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SNSMIL, a real-time single 

molecule identification and 
localization algorithm for super-

resolution fluorescence microscopy
Yunqing Tang1,2,3,*, Luru Dai1,*, Xiaoming Zhang1, Junbai Li1,4, Johnny Hendriks5, 

Xiaoming Fan5, Nadine Gruteser5, Annika Meisenberg5, Arnd Baumann5, 

Alexandros Katranidis6 & Thomas Gensch5

Single molecule localization based super-resolution fluorescence microscopy offers significantly 
higher spatial resolution than predicted by Abbe’s resolution limit for far field optical microscopy. 
Such super-resolution images are reconstructed from wide-field or total internal reflection single 
molecule fluorescence recordings. Discrimination between emission of single fluorescent molecules 
and background noise fluctuations remains a great challenge in current data analysis. Here we 
present a real-time, and robust single molecule identification and localization algorithm, SNSMIL 
(Shot Noise based Single Molecule Identification and Localization). This algorithm is based on 
the intrinsic nature of noise, i.e., its Poisson or shot noise characteristics and a new identification 
criterion, QSNSMIL, is defined. SNSMIL improves the identification accuracy of single fluorescent 
molecules in experimental or simulated datasets with high and inhomogeneous background. The 
implementation of SNSMIL relies on a graphics processing unit (GPU), making real-time analysis 
feasible as shown for real experimental and simulated datasets.

�e past century has seen an ever intensifying demand of science and technology to investigate struc-
ture, composition and state of matter on increasingly smaller length scales. Consequently, this led to an 
unforeseen and impressive role for microscopy techniques that exist now in many modalities exploit-
ing a great variety of physical and chemical processes (e.g., neutron or x-ray scattering and di�raction, 
atomic force and conductance measurements, infrared absorption). Since its invention a hundred years 
ago (Otto Heimstädt and Heinrich Lehmann, between 1911 and 1913) �uorescence microscopy1,2 has 
been developed enormously to the most versatile non-invasive microscopy modality of today. Its primary 
application �elds are material nanoscience and modern cell biology.

�ere exists, however, a severe limitation in the performance of an optical (here �uorescence) micro-
scope – that is its non-in�nitely small resolution capacity as has been formulated already in the late 19th 
century3,4. Using the best modern high numerical aperture (NA) oil-immersion microscope objectives, a 
maximal lateral resolution between 160 nm and 250 nm can be achieved (for detection wavelengths from 
400 nm to 750 nm). �is causes a great limitation for the use of �uorescence microscopy, since many 

1National Center for Nanoscience and Technology of China No.11, Beiyitiao Zhongguancun 100190 Beijing, P.R. 

China. 2Department of Physics, Chongqing University, Chongqing 400044, P.R. China. 3State Key Laboratory of 

Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, 100190 Beijing, P.R. China. 
4Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P.R. China. 5Institute of Complex Systems 

(ICS-4, Cellular Biophysics), Forschungszentrum Jülich, Leo-Brandt-Str., 52428 Jülich, Germany. 6Institute of 

Complex Systems (ICS-5, Molecular Biophysics), Forschungszentrum Jülich, Leo-Brandt-Str., 52428 Jülich, 

Germany. *These authors contributed equally to this work. Correspondence and requests for materials should be 

addressed to J.L. (email: jbli@iccas.ac.cn) or T.G. (email: t.gensch@fz-juelich.de)

Received: 03 November 2014

Accepted: 08 May 2015

Published: 22 June 2015

OPEN

mailto:jbli@iccas.ac.cn
mailto:t.gensch@fz-juelich.de


www.nature.com/scientificreports/

2Scientific RepoRts | 5:11073 | DOi: 10.1038/srep11073

cellular structures (e.g., mitochondria, endoplasmic reticulum, Golgi apparatus) as well as morphological 
features in nanostructured materials and devices have dimensions in the range from 5 to 500 nm.

�is limitation of �uorescence microscopy was an accepted fact by the research community for more 
than 100 years. Since about 20 years, however, theoretical schemes and practical realizations of �uores-
cence microscopy have been developed that allow imaging with a resolution better than the di�raction 
limit. �e techniques can be grouped into two classes. In one class the illumination conditions of the 
sample are changed in a way that allow a resolution enhancement, e.g., a smaller e�ective point spread 
function (PSF) (stimulated emission depletion, STED5) or spatial modulations of the excitation light 
distribution (structured illumination microscopy, SIM6,7). �e other class – subsumed as single molecule 
localization microscopy (SMLM; e.g., PALM8, FPALM9, STORM10, dSTORM11, GSDIM12, SPDM13) is 
based on the detection of the �uorophores as single emitters and the determination of their positions. 
�e crucial point of SMLM is the use of �uorophores that can populate a non-�uorescent state and the 
possibility to switch between non-�uorescent and �uorescent states. Biological applications of SMLM 
grow rapidly and range from bacteria14, cell biology15–17 to neuroscience18,19 and immunology20.

