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SO.3/ homology of graphs and links

BENJAMIN COOPER
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VYACHESLAV KRUSHKAL

The SO.3/ Kauffman polynomial and the chromatic polynomial of planar graphs
are categorified by a unique extension of the Khovanov homology framework. Many
structural observations and computations of homologies of knots and spin networks
are included.
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1 Introduction

Mikhail Khovanov [11] introduced a categorification of the Temperley–Lieb algebra.
Recently, the first two authors [4] showed that there are chain complexes within this
construction that become the Jones–Wenzl projectors in the image of the Grothendieck
group K0 . These chain complexes are unique up to homotopy and idempotent with
respect to the tensor product: C ˝C ' C . It is now well-known (see Fendley and
Krushkal [5]) that the chromatic algebra and the SO.3/ Birman–Murakami–Wenzl
algebra can be constructed using the second Jones–Wenzl projector. In this paper
we use the formulation of Bar-Natan [1] to extend the original categorification of
the Temperley–Lieb algebra to categorifications of the SO.3/ BMW algebra and the
chromatic algebra. Previous work of Helme-Guizon and Rong [9] and Stošić [15] on
the categorification of the chromatic polynomial has been focused on constructions
which are in many respects independent of structural choices such as the Frobenius
algebra. In this paper we obtain an essentially unique categorification of the chromatic
polynomial of planar graphs.

We begin by interpreting the second Jones–Wenzl projector in the Temperley–Lieb
algebra over the ring of q–power series with Z–coefficients:

p2 D H �
1

qC q�1
1 D H C

1X
iD1

.�1/iq2i�1
1

This power series is replaced by a chain complex in the categorification which is then
shown to satisfy uniqueness and idempotence properties up to homotopy. While the
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categorification of the Jones–Wenzl projectors pn for all n is presented in [4], in this
paper we give a self-contained account for the second projector. Using this chain
complex the 2–categorical “canopolis” structure of the Khovanov categorification then
extends from a categorification of the Temperley–Lieb planar algebra to a categorifica-
tion of the SO.3/ BMW algebra and chromatic algebra. It is checked that the local
relations in these algebras are satisfied up to homotopy by our construction.

We conclude with a number of calculations of homologies of links and spin networks
and some preliminary observations about the structure of the space of morphisms. Two
explicit calculations are included in order to demonstrate the ease with which our model
lends itself to calculation. We include the chromatic homology for tree and generalized
theta graphs. The homology of the sheet algebra is computed and we conjecture that
all graph homology is structured in a specific way. Due to the universal nature of the
construction in [4] the authors believe that these calculations will agree with those
made using other frameworks for the categorification of representation theory.

2 Diagrammatic algebras

This section summarizes the relevant background on definitions of the Temperley–Lieb
algebra, the chromatic algebra and the SO.3/ BMW algebra, and on the relations
between them.

2.1 Temperley–Lieb algebra

The Temperley–Lieb algebra TLn is the ZŒq; q�1�–algebra determined by subjecting
the generators 1, e1 , e2; : : : ; en�1 to the relations

(1) ei � ej D ej � ei if ji � j j � 2

(2) ei � ei˙1 � ei D ei

(3) e2
i D Œ2� ei

where the quantum integer Œ2�D qC q�1 .

Each generator ei can be pictured as a diagram consisting of n chords between two
collections of n points on two horizontal lines in the plane. All strands are vertical
except for two, connecting the i –th and the .iC1/–st points in each collection. For
instance, when nD 3 we have the following diagrams:

1D ; e1 D and e2 D
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The multiplication is given by vertical composition of diagrams. Planar isotopy induces
relations 1 and 2 between the generators above while the third relation states that a
disjoint circle evaluates to qC q�1 .

This algebra is well-known in low-dimensional topology due to the extension from
planar diagrams to tangles given by the Kauffman bracket relations:

D q � q2 and D q�2
� q�1

TLn is included into TLnC1 by adding a vertical strand on the right, and TL is defined
to be

S
n TLn . The trace trTLW TLn �!ZŒq; q�1� is defined on the additive generators

(rectangular pictures) by connecting the top and bottom endpoints by disjoint arcs in
the complement of the rectangle in the plane. The result is a disjoint collection of
circles in the plane, which are then evaluated by taking .qC q�1/# circles .

2.2 Definition (Jones–Wenzl projector) There is a special element p2 2TL2 (where
the coefficients are taken to be rational functions of the variable q ),

p2 D 1�
1

qC q�1
e1;

called the second Jones–Wenzl projector. Graphically,

D �
1

qC q�1
:

The second Jones–Wenzl projector p2 satisfies the properties

(1) p2 � e1 D 0D e1 �p2

(2) p2 �p2 D p2 .

In representation theory, the Temperley–Lieb algebra is the algebra of Uqsu.2/–equi-
variant maps between n–fold tensor powers of the fundamental representation V :

TLn D HomUqsu.2/.V
˝n;V ˝n/:

The subalgebra determined by the projector p2 corresponds to the second irreducible
representation of Uqsu.2/. The second irreducible representation of SU.2/ is the
fundamental representation of SO.3/.
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2.3 The SO.3/ BMW algebra

We review some background material on the SO.N / Birman–Murakami–Wenzl algebra;
see Birman and Wenzl [3] and Murakami [13] for more details. BMW.N /n is the
algebra of framed tangles on n strands in D2 � Œ0; 1� modulo regular isotopy and the
SO.N / Kauffman skein relations:

� D .q2
� q�2/

�
�

�

D q2.N�1/ and D q2.1�N /

By a tangle we mean a collection of curves (some of them perhaps closed) embedded
in D2 � Œ0; 1�, with precisely 2n endpoints, n in D2 � f0g and D2 � f1g each, at the
prescribed marked points in the disk. The tangles are framed, ie they are given with a
trivialization of their normal bundle. This is necessary since the q˙2.1�N /–skewed
versions of the first Reidemeister move in the Kauffman relations above are inconsistent
with invariance under the first Reidemeister move. As with TLn , the multiplication is
given by vertical stacking. Like above, BMW.N /D

S
n BMW.N /n .

