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ABSTRACT
In this paper, we propose SnuCL, an OpenCL framework
for heterogeneous CPU/GPU clusters. We show that the
original OpenCL semantics naturally fits to the heteroge-
neous cluster programming environment, and the framework
achieves high performance and ease of programming. The
target cluster architecture consists of a designated, single
host node and many compute nodes. They are connected by
an interconnection network, such as Gigabit Ethernet and
InfiniBand switches. Each compute node is equipped with
multicore CPUs and multiple GPUs. A set of CPU cores or
each GPU becomes an OpenCL compute device. The host
node executes the host program in an OpenCL application.
SnuCL provides a system image running a single operat-
ing system instance for heterogeneous CPU/GPU clusters
to the user. It allows the application to utilize compute de-
vices in a compute node as if they were in the host node. No
communication API, such as the MPI library, is required in
the application source. SnuCL also provides collective com-
munication extensions to OpenCL to facilitate manipulating
memory objects. With SnuCL, an OpenCL application be-
comes portable not only between heterogeneous devices in a
single node, but also between compute devices in the cluster
environment. We implement SnuCL and evaluate its perfor-
mance using eleven OpenCL benchmark applications.

Categories and Subject Descriptors
D.1.3 [PROGRAMMING TECHNIQUES]: Concurrent
Programming; D.3.4 [PROGRAMMING LANGUAGES]:
Processors – Code generation, Compilers, Optimization, Run-
time environments

General Terms
Algorithm, Design, Experimentation, Languages, Measure-
ment, Performance
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1. INTRODUCTION
A heterogeneous computing system typically refers to a

single computer system that contains different types of com-
putational units. It distributes data and program execu-
tion among different computational units that are each best
suited to specific tasks. The computational unit could be a
CPU, GPU, DSP, FPGA, or ASIC. Introducing such ad-
ditional, specialized computational resources in a system
enables the user to gain extra performance. In addition,
exploiting the inherent capabilities of a wide range of com-
putational resources enables the user to solve difficult and
complex problems efficiently and easily. A typical example
of the heterogeneous computing system is a GPGPU system.

The GPGPU system has been a great success so far. How-
ever, in the future, applications may not be written for
GPGPUs only, but for more general heterogeneous comput-
ing systems to improve power efficiency and performance.
Open Computing Language (OpenCL)[9] is a unified pro-
gramming model for different types of computational units
in a heterogeneous computing system. OpenCL provides a
common hardware abstraction layer across different compu-
tational units. Programmers can write OpenCL applications
once and run them on any OpenCL-compliant hardware.
Some industry-leading hardware vendors such as AMD[1],
IBM[6], Intel[8], NVIDIA[20], and Samsung[22] have pro-
vided OpenCL implementations for their hardware. This
makes OpenCL a standard parallel programming model for
general-purpose, heterogeneous computing systems.

However, one of the limitations of current OpenCL is that
it is restricted to a programming model on a single operat-
ing system image. The same thing is true for CUDA[12]. A
heterogeneous CPU/GPU cluster contains multiple general-
purpose multicore CPUs and multiple GPUs to solve bigger
problems within an acceptable time frame. As such clusters
widen their user base, application developers for the clusters
are being forced to turn to an unattractive mix of program-
ming models, such as MPI-OpenCL and MPI-CUDA. This
makes the application more complex, hard to maintain, and
less portable.

The mixed programming model requires the hierarchical
distribution of the workload and data (across nodes and
across compute devices in a node). MPI functions are used
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Figure 1: Our approach.

to communicate between the nodes in the cluster. As a
result, the resulting application may not be executed in a
single node.

In this paper, we propose an OpenCL framework called
SnuCL and show that OpenCL can be a unified program-
ming model for heterogeneous CPU/GPU clusters. The tar-
get cluster architecture is shown in Figure 1. It consists of
a single host node and multiple compute nodes. The nodes
are connected by an interconnection network, such as Gi-
gabit Ethernet and InfiniBand switches. The host node ex-
ecutes the host program in an OpenCL application. Each
compute node consists of multiple multicore CPUs and mul-
tiple GPUs. A set of CPU cores or a single GPU becomes an
OpenCL compute device. A GPU has its own device mem-
ory, up to several gigabytes. Within a compute node, data is
transferred between the GPU device memory and the main
memory through a PCI-E bus.

SnuCL provides a system image running a single operating
system instance for heterogeneous CPU/GPU clusters to the
user as shown in Figure 1. It allows the application to utilize
compute devices in a compute node as if they were in the
host node. The user can launch a kernel to a compute device
or manipulate a memory object in a remote node using only
OpenCL API functions. This enables OpenCL applications
written for a single node to run on the cluster without any
modification. That is, with SnuCL, an OpenCL application
becomes portable not only between heterogeneous comput-
ing devices in a single node, but also between those in the
entire cluster environment.

The major contributions of this paper are the following:

• We show that the original OpenCL semantics naturally
fits to the heterogeneous cluster environment.

• We extend the original OpenCL semantics to the
cluster environment to make communication between
nodes faster and to achieve ease of programming.

• We describe the design and implementation of SnuCL
(the runtime and source-to-source translators) for the
heterogeneous CPU/GPU cluster.

• We develop an efficient memory management tech-
nique for the SnuCL runtime for the heterogeneous
CPU/GPU cluster.

• We show the effectiveness of SnuCL by implementing
the runtime and source-to-source translators. We ex-
perimentally demonstrate that SnuCL achieves high
performance, ease of programming, and scalability for
medium-scale heterogeneous clusters.

The rest of the paper is organized as follows. Section 2
describes the design and implementation of the SnuCL run-
time. Section 3, Section 4, and Section 5 describe memory
management techniques, collective communications exten-
sions to OpenCL, and code transformation techniques used
in SnuCL, respectively. Section 6 discusses and analyzes the
evaluation results of SnuCL. Section 7 surveys related work.
Finally, Section 8 concludes the paper.