A key aspect of SMLM experiments is the determination of the single emitter positions. �e devel-
opment of SMLM, however, occurred in several laboratories in parallel. �erefore, there is no standard 
analysis program-package available for the SMLM community but a multitude of them. �ere are many 
stand-alone programs available (e.g., DAOSTORM21, livePALM22, rapidSTORM23, MLEwT24, Localizer25, 
deconSTORM26, 3D-DAOSTORM27, WaveTracer28, GPUgaussMLE29) as well as plugins for the free 
graphics program ImageJ30 (e.g., QuickPALM31, MaLiang32, GrasPJ33). Some programs use GPU to accel-
erate analysis (e.g., GPUgaussMLE, WaveTracer, MaLiang). Many laboratories use their own localiza-
tion so�ware or the programs delivered with the commercial SMLM microscopes (e.g., Elyra (Zeiss), 
N-STORM (Nikon), SR GSD (Leica)). Two recent publications give an excellent overview about the 
di�erent problems and approaches for localization of single molecules34,35.

All SMLM program packages require that the user needs to choose a set of parameters that in�uence 
the performance of the program and have a considerable impact on the super-resolution image obtained. 
It is, however, rather di�cult for experimentalists not involved in the development of the analysis pro-
grams or not trained in single molecule microscopy to perceive and predict the in�uence of a certain 
parameter on the �nal result (the super-resolution image) and it is therefore complicated to make rea-
sonable choices. Such a situation is nowadays occurring with increasing probability due to the growing 
popularity of SMLM methods among cell biologists, physiologists, neuroscientists or microbiologists 
– inspired by the Nobel Prize in Chemistry 2014 awarded partly to the basics of SMLM. Non-experts 
in single molecule imaging start using SMLM as an established imaging tool as can be seen from the 
growing number of publications that use rather than develop or improve SMLM and the spread of com-
mercial SMLM setups. Our intention was to develop a simple-to-use algorithm with very few adjustable 
parameters and prove its suitability for simulated and real SMLM data from ideal (simple) to complicated 
imaging conditions. SNSMIL allows the generation of super-resolution images from SMLM data where 
the acceptance of the single molecule localizations is decided purely on the basis of the quality of the 
detected single molecule signals.

Due to experimental implementation and sample preparation, background is uneven in many meas-
urements, therefore, local SNR (Signal-to-Noise Ratio) analysis is essential and being used in excellent 
SMLM so�ware such as rapidSTORM, QuickPALM, Localizer, MaLiang, etc.. For a discussion of di�er-
ent SNR de�nitions we refer to a recent publication36. SNR analysis depends on the local background 
estimation. Hoogendoorn et al.37 recently suggested an interesting di�erent approach to correct for the 
contribution of background signal in SMLM. �ey applied a temporal median �lter to estimate the back-
ground in SMLM measurements and demonstrated its usefulness in generating super-resolution images 
from SMLM datasets. Here, we introduce a new single molecule localization program-package (SNSMIL, 
Shot Noise based Single Molecule Identi�cation and Localization, source code and binary program avail-
able online (http://english.nanoctr.cas.cn/dai/so�ware/)). �e algorithm of SNSMIL is based on the prin-
ciple of noise source, namely shot noise38 or Poisson noise of an image acquired with an EMCCD camera. 
SNSMIL applies the Rose criterion39–44 and introduces a newly de�ned quality metric, QSNSMIL. �is 
algorithm allows users to generate a super-resolution image by choosing only one parameter - the thresh-
old of QSNSMIL- if the width-�xed Gaussian �t model is used. In some cases, especially when the imaged 
biological structures extend in z-direction, a variable width in the Gaussian �tting model is needed to 
allow “out of focus” single molecules to be accepted. For those cases a second parameter - localization 
precision �ltration for single emitters – is introduced. All other settings in SNSMIL are dictated by either 
the used equipment or the used �uorophores. As such we are able to obtain reliable and comparable 
results by making use of the single emitter quality metric QSNSMIL, even when di�erent acquisition modes 
(e.g. PALM or dSTORM) are used. We describe here the principle and the implementation of SNSMIL 
as well as its application on simulated and measured PALM and dSTORM data. �e performance of 
SNSMIL is compared to several other SMLM program packages.

Results
To generate a SMLM-based super-resolution image, three consecutive procedures are performed in gen-
eral, step 1: acquisition of a series of �uorescence images (frames) of single emitters; step 2: identi�cation 
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of potential single molecule �uorescence emitters in each frame; step 3: localization of the central posi-
tion of each emitter and reconstruction of the �nal image. �e single molecule identi�cation strategy 
(step 2) is the central problem for all SMLM algorithms21–33. SNSMIL de�nes a new metric for identi�-
cation, QSNSMIL, that allows for an easy assessment of the quality of an identi�ed single molecule. In the 
following paragraphs a detailed description of the di�erent elements and formulas that are involved in 
this step are given.