The Markov trace trK W BMW.N /n �! ZŒq; q�1� is defined on the generators by
connecting the top and bottom endpoints by standard parallel arcs in the complement
of D2 � Œ0; 1� in 3–space, sweeping from top to bottom, and computing the SO.N /

Kauffman polynomial (using the above skein relations) of the resulting link. Below we
will discuss this trace in detail.

Since the object of main interest in this paper is the SO.3/ algebra, we will omit N D 3

from the notation, and set BMWn D BMW.3/n .

2.4 The chromatic polynomial and the chromatic algebra

The chromatic polynomial ��.Q/ of a graph � , for Q2ZC , is the number of colorings
of the vertices of � with the colors 1; : : : ;Q where no two adjacent vertices have the
same color. To study ��.Q/ for noninteger values of Q, it is convenient to use the
contraction-deletion relation. Given any edge e of � which is not a loop,

(2-1) ��.Q/D ��ne.Q/���=e.Q/;

where �ne is the graph obtained from � by deleting e , and �=e is obtained from � by
contracting e . (If � contains a loop then ���0). Note: while discussing the chromatic
algebra, we will interchangeably use two variables, Q and q ,where QD .qC q�1/2 .
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The defining contraction-deletion rule (2-1) may be viewed as a linear relation between
the graphs G;G=e and Gne , so in this context it is natural to consider the vector space
defined by graphs, rather than just the set of graphs. Thus consider the set Gn of the
isotopy classes of planar graphs G embedded in a rectangle with n endpoints at the
top and n endpoints at the bottom of the rectangle, and let Fn denote the free algebra
over ZŒq; q�1� with free additive generators given by the elements of Gn . As usual,
the multiplication is given by vertical stacking in the plane.

The local relations among the elements of Gn , analogous to contraction-deletion rule for
the chromatic polynomial, are given in the figures below. To be precise, the chromatic
algebra relations are dual to the relations defining the chromatic polynomial, the reason
for this choice is to make the connection with the TL and BMW algebras more natural;
see Section 2.6 below. Note that these relations only apply to inner edges which do not
connect to the top and the bottom of the rectangle. They are

If e is an inner edge of a graph G which is not a loop, then G DG=e�Gne .

(2-2) D �

If G contains an inner edge e which is a loop, then G D .q2C 1C q�2/ Gne . (In
particular, this relation applies if e is a simple closed curve not connected to the rest
of the graph.) If G contains a 1–valent vertex (in the interior of the rectangle) then
G D 0.

(2-3) D .q2
C 1C q�2/ and D 0

Again, note that the relations (2-2), (2-3) are dual to those defining the chromatic
polynomial. In particular, the relation on the left in (2-3) amounts to removing a
univalent vertex in the dual graph, giving rise to the factor .q2C1Cq�2/. The relation
on the right in (2-3) holds since the dual graph contains a loop.

2.5 Definition (Fendley–Krushkal [5]) The chromatic algebra in degree n, Cn , is
an algebra over ZŒq� which is defined as the quotient of the free graph algebra Fn by
the ideal In generated by the relations (2-2), (2-3) above. Set C D

S
n Cn .

The trace, tr�W C �! ZŒq� is defined on the additive generators (graphs G in the
rectangle R) by connecting the top and bottom endpoints of G by disjoint arcs in
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complement of R the plane (denote the result by xG ) and evaluating the chromatic
polynomial of the dual graph yxG :

(2-4) tr�.G/D .qC q�1/�2
�� yxG

..qC q�1/2/:

2.6 Relations between the diagrammatic algebras

This section recalls trace-preserving homomorphisms between the SO.3/ BMW, chro-
matic, and Temperley–Lieb algebras. A categorified version is given in Sections 5
and 6 below.

2.7 Definition The formulas (introduced by Kauffman and Vogel [10])

7! q�2
� C q2

7! q2
� C q�2

define a homomorphism of algebras i W BMWn �! Cn over ZŒq; q�1�; see Fendley
and Krushkal [5, Theorem 5.1] (see also Fendley and Read [6]).

2.8 Definition Define a homomorphism �W Fn �! TL2n on the additive generators
(graphs in a rectangle) of the free graph algebra Fn by replacing each edge with the
second Jones–Wenzl projector P2 , and resolving each vertex as shown in the figure
below:

7! D �
1

qC q�1
and 7! .qC q�1/

The factor in the definition of � corresponding to an r –valent vertex is .qCq�1/.r�2/=2 ,
so for example it equals q C q�1 for the 4–valent vertex in the figure above. The
overall factor for a graph G is the product of the factors .qC q�1/.r.V /�2/=2 over all
vertices V of G .

Therefore �.G/ is a sum of 2E.G/ terms, where E.G/ is the number of edges of G .
It is shown in Lemmas 6.2 and 6.4 in [5] that � induces a well-defined homomorphism
of algebras Cn �! TL2n . Moreover,

tr�.G/ D trTL.�.G//:
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Phrased differently, up to a renormalization factor .qC q�1/�2 the chromatic polyno-
mial of a planar graph may be computed as the Yamada polynomial [17] of the dual
graph, that is the evaluation of the quantum spin network where each edge is labeled
with the second projector. The following lemma summarizes the above discussion:

2.9 Lemma The homomorphisms i; � are trace-preserving, in other words the fol-
lowing diagram commutes:

BMWn
i - Cn

� - TL2n

ZŒq; q�1�

?�
-

We refer the reader to Fendley and Krushkal [5] for a more detailed discussion of the
properties and relations between the SO.3/ BMW, chromatic, and Temperley–Lieb
algebras.