2. THE SNUCL RUNTIME
In this section, we describe the design and implementa-

tion of the SnuCL runtime for the heterogeneous CPU/GPU
cluster.

2.1 The OpenCL Platform Model
The OpenCL platform model[9] consists of a host con-

nected to one or more compute devices. A compute device
is divided into one or more compute units (CUs) which are
further divided into one or more processing elements (PEs).
An OpenCL application consists of a host program and

kernels. A host program executes on the host and submits
commands to perform computations on a compute device
or to manipulate memory objects. There are three differ-
ent types of commands: kernel-execution, memory, and syn-
chronization. A kernel is a function and written in OpenCL
C. It executes on a compute device. It is submitted to a
command-queue in the form of a kernel-execution command
by the host program. A command-queue is created and at-
tached to a specific compute device by the host program.
A compute device may have one or more command-queues.
Commands in a command-queue are issued in-order or out-
of-order depending on the queue type.

When a kernel-execution command is enqueued, an ab-
stract index space is defined. The index space called
NDRange is an N-dimensional space, where N is equal to
1, 2, or 3. An NDRange is defined by an N-tuple of integers
and specifies the extent of the index space (the dimension
and the size). An instance of the kernel, called a work-item,
executes for each point in this index space. A work-item is
uniquely identified by a global ID (N-tuples) defined by its
point in the index space. Each work-item executes the same
code but the specific pathway and accessed data can vary.

One or more work-items compose a work-group, which
provides more coarse-grained decomposition of the index
space. Each work-group has a unique work-group ID in the
work-group index space and assigns a unique local ID to
each work-item. Thus a work-item is identified by its global
ID or by a combination of its local ID and work-group ID.
The work-items in a given work-group execute concurrently
on the PEs in a single CU.

2.2 Mapping Components
SnuCL defines a mapping between the OpenCL platform

components and the target architecture components. A
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Figure 2: The organization of the SnuCL runtime.

CPU core in the host node becomes the OpenCL host pro-
cessor. A GPU or a set of CPU cores in a compute node
becomes a compute device. Thus, a compute node may have
multiple GPU devices and multiple CPU devices. The re-
maining CPU cores in the host node other than the host
core can be configured as a compute device.

Since OpenCL has a strong CUDA heritage[12], the map-
ping between the components of an OpenCL compute device
to those in a GPU is straightforward. For a compute device
composed of multiple CPU cores, SnuCL maps all of the
memory components in the compute device to disjoint re-
gions in the main memory of the compute node where the
device resides. Each CPU core becomes a CU, and the core
emulates the PEs in the CU using the work-item coalescing
technique[15].

2.3 Organization of the SnuCL Runtime
Figure 2 shows the organization of the SnuCL runtime.

It consists of two different parts for the host node and a
compute node.

The runtime for the host node runs two threads: host
thread and command scheduler. When a user launches an
OpenCL application in the host node, the host thread in
the host node executes the host program in the application.
The host thread and command scheduler share the OpenCL
command-queues. A compute device may have one or more
command-queues as shown in Figure 2. The host thread en-
queues commands to the command-queues (� in Figure 2).
The command scheduler schedules the enqueued commands
across compute devices in the cluster one by one (�).

When the command scheduler in the host node dequeues a
command from a command-queue, the command scheduler
issues the command by sending a command message (�) to
the target compute node that contains the target compute
device associated with the command-queue. A command
message contains the information required to execute the
original command. To identify each OpenCL object, the
runtime assigns a unique ID to each OpenCL object, such
as contexts, compute devices, buffers (memory objects), pro-
grams, kernels, events, etc. The command message contains
these IDs.

After the command scheduler sends the command mes-
sage to the target compute node, it calls a non-blocking
receive communication API function to wait for the comple-
tion message from the target node. The command scheduler
encapsulates the receive request in the command event ob-
ject and adds the event object in the issue list. The issue list

contains event objects associated with the commands that
have been issued but have not completed yet.

The runtime for a compute node runs a command handler
thread. The command handler receives command messages
from the host node and executes them across compute de-
vices in the compute node. It creates a command object
and an associated event object from the message. After
extracting the target device information from the message,
the command handler enqueues the command object to the
ready-queue of the target device (�). Each compute device
has a single ready-queue. The ready-queue contains com-
mands that are issued but not launched to the associated
compute device yet.

The runtime for a compute node runs a device thread for
each compute device in the node. If a CPU device exists
in the compute node, each core in the CPU device runs a
CU thread to emulate PEs. The device thread dequeues
a command from its ready-queue and launches the kernel
to the associated compute device when the command is a
kernel-execution command and the compute device is idle
(�). If it is a memory command, the device thread executes
the command directly.

When the compute device completes executing the com-
mand, the device thread updates the status of the associ-
ated event to completed, and then inserts the event to the
completion queue in the compute node (�). The command
handler in each compute node repeats handling commands
and checking the completion queue in turn. When the com-
pletion queue is not empty, the command handler dequeues
the event from the completion queue and sends a completion
message to the host node (�).

The command scheduler in the host node repeats schedul-
ing commands and checking the event objects in the issue
list in turn until the OpenCL application terminates. If the
receive request encapsulated in an event object in the issue
list completes, the command scheduler removes the event
from the issue list and updates the status of the dequeued
event from issued to completed (	).

The command scheduler in the host node and command
handlers in the compute nodes are in charge of communica-
tion between different nodes. This communication mecha-
nism is implemented with a lower-level communication API,
such as MPI. To implement the runtime for each compute
node, an existing CUDA or OpenCL runtime for a single
node can be used.

