNR∗
wall: Theorem 1 asserts that there exists an SNR threshold SNR∗

wall below which ro-

bust detection is absolutely impossible. However, the result is vacuous if the infimum in (4) is zero. Recall

that SNR
(2k)
wall is the root of the polynomial f(k, SNR) − ρk. The coefficient of SNRi in f(k, SNR) − ρk is

(
2k

2k−2i

) (
1

ρk−i

)(
1·3·5···(2k−2i−1)

1·3·5···(2k−1)

)
. Replace

(
1

ρk−i

)
by 1 to get a new polynomial, f̃(k, SNR) − ρk. Since ρ > 1,

we have
(

1
ρk−i

)
≤ 1 for all i = 1, 2, · · · , k, and hence the unique positive root of f̃(k, SNR) − ρk = 0 must be

smaller than SNR
(2k)
wall. Call this root S̃NR

(2k)

wall.

This gives a lower bound on SNR∗
wall,

SNR∗
wall ≥ inf

k=1,2,··· ,∞
S̃NR

(2k)

wall. (6)
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where S̃NR
(2k)

wall is the unique positive root of

f̃(k, SNR) :=

[
k∑

i=0

(
2k

2k − 2i

)(
1 · 3 · 5 · · · (2k − 2i − 1)

1 · 3 · 5 · · · (2k − 1)

)
SNRi

]
= ρk. (7)

Numerical calculations for this family of polynomials reveal that the infk=1,2,··· ,∞ S̃NR
(2k)

wall = S̃NR
(2)

wall = ρ−1.

See [21] for the details. Combining the lower bound with the energy detection wall,

ρ − 1 ≤ SNR∗
wall ≤

ρ2 − 1

ρ
. (8)

B. Unknown signal structure + deterministic pilot

The other extreme signal detection scenario is when the entire signal X(t) is known. Equivalently, assume that

the primary signal allocates a fraction of its total power to transmit a known and deterministic pilot tone and

just focus on that part for detection. This model covers many practical communication schemes which use pilot

tones/training sequences for data frame synchronization. For example, a Digital Television (ATSC) signal has a

pilot tone that is -11 dB weaker than the average signal power [22].

For simplicity, assume the primary’s signal is given by
√

θXp[n]+
√

(1 − θ)Xd[n]. Here Xp[n] is a known pilot

tone with θ being the fraction of the total power allocated to the pilot tone and Xd[n], W [n] are zero-mean iid

processes as before. The test-statistic for the matched filter is given by T (Y) = 1√
N

∑N
n=1 Y [n]X̂p[n], where X̂p

is a unit vector in the direction of the pilot tone. In the case of completely known noise statistics, the matched

filter is asymptotically optimal. It achieves a dwell time N ≈ [Q−1(PD) −Q−1(PFA)]2 θ−1SNR−1 [4].

We now analyze the robustness properties of the matched filter. It is easy to see that the matched filter is robust to

noise uncertainties alone. Notice that E[T (Y)|H0] = 0 and E[T (Y)|H1] = 1√
N

∑N
n=1 Xp[n]X̂p[n] 6= 0. This shows

that the distributional uncertainty classes of T (Y) under both hypotheses do not overlap and hence the detector

can robustly achieve any (PFA, PMD) pair for sufficiently large N .

We now incorporate the multipath channel uncertainty model discussed in Section III-B. The primary signal

in (1) is now given by
∑L−1

l=0 hl[n]X̃[n− l], where X̃[n] =
√

θXp[n]+
√

(1 − θ)Xd[n], and hl[n] are the multipath

fading coefficients. In this case, it is clear that we cannot reap the gains of coherent signal processing forever. As

soon as the channel taps assume independent realizations, we can no longer gain from coherent signal processing.

By considering time in units of coherence times, it is clear that a good test statistic in the fading channel case is

T (Y) = 1
M

∑M−1
n=0

[
1√
Nc

∑Nc

k=1 Y [n]X̂p[nNc + k]
]2

, where Nc is the number of samples in each coherent block

and M is the number of coherent blocks over which we can listen for the primary. This detector can be visualized

as a combination of two detectors. First, the signal is coherently combined within each coherence time Tc. Coherent

processing gain boosts the signal power by Nc while the noise uncertainty is unchanged. Second, the new boosted
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signal is detected at the receiver by passing it through a radiometer. The radiometer aspect remains non-robust to

noise uncertainties, in spite of the boost in the signal strength. The effective SNR of the coherently combined

signal is given by SNReff = SNR · θ · Nc.

Hence, the modified matched filter will be non-robust if

SNReff ≤
(

ρ2 − 1

ρ

)

⇒ SNR · θ · Nc ≤
(

ρ2 − 1

ρ

)

⇒ SNRmf
wall =

1

Nc · θ

(
ρ2 − 1

ρ

)
. (9)

Coherent processing gains could also be limited due to implementational complexity. The clock-instability of

both the sensing radio and the primary transmitter imposes a limit on the coherent processing time. For instance,

suppose that there is 1000 Hz of frequency uncertainty and we are doing coherent processing over 1 ms. Since the

pilot frequency is uncertain, suppose that we need to search over 4 bins to achieve a target probability of missed

detection. If we want to do coherent processing over 10 ms, we now need to search over 40 frequency bins. Since

searching over frequency bins involves computing FFTs, it is clear that the coherent processing time is limited

by the complexity of the cognitive radio receiver. Finally, coherent processing gains might be limited due to the

lengths of the pilots themselves. In packet-based primary systems, the pilots are embedded within each packet and

are only coherent for a packet duration since the inter-packet arrival times are usually random on the time-scale of

the carrier frequency. No further coherent processing gain is available. Simulations for evaluating the performance

of coherent detectors under noise uncertainty have been done in the IEEE 802.22 community. Extensive simulation

results evaluating performance of coherent detectors for captured DTV signal data can be found in [23], [24].

V. DETECTOR ROBUSTNESS: NON-WHITE SIGNALS

The extreme of complete ignorance of primary signaling seems excessively conservative. Only counting on the

fraction of signal power that is in the known pilots for detection seems like a bad idea, despite the improved

robustness. It is natural to want to rule out truly white primary signals, but the model for the primary signal must

recognize that the data payload of the signal is likely unknowable to a secondary user facing a low SNR. This is

because the primary data rate will likely be far higher than the Shannon capacity of the weak channel between

primary and secondary. After all, the secondary user must detect the primary even when it is slightly outside the

service area of the primary system [9].