SNSMIL makes use of shot noise to evaluate if a region in an image contains a potential single mol-
ecule �uorescence emitter. �e use of shot noise requires that the intensity reading of each pixel is �rst 
converted into the number of photoelectrons. �is conversion is done using equation (1), where ( , )γ −n i je  

and I(i, j) denote the number of photoelectrons and intensity reading of pixel (i,j); Ioffset denotes the bias 
o�set of the camera; and Ge� indicates the applied e�ective electronic gain (see Supplementary Information 
Part 1, section 2.3.2 for details).
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Due to the fundamental nature of shot noise, which is Poisson distributed, and the excess noise factor 
of the camera, the overall background noise in a pixel, σ ,btotal , acquired on a camera with low sensor 
temperature and high electronic gain can be formulated as equation (2)45–47. Here ( , )γ ,−n i je b  denotes the 
number of background photoelectrons of pixel (i,j) and F denotes the excess noise factor of the camera, 
which equals 2  for EMCCD cameras47.
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�e signal-to-noise ratio (SNR) for pixel (i,j) can now be determined using equation (3).
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To �nd potential single molecule �uorescence emitters within an image, each pixel of the image is 
evaluated to determine whether it contains the maximum intensity value within the airy radius (Rairy) 
de�ned by equation (4). Here M is the optical magni�cation; λ is the wavelength of maximum �uores-
cence emission; µ is the pixel size of the camera; and NA is the numerical aperture of the imaging system.
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If a pixel contains the maximum value within the airy radius it is considered as an emitter candidate(ipeak, 
jpeak). Each candidate is then re-evaluated by de�ning a region of interest (ROI) around the candidate that 
encompasses all pixels within the theoretical width of the PSF (eq. 5)
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which meet the condition in equation 6
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where ceil() rounds the elements to the nearest greater or equal integer number. �e purpose of this ROI 
selection is to exclusively include pixels into the analysis that have a signal larger than the background. 
For each ROI the e�ective signal-to-noise and contrast to noise ratio (SNRe�andCNRe�) is calculated 
using equations (7) and (8), where N ROI denotes the number of pixels in the ROI.
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In order for a pixel to be considered the position of a potential single molecule �uorescence emitter, 
it must pass two constraints. According to the Rose Criterion, a signal is detectable if CNRe� is larger 
than three39–44. �is is the �rst constraint and cannot be in�uenced by the user. �e second constraint is 
the identi�cation quality metric QSNSMIL de�ned by equation (9).
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= ⋅ ( )Q CN R SN R 9SNSMIL eff eff

�e threshold of QSNSMIL is the only parameter to be chosen by the user that determines the quali�-
cation of potential emitters. It represents the central idea of SNSMIL. Spike-like single pixel signals 
(needle-like) have a high SNR but a low CNR. Broadened signals (with a width signi�cantly larger than 
the theoretical PSF width) typically have a high CNR and a low SNR. Both situations are unlikely to be 
caused by a single emitter. QSNSMIL accounts for both situations and when set correctly will remove false 
positives caused by either spike-like or broad signals. In practice, several values should be empirically 
tested to obtain the optimal result for each recording.

�e identi�ed potential single molecule �uorescence emitters are then analyzed in step 3, i.e., the 
localization of the central position of the emitters and the subsequent reconstruction of the super-resolution 
image. SNSMIL tries to �t a two-dimensional Gaussian function using the Levenberg-Marquardt algo-
rithm (LMA)48,49, to determine the central position of each potential emitter. SNSMIL makes use of a 
GPU implementation of the LMA to solve this non-linear curve �tting problem. �e 2D Gaussian model 
can be used in three di�erent variations in SNSMIL (model 1–3; see Supplementary Information Part 1, 
Appendix A for details). In model 1 the width in both the x and y direction is �xed to the theoretical 
PSF widths0. In model 2 the width is a �t parameter that is the same for both the x and y direction. Both 
models 1 and 2 result in a symmetrical 2D Gaussian function. In model 3 the width for the x and y 
direction are �t independently of each other, which results in an elliptical 2D Gaussian function. In case 
an emitter is slightly out of focus or if the background is high, the PSF broadens and the localization 
accuracy is decreased. �erefore, models 2 and 3 make use of the PSF-width tolerance (PWT) parameter 
to limit the valid range for the width parameter values that are obtained in the �t. �e minimum allow-
able width is essentially based on the pixel-size of the image. �e maximum allowable width is equal to 

⋅PWT s0. Potential single molecule �uorescence emitters with widths outside the valid range will be 
discarded. See Supplementary Information Part 1, section 3.8 for details.