2.4 Processing Kernel-execution Commands
When a device thread dequeues a kernel-execution com-

mand from its ready-queue, it launches the kernel to the
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target device when the device is idle. When the target de-
vice is a GPU, the device thread launches the kernel using
the vendor-specific API, such as CUDA if the GPU vendor is
NVIDIA. When the target is a CPU device, CU threads (i.e.,
CPU cores) in the device emulate the PEs using a kernel
transformation technique, called work-item coalescing[15].
Basically, the work-item coalescing technique makes the CU
thread execute each work-item in a work-group one by one
sequentially using a loop that iterates over the local index
space in the work-group. This transformation is provided
by the SnuCL OpenCL-C-to-C translator.

The CPU device thread dynamically distributes the ker-
nel workload across the CU threads and achieves workload
balancing between the CU threads. The unit of workload
distribution is a work-group. The problem of work-group
scheduling across the CU threads is similar to that of paral-
lel loop scheduling for the conventional multiprocessor sys-
tem because each work-group is essentially a loop due to the
work-item coalescing technique. Thus, we modify the con-
ventional parallel loop scheduling algorithm proposed by Li
et al.[17] and use it in the SnuCL runtime.

In the SnuCL runtime, one or more work-groups are
grouped together and dynamically assigned to a currently
idle CU thread. The set of work-groups assigned to a CU
thread is called a work-group assignment. To minimize the
scheduling overhead, the size of each work-group assignment
is large at the beginning, and the size decreases progres-
sively. When there are N remaining work-groups, the size
S of next work-group assignment to an idle CU thread is
computed by S=�N/(2P )�, where P is the number of all
CU threads in the CPU device. The CPU device thread
repeatedly schedules the remaining work-groups until N is
equal to zero.

2.5 Processing Synchronization Commands
OpenCL supports synchronization between work-items in

a work-group using a work-group barrier. Every work-item
in the work-group must execute the barrier and cannot pro-
ceed beyond the barrier until all other work-items in the
work-group reach the barrier. Between work-groups, there
is no synchronization mechanism available in OpenCL.

Synchronization between commands in a single command-
queue can be specified by a command-queue barrier
command. To synchronize commands between different
command-queues, events are used. Each OpenCL API func-
tion that enqueues a command returns an event object that
encapsulates the command status. Most of OpenCL API
functions that enqueue a command take an event wait list
as an argument. This command cannot be issued for execu-
tion until all the commands associated with the event wait
list complete.

The command scheduler in the host node honors the
type (in-order or out-of-order) of each command-queue
and (event) synchronization enforced by the host program.
When the command scheduler dequeues a synchronization
command, the command scheduler uses it for determining
execution ordering between queued commands. It maintains
a data structure to store the events that are associated with
queued commands and bookkeeps the ordering between the
commands. When there is no event for which a queued
command waits, the command is dequeued and issued to its
target node that contains the target device.

3. MEMORY MANAGEMENT
In this section, we describe how the SnuCL runtime man-

ages memory objects and executes memory commands.

3.1 The OpenCL Memory Model
OpenCL defines four distinct memory regions in a com-

pute device: global, constant, local and private. To dis-
tinguish these memory regions, OpenCL C has four ad-
dress space qualifiers: __global, __constant, __local, and
__private. They are used in variable declarations in the
kernel code. Since OpenCL treats these memory regions
as logically distinct regions, they may overlap in physical
memory.

An OpenCL memory object is a handle to a region of the
global memory. The host program dynamically creates a
memory object and enqueues commands to read from, write
to, and copy the memory object. A memory object in the
global memory is typically a buffer object, called a buffer
in short. A buffer stores a one-dimensional collection of
elements that can be a scalar data type, vector data type,
or user-defined structure.

OpenCL defines a relaxed memory consistency model. An
update to a memory location by a work-item does not need
to be visible to other work-items at all times. Instead, the
local view of memory from each work-item is guaranteed
to be consistent at synchronization points. Synchronization
points include work-group barriers, command-queue barrier,
and events. Especially, the device global memory is consis-
tent across work-items in a single work-group at a work-
group barrier, but there are no guarantees of memory con-
sistency between different work-groups executing the kernel.
For other synchronization points, such as command-queue
barriers and events, the state of the global memory should
be consistent across all work-items in the kernel index space.

3.2 Space Allocation to Buffers
In OpenCL, the host program creates a buffer object by

invoking an API function clCreateBuffer(). Even though
the space for a buffer is allocated in the global memory of a
specific device, the buffer is not bound to the compute de-
vice in OpenCL[9]. Binding a buffer and a compute device is
implementation dependent. As a result, clCreateBuffer()
has no parameter that specifies a compute device. This im-
plies that when a buffer is created, the runtime has no in-
formation about which compute device accesses the buffer.

The SnuCL runtime does not allocate any memory space
to a buffer when the host program invokes clCreate-

Buffer() to create it. Instead, when the host program issues
a memory command that manipulates the buffer or a kernel-
execution command that accesses the buffer to a compute
device, the runtime checks if a space is allocated to the buffer
in the target device’s global memory. If not, it allocates a
space to the buffer in the global memory.

3.3 Minimizing Memory Copying Overhead
To efficiently handle buffer sharing between multiple com-

pute devices, the SnuCL runtime maintains a device list for
each buffer. The device list contains compute devices that
have the same latest copy of the buffer in their global mem-
ory. It is empty when the buffer is created. When the com-
mand that accesses the buffer completes, the host command
scheduler updates the device list of the buffer. If the buffer
contents are modified by the command, it empties the list
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Table 1: Distance between compute devices
Distance Compute devices

0 Within a device
1 a CPU and another CPU in the same node
2 a CPU and another GPU in the same node
3 a GPU and another GPU in the same node
4 a CPU and another CPU in the different nodes
5 a CPU and another GPU in the different nodes
6 a GPU and another GPU in the different nodes

and adds the device that has the modified copy of the buffer
in the list. Otherwise, it just adds in the list the device that
has recently obtained a copy of the buffer because of the
command.