Rather than jump into a general framework, it is useful to consider the simple example of a double sideband

modulated primary signal. Our aim is twofold. First, we want to verify if such cases of non-white signals still suffer
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from SNR wall limitations. Second, we want to give a qualitative understanding of the nature of SNR walls. We

work in continuous time in this section for mathematical convenience.

Consider a real valued random data carrying signal X(t) modulated using a double sideband carrier modulation.

Let the carrier frequency be fc. Since the data is random and unknown, we can assume X(t) to be a wide sense

stationary process (WSS) [25]. We also assume that X(t) has zero-mean, i.e., EX(t) = 0.

Our goal is to detect the signal X(t) cos(2πfct + φ) in the presence of a white noise process W (t) whose

distribution lies in the uncertainty set Wx, which is the continuous time equivalent of the noise uncertainty set Wx

described in Section III-A. We could use energy detection to distinguish the signal X(t) cos(2πfct+φ) from noise.

However, we would have to live with the SNR wall for energy detection from Section IV-A. Another possible

detection strategy is noise calibration.

A. Noise calibration

The idea is to exploit the fact that there is no signal component in the quadrature phase. First consider the

case when there is no unknown phase offset, i.e., φ = 0. In this case we can get “perfect” noise calibration by

estimating the noise variance in the ‘quadrature phase’ and using it as a proxy for the noise variance in the ‘in

phase’ component. Clearly, as the sensing time T → ∞, the noise variance estimation error goes to zero and hence

robust sensing is possible at arbitrarily low signal to noise ratios.

Now, consider the case when there is a constant but unknown phase offset φ. The detection algorithm must

search over φ:

1) Mix the received signal onto cos(2πfct+θ) to get the candidate in-phase component and onto sin(2πfct+θ)

to get the candidate quadrature phase component.

2) Low-pass filter the two signals obtained in the previous step to the appropriate bandwidth.

3) Square the output of the low pass filters.

4) Time average the result.

5) Maximize the difference of the time average of the ‘in phase’ and quadrature components over θ and compare

the maximum with the detector threshold.

First consider hypothesis H0, i.e., Y (t) = W (t). In this case, the ‘in phase’ and ‘quadrature phase’ signal after

step 2 of the algorithm can be written as N1(t) cos(θ) + N2(t) sin(θ) and N2(t) cos(θ)−N1(t) sin(θ) respectively.

Here, N1(t) and N2(t) are independent White Gaussian noise processes with, E[N1(t)
2] = σ2

n

2 . Now, the test statistic

under hypothesis H0 is given by

T (Y)|H0 = max
0≤θ≤π

[
1

T

(∫ T

0
[c(θ)N1(t) + s(θ)N2(t)]

2 dt −
∫ T

0
[c(θ)N2(t) − s(θ)N1(t)]

2 dt

)]
, (10)



14

where c(θ) := cos(θ) and s(θ) := sin(θ).

Lemma 1:

E [T (Y)|H0] = O

(
σ4

n

T

)
. (11)

Proof: The proof is given in Appendix I.

From Lemma 1, we have limT→∞ E [T (Y)|H0] = 0. We maximize over θ to get the best phase explanation for φ.

In particular if we set θ = φ, we get a lower bound for the test-statistic under hypothesis H1. So,

E [T (Y)|H1] ≥ 1

4
E

[∫ T

0
X2(t) dt

]

+ E

[
1

T

(∫ T

0
[c(φ)N1(t) + s(φ)N2(t)]

2 dt −
∫ T

0
[c(φ)N2(t) − s(φ)N1(t)]

2 dt

)]
.

Taking limits, limT→∞ E [T (Y)|H1] ≥ 1
4E
[∫ T

0 X2(t) dt
]

= P
2 6= 0. Therefore, when the phase φ is an unknown

constant, our detector is robust to noise power uncertainties and there is no SNR wall.

Now, assume that the coherence time is finite and the phase offset φ changes randomly across coherence times.

Clearly, if one ignores the coherence time and averages over T ≫ Tc then E [T (Y)|H1] → 0 as T → ∞. A simple

way to avoid this problem is to compute the maximum over the phase offset θ within each coherence time and

then average this test statistic over multiple coherence times. Denote this modified test-statistic by T̃ (Y).

Since we are taking a maximum within each coherence time, limT→∞ E
[
T̃ (Y)|H0

]
6= 0, i.e., the mean of the

test statistic is no longer zero under hypothesis H0. In fact, using the results from Lemma 1 it is straightforward

to show that

lim
T→∞

E
[
T̃ (Y)|H0

]
= O

(
σ4

n

Tc

)
> 0.

Define

∆(Tc) := max
W1,W2∈Wx

(
lim

T→∞
EW1

[
T̃ (Y)|H0

]
− lim

T→∞
EW2

[
T̃ (Y)|H0

])
,

where EW [.] is the expectation when the noise process has a distribution W ∈ Wx. As in the case of the radiometer,

detection is impossible if limT→∞ E
[
T̃ (X)

]
≤ ∆(Tc). This leads to an SNR wall below which detection is

impossible. Furthermore, note that the uncertainty in the mean under hypothesis H0 varies as
σ4

n

Tc
, hence for a fixed

signal power P , σ2
n must increase like

√
Tc to keep the SNR wall location constant. This implies for a fixed P

and σ2
n, the SNR wall decays to zero as O( 1√

Tc

).



15

VI. FEATURE DETECTION

The example considered in section V is a special case of a class of signals that exhibit features which can be

exploited for signal detection. In this section, we consider the general class of cyclostationary feature detectors

and analyze their robustness properties. These detectors were first proposed by William Gardner and can cover the

double sideband modulation signal as a special case [16], [17].

Until now we have considered stationary random processes as models for the signals to be detected. However, it

can be argued that for the purposes of signal detection, the signal of interest is better modeled as a cyclostationary

random process. Cyclostationary processes are random processes whose statistical properties vary periodically with

time [25]. The data content of the modulated signal is unknown and is usually modeled as a discrete-time stationary

random process modulated onto pulse trains like raised cosine pulses [26]. Suppose

X(t) =
∞∑

n=−∞
anp(t − nT0), (12)

where an is iid random data modulated onto the time-limited pulse p(t) and T0 is the inter-symbol time. This

stationarity combined with the periodicity of pulse trains gives a cyclostationary model.

A. Cyclostationary signal model

We first review the basic properties of cyclostationary random processes. The notation used here is same as

in [16]. Assume that the signal of interest, X(t) is a complex cyclostationary process. Let

mX(t) := E[X(t)], RX(t1, t2) := E [X(t1)X
∗(t2)] .

