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Antiferromagnetism and superconductivity are both fundamental and common states of matter. In
many strongly correlated systems, including the high-Tc cuprates, the heavy-fermion compounds, and
the organic superconductors, they occur next to each other in the phase diagram and influence each
other’s physical properties. The SOs5d theory unifies these two basic states of matter by a symmetry
principle and describes their rich phenomenology through a single low-energy effective model. In this
paper, the authors review the framework of the SOs5d theory and compare it with numerical and
experimental results.
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I. INTRODUCTION

The phenomenon of superconductivity is one of the
most profound manifestations of quantum mechanics in
the macroscopic world. The celebrated Bardeen-
Cooper-Schrieffer sBCSd theory sBardeen et al., 1957d of
superconductivity provides a basic theoretical frame-
work for understanding this remarkable phenomenon in
terms of the pairing of electrons with opposite spin and
momentum to form a collective condensate state. Not
only does this theory quantitatively explain the experi-
mental data of conventional superconductors, but the
basic concepts developed from this theory, including
spontaneously broken symmetry, the Nambu-Goldstone
modes, and the Anderson-Higgs mechanism, also pro-
vide the essential building blocks for the unified theory
of fundamental forces. The discovery of high-
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temperature shigh-Tcd superconductivity sBednorz and
Müller, 1986; Wu et al., 1987d in copper oxide materials
poses a profound challenge to our theoretical under-
standing of superconductivity in the extreme limit of
strong correlations. While the basic idea of electron pair-
ing in the BCS theory carries over to high-Tc supercon-
ductors, other aspects, like the weak-coupling mean-
field approximation and the phonon-mediated pairing
mechanism, may not apply without modifications.
Therefore high-temperature superconducting systems
provide an exciting opportunity to develop new theoret-
ical frameworks and concepts for strongly correlated
electronic systems.

Since the discovery of high-Tc superconductivity, a
tremendous number of experimental data have been
amassed on the cuprates. In this theoretical review it is
not possible to give a detailed review of all the experi-
mental findings. Instead, we refer the readers to a num-
ber of excellent review articles on the subject sImada et

al., 1998; Kastner et al., 1998; Maple, 1998; Timusk and
Statt, 1999; Orenstein and Millis, 2000; Campuzano et

al., 2002; Yeh, 2002; Damascelli et al., 2003d. Below, we
summarize the phase diagram of the high-Tc supercon-
ducting cuprates and discuss some of the basic and
smore or lessd universal properties in each phase.

To date, a number of different high-Tc superconduct-
ing materials have been discovered. The best studied of
these include hole-doped La2−xSrxCuO4+d sLSCOd,
YBa2Cu3O6+d sYBCOd, Bi2Sr2CaCu2O8+d sBSCOd, and
Tl2Ba2CuO6+d sTBCOd materials, and electron-doped
Nd2−xCexCuO4 sNCCOd. All these materials have two-
dimensional CuO2 planes and display an antiferromag-
netic sAFd insulating phase at half filling. The magnetic
properties of this insulating phase are well approximated
by the AF Heisenberg model with spin S=1/2 and an
AF exchange constant J,100 meV. The Néel tempera-
ture for three-dimensional AF ordering is approximately
given by TN,300–500 K. The high-Tc superconducting
materials can be doped either by holes or by electrons.
In the doping range of 5% &x&15%, there is a super-
conducting sSCd phase, which has a domelike shape in
the temperature-versus-doping plane. The maximal SC
transition temperature Tc is of the order of 100 K. The
three doping regimes are divided by the maximum of the
dome and are called the underdoped, optimally doped,
and overdoped regimes, respectively. A generic phase
diagram of high-temperature superconductivity is shown
in Fig. 1.

One of the main questions concerning the high-Tc su-
perconductivity phase diagram is the transition region
between the AF and SC phases. Partly because of the
complicated materials chemistry in this regime, there is
no universal agreement among experiments. Different
experiments indicate several different possibilities, in-
cluding phase separation with an inhomogeneous den-
sity distribution sHowald et al., 2001; Lang et al., 2002d, a
uniform mixed phase between the AF and SC phases
sBrewer et al., 1988; Miller et al., 2003d, and periodically
ordered spin and charge distributions in the form of

stripes or checkerboards sTranquada et al., 1995d.
The phase diagram of the high-Tc cuprates also con-

tains a regime with anomalous behavior conventionally
called the pseudogap phase. This region of the phase
diagram is indicated by the dashed line in Fig. 1. In con-
ventional superconductors, a pairing gap opens up at Tc.
In a large class of high-Tc cuprates, however, a gap,
which can be observed in a variety of spectroscopic ex-
periments, starts to open up at a temperature T*, much
higher than Tc. Many experiments indicate that the
pseudogap “phase” is not a true thermodynamic phase
but rather a precursor of crossover behavior. The phe-
nomenology of the pseudogap behavior is extensively
reviewed by Timusk and Statt s1999d and Tallon and Lo-
ram s2001d.