When the host command scheduler dequeues a memory
command or kernel-execution command, it checks the device
list of each buffer that is accessed by the command. If the
target compute device is in the device list of a buffer, the
compute device has a copy of the buffer. Otherwise, the
runtime checks whether a space is allocated to the buffer
in the target device’s global memory. If not, the runtime
allocates a space for the buffer in the global memory of the
target device. Then it copies the buffer contents from a
device in the device list of the buffer to the allocated space.

To minimize the memory copying overhead, the runtime
selects a source device in the device list that incurs the min-
imum copying overhead. Figure 3 shows an example of the
memory copy time in a node (Within a GPU, Within a CPU,
CPU to CPU, CPU to GPU, GPU to CPU, and GPU to GPU)
or between different nodes (Node to Node) of the target clus-
ter. We vary the buffer size from 1 MB to 512 MB.

As the source of copying, the runtime prefers a device that
has a latest copy of the buffer and resides in the same node as
that of the target device. If there are multiple such devices,
a CPU device is preferred. When all of the potential source
devices reside in other nodes, a CPU device is also preferred
to a GPU device. This is because the lower-level communi-
cation API does not typically support reading directly from
the GPU device memory. It costs one more copying step
from the GPU device memory to a temporary space in the
node main memory.

To avoid such an unnecessary memory copying overhead,
we define a distance metric between compute devices as
shown in Table 1. Based on this metric, the runtime selects
the nearest compute device in the device list of the buffer
and copies the buffer contents to the target device from the
selected device.

3.4 Processing Memory Commands
There are three representative memory commands in

OpenCL: write (clEnqueueWriteBuffer()), read (clEn-
queueReadBuffer()), and copy (clEnqueueCopyBuffer()).

When the runtime executes a write command, it copies the
buffer contents from the host node’s main memory to the
global memory of the target device. When the runtime ex-
ecutes a read command, it copies the buffer contents from
the global memory of a compute device in the device list of
the buffer to the host node’s main memory. A CPU device
is preferred to avoid the unnecessary memory copying over-
head. When the runtime executes a copy command, based
on the distance metric (Table 1), it selects a nearest device
in the device list of the source buffer from the target device.
Then it copies the buffer contents from the global memory in
the source device to the global memory in the target device.

3.5 Consistency Management
In OpenCL, multiple kernel-execution and memory com-

mands can be executed simultaneously, and each of them
may access a copy of the same buffer. If they update the
same set of locations in the buffer, we may choose any copy
as the last update for the buffer according to the OpenCL
memory consistency model. However, when they update dif-
ferent locations in the same buffer, the case is similar to the
false sharing problem that occurs in a traditional, page-level
software shared virtual memory system[2].

One solution to this problem is introducing a multiple-
writers protocol[2] that maintains a twin for each writer
and updates the original copy of the buffer by comparing
the modified copy with its twin. Each node that contains a
writer device performs the comparison and sends the result
(e.g., diffs) to the host who maintains the original buffer.
The host updates the original buffer with the result. How-
ever, this introduces a significant communication and com-
putation overhead in the cluster environment if the degree
of buffer sharing is high.

Instead, the SnuCL runtime solves this problem by exe-
cuting kernel-execution and memory commands atomically
in addition to keeping the most up-to-date copies using the
device list. When the host command scheduler issues a mem-
ory command or kernel-execution command, it records the
buffers that are written by the command in a list called
written-buffer list. When the host command scheduler de-
queues a command, and the command writes to any buffer
in the written-buffer list, it delays issuing the command until
the buffers accessed by the dequeued command are removed
from the written-buffer list. This mechanism is implemented
by adding the commands that write to the buffers and have
not completed their execution yet into the event wait list
of the dequeued command. Whenever a kernel-execution
or memory command completes its execution, the host com-
mand scheduler removes the buffers written by the command
from the written-buffer list.

3.6 Ease of Programming
Assume that a user uses a mix of MPI and OpenCL as

a programming model for the heterogeneous cluster. When
the user wants to launch a kernel to an OpenCL-compliant
compute device, and the kernel accesses a buffer having been
written by another compute device in a different compute
node, the user explicitly inserts necessary communication
and data transfer operations in the MPI-OpenCL program.
First, the user makes the source device copy the buffer into
the main memory of its node using clEnqueueReadBuffer(),
and sends the data to the target node using MPI_Send().
The target node receives the data from the source node using
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Table 2: Collective communication extensions

SnuCL MPI Equivalent
clEnqueueBroadcastBuffer MPI Bcast
clEnqueueScatterBuffer MPI Scatter
clEnqueueGatherBuffer MPI Gather
clEnqueueAllGatherBuffer MPI Allgather
clEnqueueAlltoAllBuffer MPI Alltoall
clEnqueueReduceBuffer MPI Reduce
clEnqueueAllReduceBuffer MPI Allreduce
clEnqueueReduceScatterBuffer MPI Reduce scatter
clEnqueueScanBuffer MPI Scan
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Figure 4: clEnqueueAlltoAllBuffer() operation for
four source buffers and four destination buffers.

MPI_Recv(). Then, the user copies the data into the device
memory by invoking clEnqueueWriteBuffer(). Finally, the
user invokes clEnqueueNDRangeKernel() to execute the ker-
nel.

On the other hand, SnuCL hides the communication and
data transfer layer from the user and manages memory con-
sistency all by itself. Thus, with SnuCL, the user executes
the kernel by invoking only clEnqueueNDRangeKernel()

without any additional data movement operations (clEn-
queueReadBuffer(), MPI_Send(), MPI_Recv(), and clEn-

queueWriteBuffer()). This improves software developers’
productivity and increases portability.