For a better general understanding of the algorithm, the work �ow of SNSMIL is shown in Fig.  1. 
A�er an image has been acquired (step A), the image intensity is transformed into photoelectrons (step 
B), which allows shot noise analysis using a Poisson distribution. �e locally brightest spots are chosen 
as candidates in step C. Subsequently non-isolated candidates of emitters (the distance between two 
emitters is less than the radius of the airy disc Rairy) are discarded in step D. Noise is then reduced via 
Gaussian smoothing in step E. In step F, CNR and QSNSMILare estimated by shot noise analysis using a 
Poisson distribution. Candidates are further �ltered in step G based on the Rose criterion (CNR >  3) and 
the user provided threshold QSNSMIL. �e initial value of parameters are estimated before �tting in step 
H. �e �tting process is performed for all detected emitters in the image and a post-�tting �lter is applied 
to identify emitters with desired goodness of �t de�ned by Pearson’s correlation coe�cient in step I (see 
Supplementary Information Part 1, section 3.8.3 for details). �e �nal super-resolution image is gener-
ated and rendered in the last step K.

SNSMIL was tested with three simulated datasets comprised of di�erent signal and noise contribu-
tions, high SNR, low SNR and low SNR with GB (see Image Simulations in Methods). We used four 
indexes: Jaccard, Precision, Recall, and RMSD (root mean square distance) to evaluate the performance. 
�ese indexes are de�ned by equations (10)–(13). Here we denominate A as the simulated dataset (ref-
erence dataset) and B as the reconstructed dataset. �ree relevant quantities are de�ned as true positive 
(TP), false positive (FP) and false negative (FN) as follows: the number of true emitters that are recon-
structed, TP = A � B; the number of false emitters that are reconstructed, = −FP B TP; and the number 
of true emitters that are missed, = −FN A TP.

∩ ∪= / = /( + + ) ( )A B A B TP TP FP FNJaccard 10

= /( + ) = / ( )TP TP FP TP BPrecision 11

= /( + ) = / ( )TP TP FN TP ARecall 12

∑= 
 ( , ) − ( , )  ( )P x y P x yRMSD 13TP i

TP
A i i B i i

1 2

�e Jaccard similarity coe�cient is a measure for the similarity between simulated and reconstructed 
emitters and is the most important representative for identi�cation accuracy. In Fig. 2a the in�uence of 
the QSNSMIL parameter on the Jaccard coe�cient is shown. It is clear that choosing a value for QSNSMIL, 
which is either too low or too high has a negative in�uence on the Jaccard coe�cient. Under ideal imag-
ing conditions, good results are insensitive for a large range of QSNSMIL values since the di�erence between 
signal and background is signi�cant. In contrast, under less ideal imaging conditions that are closer to 
experimental reality, the QSNSMIL value needs to be selected carefully.



www.nature.com/scientificreports/

5Scientific RepoRts | 5:11073 | DOi: 10.1038/srep11073

�e in�uence of PWT on identi�cation sensitivity and localization precision is shown in Fig. 2b. A 
higher PWT setting results in a worse localization precision (higher RMSD), however in certain cases, 
e.g., when dealing with a large set of emitters (high sampling density), the tradeo� of a higher RMSD 
may be bene�cial for resolving �ne structure.

�e performance of SNSMIL is compared with some of its precursors, QuickPALM 1.1, rapid-
STORM 3.2, Localizer 88, and MaLiang 1.1 in Fig.  3. We tested a number of parameter sets for each 
program and performed the analysis with each program with the best possible found parameter set. 
Performances with di�erent parameter settings of rapidSTORM in the case of Low SNR with GB are 
shown as an example in Fig. S22. �e detailed parameter settings and retrieved super-resolution images 
are depicted in Supplementary Information Part 2 (Fig. S1–S22). SNSMIL performs well and similar to 
rapidSTORM and Localizer while the results of MaLiang and QuickPALM are of lower quality. SNSMIL 
with both width-variable (SNSMIL A) and width-�xed (SNSMIL B) 2D Gaussian �tting model were 
tested. SNSMIL B gives better Jaccard and RMSD in worse imaging conditions (Low SNR and Low 
SNR with GB). It is suggested for applications when emitters are mostly in focus, for instance in the 
case of TIRF illumination. However, SNSMIL A accepts emitters when the width of the �tted Gaussian 
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Figure 1. SNSMIL Work Flow. Schematic diagram of SNSMIL work �ow (A–J), super-resolution image (K),  

and TIRF image (L) of tubulin �bers obtained from �xed HL-1 cells immunohistochemically stained with 