Then mX(t) and RX(t + τ
2 , t − τ

2 ) are periodic in t with the same period T0. This immediately implies that

RX(t + τ
2 , t − τ

2 ) admits a Fourier series representation given by

RX(t +
τ

2
, t − τ

2
) =

∑

α

Rα
X(τ)ei2παt,

where α = k
T0

, k = 0, 1, 2, . . .. Assume that the signal X(t) is zero-mean, i.e., mX(t) = 0. The Fourier coefficient

Rα
X(τ), which depends on the lag parameter τ , is called the cyclic autocorrelation function, and α is called the cycle

frequency. For α = 0, it reduces to the conventional autocorrelation function R0
X(τ). One can visualize R0

X(τ)

as the DC component of the lag-product waveform X(t + τ
2 )X∗(t − τ

2 ) for each value of τ , and Rα
X(τ) can be

thought of as the AC component corresponding to the frequency α. The Fourier transform of Rα
X(τ) given by

Sα
X(f) :=

∫ ∞

−∞
Rα

X(τ)e−i2πfτ dτ
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is called the spectral correlation function. For α = 0 this reduces to the conventional power spectral density. For

α 6= 0, Sα
X(f) can be thought of as the density of the correlation between spectral components at frequencies f + α

2

and f − α
2 . Explicit formulas of Sα

X(f) for many classes of modulated signals can be found in [27]–[29].

Note that “noise” in a practical setting is likely to contain many interfering signals that are themselves cyclosta-

tionary. It is likely that any uncertainty set quantifying the degree of non-stationarity of the noise will introduce its

own robustness limits. However, the goal here is to study the extent to which simple noise-distribution and fading

uncertainties limit robustness and so noise will be modeled as wide-sense stationary. It is easy to show that if W (t)

is wide-sense stationary, then its spectral correlation function Sα
W (f) = 0 for α 6= 0 [25].

B. Single cycle feature detectors

Till now, we have assumed that sampling the received signal at the symbol-rate is sufficient for detection purposes.

However, we need to over-sample the received signal in order to reconstruct the features from the signal samples

since the features are capturing the shape of the pulses onto which the symbols have been modulated. We assume

that the sampling rate fs > 2 max{α, B}, where α is the cycle frequency of the feature we are trying to detect,

and B is the bandwidth of X(t).

The test statistic for a single cycle feature detector is defined as

Zsc(N) :=

∫ fs
2

− fs
2

S̃α
Y (f, N)Ŝα

X(f)∗ df, (13)

where Ŝα
X(f) :=

Sα
X(f)√
E , with E =

∫ fs
2

− fs
2

|Sα
X(f)|2 df . Note that

∫ fs
2

− fs
2

|Ŝα
X(f)|2 df = 1. Intuitively, the detector (13) is

doing matched filtering of the estimated spectral correlation function S̃α
Y (f) with the normalized spectral correlation

function Ŝα
X(f) of the signal we are trying to detect. The empirical estimate of the spectral correlation function,

S̃α
Y (f, N), can be computed from the received signal samples Y [n] by [27], [30]

S̃α
Y (f, N) =

1

N

1

T

N∑

n=0

YT

(
(2n + 1)

T

2
, f +

α

2

)
Y ∗

T

(
(2n + 1)

T

2
, f − α

2

)
, (14)

where YT (n, f) is a T point DTFT of the signal Y [n] centered at time n, i.e.,

YT (n, f) =

n+ T

2∑

u=n−T

2

Y [u]e
−i2π

“
f

fs

”
u
. (15)

C. Robustness of single cycle feature detection

Since X[n] is independent of W [n], it can easily be shown that E
[
S̃α

Y (f, N)
]

= E
[
S̃α

X(f, N)
]
+E

[
S̃α

W (f, N)
]
.

Furthermore, as the sample size N → ∞, it is easy to show that E
[
S̃α

X(f, N)
]
→ Sα

X(f) and E
[
S̃α

W (f, N)
]
→
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Sα
W (f) = 0 since the noise is stationary. So, we have

lim
N→∞

E [Zsc(N)|H1] =
1√
E

∫ fs
2

− fs
2

|Sα
X(f)|2 df =

√
E 6= 0, and

lim
N→∞

E [Zsc(N)|H0] =

∫ fs
2

− fs
2

Sα
W (f)Ŝα

X(f)∗ df = 0. (16)

By increasing the number of samples N , the set of means of the test-statistic under both hypotheses can always

be made disjoint. Hence a single cycle feature detector is robust to noise power level uncertainty alone.

More importantly, we want to answer the following question: Is feature detection robust to uncertainties in

the fading process? Incorporating fading, the received signal under hypothesis H1 (See (1)) is given by Y [n] =
∑∞

l=0 hl[n]X[n − l] + W [n], where hl[n] are unknown fading filter coefficients that can vary at the scale of the

channel coherence time Nc. We assume that these coefficients assume independent realizations after every Nc

samples. For simplicity, we first consider the time-invariant case, i.e., Nc = ∞.

Theorem 2: Assume Nc = ∞, denote hl := hl[n], and define H(f) :=
∑∞

l=0 hle
−j2π

“
f

fs

”
l
, where fs is the

sampling frequency. Consider the single cycle feature detector defined in Section VI-B, and assume α 6= 0 is fixed.

In this case, there exists a choice of a fading response, H(f) satisfying
∫ fs

2
fs
2

|H(f)|2 df = 1, such that

lim
N→∞

E [Zsc(N)|H1] = 0,

and hence the single cycle feature detector is non-robust if the channel is modeled as completely unknown.

Proof: Let X̃[n] := hl ∗ X[n]. Then the spectral correlation function of X̃[n] is given by (see Chapter 4 in

[27])

Sα
eX(f) = H(f +

α

2
)H∗(f − α

2
)Sα

X(f). (17)

Since Y [n] = hl ∗X[n]+W [n] = X̃[n]+W [n], we have E
[
S̃α

Y (f, N)
]

= E
[
S̃α

eX(f, N)
]
+E

[
S̃α

W (f, N)
]
. Taking

the limits as N → ∞, we get

lim
N→∞

E
[
S̃α

Y (f, N)
]

= Sα
eX(f, N) + Sα

W (f, N)

= H(f +
α

2
)H∗(f − α

2
)Sα

X(f) + Sα
W (f)

= H(f +
α

2
)H∗(f − α

2
)Sα

X(f).