The SC phase of a high-Tc superconductor has a num-
ber of striking properties not shared by conventional su-
perconductors. First of all, phase-sensitive experiments
indicate that the SC phase of most cuprates has
d-wave-like pairing symmetry sVan Harlingen, 1995;
Tsuei and Kirtley, 2000d. This is also supported by pho-
toemission experiments, which show the existence of
nodal points in the quasiparticle gap sCampuzano et al.,
2002; Damascelli et al., 2003d. Neutron-scattering experi-
ments find a new type of collective mode, carrying spin
one, lattice momentum close to sp ,pd, and a resolution-
limited sharp resonance energy around 20–40 meV.
Most remarkably, this resonance mode appears only be-
low Tc in the optimally doped cuprates. It has been
found in a number of materials, including the YBCO,
BSCO, and TBCO classes of materials sRossat-Mignod,
Regnault, Vettier, Burlet, et al., 1991; Mook et al., 1993,
1998; Fong et al., 1995, 1996, 1999, 2000; Dai et al., 1996,
1998; He et al., 2001, 2002d. Another property quite
different from the conventional superconductors is
the vortex state. Most high-Tc superconductors are of
type II in which the magnetic field can penetrate into the

FIG. 1. Phase diagram of the NCCO and the YBCO supercon-
ductors.
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SC state in the form of a vortex lattice, with
the SC order being destroyed at the center of the vortex
core. In conventional superconductors, the vortex core is
filled by normal metallic electrons. However, a number
of different experimental probes, including neutron scat-
tering, muon spin resonance smSRd, and nuclear mag-
netic resonance sNMRd, have shown that vortex cores in
the high-Tc cuprates are antiferromagnetic rather than
normal metallic.1 This phenomenon has been observed
in almost all high-Tc materials, including LSCO, YBCO,
TBCO, and NSCO; thus it appears to be a universal
property of the high-Tc cuprates.

High-Tc superconducting materials also have highly
unusual transport properties. While conventional metals
have a T2 dependence of resistivity, in accordance with
the predictions of the Fermi-liquid theory, the high-Tc

materials display a linear T dependence of the resistivity
near optimal doping. This dependence extends over a
wide temperature window and seems to be universal
among the cuprates. When the underdoped or some-
times optimally doped SC state is destroyed by applying
a high magnetic field, the resulting “normal state” is not
a conventional conducting state sAndo et al., 1995, 1996;
Boebinger et al., 1996; Hill et al., 2001d but exhibits in-
sulatorlike behavior, at least along the c axis, i.e., the
axis perpendicular to the CuO2 planes. This phenom-
enon may be related to the insulating AF vortices men-
tioned in the previous paragraph.

The high-Tc materials attracted great attention be-
cause of their high SC transition temperatures. How-
ever, many of the striking properties discussed above are
also shared by other materials, which have a similar
phase diagram but typically much reduced temperature
and energy scales. The 2D organic superconductor
k-sBEDT-TTFd2X sX=aniond displays a similar phase
diagram in the temperature versus pressure plane,
where a direct first-order transition between AF and SC
phases can be tuned by pressure or magnetic field sLe-
febvre et al., 2000; Singleton and Mielke, 2002; Taniguchi
et al., 2003d. In this system, the AF transition tempera-
ture is approximately TN,30 K, while the SC transition
temperature is Tc,14 K. In heavy-fermion compounds
like CeCu2sSi1−xGexd2 sKitaoka et al., 2001d, CePd2Si2,
and CeIn3 sMathur et al., 1998d, the SC phase also ap-
pears near the boundary to the AF phase. In all these
systems, even though the underlying solid-state
chemistries are rather different, the resulting
phase diagrams are strikingly similar and robust. This
similarity suggests that the overall features of all these
phase diagrams are controlled by a single energy scale.
Different classes of materials differ only by this overall
energy scale. Another interesting example of competing
antiferromagnetism and superconductivity is that of
quasi-one-dimensional Bechgaard salts. The best studied

material from this family, sTMTSFd2PF6, is an AF
insulator at ambient pressure and becomes a triplet
superconductor above a certain critical pressure
sJerome et al., 1980; Lee et al., 1997, 2003; Vuletic et al.,
2002d.