3 Categorification of the Temperley–Lieb algebra

In this section we recall Dror Bar-Natan’s graphical formulation [1] of Khovanov’s
categorification of the Temperley–Lieb algebra [11].

There is an additive category Pre-Cob.n/ whose objects are isotopy classes of formally
q–graded Temperley–Lieb diagrams with 2n boundary points. The morphisms are
given by the free Z–module spanned by isotopy classes of orientable cobordisms
bounded in R3 between two planes containing such diagrams. If �.S/ is the Euler
characteristic of a surface S , then a cobordism C W qiA! qj B has degree given by

jC j D �.C /� nC j � i:

It has become a common notational shorthand to represent a handle by a dot and a
saddle by a flattened diagram containing a dark line:

D 2 D 2 and D
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There are maps from a circle to the empty set and vice versa given by a punctured
sphere and a punctured torus:

'W

� �
-�� � q�1 ∅ ˚ q ∅ W 

In order to obtain 'ı D 1 and  ı'D 1 we form a new category Cob.n/DCob3
�= l.n/

obtained as a quotient of the category Pre-Cob.n/ by the relations given below.

D 0; D 1; D 0; D ˛;

D C

Notice that a sheet with two dots is equal to ˛ times a sheet with no dots, as a
consequence of the neck-cutting relation and the definition of ˛ above. The cylinder
or neck cutting relation implies that closed surfaces †g of genus g > 3 must evaluate
to 0. In what follows we will let ˛ be a free variable and absorb it into our base ring.
One can think of ˛ as a deformation parameter.

In this categorification the skein relation becomes

D q - q2

D q�2 - q�1

where the underlined diagram represents homological degree 0.

3.1 Definition Let Kom.n/D Kom.Mat.Cob3
�= l.n/// be the category of chain com-

plexes of formal direct sums of objects in Cob3
�= l.n/.

The skein relation allows us to associate to any tangle diagram D with 2n boundary
points an object in Kom.n/.

Given two objects C;D 2 Kom.n/ we will use C ˝D to denote the categorified
Temperley–Lieb multiplication ˝W Kom.n/˝Kom.n/! Kom.n/ obtained by gluing
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all diagrams and morphisms along the n boundary points and n boundary intervals
respectively.

3.2 Chain homotopy lemmas

We will make frequent use of the following standard lemma:

3.3 Lemma (Gaussian elimination [2]) Let K� be a chain complex in an additive
category A containing a summand of the form given below:

A

�
�

ı

�
- B˚C

�
' �
� �

�
- D˚E

. � � / - F

Then if 'W B!D is an isomorphism there is a homotopy equivalence from K� to a
smaller complex containing the summand below obtained by removing B and D terms
via ' :

A
ı - C

���'�1�- E
� - F

The following result is a direct generalization which will be very useful in our context.

3.4 Lemma (Simultaneous Gaussian elimination [4]) Let K� be a chain complex in
an additive category A of the form

K� DA0˚C0
M0- A1˚B1˚C1

M1- A2˚B2˚C2
M2- � � �

M0 D

0@a0 c0

d0 f0

g0 j0

1A and Mi D

0@ai bi ci

di ei fi

gi hi ji

1A for all i > 0.where

If a2i W A2i!A2iC1 and e2iC1W B2iC1!B2iC2 are isomorphisms for i � 0 then the
chain complex K� is homotopy equivalent to the smaller chain complex D� obtained
by removing all Ai and Bi terms via the isomorphisms a2i and e2iC1 :

D� D C0
q0 - C1

q1 - C2
q2 - C3

q3 - � � �

where q2i D j2i �g2ia
�1
2i

c2i and q2iC1 D j2iC1� h2iC1e�1
2iC1

f2iC1 .

4 Construction of the second projector

In this section we define a chain complex P2 2 Kom.2/ which categorifies the second
Jones–Wenzl projector (Definition 2.2). This construction of P2 is universal and unique
up to homotopy by Cooper and Krushkal [4]. (Other definitions were obtained by
Frenkel, Stroppel and Sussan [7] and Rozansky [14]).
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4.1 The second projector revisited

The second projector Z is defined to be the chain complex

- q

�

- q3

C

- q5
� � �

in which the last two maps alternate ad infinitum. More explicitly,

P2 D .C�; d�/;

the chain groups are given by

Cn D

(
q0 nD 0;

q2n�1 n> 0;

and the differential is given by

dn D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

W ! q nD 0;

C W q4k�1 ! q4kC1 n¤ 0; nD 2k;

� W q4kC1 ! q4kC3 nD 2kC 1 :

4.2 Proposition P2 defined above is a chain complex.

Proof Since d2nC1 ı d2n D d2n ı d2n�1 there are only two cases:

d1 ı d0 D �

D � D 0;

d2nC1 ı d2n D
�

C
�
ı
�

�
�

D C � �

D ˛ C 0�˛ D 0:
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4.3 Theorem [4] The chain complex P2 2 Kom.2/ defined above is contractible
“under turnback” and a homotopy idempotent. Graphically,

' 0 and ' :

Algebraically, these are the relations

P2˝ e1 ' 0' e1˝P2 and P2˝P2 ' P2:

Proof We will prove the turnback property first. Note that the vertical symmetry in
the definition of P2 implies P2˝ e1 Š e1˝P2 . Consider e1˝P2 :

- q
�

- q3
C

- q5
� � �

We “deloop” and conjugate our differentials by the isomorphism ' in Section 3 to
obtain the isomorphic complex

A- q0
˚ q2 B- q2

˚ q4 C- q4
˚ q6

� � �

AD

� �
; B D

�
�

˛ �

�
; C D

�
˛

�
:where

Applying Lemma 3.4 (simultaneous Gaussian elimination) by using the identity map in
the first component of the first map and the identity in the upper righthand component
of each successive matrix shows that the complex is homotopic to the zero complex.

