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Abstract

Motivation: Recent studies sequenced tumor samples from the same progenitor at different devel-

opment stages and showed that by taking into account the phylogeny of this development, single-

nucleotide variant (SNV) calling can be improved. Accurate SNV calls can better reveal early-stage

tumors, identify mechanisms of cancer progression or help in drug targeting.

Results: We present SNV-PPILP, a fast and easy to use tool for refining GATK’s Unified Genotyper

SNV calls, for multiple samples assumed to form a phylogeny. We tested SNV-PPILP on simulated

data, with a varying number of samples, SNVs, read coverage and violations of the perfect

phylogeny assumption. We always match or improve the accuracy of GATK, with a significant

improvement on low read coverage.

Availability and implementation: SNV-PPILP, available at cs.helsinki.fi/gsa/snv-ppilp/, is written in

Python and requires the free ILP solver lp_solve.

Contact: tomescu@cs.helsinki.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent studies on cancer tissue (Gerlinger et al., 2012; Newburger

et al., 2013; Potter et al., 2013) suggest that as the disease

progresses, the original tumor progresses into several different

sub-clones. These sub-clones contain not only the original mutations

but also new mutations added over time; this work focuses on

single-nucleotide variants (SNVs). Accurate SNV calls can better re-

veal early-stage tumors, identify mechanisms of cancer progression

or help in drug targeting.

This phylogenetic assumption has been recently taken into

account in Salari et al. (2013), by proposing a tool for refining the

SNV calling of GATK’s Unified Genotyper (McKenna et al., 2010),

the state-of-the-art SNV multi-sample caller for next-generation

sequencing data.

In this note, we present SNV-PPILP (SNV calling with Perfect

Phylogenies and Integer Linear Programming), a tool for refining

GATK’s Unified Genotyper SNV calls for multiple samples. We as-

sume these samples form a character-based phylogeny, the

characters being the SNVs reported by GATK. As in Salari et al.

(2013), we work with the perfect phylogeny model; however, we

have a new problem formulation for fitting GATK’s calls to such a

phylogeny, which we solve exactly using integer linear programming

(ILP).

SNV-PPILP can be run especially on low-coverage samples, with-

out big violations of the perfect phylogeny model. For a significant

improvement in accuracy, six or more samples are needed.

2 Methods

The perfect phylogeny model assumes that (i) once a mutation

occurred in a node of the phylogenetic tree, it is passed along to all

its descendants and (ii) a mutation does not recur in other nodes

apart from these. As argued in Newburger et al. (2013) and Salari

et al. (2013), these assumptions are reasonable in the context of can-

cer genomics. From the set of SNVs reported by GATK’s Unified

Genotyper for each sample, we construct a binary matrix M whose
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n rows represent the n samples and whose m columns represent the

set of all m SNVs found by GATK’s Unified Genotyper in at least

one sample. For every entry (i, j) where GATK’s Unified Genotyper

did make a call (either of presence or absence), GATK also provides

a likelihood (PL field), which we denote here by L(i, j).

It is a standard result, e.g. Estabrook et al. (1975), that this

matrix corresponds to a perfect phylogeny if and only if every two

columns j1 and j2 are compatible, in the sense that for no three rows

i1; i2; i3 of M, all of the following conditions hold:

1. Mði1; j1Þ ¼ 1 and Mði1; j2Þ ¼ 1 and

2. Mði2; j1Þ ¼ 1 and Mði2; j2Þ ¼ 0 and

3. Mði3; j1Þ ¼ 0 and Mði3; j2Þ ¼ 1.

Our strategy is, in the first step, to select a set of pairwise com-

patible columns by a maximum-weight independent set (MWIS) for-

mulation, similar to Salari et al. (2013) but which we solve here

exactly using ILP. In the second step, we iteratively edit the remain-

ing columns, so that they become compatible with the columns

initially selected and with those corrected so far. This is achieved

using a new problem formulation, which we also solve by ILP.

In the first step, we collapse identical columns into mutation

groups and consider the graph in which they are the nodes and

where two mutation groups are adjacent if and only if they are not

compatible. Using ILP, we find a MWIS in this graph, where, con-

trary to Salari et al. (2013), a mutation group has as weight the sum

of the likelihoods of its calls. Denote by A the matrix made up of the

columns in the mutations groups of this independent set; A corres-

ponds to a partial perfect phylogeny. Denote by B the matrix made

up of the other columns of matrix M.

In the second step, contrary to Salari et al. (2013), we iteratively

edit each column in B, so that it becomes compatible with all

columns of A, remove it from B and add it to A. We consider the

columns of B in decreasing order on their average likelihoods. We

propose a new editing strategy, for each such column c, as follows.

For each row i, if Mði; cÞ ¼ 1, then the weight w(i, c) of correcting

the ith row of c is L(i, c). If Mði; cÞ ¼ 0, then we set w(i, c) to be the

mean of the likelihoods of the ‘1’ entries in column c minus
ffiffiffi
2
p

times

their standard deviation. Having these weights, we then ask for the

correction of the rows of c, such that the sum of the weights of all

corrections is minimum. We solve this by another ILP, as follows.