The discovery of high-Tc superconductivity has
greatly stimulated the theoretical understanding of su-
perconductivity in strongly correlated systems. Since the
theoretical literature is extensive, the readers are re-
ferred to a number of excellent reviews and representa-
tive articles.2 The present review article focuses on a
particular theory, which unifies the AF and SC phases of
the high-Tc cuprates based on an approximate SOs5d
symmetry sZhang, 1997d. The SOs5d theory draws its in-
spiration from the successful application of symmetry
principles in theoretical physics. All fundamental laws of
Nature are statements about symmetry. Conservation of
energy, momentum, and charge are direct consequences
of global symmetries. The forms of the fundamental in-
teractions are dictated by local gauge symmetries. Sym-
metry unifies apparently different physical phenomena
into a common framework. For example, electricity and
magnetism were discovered independently and viewed
as completely different phenomena before the 19th Cen-
tury. Maxwell’s theory and the underlying relativistic
symmetry between space and time unified the electric

field EW and the magnetic field BW into a common
electromagnetic-field tensor Fmn. This unification shows
that electricity and magnetism share a common micro-
scopic origin and can be transformed into each other by
going to different inertial frames. As discussed in the
Introduction, the two robust and universal ordered
phases of the high-temperature superconductor are the
AF and SC phases. The central question in this field
concerns the transition from one phase to the other as
the doping level is varied.

The SOs5d theory unifies the three-dimensional AF
order parameter sNx ,Ny ,Nzd and the two-dimensional
SC order parameter sRe D , Im Dd into a single, five-
dimensional order parameter called the superspin, in a
way similar to the unification of electricity and magne-
tism in Maxwell’s theory:

Fmn =1
0

Ex 0

Ey Bz 0

Ez − By Bx 0
2⇔ na =1

ReD

Nx

Ny

Nz

ImD

2 . s1d

1See, for example, Katano et al., 2000; Lake et al., 2001, 2002;
Mitrovic et al., 2001, 2003; Khaykovich et al., 2002; Levi, 2002;
Miller et al., 2002; Fujita et al., 2003; Kakuyanagi et al., 2003;
Kang et al., 2003.

2Among them are Inui et al., 1988; Schrieffer et al., 1989;
Dagotto, 1994; Scalapino, 1995; Wen and Lee, 1996; Anderson,
1997; Balents et al., 1998; Varma, 1999; Zaanen, 1999b; Abri-
kosov, 2000; Chakravarty et al., 2001; Senthil and Fisher, 2001;
Carlson et al., 2002; Franz, Tesanovic, and Vafek, 2002; Ioffe
and Millis, 2002; Laughlin, 2002; Sachdev, 2002a; Shen et al.,
2002; Anderson et al., 2003; Chubukov et al., 2003; Norman
and Pepin, 2003; Manske et al., 2003; Fu et al., 2004.
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This unification relies on the postulate that a common
microscopic interaction is responsible for both AF and
SC phases in the high-Tc cuprates and related materials.
A well-defined SOs5d transformation rotates one form
of the order into another. Within this framework, the
mysterious transition from the AF to SC phase as a
function of doping is explained in terms of a rotation in
the five-dimensional order-parameter space. Symmetry
principles are not only fundamental and beautiful, they
are also practically useful in extracting information from
a strongly interacting system that can be tested quanti-
tatively. As can be seen in the examples, applying the
isospin SUs2d and the SUs3d symmetries to the strong
interaction allows one to make and test some quantita-
tive predictions even when the symmetry is broken. The
approximate SOs5d symmetry between the AF and SC
phases has many direct consequences, which can be
tested both numerically and experimentally. We shall
discuss a number of these tests in this review article.

Historically, the SOs5d theory concentrated on the
competition between AF and SC orders in the high-Tc

cuprates. The idea of some order competing with super-
conductivity is common in several theories. Staggered
flux or a d-density-wave phase has been suggested sAf-
fleck and Marston, 1988; Wen and Lee, 1996; Chakra-
varty et al., 2001d, the spin-Peierls order has been dis-
cussed sVojta and Sachdev, 1999; Park and Sachdev,
2001d, and spin- and charge-density-wave orders have
been considered sZaanen, 1990a; Kivelson et al., 2001;
Zhang et al., 2002d. The SOs5d theory extends simple
consideration of the competition between AF and SC
phases in the cuprates by unifying the two order param-
eters using a larger symmetry and examining the conse-
quences of such symmetry.

The microscopic interactions in the high-Tc materials
are highly complex, and the resulting phenomenology is
extremely rich. The SOs5d theory is motivated by a con-
fluence of the phenomenological top-down approach
with the microscopic bottom-up approach, as discussed
below.