The relation P2˝P2 ' P2 follows from expanding either the top or bottom projector
and again using Lemma 3.4 to contract all of the projectors containing turnbacks as
above. What remains is the chain complex for P2 in degree 0.

5 Categorification of the SO.3/ BMW algebra

In this section we show that the chain complexes obtained by applying the second
projector to the strands of a 2–cabling are invariant under Reidemeister moves and
satisfy relations categorifying those of the SO.3/ BMW algebra.

Given a diagram D , replace each strand in D with two parallel strands composed
with the second projector. Denote the resulting total complex by F.D/ in the category
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Kom.2n/. (Note that using the categorified Kauffman skein relation in Section 3 one
associates a chain complex to oriented tangles and the two parallel strands in the current
construction are given opposite orientations). This can be illustrated by:

7! 7! 7!

Formally, this construction categorifies the 2–colored Jones polynomial; see [4] and
Section 8.4 for further discussion. In the remainder of this section we prove that the
Reidemeister moves and SO.3/ skein relation are satisfied up to homotopy.

5.1 Lemma (Projector isotopy) A free strand can be moved over or under a projector
up to homotopy. In pictures:

' '

Proof The chain complex for the diagram with the projector below the strand and the
chain complex for the diagram with the projector above the strand are chain homotopy
equivalent to the chain complex C for the diagram with two projectors: one above
the strand and one below the strand. This is true because expanding either of the
two projectors in C gives the identity diagram in degree zero and every other term
involves a turnback, which is contractible when combined with the second copy of the
projector.

This lemma allows us to show that the Reidemeister moves are satisfied.

5.2 Theorem This construction yields invariants of framed tangles.

Proof For the second Reidemeister move:

D ' '

' D
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The first equality is by definition. The homotopy equivalence follows from the projector
isotopy lemma and P2˝P2 ' P2 . We then apply the original second Reidemeister
move and P2˝P2'P2 again. The argument for the third Reidemeister move features
the same ideas:

D ' '

' D

The q˙4 –skewed version of first Reidemeister move (Section 2.3) are satisfied by our
construction.

D '

' t2q4

where t2q4 denotes bidegree .2; 4/. This is obtained by expanding all of the crossings,
delooping and contracting the remaining subcomplex consisting of projectors containing
turnbacks. We’ve shown

' q2.N�1/

with N D 3. The opposite crossing follows from the same argument.

5.3 SO.3/ BMW skein relation

In order to prove that the first skein relation pictured in Section 2.3 is satisfied by our
categorification we consider the chain complex associated to a crossing:

(5-1) 7! ; 7!
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Now expanding all four crossings on the right hand side yields a chain complex with
16 terms. (The reader may find it helpful to draw the diagram with all 16 terms to
follow the argument below.) We will use the convention below to index resolutions:

.abcd/D a

b

c

d

where �0 1-

There is one circle corresponding to the (0101) resolution which can be delooped and
Gaussian elimination can be performed removing the terms corresponding to the (0001)
resolution and the (1101) resolution. Nine of the remaining terms contain projectors
with turnbacks.1 Contracting using Lemma 3.4 these yields the chain complex

t�2q�2 - t�1q�1 - tq - t2q2

giving a categorification of the crossing formula in Definition 2.7. The factor .qCq�1/

which comes from the two terms in the middle is seen in the translation of the 4–valent
graph to the Temperley–Lieb algebra (see Definition 2.8 of the homomorphism � .)
Note that the diagram above is only a schematic illustration of the chain complex for the
resolution of the crossing at the beginning of Section 5.3: the contractions mentioned
above produce maps which are not illustrated in the above diagram. Next we will
examine this chain complex in more detail.

We now proceed to show that the relation

(5-2) � D .q2
� q�2/

�
�

�

holds in our category, this requires a more detailed analysis of the chain complex
considered above. Begin by again expanding all four crossings in (5-1), corresponding
to the leftmost term in the equation above. We obtain a chain complex with 16 terms
with one term in homological degrees �2 and 2, four terms in degrees �1 and 1 and

1Those corresponding to (1000), (0010), (1100), (1010), (1001), (0110), (0011), (1110) and (1011)
resolutions.
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six terms in degree 0. Form a new chain complex:

0 -

" #
�2

d�2-

" #
�1

d�1-

" #
0

d0-

" #
1

?

d1-

" #
2

1
?

1
?

- 0
?

The graded Euler characteristic of this complex is the quadrivalent vertex in Definition
2.8. Contracting the first and last maps using the introduced isomorphisms yields the
chain complex: " #

�1

d�1-

" #
0

d0-

" #
�1

The maps d�1 and d0 remain the same as in the previous diagram and so consist of
saddles between resolutions of crossings. Now contract terms in degrees �1 and 1

that are diagrams with projectors capped by turnbacks2. Observe again that contracting
these will not affect the maps between remaining terms. There remains a contractible
term (1010) in degree zero (with four turnbacks) which is a direct summand of the
chain complex, that is there are no arrows starting or ending at this term, so that
contracting this term does not affect the maps between the remaining terms. Again
delooping the term in the center corresponding to the (0101) resolution allows one
to cancel terms corresponding to (0001) and (0111) resolutions in degrees �1 and 1

respectively. These cancelations in fact do change the maps between the remaining
terms, the resulting maps can be analyzed using the Gaussian elimination Lemma 3.3,
and the result is given below. The chain complex

- ˚ ˚ ˚ -

2Terms corresponding to (1000), (0010), (1110) and (1011) resolutions.
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is what remains. All of the maps are saddles. Note that all of the diagrams contain
four projectors which are not pictured. The first and last terms are the chain complex
associated to the planar crossing (the middle term in the equality below), while the
four terms in the middle have a projector capped with a turnback, and are therefore
contractible.