The second equality in the chain follows from (17) and the last equality is true because W [n] is stationary and

α 6= 0. Substituting the expression for limN→∞ E
[
S̃α

Y (f, N)
]

into (13), we get

lim
N→∞

E [Zsc(N)|H1] =
1√
E

∫ fs
2

− fs
2

H(f +
α

2
)H∗(f − α

2
)|Sα

X(f)|2 df. (18)
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Choose f0 ∈ [−fs

2 , fs

2 ] such that
∫ f0

− fs
2

|Sα
X(f)|2 df =

∫ fs
2

f0
|Sα

X(f)|2 df . For a fixed α 6= 0, define

H(f) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

1 if −fs

2
≤ f < f0 + α

2

−1 f0 + α
2
≤ f < f0 + 3α

2

1 f0 + 3α
2

≤ f < f0 + 5α
2

−1 f0 + 5α
2

≤ f < f0 + 7α
2

· · · alternate till we hit fs

2

Note that H(f) has unit norm. For this choice of H(f), (18) simplifies to

lim
N→∞

E [Zsc(N)|H1] =
1√
E

[∫ f0

− fs
2

|Sα
X(f)|2 df −

∫ − fs
2

f0

|Sα
X(f)|2 df

]
= 0.

Hence, limN→∞ E [Zsc(N)|H1] = 0 which makes the single cycle detector non-robust.

Discussion: The above theorem shows that if the fading model is completely unknown, then in the worst case

there exists a filter that completely kills the desired signal feature. This might seem too pessimistic since there is

no reason to believe that the fading is trying to destroy the feature. In such a context, it is natural to assume a

probabilistic model for the fading. It is easy to see that when the fading is frequency selective so that H(f + α
2 )

and H(f − α
2 ) have independent values, (18) implies that the expected value for the test statistic could have any

complex phase and there is no reason to believe that the resulting phase distribution will be anything other than

uniform on the unit circle. This means that if we blindly average the feature over several coherent blocks, the

test-statistic will tend to zero, destroying robustness even with a probabilistic model for the fading.

The natural question is to find what fading models do not exhibit this phenomenon and what is the minimal

fading model that does. In pursuit of this, it is natural to first consider fading that is not frequency selective over

the band and features of interest.

Theorem 3: Let Y [n] = h[n]X[n] + W [n] under hypothesis H1 in (1), with E[|h[n]|2] > 0. Consider a block

fading model for h[n]. Assume that the channel coherence time is finite, but it satisfies T ≪ Nc ≪ N (See (15)).

Under these assumptions the single cycle feature detector, with test-statistic given in Equation (13) is robust for all

values of SNR.

Proof: For simplicity, we assume that N = K1 ·Nc, Nc = K2 ·T for some integers K1, K2 > 0. This is done

to avoid edge effects. From Equation (13) we have E[Zsc(N)|H1] :=
∫ fs

2

− fs
2

E
[
S̃α

Y (f, N)
]
Ŝα

X(f)∗ df .

Under hypothesis H1, we have YT (n, f) =
∑n+ T

2

u=n−T

2

(h[u]X[u] + W [u]) e−i2. Using this in (14), we get

eS
α
Y (f, N) =

1

N

1

T

N
X

n=0

0

@

(n+1)T
X

u=nT

(h[u]X[u] + W [u]) e
−i2π

„
f+ α

2
fs

«
u

1

A

0

@

(n+1)T
X

u=nT

(h[u]X[u] + W [u]) e
−i2π

„
f−α

2
fs

«
u

1

A

∗

=
1

K1

K1−1
X

k=0

2

4

1

NC · T

(k+1)Nc−1
X

n=kNc

0

@

(n+1)T
X

u=nT

(h[u]X[u] + W [u]) e
−i2π

„
f+ α

2
fs

«
u

1

A

0

@

(n+1)T
X

u=nT

(h[u]X[u] + W [u]) e
−i2π

„
f−α

2
fs

«
u

1

A

∗
3

5 .
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The last equation is derived by splitting the summation over n into K1 different summations over each coherence

time. By taking an expectation over the last equation, the cross terms involving noise and signal vanish giving:

E
[
S̃α

Y (f, N)
]

=
1

K1

K1−1∑

k=0

(
E
[
|hk|2S̃α

X(k)(f, Nc)
]

+ E
[
S̃α

W (k)(f, Nc)
])

.

Here hk is used to denote the fading coefficient in the kth coherence time, and S̃α
X(k)(f, Nc) is the estimate of

the spectral correlation function of X[n] (defined in (14)) using the samples within the kth coherence times, i.e,

using X[n], n = k · Nc, . . . , (k + 1)Nc − 1. S̃α
W (k)(f, Nc) is similarly defined for noise. Note that in rearranging

the previous equation, we have used the fact that each DTFT YT (n, f) uses signal terms from the same coherence

block, and hence their fading coefficients are the same. Now, it is straightforward to verify that

S̃α
X(f, N) =

1

K1

K1−1∑

k=0

S̃α
X(k)(f, Nc), S̃α

W (f, N) =
1

K1

K1−1∑

k=0

S̃α
W (k)(f, Nc).

Using this and that the fading process is independent of noise and iid across coherence times, we get

E
[
S̃α

Y (f, N)
]

= E[|h|2]E
[
S̃α

X(f, Nc)
]

+ E
[
S̃α

W (f, Nc)
]
,

which implies that

lim
N→∞

E
[
S̃α

Y (f, N)
]

= E[|h|2] · E [Sα
X(f)] + E [Sα

W (f)]

= E[|h|2] · E [Sα
X(f)] .

Hence, limN→∞ E[Zsc(N)|H1] = 1√
E
∫ fs

2

− fs
2

E[|h|2] · |Sα
X(f)|2 df > 0. This shows that the set of means under both

hypothesis can be separated for sufficiently large N , and hence the detector is robust irrespective of the SNR.

At one level, this is somewhat surprising since the matched-filter was not robust to this kind of flat-fading

uncertainty. So clearly, it is frequency selectivity that limits robustness for feature detection. The simplest frequency-

selective filter is a delay. So let the received signal under hypothesis H1 be Y [n] = X[n − l[m]] + W [n]. Define

Dc to be the delay coherence time over which the delay l[m] of the wireless channel assumes an independent

realization.

Theorem 4: Let the received signal under hypothesis H1 in (1) be given by Y [n] = Y [n] = X[n− l[m]]+W [n],

with X[n] a cyclostationary signal, and W [n] stationary noise independent of the signal. Assume that the distribution

of noise arises from the noise uncertainty set Wx. Suppose the delay fading satisfies:

• l[m] is constant within a delay coherence block and iid across different delay coherence blocks.

