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ABSTRACT

We develop a statistical tool SNVer for calling com-

mon and rare variants in analysis of pooled or indi-

vidual next-generation sequencing (NGS) data. We

formulate variant calling as a hypothesis testing

problem and employ a binomial–binomial model to

test the significance of observed allele frequency

against sequencing error. SNVer reports one single

overall P-value for evaluating the significance of a

candidate locus being a variant based on which

multiplicity control can be obtained. This is particu-

larly desirable because tens of thousands loci are

simultaneously examined in typical NGS experi-

ments. Each user can choose the false-positive

error rate threshold he or she considers appropri-

ate, instead of just the dichotomous decisions of

whether to ‘accept or reject the candidates’ pro-

vided by most existing methods. We use both

simulated data and real data to demonstrate the

superior performance of our program in comparison

with existing methods. SNVer runs very fast and can

complete testing 300 K loci within an hour. This ex-

cellent scalability makes it feasible for analysis of

whole-exome sequencing data, or even whole-

genome sequencing data using high performance

computing cluster. SNVer is freely available at

http://snver.sourceforge.net/.

INTRODUCTION

The past few years have seen a dramatic development in
sequencing technology, which has made the per-base cost
of DNA sequencing plummet by �100 000-fold over the
past decade (1). Because of the affordable cost and high

digital resolution, the new or ‘next-generation’ sequencing
(NGS) technology is replacing the traditional
hybridization-based microarray technology in many appli-
cations (2). For genetics studies, NGS holds the promise
to revolutionize genome-wide association studies
(GWAS). The recently completed phase of GWAS
mainly addresses common SNPs with Minor allele fre-
quency (MAF) >5%, based upon the common disease/
common variant (CD/CV) hypothesis (3). However, the
identified common variants explain only a small propor-
tion of heritability (4). Rare variants therefore have been
hypothesized to account for the missing heritability (5,6).
To identify rare variants, a direct and more powerful
approach is to sequence a large number of individuals
(7). This line of thought also implicitly motivates the
recent 1000 Genomes Project, which will sequence the
genomes of 1200 individuals of various ethnicities by NGS
(8). It is expected to extend the catalog of known human
variants down to a frequency �1%.
Although the cost of whole-genome or exome sequenc-

ing of all enrolled subjects is prohibitively high now, such
studies will eventually be carried out in a manner similar
to GWAS with very large sample sizes (9). While the cost
is being brought down to as low as $1000 for sequencing a
whole genome (10), in the interim, a cost-effective strategy
has to be taken in order to take the full advantage of
NGS. Such issues with cost and labor are not new as
similar problems were confronted in the early expensive
stage of GWAS and were circumvented by focusing on
small candidate regions and the use of pooling of genomic
DNA (11,12). Borrowing the same idea, many targeted
re-sequencing applications utilizing pooling have been
seen in the past few years (13–16).
The first-step analysis of NGS data for genetics study is

often to identify genomic variants among sequenced
samples. Quite a few SNP calling tools have been
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implemented to identify SNPs from sequencing of indi-
vidual genomes. SNP calling is a relatively straightforward
problem in analysis of sequencing data of individual
genomes, because the frequency of a candidate allele can
be only 0 (non-variant), 0.5 (heterozygous) or 1 (alternate
homozygous) for a diploid genome. Despite (high)
sequencing error of NGS, a reliable call can be easily
made given a high depth of coverage, say 20� to 30�.
Consequently, statistical models for SNP calling have
been developed and integrated as one simple functional
module in many NGS short reads analysis tools such as
SAMtools (17), MAQ (18), GATK (19) and VarScan (20).
SAMtools and MAQ use a Bayesian statistical model to
compute the posterior probabilities of the three possible
genotypes. Specifically, for the likelihood part, they
employ a binomial distribution to characterize sampling of
the two haplotypes, and the prior probability, like other
Bayesian approaches, is pre-specified. SAMtools and
MAQ empirically set the prior probability of observing
a heterozygote to be 0.001 for the discovery of new
SNPs, and 0.2 for inferring genotypes at known SNP
sites. A similar Bayesian algorithm is used by GATK
followed by sophisticated filtering. Such Bayesian
approaches may not be ideal for multiplicity control
because of the subjectivity of assigning the prior probabil-
ity. VarScan implements a heuristic/statistical method.
For each candidate site, it applies several heuristic filters
such as having a minimum number of supporting reads
and allele frequency reaching a minimum threshold. It
also conducts a Fisher’s exact test for testing the deviation
of the read counts supporting variant alleles from being
generated because of sequencing error. Those heuristic
filters overlap with the Fisher’s exact test in terms of
reducing false positives. When not systematically con-
sidered, they may distort the statistics distribution under
null and thus void the resultant P-values for multiplicity
control. The variant call program we develop here is based
on a frequentist approach, which will systematically
consider all relevant factors and output P-values valid
for multiplicity control.
Identifying SNPs from pooled NGS data is more