On the other hand, expanding the lefthanded crossing in (5-2) rather than the righthanded
one and carrying out the same argument yields precisely the same complex! This is
clear since the terms in the diagram above are �=2 rotationally symmetric. It follows
that on the level of the graded Euler characteristic,

q2
� C q�2

D D q�2
� C q2

which is equivalent to the desired relation (5-2).

6 Chromatic categorification

In this section we show that our construction produces a categorification of the chro-
matic polynomial of planar graphs. To each planar graph G we associate a chain
complex hGi whose graded Euler characteristic is a particular normalization of the
chromatic polynomial.

Our construction differs in significant ways from other categorifications of the chromatic
polynomial present in the literature; see Helme-Guizon and Rong [9] and Stošić [15].
In particular, it depends on a specific choice of Frobenius algebra. This follows from
the relations in Section 3. While this rigidity may have the disadvantage of limiting the
variety of answers that our theory provides, it allows for an extension to invariants of
ribbon graphs embedded in R3 . This information then enriches the structure of the
underlying chromatic polynomial. See Section 6.4 for more details.

In Section 6.3 below we show that to each edge e 2G which is not a loop there is a
contraction-deletion long exact sequence on the homology of yG corresponding to the
contraction-deletion relation of Section 2.4.

6.1 A categorification of the chromatic polynomial

In order to associate to a planar graph G a chain complex hGi with the correct Euler
characteristic, we define hGi to be the evaluation of the dual graph yG in the SO.3/
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BMW categorification of Section 5. For example:

7! 7!

The pentagon is dual to the graph �5 to its right. Associated to �5 is the chain complex
given in Section 6.4: replace each edge with a pair or parallel strands with the second
Jones–Wenzl projector, and connect the strands near each vertex to get a planar diagram.
(The homology of �n for all n> 1 is given in the Appendix).

Defining maps between planar graphs G and H to be chain maps between the associated
chain complexes hGi and hH i yields a category C0 .

6.2 Theorem If G is a planar graph then up to a normalization the graded Euler
characteristic of hGi is the chromatic polynomial �G evaluated at .qC q�1/2 :

�G

�
.qC q�1/2

�
D .qC q�1/2

Y
v

.qC q�1/.r.v/�2/=2 �qhGi;

where the product is taken over all vertices v of the dual graph yG and r.v/ is the
valence of v (see Definition 2.8). The above equation holds in the ring of formal power
series ZJqK.

The proof of this theorem follows immediately from the discussion in Section 2.6 and
Lemma 2.9. (To be precise, hGi is a categorification of the Yamada polynomial of
the dual graph [17] which is defined as the evaluation of the spin network where each
edge is labeled with the second projector; this accounts for the difference between the
normalization above and that of (2-4) of Section 2.4).

6.3 The contraction-deletion rule

The chain complex hGi associated to a planar graph G in Section 6.1 above satisfies a
version of the contraction-deletion rule. For any edge e 2G which is not a loop there
is an exact triangle

(6-1) ŒG=e� - hGi - hGnei

in the category C0 . Here hGnei is as in Section 6.1 and ŒG=e� is the chain complex
obtained by removing the first term from the expansion of the projector labelling
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the edge e in the chain complex hGi (as illustrated below). Note that ŒG=e� has
graded Euler characteristic .qC q�1/�1hG=ei in the power series ring (compare to
Definition 2.2). There is a functor F from the category C0 to abelian groups, given
by associating to each circle a Frobenius algebra [1]. The homology groups of chain
complexes fitting into any exact triangle form a long exact sequence in the image of F

[16, 10.1.4, page 372].

Let e be an edge (not a loop) of a planar graph G . Consider the edge of the dual
graph, intersecting the edge e in a single point. The construction sends this dual edge
to two parallel lines with a projector as in the figure on the left in (6-2). By definition
(Section 4.1) this projector is expanded into the chain complex

D -

" #
D Cone

 !

where all of the terms besides the first one have been collected into the chain complex
with brackets on the right hand side above. Note that the homological degree zero term
of this chain complex is the chain complex associated to Gne . Now the cone on the
inclusion map ŒG=e� �! hGi is chain homotopy equivalent to hGnei. This gives an
exact triangle by definition of the Cone complex [16, pages 18, 371]. Dualizing again
yields the exact triangle (6-1).

Note that on the level of the graded Euler characteristic (6-1) corresponds to a renor-
malized version of the contraction-deletion rule: the term ��=e in (2-1) acquires a
coefficient .qC q�1/�1 . This version of the contraction-deletion rule corresponds to
the renormalized chromatic polynomial discussed in Theorem 6.2.

The other two defining relations (2-3) of the chromatic algebra also have analogues at
the level of chain complexes. The second relation in (2-3) is an immediate consequence
of Theorem 4.3 since a univalent vertex gives rise to a projector capped with a turnback.
The interested reader is encouraged to derive the chain complex analogue of the
(renormalized, as discussed above) first relation in (2-3). This involves expanding the
projector labeling the loop and then performing a delooping and Gaussian elimination,
analogous to a step in the calculation of the trace of the second projector in Section 7.1
below.