• l[m] is uniformly distributed in [0, L] for some L = jfs

α , fs is the sampling frequency and some integer j > 0.

• T ≪ Dc ≪ N .
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Under these assumptions, the single cycle feature detector defined in (13) is non-robust.

Proof: Substituting Y [n] = X[n − l[m]] + W [n] in the definition for S̃α
Y (f, N) (see (14)) and following the

same argument as in the proof of Theorem 3, we get

E
[
S̃α

Y (f, N)
]

=

(
E

[
e
i2π

“
α

fs

”
l
]
· E
[
S̃α

X(f, N)
]

+ E
[
S̃α

W (f, N)
])

,

where l is the random variable used to denote the random delays l[m]. Substituting this in (13) and taking the limit

as N → ∞ we have

lim
N→∞

E[Zsc(N)|H1] =
1√
E

∫ fs
2

− fs
2

E

[
e
i2π

“
α

fs

”
l
]
· E[|h|2] · |Sα

X(f)|2 df = 0,

where the last equality follows because E

[
e
i2π

“
α

fs

”
l
]

= 0 when
(

αl
fs

)
∼ Unif [0, j], for some integer j > 0.

Hence the means of the test statistic under both hypotheses cannot be separated and so the single cycle detector is

non-robust under this model for fading.

The previous result tells us that blind averaging over multiple delay coherence times is not a wise decision and

since the particular model of fading used here is so simple (just a variable delay), it will be included in any more

natural model for block-fading as long as the delay spread of the channel is larger than fs

α . Notice that α is usually

a small multiple of the inter-symbol time and so as long as there is any significant ISI in the channel, this condition

will be met in practice. A simple fix to avoid the problem of feature fading across multiple coherence times is to

compute the square of the test statistic within each coherence time and average that over multiple coherence times.

The modified test statistic is given by

Z̃sc(N) :=
1

K

K−1∑

k=0

|Z(k)
sc (Dc)|2, (19)

where Z
(k)
sc (Dc) denotes the old test statistic (13) computed over the received signal samples in the kth coherence

time, i.e., the test statistic computed using the expression given in Equation (13) over the received signal vector

(Y [kDc + 1], Y [kDc + 2], · · · , Y [kDc + Dc − 1]).

Theorem 5: Let Y [n] =
∑L−1

l=0 hlX[n − l] + W [n] under hypothesis H1 in (1). The fading coefficients h[n]

satisfy a block fading model. Define H(f) :=
∑L−1

l=0 hle
−j2π

“
f

fs

”
l
, where fs is the sampling frequency. Let X̃[n] :=

hl ∗X[n]. Also, assume that T ≫ fs

α , and Dc ≫ T . Then, the modified single cycle feature detector defined in (19)

is non-robust if

SNR :=
P

σ2
n

≤
−

1

ρ
bK

Dc
+

√
1

ρ2
bK2

D2
c

+ 4
(ρ2− 1

ρ2 )K1

Dc

2K1
, (20)
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where P =: E
[

1
Dc

∑Dc−1
n=0 |X̃[n]|2

]
is the effective power in the signal after fading, and ρ is the noise uncertainty

parameter defined in Section III-A. K1 and K̂ are constants that depend on the shape of the waveform as well as

the detailed model of the frequency-selective fading process. They do not depend on the SNR or the coherence

time DC .

Proof: Our goal is to compute E
[
Z̃sc(N)|Hi

]
for i = 0, 1. From (19), E

[
Z̃sc(N)|Hi

]
= E

[
|Z(k)

sc (Dc)|2|Hi

]
,

i = 1, 2, for any k = 0, · · · , K − 1. The last equality follows from the fact that {Z(k)
sc (Dc)}, k = 0, 1, · · · , K − 1

are iid. Hence, we only need to consider the first coherence block

E
[
Z̃sc(N)|Hi

]
= E

[
|Zsc(Dc)|2|Hi

]
, i = 0, 1

E
[
|Zsc(Dc)|2|H0

]
is computed in the following lemma.

Lemma 2:

E[Zsc(Dc)|H0] = 0, E
[
|Zsc(Dc)|2|H0

]
=

σ4

Dc

∫ fs
2

− fs
2

|Ŝα
X(f)|2 df =

σ4

Dc
.

Proof: The proof is given in Appendix II

Since we are working in a single coherence block, the fading coefficients are time-invariant. So, denote hl = hl[n].

Under hypothesis H1, Y [n] = X̃[n] + W [n]. From (14), we have

S̃α
Y (f, Dc) = S̃α

eX(f, Dc) + S̃α
W (f, Dc) + S̃α

eX,W
(f, Dc) + S̃α

W, eX(f, Dc), (21)

where

S̃α
eX,W

(f, Dc) :=
1

Dc

1

T

Dc−1∑

n=0

[
X̃T

(
(2n + 1)

T

2
, f +

α

2

)
· WT

(
(2n + 1)

T

2
, f − α

2

)∗]

S̃α
W, eX(f, Dc) is defined analogously. Substituting (21) in the definition of Zsc(Dc), we get

Zsc(Dc)|H1 = Z eX(Dc) + ZW (Dc) + Z eX,W (Dc) + ZW, eX(Dc), (22)

where Z eX(Dc), ZW (Dc), Z eX,W (Dc), and ZW, eX(Dc) are random variables defined as

Z eX(Dc) :=

∫ fs
2

− fs
2

S̃α
eX(f, Dc) · Ŝα

X(f)∗ df, ZW (Dc) :=

∫ fs
2

− fs
2

S̃α
W (f, Dc) · Ŝα

X(f)∗ df

Z eX,W (Dc) :=

∫ fs
2

− fs
2

S̃α
eX,W

(f, Dc) · Ŝα
X(f)∗ df, ZW, eX(Dc) :=

∫ fs
2

− fs
2

S̃α
W, eX(f, Dc) · Ŝα

X(f)∗ df. (23)

Lemma 3:

E
[
|Zsc(Dc)|2|H1

]
= E

[
|Z eX(Dc)|2

]
+ E

[
|ZW (Dc)|2

]
+ E

[
|Z eX,W (Dc)|2

]
+ E

[
|ZW, eX(Dc)|2

]
.
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Proof: The proof is given in Appendix III

We now compute expressions for each of the four terms.

Lemma 4:

E
[
|Z eX(Dc)|2

]
= P 2K1, E

[
|ZW (Dc)|2

]
=

σ4

Dc
,

E
[
|Z eX,W (Dc)|2

]
=

σ2

Dc
PK2, E

[
|ZW, eX(Dc)|2

]
=

σ2

Dc
PK3,

where Ki, i = 1, 3, 4 are constants that can be computed numerically given explicit models for both the fading

and the signal random processes.