We transform all ‘0’ entries into ‘–1’ entries to flip them by a multi-

plication with –1. For every row i, we have a variable xi 2 f0; 1g,
with the meaning that if xi¼0, then we flip the entry in row i of col-

umn c, and if xi¼1 then this entry is not flipped. Thus, each row i

of the corrected column becomes ð2xi � 1ÞMði; cÞ. We want to find

the binary vector ðx1; . . . ;xnÞ which maximizes
Pn

i¼1 xiwði; cÞ, under

the constraint that the edited column is compatible with each col-

umn in A. These compatibility constraints are imposed by writing,

for every three set of rows fi1; i2; i3g, such that Mði1; cÞ ¼
Mði2; cÞ ¼ 1 6¼Mði3; cÞ, and every column j in A, the following two

linear inequalities:

• ð2xi1 � 1ÞMði1; cÞMði1; jÞ � ð2xi2 � 1ÞMði2; cÞMði2; jÞ�
ð2xi3 � 1ÞMði3; cÞMði3; jÞ�2,

• �Mði1; jÞð2xi1 � 1ÞMði1; cÞ þ 2Mði2; jÞð2xi2 � 1ÞMði2; cÞ�
Mði3; jÞð2xi3 � 1ÞMði3; cÞ�2.

Finally, we add the edited column to A, and remove it from B

and proceed by editing the next column in B. At the end of this pro-

cess, matrix A is the edited matrix of all SNVs reported by our

method.

3 Experiments and discussion

We conducted three types of experiments on simulated data, as fol-

lows. (i) First, we created a ‘perfect’ scenario, by varying the number

of samples, between 3 and 10, and generating a random tree with

that number of leaves. We randomly assigned mutation groups (i.e.

sets of known SNVs from GATK resource bundle dbsnp_137.b37)

to the edges of these random trees. The size of the mutation groups

was varied according to four simulation scenarios, described in

Table 1 (right). This resulted into 8�4¼32 experiments. We ran

the experiments on chromosome 21. In each leaf (i.e. sample) of the

simulated phylogenetic tree, we mutate chromosome 21 with the set

of SNVs appearing in mutation groups on the path from the root to

it. With DWGSIM (Li, 2012), we generate Illumina reads from it, of

length 100, coverage 15� and base error rate set to the default 2%.

We align them with BWA-MEM (Li et al., 2009), and the align-

ments are given to GATK’s Unified Genotyper. As in Salari et al.

(2013), we followed GATK’s best practices guidelines (see

Supplementary Material for details) and ran GATK in multi-sample

mode. (ii) Second, we repeated the above ‘perfect’ scenario but with

coverages 30� and 100�. (iii) Third, we considered violations of

the ‘perfect’ scenario, by allowing recurring mutations [violations to

property (ii) of the perfect phylogeny model]. For each

r 2 f1;5; 15g, we selected r% of all mutations present in the tree

and assigned them to one edge of the tree at random. As above, we

then propagated them to all the leaves descending from this edge.

This gave 8� 4� 3 ¼ 96 other experiments.

For each SNV in the union of all mutation groups labeling a tree

and for each sample (i.e. leaf of the tree), we checked whether

the SNV was reported correctly in the sample (true positives (TP)), if

Table 1. The F measure of GATK’s Unified Genotyper’s calls (column A), SNV-PPILP’s calls (column B) and of the method of Salari et al.

(2013) (column C)

×

The values are averages over the four mutation group sizes. These are distributed normally, with mean and standard deviation as shown on the right
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it was missing from the report, when it should have been present

(false negatives (FN)) or if it was reported even though it should

not be present (false positives (FP)). We computed the F

measure¼2�TP/(2�TPþFPþFN) shown in Table 1 (left).

We experimented also with the method of Salari et al. (2013),

but its F measure was consistently worse than GATK’s original calls.

For this reason, we report it only in the perfect scenario.

SNV-PPILP’s F measure is always the same or better than

GATK’s. At 15� coverage, the difference with respect to GATK’s F

measure is significant. On 30� coverage, we see �1% difference in

F measure. At coverage 100�, GATK’s F measure is very good, at

�0.98. SNV-PPILP’s F measure remained the same up to the third

decimal. However, we noticed a slight improvement in the absolute

numbers of TPs and FNs (see Supplementary Material). Even though

for high coverages the relative improvement is small, it might reveal

some critical SNVs in cancer progression studies. Moreover, SNV-

PPILP seems resilient to a degree of heterogeneity, as the F measure

improved even for a recurring rate r¼15%. However, big violations

to the perfect phylogeny model cannot be handled by our model, as

this is its core editing principle.

We also ran SNV-PPILP on six whole-genome breast cancer

samples from NCBI: PRJNA193652. SNV-PPILP’s runtime is only

a fraction of GATK Unified Genotyper’s overall running time.

All running times are provided in the Supplementary Material.
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