challenging in that pooled DNA is sampled from a
number of individuals, which consequently will give rise
to variant allele frequencies other than simply 0, 0.5 or 1.
Driven by the need for analysis of increasing amount of
pooled NGS data, several programs/methods for the de-
tection of variants from the pooled data have been de-
veloped. SNPSeeker employs the large deviation theory
for SNP detection (21). It compares observed allele
frequencies against the distribution of sequencing errors
as measured by the Kullback Leibler (KL) distance (22).
One limitation of this approach is that its error model has
to be estimated from negative control data. SNPSeeker
was recently extended to SPLINTER with two main im-
provements (23). First, it is capable of detecting rare short
indels. Second, it provides a good cutoff after ranking all
candidate variants to balance power and type I error rate,
which, however, requires an additional positive control
data. CRISP (24) models the number of reads of the ref-
erence and alternate alleles at a particular position across
all pools as a contingency table, which is then tested by the

Fisher’s exact test. Its working hypothesis is that, due to
rareness, presence of rare variants in all pools will be
sporadic and then results in an excess of reads with the
alternate allele as compared with the other pools, which is
expected to be captured by the Fisher’s exact test. CRISP
then conducts a complementary test for the overabund-
ance of alternate alleles within each pool against the
sequencing error rate. Although it is shown that CRISP
outperforms SNPSeeker, MAQ and VarScan (24), it has
the following limitations. First, its working hypothesis
does not hold well for common variants. When the
MAF is large and/or the number of individuals in each
pool is large, sporadic presence will disappear and result in
no prominent excess of reads that can be captured by the
Fisher’s exact test. Second, their method is not applicable
for single-pool data. Third, rareness and overabundance
of alternate alleles are related but are captured separately
using two different models, which may not be an efficient
approach. In addition, these two separate tests make it
hard to obtain an overall multiplicity control. Finally,
its computational efficiency makes scalability an issue
and may prevent its application in analysis of whole-
exome or genome sequencing data. The main bottleneck
comes from computing the P-value of a large number of
contingency tables in the Fisher’s exact test.

In addition to the above direct SNP calling programs,
there are also other relevant studies for analysis of pooled
NGS data, including estimating allele frequencies from
pooled sequencing (25), evaluating the ability to detect
rare SNPs (15) and investigating the power of variant de-
tection in pooled DNA for NGS and the optimal pooling
designs (26), among others. In this article, we develop a
statistical tool SNVer (single nucleotide variant caller/
seeker) for detecting variants in analysis of NGS data.
SNVer is applicable to both pooled and individual data,
and in particular it addresses the limitations that
pre-existing methods have.

MATERIAL AND METHODS

Statistical models for single-pool data

For a genomic locus, let � be its MAF in a population. If �
is larger than a threshold �0 (� > y0), then we call it a single
nucleotide polymorphism (SNP). Suppose that we sample
N individuals (haploids) from this population for pooled
sequencing. We assume that the number of individuals (n)
carrying the minor allele follows a binomial distribution
b(N, �), namely,

n � b N,�ð Þ

with

Prob n; �ð Þ ¼
N

n

� �

�n 1� �ð ÞN�n

Now we re-sequence this genomic region. Suppose that
K short reads cover this locus, if no sequencing error,
given n individuals carrying the minor allele, the number
of minor alleles X we observe from the K short sequence
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reads follows also a binomial distribution b(K, n/N),
namely:

X � b K,n=Nð Þ

with

Prob Xjnð Þ ¼
K

X

� �

n

N

� �X

1�
n

N

� �K�X

Now we assume sequencing error rate to be e,
under which the minor allele will be flipped to one of
the other three alternate alleles, and vice versa. So
the observed X follows a binomial distribution
b K,ðn=NÞ 1� eð Þ+ð1� n=NÞðe=3Þð Þ, namely,

X � b K,

n

N
1� eð Þ+

N� n

N

e

3

� �

with

Prob
�

XjnÞ ¼
K

X

� �

n

N
1� eð Þ+

N� n

N

e

3

� �X

1�
n

N
1� eð Þ+

N� n

N

e

3

� �� �K�X

:

Since n is not observable, we sum it out and obtain the
statistical model for X as

Prob X; �ð Þ ¼
X

N

n¼0

Prob Xjnð ÞProb n; �ð Þ

¼
X

N

n¼0

K

X

� �

n

N
1� eð Þ+

N� n

N

e

3

� �X

1�
n

N
1� eð Þ+

N� n

N

e

3

� �� �K�X

�
K

X

� �

n

N

� �X

1�
n

N

� �K�X

:

Now we consider the hypothesis test of whether this
locus is a (rare) variant (� > y0)

H0 : � � �0 versus H1 : � > �0

Its significance P-value will be

P ¼ Prob ðX � x; � ¼ �0Þ ¼ 1� Prob ðX < x; � ¼ �0Þ

Partial conjunction test for multiple-pool data

The above statistical model is for testing a locus in one
single-pool data. For M pools, we propose to test it in
each pool separately. We therefore obtain a set of M
hypotheses for each candidate variant. The problem of
making a variant call at one specific locus involves the
simultaneous testing of hypotheses at the set level.
Typical questions considered in the multiple-testing frame-
work include: (i) Are all M hypotheses in the set true?
(ii) Are all M hypotheses in the set false? (iii) Are at
least u out of M hypotheses in the set false? These ques-
tions are referred to as conjunction test, disjunction test

and partial conjunction test, respectively (27). Testing
whether a locus is a variant based on multiple-pool data
is equivalent to the partial conjunction test that at least
u=1 out of the M hypotheses for that locus is false. Let
Pð1Þ,Pð2Þ, . . . ,PðMÞ be the ordered P-values obtained from
each single-pool test. Following (27), we employ the Simes
method to calculate the pooled P-value for the partial
conjunction test as

p1=M ¼ min
M

j
PðjÞ,j ¼ 1, . . . ,M

� �

If the set of M null P-values at the tested locus are
independent, Benjamini and Heller (27) show that p1/M

is a valid P-value for testing the partial conjunction null.
The Benjamini Hochberg (BH) procedure (28) and other
multiple-test adjustments can then be applied to the
pooled Simes’ P-values for multiplicity control when
testing a large number of loci. It has been shown that
this Simes–BH procedure controls the false discovery
rate (FDR) at the pre-specified nominal level (27).

Data sets

Simulated data. We simulate synthetic data to investigate
the numerical performances of our approach. For the
single-pool scenario, a total of 10 000 data sets are gene-
rated under each combination of several conditions:

. Sequencing coverage: low (10�) and high (30�).

. Sequencing error: low (0.01) and high (0.05)

. MAF: rare variants with ��U(0.001, 0.01), less
common variants with ��U(0.01, 0.05) and very
common variants ��U(0.05, 0.5)

. The number of sequenced individuals from low to high
with N=10, 20, 50, 100, 200, 500, 1000, 1500, 2000

For each MAF setting ��U(�min, �max), we calculate
the power of our approach for detecting variants by testing
the null hypothesis H0: � < �min. Meanwhile, to demon-
strate that type I error is controlled at the nominal level
by our proposed test, we simulate ��U(0, �min), and
evaluate how likely the same null hypothesis H0: � < �min

will be rejected by mistake. For both power and type I
error evaluations, we call a variant at the nominal level
0.05.
For the multiple-pool scenario, we follow the above

single-pool simulation settings except that we simulate
five pools with the same number of individuals in each
pool and the total N=10, 20, 50, 100, 200, 500, 1000,
1500, 2000.

Real data. We also assess the performance of our method
in analysis of two pooled and one individual real NGS
data sets as summarized in Table 1. The first one was an
in-house Autism data set generated using ABI SOLiD
platform from sequencing three genomic regions, denoted
as Core, CDH9 and CDH10, of size 187, 158 and 158 kb,
respectively, on chromosome 5 of the human genome. We
made 24 pools with six individuals in each, totaling 144
samples. We have 12 pools for Autism case samples and
the other half 12 pools for control samples. One case pool
experiment failed and we therefore have 23 pools in total
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for analysis. We aligned short sequence reads by the
Bioscope software from ABI SOLiD with default param-
eters. The mapped short sequence reads cover >96% of
the three target regions with average 90� depth of cover-
age per individual. Meanwhile, we collected individual
genotyping data for each sample, which were generated
from Illumina HumanHap550v3 SNP arrays with ap-
proximately 550 000 markers. With individual genotyping
data, we may calculate the concordance of identified
variants between pooled sequencing data and individual
genotyping data for evaluating variant call quality.
The second data set was collected in a recent study of