anti-β -tubulin primary and Alexa647 labeled secondary antibodies.
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functions is distributed in a certain range and is recommended for imaging conditions, where emitters 
are located in but also slightly out of focus, for instance in the case of EPI illumination. �e times used 
for computation by di�erent so�ware packages are listed in Table 1. SNSMIL processes single frames in a 
parallel fashion, that is to say, emitters identi�ed in one frame are processed at the same time in di�erent 
computing threads so that the localization results are achieved only with a short time lag a�er the frame 
have been recorded. Both rapidSTORM and MaLiang use a di�erent strategy of parallel computing, i.e., 
they process several frames at the same time. In this way, they are considerably faster in computation of 
the simulated datasets compared to SNSMIL. However, the conceptual advantage of paralleled processing 
of only one single frame consists in its perfect match for real-time analysis and reconstruction of SMLM 
measurements, where only one image at a time is available for computation. As shown below, SNSMIL 
performance speed is adequate to process SMLM data in real-time in measurements of mitochondrial 
structures in HEK293 cells.

SNSMIL was also tested on real SMLM measurement data. We analyzed images of mitochondria in 
HEK293 cells obtained from photoactivated localization microscopy (PALM; experiment A; Fig. 4) and 
direct stochastic optical reconstruction microscopy (dSTORM; experiment B; Fig. 5). In both cases the 
�uorophore (Dendra2 in experiment A or Alexa647 in experiment B) is directed to the mitochondrial 
matrix due to the same targeting sequence (see Protein constructs in Methods). For PALM experiments, 
Dendra2 was directly fused to the mitochondrial matrix targeting sequence and in this way transported 
into the mitochondrial matrix. dSTORM experiments were performed with a HEK293 cell line sta-
bly expressing mito-GCaMP3, a genetically encoded GFP-based Ca2+ sensor. Visualization occurred via 
immunocytochemistry using a primary antibody against GFP and a secondary antibody labeled with 
Alexa647. In both experiments, the mitochondria were intensely stained while hardly any �uorescence 
was detected outside the mitochondria. �e resolution of the SMLM images were explicitly and sig-
ni�cantly improved compared to the conventional total internal re�ection �uorescence (TIRF) images 
(compare Fig. 4a/5a with Fig. 4e/5e).

To meet real-time analysis, SNSMIL is implemented on GPU to make use of GPU’s parallel compu-
tation power. With typical parameters, analysis with SNSMIL for experiment A and B are �nished in 133 
s (QSNSMIL =  2; PW =  3; 3914 frames; 836 emitters and 34 ms per frame on average) and 119 s 
(QSNSMIL =  2.3; PWT =  3; 4000 frames; 340 emitters and 30 ms per frame on average), while the meas-
urements took 391 seconds (about 100 ms per frame) and 224 seconds (about 56 ms per frame), 

Figure 2. Identi�cation and localization precision with three simulated datasets. (a) Constant precision 

parameters (PWT =  3.0) and variable identi�cation parameter (QSNSMIL) by using �xed width 2D Gaussian 

Model. (b) Constant identi�cation parameter (QSNSMIL =  2.0) and variable precision parameters (PWT) by 

using symmetrical but variable width 2D Gaussian Model.
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respectively. �is shows that real-time analysis can be achieved when SNSMIL is embedded into a meas-
urement program.

For both, experiment A and B, a thin �nger-like mitochondrial structure is selected for resolution 
analysis. Line pro�les of these structures in SMLM as well as conventional TIRF images were obtained 
by projecting the localizations on a perpendicular axis shown in Figs 4f and 5f. In the TIRF images, the 
widths of the mitochondria are 200–300 nm corresponding to the di�raction limited resolution. �e 
signi�cantly smaller widths in the SMLM images amount to only 80–120 nm. Additional �ne structures, 
which were unresolved in the TIRF images, can also be seen in the SMLM images (see Figs 4 and 5).

�e e�ects of di�erent QSNSMIL settings and di�erent �tting models were also investigated (Fig. 4a–d 
and Fig. 5a–d). Model 1 is the model of choice for SMLM data that are analyzed as twoα dimensional 
projections (as is the case here), models 2 and 3 are favorable for several of the three-dimensional SMLM 
methods like biplane50 or cylindrical lens51. With the same QSNSMIL, di�erent �tting models result in 
di�erent sets of recovered emitters due to localization precision �ltering. Interestingly, �ne structures are 
more evident with a moderate amount of emitters reconstructed. With other parameter sets, �ne struc-
tures may become blurry with too large or too small emitter sets corresponding to low precision or low 
recall as visible in Fig. 4f.
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Figure 3. Performance comparison of SMLM so�ware. Performance of so�ware with three simulated 

datasets. SNSMIL A uses a symmetrical but variable width 2D Gaussian Model with QSNSMIL =  2; SNSMIL B, 

uses a �xed width 2D Gaussian Model with QSNSMIL =  2. �e settings and results of parameters and retrieved 

super-resolution images for all so�ware can be found in the Supplementary Information Part 2 (Fig. S1–

S22).