4. EXTENSIONS TO OPENCL
A buffer copy command (clEnqueueCopyBuffer()) is

available in OpenCL[9]. Although this can be used for
point-to-point communication in the cluster environment,
OpenCL does not provide any collective communication
mechanisms that facilitate exchanging data between many
devices. SnuCL provides collective communication opera-
tions between buffers. These are similar to MPI collective
communication operations. They can be efficiently imple-
mented with the lower-level communication API or multiple
clEnqueueCopyBuffer() commands. Table 2 lists each col-
lective communication operation and its MPI equivalent.

For example, the format of clEnqueueAlltoAllBuffer()
operation is as follows:

cl_int clEnqueueAlltoAllBuffer(

cl_command_queue *cmd_queue_list, cl_uint num_buffers,

cl_mem *src_buffer_list, cl_mem *dst_buffer_list,

size_t *src_offset_list, size_t *dst_offset_list,

size_t bytes_to_copy, cl_uint num_events_in_wait_list,

const cl_event *event_wait_list, cl_event *event)

The API function clEnqueueAlltoAllBuffer() is similar
to the MPI collective operation MPI_Alltoall(). The first
argument cmd_queue_list is the list of command-queues

that are associated with the compute devices where the des-
tination buffers (dst_buffer_list) are located. The com-
mand is enqueued to the first command-queue in the list.
The meaning of this API function is the same as enqueueing
N independent clEnqueueCopyBuffer()s to each command-
queue in cmd_queue_list, where N is the number of buffers.
The meaning of this operation is illustrated in Figure 4.

5. CODE TRANSFORMATIONS
In this section, we describe compiler analysis and trans-

formation techniques used in SnuCL.

__kernel void vec_add(__global float *A, __global float *B, 
__global float *C) {

int id = get_global_id(0);
C[id] = A[id] + B[id];

}

int vec_add_memory_flags[3] = {
CL_MEM_READ_ONLY, // A
CL_MEM_READ_ONLY, // B
CL_MEM_WRITE_ONLY // C

};

#define get_global_id(N) \
(__global_id[N] + (N == 0 ? __i : (N == 1 ? __j : __k)))

void vec_add(float *A, float *B, float *C) {
for (int __k = 0; __k < __local_size[2]; __k++) {

for (int __j = 0; __j < __local_size[1]; __j++) {
for (int __i = 0; __i < __local_size[0]; __i++) {

int id = get_global_id(0);
C[id] = A[id] + B[id];

}
}

}
}

__global__ void vec_add(float *A, float *B, float *C) {
int id = blockDim.x * blockIdx.x + threadIdx.x;
C[id] = A[id] + B[id];

}

(a)

(b)

(d)

(c)

Figure 5: (a) An OpenCL kernel. (b) The buffer
access information of kernel vec_add for the runtime.
(c) The CUDA C code generated for a GPU device.
(d) The C code for a CPU device.

5.1 Detecting Buffers Written by a Kernel
To keep shared buffers consistent, the SnuCL runtime

performs consistency management as described in Sec-
tion 3. This requires detecting buffers that are writ-
ten by an OpenCL kernel. In OpenCL, each mem-
ory object has a flag that represents its read/write
permission: CL_MEM_READ_ONLY, CL_MEM_WRITE_ONLY, and
CL_MEM_READ_WRITE. Thus, the runtime may use the
read/write permission of each buffer object to obtain the
necessary information. However, this may be too conserva-
tive. When the memory object has CL_MEM_READ_WRITE and
the kernel does not write to the buffer at all, the runtime
cannot detect this.

Thus, SnuCL performs a conservative pointer analysis on
the kernel source when the kernel is built. A simple and con-
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servative pointer analysis[24] is enough to obtain the nec-
essary information because OpenCL imposes a restriction
on the usage of global memory pointers used in a kernel[9].
Specifically, a pointer to address space A can only be as-
signed to a pointer to the same address space A. Casting a
pointer to address space A to a pointer to address space B
(�= A) is illegal.

When the host builds a kernel by invoking clBuildPro-

gram(), the SnuCL OpenCL-C-to-C translator at the host
node generates the buffer access information for the runtime
from the OpenCL kernel code. Figure 5 (b) shows the in-
formation generated from the OpenCL kernel in Figure 5
(a). It is an array of integer for each kernel. The ith ele-
ment of the array represents the access information of the
ith buffer argument of the kernel. Figure 5 (b) indicates
that the first and second buffer arguments (A and B) are
read and the third buffer argument (C) is written by ker-
nel vec_add. The runtime uses this information to manage
buffer consistency.

5.2 Emulating PEs for CPU Devices
In a CPU device, the SnuCL runtime makes each CU

thread emulate the PEs in the CU using a kernel transforma-
tion technique, called work-item coalescing[15] provided by
the SnuCL OpenCL-C-to-C translator. The work-item co-
alescing technique makes the CPU core execute each work-
item in the work-group one by one sequentially using a loop
that iterates over the local work-item index space. The
triply nested loop in Figure 5 (d) is such a loop after the
work-item coalescing technique has been applied. The size
of the local work-item index space is determined by the ar-
ray __local_size provided by the runtime. The runtime
also provides an array __global_id that contains the global
ID of the first work-item in the work-group.

When there are work-group barriers in the kernel, the
work-item coalescing technique divides the code into work-
item coalescing regions (WCRs)[15]. A WCR is a maximal
code region that does not contain any barrier. Since a work-
item private variable whose value is defined in one WCR and
used in another needs a separate location for each work-item
to transfer the variable’s value between different WCRs, the
variable expansion technique[15] is applied to WCRs. Then,
the work-item coalescing technique executes each WCR us-
ing a loop that iterates over the local work-item index space.
After work-item coalescing, the execution ordering of WCRs
preserves the barrier semantics.