causative Type 1 Diabetes (T1D) variants (14). Exons and
splice sites of 10 candidate genes were re-sequenced by the
454 sequencing system. Ten pooled samples each com-
prising equal amounts of DNA from 48 T1D patients
and 10 pooled samples each comprising equal amounts
of DNA from 48 healthy controls were made, totaling
480 T1D patients and 480 healthy controls from Great
Britain. For each of the 20 pooled DNA samples, the
numbers of produced short reads range from 281 270 to
579 102, with average length of 250 bases and 9 416 365
reads in total. We mapped these reads by BWA-SW (29)
with default parameters and the average depth of coverage
is 80� per individual.
The third one was an in-house individual sequencing

data set. We performed paired end exome sequencing on
three members affected with attention deficit/hyperactivity
disorder (ADHD) in a pedigree, using the Illumina
Genome Analyzer IIx platform with read lengths of
76 bp. It targets all human exonic regions totaling
�38Mb. We aligned the short reads by BWA with default
parameters and removed duplicates by picard (http://
sourceforge.net/projects/picard/). These mapped and
cleaned short reads were then re-aligned locally by the
GATK IndelRealigner tool (30). The average depth of
coverage is �20� for each patient. Meanwhile, we also
collected the genotyping data of these three patients,
generated from the Illumina Human610-Quad version 1
SNP arrays with �610 000 markers (including �20 000
non-polymorphic markers).
For pooled sequencing data, CRISP has been shown to

outperform other existing methods (24), so we focus on
the comparison of our program with CRISP in perform-
ance evaluation. We also include SAMtools for compari-
son although it is not designed for pooled sequencing
data. For the ADHD individual data, we compare
SNVer with SAMtools and GATK. Variant positions were
called and filtered by SAMtools with all default settings

plus using awk ‘($3==‘‘*’’ &$6>=50) || ($3! =‘*’
&$6>=20)’, as suggested by the SAMtools website.
For the ADHD data, SAMtools with the suggested setting
returned so many variants that we also report SAMtools
results with an additional filtering �d20 to remove variant
calls with sequencing coverage less than 20, for getting
comparable numbers of variant calls as SNVer. We also
called variants using the GATK UnifiedGenotyper,
followed by further filtering based on the latest recommen-
dations from the authors of GATK (see Supplementary
Data for the detailed settings). SNVer utilizes SAMtools
(17) to process and pile up mapped short reads. CRISP
has its own pileup procedure integrated in its analysis
pipeline. To make a fair comparison, following CRISP
(24), we perform similar quality control and set the same
processing parameters such as mapping quality and base
quality filtering thresholds.

RESULTS

Power and type I error evaluations

The single-pool results are shown in Figure 1. We can see
that our method can control type I error rate at the
nominal level 0.05 in all settings. The number of sampled
individuals (sample size) and the depth of coverage are
both shown to be helpful in improving power. The
largest improvement of �10% attributed to depth of
coverage (from 10� to 30�) is observed in the rare
variants and high sequencing error (up–right panel). The
improvement contributed by larger sample size keeps
increasing at a decreasing rate until saturated. These
power improvement curves would be helpful for pooling
experiment design and provide guidance as to how to bal-
ance sample size (cost) and desired power. As expected,
rare variants are much harder to be detected than
common variants. A large sample size is required for
achieving high power to detect them. Finally, higher
sequencing error (0.05 versus 0.01) puts a small dent to
power.

Figure 2 shows similar results for the multiple-pool
scenario. Again, type I error rate is controlled at the
nominal level 0.05. We also observe that given the same
number of sequenced individuals, single-pool design yields
a bit higher power with lower type I error rate in compari-
son with multiple-pool design, for example, 1000 individ-
uals using one single pool versus five pools with 200
individuals in each. CRISP selects candidate SNPs by
the Fisher’s exact test, which is then followed by addition-
al filtering steps. In the multiple-pool scenario, we show

Table 1. Summary of T1D and Autism pooled sequencing and ADHD individual sequencing data sets