SNSMIL rapidSTORM QuickPALM Localizer MaLiang

High SNR 79 15 142 82 27

Low SNR 82 20 156 133 25

Low SNR with 
GB

83 27 382 135 24

Table 1. Computing time. Computing time of di�erent so�ware for three simulated datasets (unit: 

seconds). All so�ware packages were executed on the computer system as descripted in Method part. 

SNSMIL was running on Debian Linux 6.0 64 bit operation system whereas all other so�ware packages were 

running on Windows 7 64 bit.
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Figure 4. PALM imaging. PALM imaging of mitochondria (mito-Dendra2 in HEK293 cells) analyzed by 

SNSMIL: In 4a–4d the super-resolution images generated with SNSMIL under di�erent parameter settings 

are shown. In 4e the corresponding TIRF image is depicted. An enlarged view of the boxed region is shown 

below each image. Fitting model, QSNSMIL value, and number of emitters reconstructed for the whole and the 

zoomed images are listed below: (a) Model 1; 2.0; 3,270,739; 245,259 (b) Model 1; 1.0; 3,785,947; 262,522 (c) 

Model 1; 4.0; 947,779; 104,470 (d) Model 2; 2.0; 1,825,069; 132,350 (PWT is �xed as 3.0). A selected �nger-

like structure is marked by a yellow box (4a, lower part) and projected onto the x-axis marked as yellow line. 

(f) Line pro�les of a straight mitochondrial structure were plotted for images 4a–4e. Each line pro�le 

through a reconstructed SMLM image is normalized to its maximal intensity. Intensities from the line pro�le 

through the same structure in the corresponding TIRF image are normalized to match the same scale. Scale 

bar is 4 µ m.
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�e histograms of QSNSMIL for the two experiments, the quality distribution of emitters is shown in 
Fig.  6. �e comparison clearly shows that there are more emitters with high QSNSMIL in experiment B 
compared to experiment A, and the mean values of QSNSMIL in experiment A and B are 3.39 and 4.27, 
respectively. �is �nding is consistent with the fact that Alexa647 is a brighter �uorophore than Dendra2 

Figure 5. dSTORM imaging. dSTORM imaging of mitochondria (immunohistochemical staining of mito-

GCaMP3 (secondary antibody labeled with Alexa647)) in HEK293 cells analyzed by SNSMIL: In 5a–5d 

super-resolution images generated under di�erent parameter settings are shown. In 5e the corresponding 

TIRF image is depicted, where the contrast of the lower image is re-adjusted for better visibility. An enlarged 

view of the boxed region is shown below each image. Fitting model, QSNSMIL value, and number of emitters 

reconstructed for the whole and the zoomed images are listed below: (a) Model 1; 2.5; 1,362,080; 124,916; 

(b) Model 1; 2.0; 1,648,679; 147,744; (c) Model1; 4.0; 792,544; 74,727 (d) Model 2; 2.5; 1,197,259; 102,409 

(PWT is �xed as 3.0). A selected �nger-like structure is marked by a yellow box (5a, lower part) and 

projected onto the x-axis marked as yellow line. (f) Line pro�les of a straight mitochondrial structure were 

plotted for images 5a–5e. Each line pro�le through a reconstructed SMLM image is normalized to its 

maximal intensity. Intensities from the line pro�le through the same structure in the corresponding TIRF 

image are normalized to match the same scale. Scale bar is 4 µ m.
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and therefore better to distinguish from background. �e distribution of the QSNSMIL values of SMLM 
data o�ers a valuable method to characterize the quality of a SMLM measurement and to choose an 
appropriate QSNSMILfor generating a reasonable super-resolution image.

Conclusions
We have developed SNSMIL, a real-time and robust single molecule identi�cation and localization algo-
rithm and so�ware for SMLM. SNSMIL is implemented to make use of a GPU to reduce computation 
time and make real-time analysis possible. We demonstrate SNSMIL as a stand-alone program (BSD 
license) with a graphical user interface, that can be executed on Windows or Linux systems installed 
with NVidia CUDA enabled graphics cards (with compute capability 2.0 or higher). We demonstrate that 
SNSMIL provides robust and high identi�cation accuracy even when imaging quality is rather limited, 
namely high background or high noise conditions. �is holds true for both, simulated – where SNSMIL 
performs well compared to other established SMLM �tting programs – as well as in real super-resolution 
experiments uncovering details of cellular structures well below the di�raction limited resolution of 
optical microscopy.