5.3 Distributing the Kernel Code
When the host builds a kernel by invoking clBuildPro-

gram(), the SnuCL OpenCL-C-to-CUDA-C translator (we
assume that the runtime in a compute node is implemented
with the CUDA runtime) generates the code for a GPU and
OpenCL-C-to-C translator generates the code for a CPU
device. Figure 5 (c) and Figure 5 (d) show the code gener-
ated for a GPU and a CPU device, respectively. Then, the
host command scheduler sends a message that contains the
translated kernels to each compute node. The compute node
stores the kernels in separate files and builds them with the
native compiler for each compute device in the system.

6. EVALUATION
This section describes the evaluation methodology and re-

sults for SnuCL.

Table 3: The target clusters
Host node Compute node

Processors 2 × Intel 2 × Intel 4 × NVIDIA
Xeon X5680 Xeon X5660 GTX 480

Clock frequency 3.33GHz 2.80GHz 1.40GHz
Cores per processor 6 6 480

Memory size 72GB 48GB 1.5GB
Quantity 1 9

OS Red Hat Enterprise Linux Server 5.5
Interconnection Mellanox InfiniBand QDR

Cluster A (a 10-node heterogeneous CPU/GPU cluster)

Host node Compute node
Processors 2 × Intel 2 × Intel

Xeon X5570 Xeon X5570
Clock frequency 2.93GHz 2.93GHz

Cores per processor 4 4
Memory size 24GB 24GB

Quantity 1 256
OS Red Hat Enterprise Linux Server 5.3

Interconnection Mellanox InfiniBand QDR

Cluster B (a 257-node CPU cluster)

6.1 Methodology
Target cluster architecture. We evaluate SnuCL us-

ing two cluster systems (Cluster A and Cluster B). Table 3
summarizes the target clusters.

Benchmark applications. We use eleven OpenCL
applications from various sources: AMD[1], NAS[18],
NVIDIA[19], Parboil[25], and PARSEC[3]. The characteris-
tics of the applications and their input sets are summarized
in Table 4. The applications from Parboil and PARSEC are
translated to OpenCL applications manually. The applica-
tions from NAS are from SNU NPB Suite[21] that contains
OpenCL versions of the original NAS Parallel Benchmarks
for multiple OpenCL compute devices. For an OpenCL ap-
plication written for a single compute device, we modify the
application to distribute workload across multiple compute
devices available. Especially, FT and MatrixMul use SnuCL
collective communication extensions to OpenCL. Some ap-
plications are evaluated with two input sets. The smaller
input set is used for Cluster A because a GPU has relatively
small device memory and allows only the smaller input set
for those applications. The larger input set is used for Cluster
B to show its scalability in a large-scale cluster. All appli-
cations are portable across CPU and GPU devices. That is,
we can run the applications either on CPU devices or GPU
devices without any source code modification.

Runtime and source-to-source translators. We have
implemented the SnuCL runtime and source-to-source trans-
lators. The SnuCL runtime uses Open MPI 1.4.1 as the
lower-level communication API. The GPU part of the run-
time is implemented with CUDA Toolkit 4.0[19]. We have
implemented SnuCL source-to-source translators by modi-
fying clang that is a C front-end for the LLVM[13] com-
piler infrastructure. The runtime uses Intel ICC 11.1[7], and
NVIDIA’s NVCC 4.0[19] to compile the translated kernels
for CPU devices and GPU devices, respectively.

6.2 Results
Figure 6 shows the speedup (over a single CPU core) of

each application with SnuCL when we use only CPU devices
in Cluster A. The sequential CPU version of each application
is obtained from the same source (Table 4). Each applica-
tion from NAS is shown with its input set. The CPUs in the
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Table 4: Applications used

Application Source Description Input Global memory size (MB) Extension used
BinomialOption AMD Binomial option pricing 65504 or 2097152 samples, 512 steps, 100 iterations 2.0 or 64.0

BlackScholes PARSEC Black-Scholes PDE 33538048 options, 100 iterations 895.6
BT NAS Block tridiagonal solver Class C (162x162x162) or Class D (408x408x408) 1982.1 or 30686.7
CG NAS Conjugate gradient Class C (150000) or Class D (1500000) 1102.6 or 20399.1
CP Parboil Coulombic potential 16384x16384, 10000 atoms 4.1
EP NAS Embarrassingly parallel Class D (2^36) 0.8
FT NAS 3-D FFT PDE Class B (512x256x256) or Class C (512x512x512) 2816.0 or 11264.0 AlltoAll

MatrixMul NVIDIA Matrix multiplication 10752x10752 or 16384x16384 1323.0 or 3072.0 Broadcast
MG NAS Multigrid Class C (512x512x512) or Class D (1024x1024x1024) 3575.3 or 28343.7

Nbody NVIDIA N-Body simulation 1048576 bodies 64.0
SP NAS Pentadiagonal solver Class C (162x162x162) or Class D (408x408x408) 1477.9 or 19974.4
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Figure 6: Speedup over a single CPU core using CPU devices on Cluster A. The numbers on x-axis represent
the number of CPU compute devices.
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Figure 7: Speedup over a single CPU core using GPU devices on Cluster A. The numbers on x-axis represent
the number of GPU compute devices.

compute nodes support simultaneous multithreading (SMT)
that enables two logical cores per physical core. Thus, each
compute node contains 24 logical CPU cores. In each com-
pute node, two logical CPU cores are dedicated to the com-
mand handler and the CPU device thread. The remaining
22 logical CPU cores are configured as a CPU device. We
vary the number of compute nodes (i.e., the total number of
CPU devices in the cluster) from 1 to 8 in powers of two for
all applications but BT and SP. We set the number of CPU
devices to square numbers (1, 4, 9) for BT and SP because
of their algorithms.

We also implement another SnuCL runtime (SnuCL-
Static) that exploits a static scheduling algorithm (conven-
tional block scheduling) for the kernel workload distribution
for CPU compute devices. The device thread divides the
entire work-groups into sets of �N/P � work-groups, where
N is the number of work-groups and P is the number of CU
threads in the CPU device. The SnuCL runtime that uses
the dynamic scheduling algorithm described in Section 2.4
is denoted by SnuCL in Figure 6.