Disease Platform Total
reads

Reads
length

#Pool #Individual
per pool

Region Coverage per
individual

Case Ctrl

Autism SOLiD �402 M 50bp 11 12 6 �503 kb �90�
T1D 454 �9.4 M �250 bp 10 10 48 �31 kb �80�
ADHD Illumina �57 M 76bp� 2 three individuals �38Mb �20�
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Figure 1. Power (PW) and Type I error rate (Err) of SNVer using single-pool data at low (10�) and high (30�) coverage.
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that the rankings of candidates SNPs by our test is
superior to those by the Fisher’s exact test employed by
CRISP. To compare the efficiencies of these two rankings,
we divide the 10 000 positives with ��U(�min, �max) and
10 000 negatives with ��U(0, �min) into 100 groups, each
with 100 positives and 100 negatives. These 200 loci are

then ranked by their significance levels of testing the null
H0: � < �min using our statistical models. Rankings based
the Fisher’s exact test are also generated. The area under
the curve (AUC) score averaged over 100 groups is used to
evaluate these two rankings as shown in Figure 3 for the
typical scenario of 30� coverage and 0.05 sequencing

Figure 2. Power (PW) and Type I error rate (Err) of SNVer using multiple-pool data at low (10�) and high (30�) coverage.
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error. We can see that the Fisher’s exact test is very inef-
ficient for detecting common and less common variants.
CRISP therefore has to rely on additional sequencing
error models to complement the Fisher’s exact test for
detecting common variants. We apply the BH procedure
to control FDR at the nominal level of 0.1 and 0.05. As
shown in Supplementary Table S1, the FDR for the
Fisher’s exact test is inflated, particularly dramatically
for common and less common variants; SNVer
controls the FDR very well. The number of sequenced
individuals is modeled in our test and is shown to be
helpful. This information is not explicitly utilized by
CRISP in its Fisher’s exact test and therefore contrib-
utes very little for detecting common and less com-
mon variants, although CRISP models it at the later
filtering step.

The accuracy of allele frequency estimation has an
impact on variant call, and is more critical for estab-
lishing association in genetics studies. Therefore we
also plot the estimated MAF against the actual MAF
when e=0.01 in Figure 4. For a moderate sample size
of 250, we observe good concordance with correlation
coefficients r2=0.9828 and r2=0.9318 for the single-pool
design and the multiple-pool design, respectively. When
the sample size increases to 1000, the concord-
ance improves to r2=0.9955 and r2=0.9769 for the
single- and the multiple-pool design, respectively. The
lower concordance of the multiple design may be
attributed to its additional between-pool variance. It
also explains why singe-pool design yields fewer false posi-
tives than the multiple-pool design for the same set of
samples.

Figure 3. Ranking efficiency of the binomial models employed by SNVer versus the Fisher’s exact test employed by CRISP.
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Real data application

Better performance. The user of SNVer only needs to set
the sequencing error rate e and the variant threshold �0.
SNVer will then report the significance P-values of the

tested loci of how likely their MAF � < �0. We assume
e=0.01 for all real data sets. CRISP calls both rare and
common variants, so we set �0=0 for SNVer to compare
their performance in calling variants. CRISP will output

Figure 4. Correlation between the minor allele frequencies and its estimates in pooled sequencing.
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the variants it calls, while SNVer will report overall sig-
nificance P-values for each locus, based on which the user
can choose a threshold he/she feels appropriate and make
variant calls. To make a comparison, we rank loci by their
P-values output by SNVer and take the significance
threshold that gives the same number of variants called
by CRISP. The loci identified as variants by these two
programs are then annotated by SeattleSeq (http://gvs.gs
.washington.edu/SeattleSeqAnnotation/), and we count how
many of them have been confirmed as variants in dbSNP.
Following (30), we evaluate variant call quality by
examining dbSNP rate, transition/transversion (Ti/Tv)
ratio and concordance of sequencing and individual
genotyping calls. A higher Ti/Tv ratio generally indicates
a higher accuracy; this metrics is particularly helpful for
assessing novel single nucleotide variant calls (30). The
variant call results are summarized in Table 2. For the
Autism and T1D pooled sequencing data sets, SNVer
has the higher dbSNP rates, the higher overall Ti/Tv
ratios and the higher Ti/Tv ratios for new sites, in com-
parison with CRISP. It indicates the better quality of the

call sets SNVer produced. In contrast, SAMtools made
much fewer SNP calls which led to much lower
sensitivities, despite its higher Ti/Tv ratios. Out of the
110 SNPs that have been genotyped by SNP arrays in
the Autism data set, SAMtools identified only 16 SNPs
with 100% genotyping concordance, while both SNVer
and CRISP called about 100 SNPs with 100% genotyping
concordance. This confirms that SAMtools may not be
appropriate for pooled sequencing data. The correlation
between alternate allele frequencies in individually geno-
typed DNA samples and frequency estimates in the se-
quenced DNA pools is plotted in Figure 5, with
r2=0.92 and r2=0.94 for the Autism case and control,
respectively. The achieved 100% genotype concordance
with less perfect frequency estimates is not surprising
because accurate estimate of allele frequency y is only
critical for rare variants when testing � > 0.
As shown in Table 2, for the ADHD individual

sequencing data, under family-wise error rate 0.05 level,
SNVer also obtained the variant call sets with good
quality. This is evidenced by the �97% dbSNP rates,