Methods
Image Simulation. To evaluate the performance, three simulation datasets were produced with dif-
ferent imaging conditions: high signal-to-noise ratio (high SNR, average number of photons from an 
emitter is 500 with an uniform background of 10 photons per pixel), low signal-to-noise ratio (low 
SNR, average number of photons from an emitter is 500 with an uniform background of 50 photons per 
pixel), and low signal-to-noise ratio with inhomogeneous Gaussian distributed background (low SNR 
with GB, average number of photons from an emitter is 500 with an uniform background of 50 photons 
per pixel, where an additional Gaussian distributed background is applied with a width of half size of 
full image, and the peak value of the Gaussian distributed background is 50 photons). In the last case, 
a broad Gaussian distribution was superimposed on each frame, which is o�en the case in wide-�eld 
and TIRF illumination. Photons from emitters were randomly placed within a PSF area, and then shot 
noise was imposed a�er adding a constant o�set to simulate a photoelectron image. �e image is further 
multiplied with an EMCCD gain factor to obtain the intensity image. �e PSF is simulated with the 
following parameters: pixel size 64 nm; emission wavelength 665 nm and numerical aperture 1.49. Each 
dataset contains 200,000 emitters in about 5,000 frames to produce robust statistic comparable results. 
�e simulation datasets are generated with a program coded in Matlab. �e comparisons between refer-
ence and reconstructed datasets are performed by the evaluation tool (CompareLocalization)52 released 
by Localization Microscopy Challenge.

Computation system architecture. Computation with SNSMIL were performed on a GPU based 
computer (GPU: Nvidia GTX 580; CPU intel core i5–3470(3.2 GHz); 4 GB memory; Operating system 
is Debian Linux 6.0 64 bit).

Protein constructs. A pMC vector for mammalian expression containing a YFP construct that is 
targeted to the mitochondrial matrix was kindly provided by Dr. M. O. Christensen (Heinrich Heine 
University Düsseldorf, Düsseldorf, Germany). A fragment encoding the amino-terminal 29 amino 
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Figure 6. QSNSMIL histograms. Distributions of the quality QSNSMIL of the PALM (experiment A; Fig. 4) 

and dSTORM (experiment B; Fig. 5) super-resolution data.
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acids of the precursor of subunit VIII of cytochrome c oxidase (Mitochondrial Targeting Sequence – 
MTS)53 had been fused 5’-upstream of the YFP gene. �e YFP-encoding fragment was excised from the 
pMC vector with AgeI and SalI, leaving the MTS una�ected. �e gene encoding Dendra2 (Addgene, 
Cambridge, MA, USA) was ampli�ed from a pET vector by PCR. Unique recognition sites for AgeI and 
SalI were added at the N- and C-terminal end, respectively. �e PCR fragment was ligated into the pMC 
vector downstream the MTS between the AgeI and SalI restriction sites yielding an expression plasmid 
for a photoconvertible �uorescent protein targeted to the mitochondrial matrix (mito-Dendra2). �e 
construct was veri�ed by DNA sequencing. �e GFP-based Ca2+ sensor GCaMP354 was fused in a similar 
manner to the same targeting sequence for the mitochondrial matrix yielding mito-GCaMP355.

Cell Culture. HEK293 cells – either stably transfected with mito-GCaMP3 or transiently transfected 
with mito-Dendra2 by a modi�ed Ca2+-phosphate method56 were maintained in minimum essential 
medium (MEM) supplemented with 10% (v/v) fetal calf serum (FCS), 1% (v/v) streptomycin/penicillin 
and 1% (v/v) essential amino acids (Life Technologies, Darmstadt, Germany) at 37 °C in a humidi�ed, 
CO2-controlled (5%) incubator. 24 h before dSTORM experiments 2 ×  104 cells were plated on 8-well 
µ -Slides (ibiTreat, ibidi, Martinsried, Germany) coated with 150 µ l poly-L Lysine (0.1 mg/ml). Coating 
was performed for 30 min at RT before cells were plated. Wells were rinsed three times with sterile �l-
tered PBS.