All applications scale well in Figure 6. Our dynamic
scheduling algorithm is quite effective. Static scheduling
mechanisms used in SnuCL-Static ignore workload imbalance
that occurs at run time due to variations in CPU cores. In
addition, when the total workload is not evenly divisible for

all CPU cores, some CPU cores are not fully utilized result-
ing in load imbalance. Our dynamic scheduling mechanism
solves this load imbalancing problem.

Figure 7 shows the speedup (over a single CPU core) when
we use only GPU devices in Cluster A. Each compute node
contains four GPU devices. We vary the number of GPU
devices in the cluster from 1 to 36 in powers of two or square
numbers. For BT, FT, MG, and SP, we cannot use fewer
than four GPUs because of their memory requirement. Note
that we use the same OpenCL application source code for
both CPU devices and GPU devices.

When we use only GPU devices in the cluster, all applica-
tions but MatrixMul, MG and SP scale well. Since the com-
munication overhead due to data movement (e.g., read/write
and copy operations of buffers) dominates the performance
of MatrixMul and SP, they do not scale well. The speedup
of MG at 32 GPU devices is smaller than that at 16 GPU
devices because its index space is not large enough to fully
utilize all the 32 GPU devices and the communication over-
head increases at 32 GPU devices.

When an application has enough data parallelism, its
performance with GPU devices is better than that with
CPU devices. On the other hand, the cost of data trans-
fer between GPU devices is higher than that between CPU
devices because of extra data transfer between the node
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main memory and the GPU’s device memory via the PCI-E
bus. We see that applications with a low communication-to-
computation ratio scales better in our cluster environment.
A GPU device executes the kernel in MatrixMul 30 times
faster than a CPU device but the GPU device has 30% longer
data transfer time than the CPU device. With one GPU de-
vice, MatrixMul has a communication-to-computation ratio
of 13%. As the number of GPU devices increases to 8 and
32, the ratio increases to 44% and 257%, respectively. On
the other hand, a CPU device has 0.4% communication-to-
computation ratio due to its lower communication overhead
and slower computation than a GPU device. When the num-
ber of CPU devices increases to 8, the ratio increases to only
4.6%. This is the reason why MatrixMul scales better with
CPU devices than with GPU devices.

Performance portability. In Figure 7, with GPU de-
vices, the speedup of BT, CG, FT, MG and SP is three
orders of magnitude smaller than that of other applications.
These applications are from the NAS Parallel Benchmark
suite that is originally targeting CPU systems, and note
that we use the same OpenCL source code for both CPU
devices and GPU devices. Since performance tuning fac-
tors, such as data placement, memory access patterns (e.g.,
non-coalesced memory accesses), the number of work-groups
in the kernel index space, the work-group size (the number
of work-items in a work-group), compute-device-specific al-
gorithms, etc., between CPU devices and GPU devices are
significantly different, an optimization for one type of device
may not perform well on another type of device[16].

The kernels in BT, CG, FT, MG, and SP make the GPU
devices suffer from non-coalesced memory accesses. Further-
more, they have many buffer-copy memory commands. The
data transfer cost between GPU devices is much higher than
that between CPU devices. Since the kernels in CG and
MG have small work-group sizes that are not big enough
to make all scalar processors (PEs) of a streaming multi-
processor (CU) in GPU devices busy, resulting in poor per-
formance. On the other hand, for CPU devices, each CPU

core (CU) emulates the PEs. It executes each work-item in
a work-group one by one sequentially using the work-item
coalescing technique. Thus, the small work-group size does
not affect the performance of the CPU devices.

Exploiting both types of devices. Figure 8 shows
the normalized throughput (CPU execution time divided by
GPU execution time) of one, two, and four GPU devices
over a single CPU device within the same compute node for
each application. The y-axis is in the logarithmic scale. BT,
FT, MG, and SP have no throughput at one and two GPU
devices because of their memory requirement.

An application that has similar performance between a
CPU device and a GPU device can profit from exploiting
both CPU devices and GPU devices in the cluster because
our OpenCL implementation of the application is portable
across both types of devices. If the user wishes more than
10 percent performance improvement using both types of
devices, the normalized throughput between the faster de-
vice and slower device should be less than nine. However,
one restriction is that the application should allow chang-
ing the number of devices used and the amount of workload
distributed to each device.

Among those applications, only EP satisfies the condi-
tion. We distribute its workload between CPU devices and
GPU devices based on the throughput. Figure 9 shows the
speedup of EP when both types of devices are used. We
vary the number of compute nodes from 1 to 8. Only one
GPU device within each compute node (including one CPU
device) is used for evaluation to manifest the difference. As
we expected from the throughput, compared to the case of
GPU devices only, the performance improvement of EP is
11.4% on average in Figure 9.

Scalability. To show the scalability of SnuCL, Fig-
ure 10 shows the speedups of all applications on Cluster
B (a 257-node homogeneous cluster). For the applications
from the NAS Parallel Benchmark (NPB) suite, it compares
our OpenCL implementations with the unmodified original
MPI-Fortran versions (MPI-Fortran) from NPB. We build
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Figure 11: The performance of collective commu-
nication extensions. X-axis shows the number of
compute devices.

the MPI-Fortran applications using Intel IFORT 11.1. Since
BT and SP require the number of MPI tasks to be a square
number while CG, FT, and MG require the number of tasks
to be a power of two, we run 4 MPI processes per node
for all applications (the Hyper-Threading mechanism is dis-
abled for the CPU cores of Cluster B). For fair comparison,
the SnuCL runtime configures a CPU device with 4 CPU
cores per compute node. We vary the number of compute
nodes from 1 to 256 in powers of four on x-axis. Y-axis shows
the speedup in logarithmic scale over the OpenCL version
on a single compute node.