Table 2. Comparison of SNP calling by CRISP, SAMtools, GATK and SNVer

Data No. of SNP Ti/Tva Concordanceb

All Known Novel dbSNP% All Known Novel TP/P (%)

Autism (pooled)
Case
CRISP 2182 1791 391 82.1 1.68 1.79 1.26 101/101 (100)
SNVer 2182 1795 387 82.3 1.71 1.81 1.35 102/102 (100)
SAMtools 261 260 1 99.6 2.26 2.29 0/1 16/16 (100)

Control
CRISP 2063 1610 453 78.0 1.68 1.83 1.27 96/96 (100)
SNVer 2063 1617 446 78.4 1.78 1.89 1.45 95/95 (100)
SAMtools 239 238 1 99.6 2.06 2.05 1/0 16/16 (100)

T1D (pooled)
Case
CRISP 306 93 213 30.3 0.95 2.58 0.63 N/A
SNVer 306 126 180 41.2 1.71 2.15 1.47
SAMtools 14 9 5 64.3 10/4 8/1 2/3

Control
CRISP 167 110 57 65.9 1.49 2.93 0.46
SNVer 167 120 47 71.9 2.34 3.00 1.35
SAMtools 18 12 6 66.7 14/4 11/1 3/3

ADHD (Individual)
84 060
SNVer 18 001 17 535 466 97.4 2.89 2.89 2.73 4158/4183 (99.4)
SAMtools 48 988 47 513 1475 97.0 2.66 2.68 2.16 4437/8116 (54.7)
SAMtools20� 15 038 14 538 500 96.7 2.70 2.72 2.11 2034/3158 (64.4)
GATK 19 655 19 713 482 97.6 2.91 2.94 2.15 4649/4657 (99.8)

84 615
SNVer 17 436 16 914 522 97.0 2.85 2.87 2.22 4032/4063 (99.2)
SAMtools 46 037 44 489 1548 96.6 2.64 2.67 1.94 4173/7643 (54.4)
SAMtools20� 15 510 14 942 568 96.3 2.74 2.77 2.02 2062/3247 (63.5)
GATK 18 892 18 419 473 97.5 2.89 2.92 2.03 4537/4566 (99.4)

92 157
SNVer 18 676 18 208 468 97.5 2.90 2.92 2.37 4192/4224 (99.2)
SAMtools 49 729 47 693 2036 95.9 2.69 2.73 2.03 4251/7996 (53.2)
SAMtools20� 15 881 15 370 511 96.8 2.80 2.83 1.99 2028/3259 (62.2)
GATK 20 100 19 631 469 97.7 2.98 3.00 2.35 4700/4710 (99.8)

aTransition and transversion ratio for the identified variants. When the number of variants is small we just report the numbers but not calculate the
ratio, e.g. 10/4 for all variants in T1D case by SAMtools means 10 transitions and 4 transversions.
bGenotype concordance. P represents the number of variants called by each program and also genotyped. TP represents the number of variant calls
concordant between sequencing data and individual genotyping data.
20�: Additional filtering of sequencing depth �20 is applied.
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the approximately 2.9 overall Ti/Tv ratios, the 2.22–2.73
Ti/Tv ratios for novel sites, and the 99% genotype con-
cordance. SAMtools with suggested parameters/filters
made 2+ times more variant calls than SNVer (e.g.
�49K versus �18 K). The lower Ti/Tv ratios and
genotype concordance suggest poorer quality for these
larger call sets made by SAMtools. When applied with
an additional filtering of sequencing depth �20�,
SAMtools identified fewer SNPs than SNVer. But it still
has lower quality as indicated by the lower Ti/Tv ratios
and genotype concordance. Compared with GATK,
SNVer has similar performance, while with the higher
Ti/Tv ratios for novel variants in all three individuals.
We note that the Ti/Tv ratios for novel variants in the