Proof: The proof is given in Appendix IV.

From Lemmas 2-4, we have

E
[
|Zsc(Dc)|2|H0

]
=

σ4

Dc
, E

[
|Zsc(Dc)|2|H1

]
= P 2K1 +

σ4

Dc
+

σ2

Dc
PK2 +

σ2

Dc
PK3.

The detector in (19) will be non-robust if the set of means under both hypotheses are not disjoint, i.e.,

min
W∈Wx

EW

[
|Zsc(Dc)|2|H1

]
≤ max

W∈Wx

EW

[
|Zsc(Dc)|2|H0

]

⇒ P 2K1 +
σ4

l

Dc
+

σ2
l

Dc
PK2 +

σ2
l

Dc
PK3 ≤ σ4

h

Dc
,

where σ2
l = 1

ρσ2
n and σ2

h = ρσ2
n. The last inequality is quadratic in P , which can be solved to give

P ≤
−σ2

l · bK
Dc

+

√
σ4

l
bK2

D2
c

+ 4
(σ4

h−σ4
l )K1

Dc

2K1

SNR :=
P

σ2
n

≤
−

1

ρ
bK

Dc
+

√
1

ρ2
bK2

D2
c

+ 4
(ρ2− 1

ρ2 )K1

Dc

2K1
=: SNRfeature

wall ,

where K̂ = K2 + K3. Observe that SNRfeature
wall = O

(
1√
Dc

)
.

VII. DISCUSSION AND CONCLUSIONS

A. Delay vs Amplitude coherence time

Flat fading with random delay is the simplest model under which signal features can be completely killed (see

Theorem 4). To understand the nature of the delay coherence time Dc and when it can be different from the regular

coherence time, it is useful to consider two cases:

• Assume that the delay spread of the channel is significantly larger than α
fs

in terms of samples and all of the

channel taps arise from the sum of many paths. (There is no dominant line-of-sight path) As these path-lengths
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Fig. 4. The location of SNR walls for various detection algorithms is plotted as a function of the channel coherence time Nc. A detailed

description of this figure is given in VII-B .

change over time, all of the taps will get different values. In such a case, the delay coherence time Dc and the

amplitude coherence time Nc are the same since the relative phase response can change significantly in this

time. This is the model that is likely to hold for wideband primary users being detected at significant distances

from their transmitters.

• Now consider if there is only one dominant line-of-sight path that is arriving at the secondary user, but is

subject to local reflections in the near neighborhood of the secondary. (e.g. A user in an airplane) The delay

spread of the channel can be smaller than 1
α when viewed in seconds and fs

α when viewed in samples. In this

case, there will just be a single tap in the filter. The amplitude might change rapidly since the local paths can

go in and out of phase with each other, but the overall delay is not going to be changing as fast. In such

cases, the delay coherence time Dc > Nc and the dominant effect may be the clock skew of the secondary’s

local oscillator relative to the primary oscillator. In such cases, the factor difference between Dc and Nc is

comparable to the factor difference between the signal bandwidth and the carrier frequency.

B. Comparing different SNR walls

In this paper we have shown the existence and computed the location of SNR walls for several detection

algorithms. Figure 4 plots the SNR wall locations for energy detection, coherent detection and feature detection

as a function of the channel coherence time Nc. In this example, the delay coherence time is assumed to be the

same as the amplitude coherence time, i.e., Nc = Dc. The data symbols an in this example are iid Bernoulli-(1/2)

random variables modulated onto a rectangular pulse with a 50% duty cycle (See (12)). The strongest feature at

α = 1
T0

acts like it contains a 0.4 fraction of the total signal energy. There is also a pilot tone with 10% of the
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total signal energy, i.e., θ = 0.1 (See (9)). Assume x = 1dB uncertainty in the noise level, which corresponds to

ρ = 10(1/10) = 1.259.

In Figure 4, the solid line corresponds to the energy detection SNR wall, and this is independent of the channel

coherence time. The dashed curve corresponds to the pilot detector. The dashed-dotted curved corresponds to the

modified single cycle feature detector trying to detect the strongest feature above. The dotted curve represents the

best possible case corresponding to the matched-filter when the primary signal is completely known.

The feature detector SNR wall curve from (20) has the constants K1 and K̂ numerically computed. The

expression for the feature detector SNR wall is accurate for large values of Nc. When Nc is small the feature

detector SNR wall curve is an approximation. The approximation corresponds to the best case scenario and in

reality the actual feature detector wall is worse.

Notice that in Fig 4, the pilot detector SNR wall is strictly better than the feature detector SNR wall for

Nc ≥ 60. For Nc ≤ 60, the feature detector SNR wall is essentially as bad as the energy detector SNR wall.

This is despite the fact that the 50% duty cycle BPSK signal considered in this example has a very strong feature.

Such a signaling scheme has a significant loss in primary data rate as compared to an optimal capacity achieving

signaling scheme since it is effectively throwing away more than half the degrees of freedom. The robustness of

feature detection degrades as the feature we are trying to detect gets weaker and the signaling scheme makes better

use of the degrees of freedom. This means that an energy and a coherent detector are jointly more robust than a

feature detector in most practical situations.

C. The capacity robustness tradeoff

It is natural to wonder ‘Is there any price paid for robustness?’ Recall that the goal of the primary transmitter is

to maximize its data rate to the primary receiver, while the secondary receiver wants to design a robust algorithm

to detect the presence of the primary. The relevant tradeoff is between the performance loss to the primary system

and the robustness gains to the secondary system. The primary performance can be quantified using capacity and

robustness can be quantified in terms of the SNR wall.

For a target SNR wall our goal is to find the primary signaling scheme that maximizes the data rate achievable

to the primary system while still being robustly detectable above the wall. Conversely, given a target primary data

rate, our goal is to find the primary signaling scheme that maximizes the robustness of secondary detection. If

the primary were only concerned with a given bandwidth and power constraint, then information theory reveals

that the optimal signaling is likely to look white and this would give very poor robustness. Thus, this tradeoff is

fundamental from a system design point of view and can be called the ‘capacity robustness tradeoff’.

Our eventual goal is to derive this optimal tradeoff. However, this is a non-trivial open problem. Instead of

aiming for the optimal tradeoff directly, we can find tradeoffs for a given secondary detection algorithm. For
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instance, assume that the secondary receiver uses a coherent detector and the primary signal has a deterministic

pilot tone. Any power spent on the pilot improves robustness but reduces the power available for data. Similarly,

we can derive these tradeoff curves for other commonly used detection algorithms together with primary signaling

strategies. This gives us a comprehensive way of comparing individual detection algorithms.