All OpenCL applications scale well up to 64 nodes. The
OpenCL applications from NPB show competitive perfor-
mance with MPI versions. However, when the number of
compute nodes increases to 256, some OpenCL applications
from NPB show poor performance while MPI-Fortran ver-
sions still show good scalability. BinomialOption, BlackSc-
holes, CP, EP, FT, MatrixMul, and Nbody still scale well
on 256 nodes. They have a small number of commands
that take long time to execute. Their communication-to-
computation ratios are small and their scheduling overhead
is negligible.

On the other hand, BT, CG, MG, and SP show perfor-
mance degradation on 256 nodes. They have a large num-
ber of commands that take very short time to execute. For
example, SP has the largest number of commands to be ex-
ecuted among the applications. Total 90,234,368 commands
are enqueued and executed (with the Class D input) on 256
compute nodes while its total execution time is 1,813 sec-
onds. This means that the host command scheduler sched-
ules about 50,000 commands in a second. As the number
of nodes increases, workload to be executed on each com-
pute device decreases. However, the idle time of a compute
device increases because command scheduling is centralized
to a single host node and it takes time for the host node to
schedule a new command when there are many nodes in the
cluster. This makes compute devices less efficient, resulting
in overall performance degradation on 256 nodes.

Collective communication extensions. The collec-
tive communication APIs in SnuCL are implemented with
MPI collective operations. In addition, we use a depth tree

to implement the broadcasting mechanism[23] for GPU de-
vices, rather than sending data directly from the source to
the destination. Among the applications, MatrixMul uses
clEnqueueBroadcastBuffer() and FT uses clEnqueueAll-
toAllBuffer(). To compare performance, we implement
another version (P2P) that uses clEnqueueCopyBuffer() in-
stead of using the extensions. We evaluate the performance
using Cluster A for GPUs and Cluster B for CPUs. Figure 11
shows the performance of SnuCL collective communication
extensions to OpenCL (Collective). We see that Collective
achieves much better performance than P2P as the number
of compute devices increases.

As described in Section 4, clEnqueueAlltoAllBuffer()
has an equivalent meaning of performing N independent
clEnqueueCopyBuffer() to each device, where N is the
number of buffers. To execute N independent commands
concurrently, either the command queue should be out-of-
order type or there should be N command queues per com-
pute device. This makes the OpenCL program more com-
plex and increases the scheduling overhead. Thus, SnuCL
collective communication extensions provide the program-
mer with both high performance and ease of programming
in the cluster environment.

7. RELATED WORK
There are some previous proposals for OpenCL frame-

works[5, 14, 10, 11, 15]. Gummaraju et al.[5] present an
OpenCL framework named Twin Peaks that handles both
CPUs and GPUs in a single node. Twin Peaks executes
SPMD style OpenCL kernels on a CPU core by switching
contexts between work-items. They use their own light-
weight setjmp() and longjmp() system calls to reduce
the context switching overhead. Lee et al.[15] propose an
OpenCL framework for heterogeneous multicores with local
memory, such as Cell BE processors. They present work-
item coalescing technique and show that it significantly re-
duces context switching overhead of executing an OpenCL
kernel on multiple SPEs. Lee et al.[14] present an OpenCL
framework for homogeneous manycore processors with no
hardware cache coherence mechanism, such as the Single-
chip Cloud Computer (SCC). Their OpenCL runtime ex-
ploits the SCC’s dynamic memory mapping mechanism to-
gether with the symbolic array bound analysis to preserve
coherence and consistency between CPU cores.

Some other prior work proposes GPU virtualization[10, 4,
11]. Kim et al.[10] propose an OpenCL framework for multi-
ple GPUs in a single node. The OpenCL framework provides
an illusion of a single compute device to the programmer for
the multiple GPUs available in the system. Duato et al.[4]
presents a CUDA framework named rCUDA. The frame-
work enables multiple clients to share GPUs in a remote
server. These approaches are similar to our work in that
OpenCL or CUDA is used as an abstraction layer to pro-
vide ease of programming.

The work most similar to ours is an OpenCL framework
presented by Kim et al.[11] in that it exploits remote GPUs
in a GPU cluster without MPI APIs. SnuCL focuses on
the heterogeneity available in the heterogeneous CPU/GPU
cluster environment. Supporting both CPUs and GPUs
in the cluster raises many challenging issues, such as dy-
namic scheduling, performance portability, buffer manage-
ment, and minimizing data transfer overhead. They did not
address these issues. Moreover, SnuCL provides collective
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communication extensions to OpenCL to achieve high per-
formance and ease of programming. To our knowledge, our
work is the first that shows OpenCL’s portability and scal-
ability on a heterogeneous CPU/GPU cluster.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we introduce the design and implementa-

tion of SnuCL that provides a system image running a sin-
gle operating system instance for heterogeneous CPU/GPU
clusters to the programmer. It allows the OpenCL applica-
tion to utilize compute devices in a remote compute node as
if they were in the host node. The user launches a kernel to
any compute device in the cluster and manipulates memory
objects using standard OpenCL API functions. Our work
shows that OpenCL can be a unified programming model
for heterogeneous CPU/GPU clusters. Moreover, our col-
lective communication extensions to standard OpenCL fa-
cilitate ease of programming. SnuCL enables OpenCL ap-
plications written for a single node to run on the cluster that
consists of multiple such systems without any modification.
It also makes the application portable not only between het-
erogeneous devices in a single node, but also between all
heterogeneous devices in the cluster environment.

The experimental result indicates that SnuCL achieves
high performance, ease of programming, and scalability for
medium-scale clusters. For large scale clusters, SnuCL may
lead to performance degradation due to its centralized task
scheduling model. Our future work is to improve the scal-
ability of SnuCL for large-scale clusters by introducing an
effective distributed task scheduling mechanism.
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