Immunocytochemical Staining. To reduce background �uorescence all solutions were sterile �l-
tered. All incubation steps were performed at room temperature (RT). Cells were washed three times 
with PBS and subsequently incubated in 4% paraformaldehyde (PFA) in PBS for 15 minutes. A�er �xa-
tion the cells were rinsed six times for 5 minutes in PBS and permeabilized for 10 minutes at RT in 250 µ l 
PBS containing 0.5% (v/v) Triton X-100. Triton X-100 was removed by washing three times (5 minutes 
each) with PBS. A�erwards cells were incubated in 150 µ l blocking bu�er containing 5% (v/v) nor-
mal goat serum in sterile �ltered PBS for 45 minutes at RT. Subsequently cells were incubated in 150 µ l 
blocking bu�er containing primary antibodies against GFP (mouse anti-GFP (MAB3580), Chemicon 
(Millipore, Schwalbach, Germany, dilution 1:8000)) for 60 minutes at RT. A�er washing the samples six 
times with 0.1% (v/v) Tween-20 in PBS for 5 minutes each they were incubated for 60 minutes in the dark 
with secondary antibodies conjugated with Alexa647 (Alexa Fluor 647 F(ab’)2 fragment goat anti-mouse 
IgG (A-21237), Life Technologies, dilution 1:10000) diluted in blocking bu�er. Finally, all samples were 
washed six times with 0.1% (v/v) Tween-20 in PBS for 5 minutes each. Samples were again �xed with 
4% PFA solution for 5 minutes to preserve the staining. For labeling of tubulin �bers (Fig. 1K,L) mouse 
anti-β  tubulin primary antibodies (32–2600; Life Technologies; dilution 1:500) were used in conjunction 
with the same secondary antibody as mentioned above.

Wide-field/TIRF fluorescence microscope. Our custom built setup is based on an Olympus IX-71 
inverted microscope body (Olympus, Hamburg, Germany). We use an AOTF (AOTF nC-VIS-TN 
1001; AA Opto-Electronic, Orsay, France) to control the throughput of three continuous wave laser 
sources, i.e., an Ar-ion laser (488 nm; Innova 70C; Coherent, Santa Clara, CA, USA), a 561 nm diode 
laser (Sapphire 561-200 CDRH-CP; Coherent), and a 642 nm diode laser (LBX-642-130 CIR-PP; Oxxius, 
Lannion, France). In addition, we use a 405 nm diode laser (Cube 405-100C; Coherent), which is con-
trolled via a digital/TTL signal. All measurements were done with an ApoN 60x Oil TIRF objective 
(NA 1.49; Olympus). TIRF was achieved by repositioning the laser beam from the center to the rim 
on the back aperture of the objective using a motorized mirror. Excitation and emission light were 
separated via a multiband dichroic mirror (F73-866, BS R405/488/561/633; AHF Analysentechnik, 
Tübingen, Germany) in combination with a multiple bandpass �lter (F72-866, 466/523/600/677; AHF 
Analysentechnik). Images were recorded with an EMCCD camera (AndoriXon DU897E; Andor, Belfast, 
UK) cooled to − 75 °C using a pixel resolution of 512 ×  512 pixels. �e image from the microscope was 
additionally magni�ed via an achromatic lens (focal point 50 mm; AC254-050-A-ML; �orlabs, Dachau/
Munich, Germany). By adjusting the lens position and camera position (motorized) the pixel-size can 
be adjusted between 64 and 130 nm/pixel.

dSTORM. For dSTORM measurements the 642 nm diode laser was used for excitation. Series of 
4000 TIRF images (power of 642 nm laser: 141 mW, exposure time: 20 ms, pixel size: 64 nm) were 
recorded and subsequently analyzed for calculation of the super-resolution image. �e imaging bu�er 
for super-resolution microscopy contained sterile �ltered PBS (pH 7.4) mixed 1:1 with glucose solution 
(0.1 g glucose, 0.9 ml PBS, 0.1 ml glycerol) and 90 mM β -mercaptoethylamine (MEA; Sigma-Aldrich, 
Tau�irchen, Germany; 1 M MEA-HCl in H2O). Imaging bu�er was �lled in the measurement cham-
ber. Subsequently, 20 µ l of an oxygen scavenging solution (1 mg glucose oxidase (Sigma-Aldrich), 1.2 µ l 
catalase (from bovine liver; C100; Sigma-Aldrich), 4 mM TCEP (Sigma-Aldrich), 5.2 mM KCl, 2 mM 
Tris-HCl, pH 7.5, 0.5 ml glycerol, 0.45 ml H2O) was added. Imaging bu�er was added until the chamber 
was completely �lled and sealed with a coverslip.

PALM. For PALM measurements in living HEK293 cells the 488 nm line of an Ar-ion laser was used 
for excitation at low power (< 1 mW) to identify suitable cells expressing mito-Dendra2 localized in 
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mitochondria. Subsequently, low powers of 405 nm light (less than 1 mW, adjusted during recording 
to assure optimal number of photoconverted mito-Dendra2 proteins absorbing at 561 nm) was used 
together with high power (100 mW) of 561 nm light for read out of the �uorescence of the mito-Dendra2 
proteins. In this manner, sequences of 4000 TIRF images (exposure time: 50 ms; pixel size: 110 nm) were 
recorded and subsequently analyzed for calculation of the super-resolution image. Cells were maintained 
in phenol-red free Dulbecoo’s Modi�ed Eagle Medium (DMEM with high glucose (4.5 g/ml); 21063-045 
Life Technologies) and additional 10 mM HEPES bu�er (pH 7.2).
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