Fig. 5. The capacity robustness tradeoff curves are plotted for energy and coherent detectors. The primary channel is an AWGN channel

with bandwidth 1 MHz, and SNR = 20 dB and uncertainty at the secondary is x = 10 dB. The rightmost (blue) curve is the tradeoff for

energy detection. The tradeoff is obtained by varying the fraction of the total bandwidth used by the primary signal. The second curve from

the right (magenta) is the capacity robustness tradeoff for a pilot detector with Nc = 100. The tradeoff is obtained by varying the fraction of

the primary power used for the pilot tone. The 3rd (black) and the 4th (red) curves from the right are the tradeoffs for energy and coherent

detection with noise calibration, which effectively reduces the uncertainty to x = 1 dB.

Figure 5 compares the capacity robustness tradeoff curves for energy detection, coherent detection and noise

calibration. Qualitatively, one can see that coherent detection is much better than energy detection, i.e., for a given

loss in primary data rate, it gives better robustness gains for the secondary system. Also, these curves show that noise

calibration can provide significant robustness gains, especially when there is lot of uncertainty due to interference

from other secondary users operating in the same band.

D. Concluding remarks

When a system attempts to detect the presence/absence of weak signals in noise, the model uncertainties cannot

be ignored since they can be comparable to the desired signals. So while traditionally the performance metric

to compare various detection algorithms is their sample complexity, at low SNR the robustness becomes a more

significant issue. The robustness can be quantified in terms of an SNR wall giving the threshold below which weak

signals cannot be detected reliably no matter how many samples are taken. The SNR wall can be quantified for

different detectors and this shows that there is a tradeoff between the amount of knowledge assumed about the

primary and the level of robustness. Knowledge of deterministic components of the primary signal such as pilot
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tones give rise to SNR walls that scale as 1
Nc

with amplitude coherence time Nc whereas knowledge of purely

structural features of the data signaling strategy give rise to SNR walls that scale down only as 1√
Dc

with delay

coherence time Dc. A simple example where Nc = Dc shows that feature detection by itself can be dominated by

simple energy detection and coherent pilot detection at all SNRs.

The example of double-sideband modulation suggests that the robustness gains for feature detection are coming

implicitly from run time calibration of the noise model based on the observations themselves. This relies on the

primary signal not using all the degrees of freedom itself. Rather than trying to combine traditional cyclostationary

feature detection, this suggests that there might be a better way to incorporate the noise calibration gains into purely

coherent strategies to get the best possible robustness in practical settings.

APPENDIX I

PROOF OF LEMMA 1

Define

f(θ) :=

[
1

T

(∫ T

0
[c(θ)N1(t) + s(θ)N2(t)]

2 dt −
∫ T

0
[c(θ)N2(t) − s(θ)N1(t)]

2 dt

)]

N̄1 :=
1

T

∫ T

0
N2

1 (t) dt, N̄2 :=
1

T

∫ T

0
N2

2 (t) dt, and N̄12 :=
1

T

∫ T

0
N1(t)N2(t) dt.

Then, we can write

f(θ) = [c(θ)2 − s(θ)2](N̄1 − N̄2) + 4c(θ)s(θ)N̄12 (24)

= c(2θ)(N̄1 − N̄2) + 2s(2θ)N̄12. (25)

Now we can rewrite Equation (10) as

T (Y)|H0 = max
0≤θ≤π

f(θ). (26)

Differentiating f(θ) with respect to θ, the maximizing θ̂ satisfies, c2(2θ̂) = λ
1+λ where λ =

[
N̄1−N̄2

2N̄12

]2
. This implies

c(2θ̂) = ±
√

λ

1 + λ
, s(2θ̂) = ±

√

1 −
(

λ

1 + λ

)2

.

The signs of c(2θ̂), and s(2θ̂) are chosen such that [c(2θ̂)(N̄1 − N̄2)] and [s(2θ̂)N̄12] are non-negative respectively.

Substituting the optimal values in (25) and (26), we get

T (Y)|H0 =
(N̄1 − N̄2)

2 + 4|N̄12|3 ·
√

2N̄2
12 + (N̄1 − N̄2)2

4N̄2
12 + (N̄1 − N̄2)2

. (27)
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Note that

E[N̄12] = 0, E(N̄1 − N̄2) = 0

E[N̄2
12] = O

(
σ4

n

T

)
, E(N̄1 − N̄2)

2 = O

(
σ4

n

T

)
. (28)

For sufficiently large T , the Central Limit Theorem can approximate N̄12 and (N̄1 − N̄2) as Gaussian random

variables. Hence, taking expectations in (27) and using (28) we get

E [T (Y)|H0] = O

(
σ4

n

T

)
.

This proves the Lemma 1.

APPENDIX II

PROOF OF LEMMA 2

Under hypothesis H0, Y [n] = W [n], where W [n] ∼ CN (0, σ2). Substituting Y [n] = W [n] in (13) we have

Zsc(Dc)|H0 =

∫ fs
2

− fs
2

S̃α
W (f, Dc)Ŝ

α
X(f)∗ df. (29)

Recall from (15)

WT (n, f) =

n+ T

2∑

u=n−T

2

W [u]e−j2π f

fs
u.

Hence, WT (n, f) ∼ CN (0, Tσ2). Also recall that

S̃α
W (f, Dc) =

1

Dc

1

T

Dc−1∑

n=0

WT

(
(2n + 1)

T

2
, f +

α

2

)
W ∗

T

(
(2n + 1)

T

2
, f − α

2

)
.