pooled sequencing data are low for both programs. It
suggests that they may not perform well for novel variants
if we estimate the false-positive rates based on the Ti/Tv
ratios following (30). It confirms that variant calling is
more challenging for pooled sequencing. Meanwhile,
estimating false-positive rates using this summary statistic
should be cautious for pooled sequencing. First, Ti/Tv
estimate for pooled samples is not as accurate as for indi-
vidual samples. Second, targeted resequencing regions are
usually small, e.g. 31 kb for the T1D data and 503 kb for
the Autism data, and therefore may exhibit higher genomic
and statistical variances. For example, the ADHD indi-
vidual 840 60 has an exome-wide Ti/Tv ratio of 2.89 for all
variants; if we calculate Ti/Tv ratios based on only 500-kb
regions, then the smallest Ti/Tv ratio we obtain is 1.31,
and the largest 7.00 with SD=1.53 (we consider only
500-kb regions with at least 30 variants for having stable
Ti/Tv ratio estimates).

Better scalability. SNVer and SAMtools exhibit similar
efficiency in terms of running time. The running time of
SNVer and CRISP in analysis of the T1D and Autism
data sets is given in Figure 6. The main bottleneck of
CRISP comes from computing the P-value of a large
number of contingency tables in the Fisher’s exact test.

Therefore, in additional to the number of tests, its time
efficiency is also largely dependent on the number of pools
and the depth of coverage. In contrast, these two factors
have little impact on SNVer and its running time is

Figure 5. Correlation between alternate allele frequencies in individually genotyped DNA samples and its estimates in the sequenced DNA pools for
the Autism data set. Different symbols represent different depth of coverage ranges as shown in the legend.

Figure 6. (a and b) Comparison of running time of SNVer and CRISP
for testing testing (a) the T1D 31 kb region and (b) the Autism 503 kb
region. Running time of SNVer is mainly determined by the region size
(the number of tests), while larger pool numbers and sequencing depth
will take additional time for CRISP.
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roughly linear with the region size (the number of tests).
For example, SNVer spends 0.1 h on 31 kb and 1.5 h on
503 kb for the two data sets, respectively. SNVer is much
faster than CRISP. Taking the T1D case for example,
SNVer is �500-fold faster than CRISP and achieves
300 kb/h. Such efficiency makes feasible the application
of SNVer to analysis of whole-exome sequencing data,
or even whole-genome sequencing data using high per-
formance computing cluster, both of which, however,
will take prohibitively longer time for CRISP.

Informative ranking and multiplicity control

SNVer reports one single overall significance P-value for
each locus, based on which the rankings of all tested loci
can be produced. Such rankings are more informative and
accurate than the dichotomous decision of whether to
‘accept or reject the candidate as a variant’ provided by
CRISP and most other existing methods. For example,
four rare variants have been found to be associated with
T1D based on the T1D data set by comparing the
estimated MAF in cases and controls (14). We use
SNVer to call these four variants by testing the null hy-
pothesis �� �0=0.01. We give the rankings of them by
SNVer in Table 3, as well as the dichotomous decisions
made by CRISP. For SNVer, we observe very significant
ranking changes of these four SNPs, which are consistent
with their MAFs (relative to the threshold 0.01) and the
MAF differences. CRISP identifies three of them,
rs35337543, ss107794688 and ss107794687, as variants in
both cases and controls, exhibiting no informative differ-
ential changes. It should be noted that the ranking differ-
ence may only reflect frequency difference. Large
frequency difference between case and control of those
variants may suggest their potential association with the
phenotype, but their functional importance to the pheno-
type is yet to be assessed by further experiments.

In addition to ranking, valid P-values given by SNVer
also make multiplicity control possible. Tens of thousands
or millions loci are usually simultaneously examined in
typical NGS experiments. It is particularly desirable to
have multiplicity control, which gives the user an idea of
the chance of making any errors and/or the proportion of
false positives among the variant calls they make. Each
user can choose the type I error rate threshold he or she
considers appropriate, instead of just the dichotomous de-
cisions of whether to ‘accept or reject the candidates’
provided by most existing methods.

DISCUSSION

We have developed a novel statistical tool SNVer for
calling SNPs in analysis of pooled or individual NGS
data. Different from the previous models employed by
CRISP, it analyzes common and rare variants in one
integrated model, which considers and models all
relevant factors including variant distribution and
sequencing errors simultaneously. As a result, the user
does not need to specify several filter cutoffs as required
by CRISP. Some variant calling methods simply discard
loci with low depth of coverage to achieve reliable variant
calls. Our statistical model does not discriminate against
poorly covered loci. Loci with any (low) coverage can be
tested and depth of coverage will be quantitatively
factored into the final significance calculation. SNVer
reports one single overall significance P-value for
evaluating the significance of a candidate being a
variant. An advantage of reporting results on a more con-
tinuous scale, instead of just the dichotomous decision of
whether to ‘accept or reject the candidate as a variant’ as
most existing methods do, is that the user can choose the
alpha threshold he or she considers appropriate. We have
used both simulated data and real data to demonstrate the
superior performance of our program in comparison with
pre-existing methods. Although SNVer is motivated by
the need for analysis of pooled NGS data, it can also be
applied to individual NGS data as a special case (N=2
for diploid species), as shown in the ADHD data set.
Sampling bias is a non-trivial problem in pooled se-