6.4 Ribbon graphs

A ribbon graph is a pair .G;S/ where G is a graph embedded in a surface S with
boundary, and the inclusion G � S is a homotopy equivalence. Our construction gives
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an invariant of ribbon graphs embedded in the 3–sphere. Specifically, to a ribbon graph
.G;S/ associate a chain complex as follows: Replace each edge of G with the second
Jones–Wenzl projector P2 , and using the ribbon structure resolve each vertex as in the
figure below:

(6-2) 7! and 7!

The resulting curves in the neighborhood of each vertex are oriented as the boundary
of a regular neighborhood of the graph G in S .

It is an interesting question to determine how powerful this invariant is, and in particular
whether this homology theory may be used to detect planar graphs. Given a connected
ribbon graph .G;S/ embedded in S3 , contracting a maximal tree gives a map to the
graph G0 with a single vertex and a number of loops (with the same underlying surface,
embedded in S3 ). There is an induced map on chain complexes (which amounts to the
projection onto the homological degree zero for each contracted edge; see Section 6.3
below.) If the embedding of .G;S/ into S3 is isotopic to a planar embedding, then
the homology of G0 is the chromatic homology of a tree, computed in the Appendix.
Analyzing the homology of planar graphs motivated the following conjecture.

Conjecture A ribbon graph .G;S/ embedded into S3 is isotopic to a planar graph if
and only if its homology groups Hi are trivial for i < 0, and H0 is free of rank 2.

A related question is to determine whether the genus of the ribbon graph (defined as
the genus of the underlying surface S ) is determined by this homology theory.

7 Computations

7.1 Homology of the unknot

The chain complex associated to the unknot is the “Markov trace” of the second
projector P2 (Section 4.1). The trace of the second projector p2 2 TL2 is given by

D Œ3�D q�2
C 1C q2:
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Our categorification has this graded Euler characteristic when the parameter ˛ D 0.
It is however not true that the homology of tr.P2/ is spanned only by classes that
correspond to coefficients of the graded Euler characteristic; the homology contains
infinitely many terms which cancel in the graded Euler characteristic. For further
discussion, see [4].

Taking the trace of our projector yields a complex with alternating differential:

- q
0- q3

2

- q5 0 - � � �

Recall that 8˛ D†3 . The homology of this complex is given by

Hn.tr.P2//D

8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂

q�2Z˚ q0Z nD 0; ˛ D 0 or ˛ ¤ 0;

0 nD 1; ˛ D 0 or ˛ ¤ 0;

q4k�2Z nD 2k; ˛ D 0;

q4kC2Z˚ q4kZ=2 nD 2kC 1; ˛ D 0;

0 nD 2k; ˛ ¤ 0;

q4kC2Z=.2˛/˚ q4kZ=2 nD 2kC 1; ˛ ¤ 0:

7.2 Homology of the theta graph

Consider the theta graph:

We begin by expanding the middle projector:

- q

�

- q3

C

- q5
� � �
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If we then expand the top projector:

- q
0- q3

2

- q5 0 - � � �

q

?

- �
? - �

? - �
? - � � �

q3

0
?

- �
? - �

? - �
? - � � �

q5

2
?

- �
? - �

? - �
? - � � �

:::

0

?
:::

?
:::

?
:::

?

The middle terms are all projectors containing turnbacks, which form a contractible
subcomplex. Contracting these yields a homotopy equivalent complex which is a direct
sum of the following three complexes:

0BBB@
1CCCA
- q ˚ q(7-1)

M
k

q4k�1

2

- q4kC1

M
k

q4k�1

2

- q4kC1
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Expanding the projector in each of the bottom two cases shows that these are isomorphic
chain complexes. Let’s define E to be this chain complex.

In (7-1) the circle can be delooped yielding

q�1E D q�1 - q

after a Gaussian elimination. We are left with the task of computing E . We have:

- q2 0- q3

2

- q5
� � �

q2

2
?

�

- q3

2
?

0- q5

2
?

�2

- q7

2
?

� � �

The second column can be removed by delooping leaving a sum of chain complexes of
the following form:

q�1

q

2

?
and

q0

2

- q2

q2

2

?
�2

- q4

2

?

The first complex appears once at the origin of E , it has homology q�2Z in degree 0

and q0Z=2˚q2Z in degree 1 when ˛D 0. The second appears countably many times,
it has homology q�1Z in degree 0, qZ˚qZ=2˚q3Z in degree 1 and q3Z=2˚q5Z
in degree 2. This can be summarized as follows:

E0 D q�2Z

E1 D q0Z=2˚ q2Z

E2 D q2Z

E3 D q4Z˚ q4Z=2˚ q6Z

E4 D q6Z˚ q6Z=2˚ q8Z

En D q4En�2 for n� 5.
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If we define En D 0 for negative n then we see that, when ˛ D 0,

Hk

 !
D q�1Ek ˚

M
j�1

q4j�1.Ek�2j ˚Ek�2j /:

Alternatively, we can write

H.E/D

�
q�2
C tq2

C t2q2
C

t3.q4C q6/

1� tq2

�
�Z˚

�
t C

t3q4

1� tq2

�
�Z=2

H.�3/D

�
q�1
C

2t2q3

1� q4t2

�
�H.E/:so that

The Poincaré series for several families of graphs are provided in the Appendix.

8 Structural observations

This section states a number of results on the structure of the chromatic homology of
planar graphs and of the homology of links. We begin in Section 8.1 with the analysis
of the chain maps from the second projector to itself. Section 8.3 states a conjecture on
the structure of the chromatic homology of an arbitrary planar graph. In Section 8.4 the
homology of knots is shown to split into an interesting “unstable” part, closely related
to Khovanov’s categorification of the 2–colored Jones polynomial, and a periodic
“stable” portion.