Since WT

(
(2n + 1)T

2 , f
)

are iid, the Central Limit Theorem can approximate S̃α
W (f, Dc) as a Gaussian random

variable with E
{

S̃α
W (f, Dc)

}
= 0, and E

{
|S̃α

W (f, Dc)|2
}

= σ4

Dc
. Using this in (29), we have

E
[
|Zsc(Dc)|2|H0

]
=

σ4

Dc

∫ fs
2

− fs
2

|Ŝα
X(f)|2 df =

σ4

Dc
,

which proves the lemma.
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APPENDIX III

PROOF OF LEMMA 3

From (22), we have

E
ˆ

|Zsc(Dc)|
2|H1

˜

= E
“

[Z eX(Dc) + ZW (Dc) + Z eX,W (Dc) + ZW, eX(Dc)] · [Z eX(Dc) + ZW (Dc) + Z eX,W (Dc) + ZW, eX(Dc)]
∗

”

= E
ˆ

|Z eX(Dc)|
2˜+ E

ˆ

|ZW (Dc)|
2˜+ E

h

|Z eX,W (Dc)|
2
i

+ E
h

|ZW, eX(Dc)|
2
i

+E[Z eX(Dc)Z
∗

W (Dc)] + E[Z eX(Dc)Z
∗

eX,W
(Dc)] + E[Z eX(Dc)Z

∗

W, eX(Dc)]

+E[ZW (Dc)Z
∗

eX,W
(Dc)] + E[ZW (Dc)Z

∗

W, eX(Dc)] + E[Z eX,W (Dc)Z
∗

W, eX(Dc)]

+ six terms conjugate of the previous six terms. (30)

We show that the first six cross terms are zero, which implies that their conjugates are also zero. First, notice that

E[Z eX(Dc)Z
∗
W (Dc)] = E[Z eX(Dc)]E[Z∗

W (Dc)] = 0, since the signal is independent of noise and E[ZW (Dc)] =

E[Zsc(Dc)|H0] = 0 from Lemma 2. Now,

E[Z eX(Dc)Z
∗

eX,W
(Dc)] = E

" 

Z fs
2

−
fs
2

eS
α
eX(f, Dc) · bS

α
X(f)∗ df

! 

Z fs
2

−
fs
2

eS
α
eX,W

(f, Dc) · bS
α
X(f)∗ df

!

∗
#

=

Z fs
2

−
fs
2

Z fs
2

−
fs
2

E

"

eS
α
eX(f1, Dc) ·

 

1

Dc

1

T

Dc−1
X

n=0

»

eXT

„

(2n + 1)
T

2
, f2 +

α

2

«

· WT

„

(2n + 1)
T

2
, f2 −

α

2

«

∗
–

!∗#

bS
α
X(f1)

∗ · bSα
X(f2)

∗

df1df2.

The random variables WT

(
(2n + 1)T

2 , f2 − α
2

)
within the expectation are independent of the rest of the terms in

the expectation. Also, from Lemma 2, WT

(
(2n + 1)T

2 , f2 − α
2

)
are zero-mean Gaussian random variables, and are

independent in both n and f2. From these observations, E[Z eX(Dc)Z
∗
eX,W

(Dc)] = 0. By similar analysis we can

show that each of the cross terms in (30) vanish, which proves the lemma.

APPENDIX IV

PROOF OF LEMMA 4

Observe that ZW (Dc) = Zsc(Dc)|H0. Therefore, from Lemma 2, we get E[|ZW (Dc)|2] = σ4

Dc
. From (23), we

have

E
[
|Z eX,W (Dc)|2

]
= E

[(∫ fs
2

− fs
2

S̃α
eX,W

(f, Dc) · Ŝα
X(f)∗ df

)
·
(∫ fs

2

− fs
2

S̃α
eX,W

(f, Dc) · Ŝα
X(f)∗ df

)∗]

=

∫ fs
2

− fs
2

∫ fs
2

− fs
2

E
[
S̃α

eX,W
(f1, Dc) · S̃α

eX,W
(f2, Dc)

∗
]
Ŝα

X(f1)
∗Ŝα

X(f2) df1 df2. (31)

Now,

E
h

eS
α
eX,W

(f1, Dc) · eS
α
eX,W

(f2, Dc)
∗

i

=
1

Dc
E

"

Dc−1
X

n1=0

Dc−1
X

n2=0

eXT

„

(2n1 + 1)
T

2
, f1 +

α

2

«

· eX∗

T

„

(2n2 + 1)
T

2
, f2 +

α

2

«

#

·
1

DcT 2
E

"

Dc−1
X

n1=0

Dc−1
X

n2=0

W
∗

T

„

(2n1 + 1)
T

2
, f1 −

α

2

«

· WT

„

(2n2 + 1)
T

2
, f2 −

α

2

«

#

. (32)
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From Lemma 2, WT

(
(2n + 1)T

2 , f2 − α
2

)
are zero-mean Gaussian random variables, and are independent in both n

and f2. Hence, 1
DcT 2 E

[∑Dc−1
n1=0

∑Dc−1
n2=0 W ∗

T

(
(2n1 + 1)T

2 , f1 − α
2

)
· WT

(
(2n2 + 1)T

2 , f2 − α
2

)]
= σ2

Dc
, if n1 = n2

and f1 = f2, and is zero otherwise. Substituting this in (32) with f1 = f2 = f , we get

E
[
S̃α

eX,W
(f, Dc) · S̃α

eX,W
(f, Dc)

∗
]

=

(
σ2

Dc

)
· 1

Dc

Dc−1∑

n=0

E

[∣∣∣∣X̃T

(
(2n + 1)

T

2
, f +

α

2

)∣∣∣∣
2
]

. (33)

X̃[n] is cyclostationary and hence its statistics are periodic with period fs

α . Since T ≫ fs

α , the statistics of a block of

T samples of X̃[n] can be safely assumed to be independent of each other. Hence E

[∣∣∣X̃T

(
(2n + 1)T

2 , f + α
2

)∣∣∣
2
]

is approximately same for all n.

Observe that 1
Dc

∑Dc−1
n=0 E

[∣∣∣X̃T

(
(2n + 1)T

2 , f + α
2

)∣∣∣
2
]

is similar to the standard periodogram estimate. Since

X̃T (n, f) is a linear combination of the time samples X̃[n], and Dc is assumed to be large, E
[
| eXT (n,f)|2

P

]
is

approximately constant. Therefore,

1

Dc

Dc−1
X

n=0

E

"

˛

˛

˛

˛

eXT

„

(2n + 1)
T

2
, f +

α

2

«˛

˛

˛

˛

2
#

= P · K2,

for some constant K2 which depends on the fading distribution, the signal feature shape, and does not change with

Dc and the signal power P . Using this in (33), we get E
[
S̃α

eX,W
(f, Dc) · S̃α

eX,W
(f, Dc)

∗
]

= σ2

Dc
PK2. Substituting

this in (31), we have

E
[
|Z eX,W (Dc)|2

]
=

σ2

Dc
PK2

∫ fs
2

− fs
2

|Ŝα
X(f)|2 df =

σ2

Dc
PK2.

By identical reasoning we can show E
[
|Z eX(Dc)|2

]
= P 2K1, and E

[
|ZW, eX(Dc)|2

]
= σ2

Dc
PK3.
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