quencing, and in particular, rare variants are prone to
sampling issues. Properly considering it may further im-
prove the power. In this article, to make inference of the
MAF � of each site, we model the number of observed
alleles conditional on the coverage from a frequentist
standpoint. The power of detecting variants may be
further improved if sampling bias is modeled properly so
that we have more informative inference of the coverage
rather than conditional on it. Since we have only one ob-
servation for each site, to model sampling bias or make
any site-specific inference, e.g. base quality/error, we have
to pool information across sites. Bayesian models may be
a better, if not the only, way to this end. For example, the
distribution of coverage of all sites can be approximated
by the Gamma distribution for Illumina’s short read align-
ments (31). Shen and colleagues (32) propose to estimate
the posterior error rates for each substitution through a
Bayesian formula, in which error models are learned from
training data sets. Our frequentist approach does not
model sampling bias; however, it has its own merits.
First, the sampling bias issue may be very application
specific. Different target enrichment kits may have differ-
ent coverage uniformities. More variant sampling bias is
expected for targeted re-sequencing, the current main
pooling application, due to region-specific GC content.
Mapping algorithms will also critically impact coverage.
As a result, any approaches with sampling bias modeled
may have to check carefully whether the sampling bias
model/distribution fits well for every application.
Second, our frequentist approach does not pool informa-
tion across sites, which consequently has minimal

Table 3. Informative rankings of four rare variants with the null

hypothesis �� �0=0.01

SNP T1D case T1D control

Estimated
MAF (%)

SNVer
ranking

CRISP
CALL

Estimated
MAF (%)

SNVer
ranking

CRISP
CALL

rs35337543 0.36 17 557 Y 2.51 45 Y
rs35667974 0.72 17 557 N 2.42 59 Y
ss107794688 0.50 17 557 Y 1.79 56 Y
ss107794687 1.07 145 Y 2.45 51 Y
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requirement for input and wider applications. For
example, when only one or few sites are tested, and
without any help from external training data, sampling
bias could not be modeled (well), but our frequentist
approach still can be applied.
So, sampling bias is not considered in our frequentist

approach, which consequently makes few assumptions,
requires minimal input, and thus has wider applications.
On the other hand, sampling issues may be addressed
by more careful pooled re-sequencing designs (33).
Companies such as NimbleGen and Agilent are also com-
peting to improve their target enrichment kits to obtain
coverage uniformity. With these upstream efforts, sam-
pling bias may have a minimized impact on downstream
variant call algorithms.
Our current program can be improved and extended in

several ways. First, small indels are not supported. Indels
impose a great challenge for NGS including DNA ampli-
fication and reads mapping which are under fast develop-
ment. When those techniques become mature in handling
indels, we may investigate their distribution and work out
a proper calling strategy. Second, sequencing quality
scores can be utilized to estimate site-specific sequencing
error. Third, the majority loci of sequenced segments are
known to carry no variants. The density of SNP is esti-
mated to be around 1 out of 1000 bases. Such prior per-
centage of non-nulls information may help obtain more
precise multiplicity control. Fourth, the dependency
among tests will also be informative in increasing testing
efficiency. We have shown that the LD dependency infor-
mation is very informative in increasing the efficiency of
conducting genome-wide association tests in analysis of
GWAS data (34). We also found recently that dependency
information is helpful for increasing the efficiency of
testing hypotheses at the set level (35). For NGS data,
one non-null (variant) is expected from every 1000 con-
secutive genomic bases. Such dependency patterns, if ap-
propriately modeled, may help further improve testing
efficiency. Lastly, our current program focuses on calling
variants, namely, testing whether � is larger than a thresh-
old. Under the same framework, our models can be nat-
urally extended for case-control association studies by
testing whether �case= �control. We are currently working
on these extensions.
In summary, we have developed a statistical tool SNVer

for calling common and rare variants in analysis of both
pooled and individual NGS data. As more and more NGS
data become available, we expect more applications of our
program.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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