8.1 Homology of the sheet algebra

Here we start by analyzing maps between objects in Sections 5 and 6 (ie chain complexes
associated to 2–colored links and spin networks). Since the categories are built up from
local pictures, the first interesting example is given by maps between two intervals.
The sheet algebra is defined to be the chain complex of chain maps from the second
projector to itself:

End�.Z/D
M

n

HomKom.2/.Z; t
n
Z/:

This forms a differential graded algebra with differential given by

dZ.f /D Œd; f �D d ıf C .�1/jf jf ı d;

ie the graded commutator. The homology of the sheet algebra is given by the homotopy
classes of maps from the projector to itself.
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8.2 Theorem The homology of the sheet algebra with Z coefficients and ˛ D 0 is
given by

H.End�.Z//D ZŒu�˚ZŒu� �w˚ZŒu�=.2u/ � b;

as a ZŒu�–module. The algebra multiplication is commutative and determined by
w � b D b2 D w2 D 0. Representatives for the classes b , u, and w are given by the
chain maps

b D ._;\;\;\;\;\; : : :/

uD .b;[;[;[;[;[; : : :/

w D .f;\;\;\;\;\; : : :/

respectively. These have homological degree

deg.b/D 0; deg.u/D�2 and deg.w/D�3:

The proof is by direct computation. A conceptual explanation is provided by noting
that both the trace of Z (Section 7.1) and End�.Z/ compute the Hochschild homology
of the Khovanov ring H 1 [11]. Note that b is the class of the “dotted identity” g.
The maps h, i, and j are also chain maps, but they are all homotopic to ˙g:

g'i'�h'�j:

The homology of the sheet algebra is finite dimensional as a module over the subalgebra
generated by u. The map u shifts all of the homology down by two degrees. As a
chain map, all of its components are isomorphisms except the first which is a saddle.
The kernel of the map induced by u may be thought of as “unstable” homology in
low degree. The rest of the homology associated to a graph or knot could be called
“stable.” It is useful to keep these concepts in mind when interpreting the computations
contained in this paper.

There is an interesting map R from the projector to a rotated projector given by:

Z D ^
a - q[

\�]- q3
[

\C]- q5
[ - � � �

D � � �

e�i=2
�Z

R

?

D [

a

?
b - q^

b

?
_�`- q3

^

b

?
_C`- q5

^

b

?
- � � �

The square R2 is a map from the projector to itself which, by neck-cutting, is equal to
gCj. This is homotopic to zero by the above discussion. In fact

R2
D dhC hd;
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where

Z D ^
a - q[

\�]- q3
[

\C]- q5
[ - � � �

D � � �

Z

h

?

D ^
a -

b

�
q[

\�]-

0

�
q3
[

\C]-

[

�

q5
[ -

0

�

� � �

and maps alternate between 0 and [. Together, the maps R and h can be used to
construct a new differential on the complex formed by pairing a planar graph G with
its dual yG .

8.3 A structural conjecture

A cube complex C D
L
v2f0;1gn Cv is a chain complex of diagrams Cv indexed by the

vertices of a hypercube f0; 1gn . For any vertex v 2 f0; 1gn set jvj D
P

i vi . For any
two vertices v D .v1; : : : ; vn/ and w D .w1; : : : ; wn/ we say v � w if vi � wi where
1� i � n. If C is a cube complex and v is a vertex then we define the star of v in C ,
Stv.C /� C , to be the subcomplex

Stv.C /D
M
v�w

Cw :

Conjecture For every connected planar graph G there exists a cube complex C DL
v2f0;1gn Cv such that

hGi '
M

v2f0;1gn

�
t2q3

1� t2q4

�jvj
�Conejvj

�
Stv.C /

�
�! q2 Stv.C /

�
;

where the map � is a handle.

In other words, every chain complex breaks up into a direct sum of subcomplexes most
of which are iterated cones on handle maps. This is precisely what happens in the
computation for the theta graph in Section 7.2.

8.4 Structure of the knot invariant

In this section we will discuss the structure of the knot invariant defined in Section 5.
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Interesting homology is concentrated in low degree For any knot the homology
defined in Section 5 is necessarily infinitely generated. However for any two knots we
will show that all but a finite portion of this homology is the same, and the interesting
part in low degree is closely related to the Khovanov categorification of the 2–colored
Jones polynomial; see the discussion following the proof of Corollary 8.6.

Recall that in Section 3 the dot map was defined in terms of a handle and the differen-
tial dn of P2 for n> 0 was defined in Section 4.1 using sums and differences of these
dot maps. The proposition below implies that these maps do not change up to sign and
homotopy under the “dotted second Reidemeister move”.

8.5 Proposition (Handles slide through crossings.)

˙

- '

�

-

The proof follows from applying the Gaussian Elimination (Section 3.2) twice on the
cube obtained by expanding the crossings on the left hand side above.

8.6 Corollary The chain complex associated to a framed knot K in Section 5 is
homotopy equivalent to

K2 � - q
0 - q3

2

- q5 0 - � � �

where K2 denotes the 2–cabling of the knot K , and the map � is induced by the
homotopy.

Proof The first differential in P2 (Section 4.1) is a saddle map which turns K2 into
the unknot. Using Proposition 8.5 (applying the Gaussian elimination to the chain
complex for K ) one slides the end of this unknotted 2–cabling through the rest of the
knot. The result is pictured above. Note that the map � in the statement of the corollary
is a saddle map followed by a sequence of Reidemeister type II equivalences.

A similar statement may be proved for any link L. However, the infinite tail for knots,
pictured in Corollary 8.6, is standard. When the number of components of L is greater
than one this infinite tail will involve chain complexes for the proper sublinks of L.
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Relationship to Khovanov’s categorification A categorification of the colored Jones
polynomials was given in [4]. When nD 2 this construction coincides with the one
in Section 5. Here we discuss the relationship between the categorification above and
Khovanov’s categorification of the colored Jones polynomial [12] when nD 2.

Khovanov defines a chain complex

CKh.K/D Cone
�
K2 ��
�!∅

�
which categorifies the 2–colored Jones polynomial of a framed knot K . K2 is the
chain complex which computes the Khovanov homology of the 2–cabling of K and
�� is induced by the 4–dimensional cobordism �W K2!∅ obtained by pushing the
ribbon bounded by the 2–cabling into the 4–ball.

In order to define �� a Morse decomposition of � must be chosen. Choose the one in
which � is a composition of a saddle followed by a disk bounding the resulting unknot.
This is an augmentation of the first two terms of the chain complex in Corollary 8.6. If
we denote these first two terms by Ctrunc.K/ then there is a short exact sequence

0! tq2Z! Ctrunc.K/! CKh.K/! 0;

where tq2Z is the chain complex consisting only of Z in bidegree .1; 2/. The associated
long exact sequence implies that

0!H 0
trunc.K/!H 0

Kh.K/! q2Z!H 1
trunc.K/!H 1

Kh.K/! 0

and H i
trunc.K/ŠH i

Kh.K/ for i ¤ 0; 1.

9 Appendix: Computations for graphs and links

The homology is given for certain families of graphs, and for some examples of links.

9.1 Chromatic homologies of trees and cycles

Let �n denote the n–th theta graph, with two vertices and n edges connecting them. The
graph �n is dual to a cycle with n edges or the boundary of an n–gon (see illustration
in Section 6.1). The graph Tn is dual to the graph with a single vertex and n loops. The
chain complex hTni computes the chromatic homology of any tree with n edges. The
homology of the trace T1D tr.P2/ (Section 7.1) and the chain complex E (Section 7.2)
are used below to express the homologies of Tn and �n .
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�n D 1 2 3 : : : n Tn D 1 2 : : : n

T1 D E D ! q2

Using Z coefficients and ˛ D 0 we have

H.Tn/D q1�nH.T1/˚
q1�n

1Cx

��
1C

x2

1�x

�n�1

� 1

�ˇ̌̌̌
xDtq2

�H.E/;

H.�n/DH.Bn/˚
q2�n

1�x2

 �
1C

x2

1�x

�n�1

�

�
xC

x2

1�x

�n�1

Cxn�1
� 1

!ˇ̌̌̌
xDtq2

�H.E/;

where

H.Bn/D

8̂̂̂<̂
ˆ̂:

q1�2k 1�x2k

1�x2

ˇ̌̌
xDtq2

�H.E/ for nD 2kC 1;

q2�2kH.T1/˚ q2�2k x�x2k�1

1�x2

ˇ̌̌
xDtq2

�H.E/ for nD 2k;

H.E/D

�
q�2
C tq2

C t2q2
C

t3.q4C q6/

1� tq2

�
�Z˚

�
t C

t3q4

1� tq2

�
�Z=2;

H.T1/D

�
q�2
C 1C

t2q2C t3q6

1� t2q4

�
�Z˚

�
t3q4

1� t2q4

�
�Z=2:

9.2 Knots and links

If 22
1

, 31 and 41 denote the Hopf link, the positively oriented trefoil and figure eight
knots respectively then their homologies have been computed:

H.22
1/D

�
t�4.q�8

C q�6/C t�2q�4
C t�1

C .1C q�2/C t.1C q2
C q4/

C t2q4
C t4.q6

C q8/
�
�ZC .t�1q�2

C q2t2/ �Z=2

CH.T1/
2
� .q�2

C 1/2 �Z
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H.31/D
�
t�6.q�10

C q�8/C t�4q�6
C t�3q�2

C t�2.q�4
C q�2/

C t�1.1C q2/C .1C q�2/C t.q2
C q4/C t2q2

C t3q6
C t5q8

C t6q12
�
�Z

C .t�3q�4
C t.1C q2/C t3.2q4

C q6/C t4.q6
C q8/C t6q10/ �Z=2

CH.T1/� .q
�2
C 1/ �Z

H.41/D
�
t�8q�14

C t�7q�10
C t�5q�8

C t�4.q�8
C q�4/C t�3.q�6

C q�4/

C t�2.q�6
C q�4

C q�2/C t�1.q�4
C 2q�2

C 1/C .2q�2
C 3C q2/

C t.1C 2q2
C q4/C t2.q2

C q4
C q6/C t3.q4

C q6/C t4.q4
C q8/

C t5q8
C t7q10

C t8q14
�
�Z

C .t�7q�12
C t�5.q�10

C q�8/C t�4.q�8
C 2q�6/C t�3q�6

C t�2.2q�4
C q�2/C t�1.q�4

C 2q�2/C .q�2
C 1/C t.1C q2/

C t2.1C 2q2
C q4/C t3.q2

C 2q4/C t4q6
C t5.2q6

C q8/

C t6.q8
C q10/C t8q12/ �Z=2

CH.T1/� .q
�2
C 1/ �Z

The H.T1/� .q
�2C 1/ �Z term is the infinite tail; see Section 8.4. Notice in 41 that

the free part of the homology is symmetric away from homological degree 0. The
missing q2 term can be found in homological degree 2 of the infinite tail, giving a
symmetric graded Euler characteristic. This was computed using the JavaKh program
written by Jeremy Green and Scott Morrison [8].
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