A. The top-down approach

Upon first glance at the phase diagram of the high-Tc

cuprates, one is immediately impressed by its striking
simplicity; there are only three universal phases in this
diagram: the AF, the SC, and the metallic phases, all
with homogeneous charge distributions. However, closer
inspection reveals a bewildering complexity of other
possible phases, which may not be universally present in
all high-Tc cuprates and which may have inhomoge-
neous charge distributions. Because of this complexity,
formulating a universal theory of high-Tc superconduc-
tivity is a formidable challenge. The strategy of the
SOs5d theory can be best explained with an analogy: we
see a colorful world around us, but the entire rainbow of
colors is composed of only three primary colors. In the

SOs5d theory, the superspin plays the role of the primary
colors.

A central macroscopic hypothesis of the SOs5d theory
is that the ground state and the dynamics of collective
excitations in various phases of the high-Tc cuprates can
be described in terms of the spatial and temporal varia-
tions of the superspin. This is a highly constraining and
experimentally testable hypothesis, since it excludes
many possible phases. It does include a homogeneous
state in which AF and SC phases coexist microscopically.
It includes states with spin and charge-density-wave or-
ders, such as striped phases, checkerboards, and AF vor-
tex cores, which can be obtained from spatial modula-
tions of the superspin. It also includes quantum-
disordered ground states and Cooper-pair density waves,
which can be obtained from the temporal modulation of
the superspin. The metallic Fermi-liquid state on the
overdoped side of the high-Tc superconductivity phase
diagram seems to share the same symmetry as the high-
temperature phase of the underdoped cuprates. There-
fore they can also be identified with the disordered state
of the superspin, although extra care must be given in
that case to treat the gapless fermionic excitations. If
this hypothesis is experimentally proven to be correct, a
great simplicity emerges from the complexity: a full dy-
namical theory of the superspin field can be the univer-
sal theory of the high-Tc cuprates. Part of this review
article is devoted to describing and classifying phases
that can be obtained from this theory. This top-down
approach focuses on the low-energy collective degrees
of freedom and takes as its starting point a theory ex-
pressed exclusively in terms of these collective degrees
of freedom. This is to be contrasted with the conven-
tional approach based on weak-coupling Fermi-liquid
theory, of which the BCS theory is a highly successful
example. For an extensive discussion on the relative
merits of both approaches for the problem of high-Tc

superconductivity, we refer the reader to an excellent
recent review article by Carlson et al. s2002d.

The SOs5d theory is philosophically inspired by the
Landau-Ginzburg theory, a highly successful phenom-
enological theory, in which one first makes observations
of the phase diagram, then introduces one order param-
eter for each broken symmetry phase and constructs a
free-energy functional by expanding in terms of differ-
ent order parameters sa review of earlier work based on
this approach is given by Vonsovsky et al., 1982d. How-
ever, given the complexity of interactions and phases in
the cuprates, introducing one order parameter for each
phase with unconstrained parameters would greatly
compromise the predictive power of the theory. The
SOs5d theory extends the Landau-Ginzburg theory in
several important directions. First, it postulates an ap-
proximately symmetric interaction potential between
the AF and the SC phases in the underdoped regime of
the cuprates, thereby greatly constraining theoretical
model building. Second, it includes a full set of dynamic
variables canonically conjugate to the superspin order
parameters, including the total spin, the total charge,
and the so-called p operators. Therefore, unlike the
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classical Landau-Ginzburg theory, which only contains
the classical order-parameter fields without their dy-
namically conjugate variables, the SOs5d theory is ca-
pable of describing quantum-disordered phases and the
quantum phase transitions between these phases. Be-
cause the quantum-disordered phases are described by
the degrees of freedom canonically conjugate to the
classical order parameters, a definite relationship, the
so-called SOs5d orthogonality relation, exists between
them, which can give highly constrained theoretical pre-
dictions. Therefore, in this sense, the SOs5d theory
makes great use of the Landau-Ginzburg theory but also
goes far beyond it in making more constrained and more
powerful predictions that are subject to experimental
falsification.

B. The bottom-up approach

Soon after the discovery of the high-Tc cuprates,
Anderson s1987d introduced the repulsive Hubbard
model to describe the electronic degrees of freedom in
the CuO2 plane. Its low-energy limit, the t-J model, is
defined by sZhang and Rice, 1988d

H = − t o
kx,x8l

cs
†sxdcssx8d + J o

kx,x8l

SW sxd · SW sx8d , s2d

where the t term describes the hopping of an electron
with spin s from a site x8 to its nearest neighbor x, with
double occupancy removed, and the J term describes the
nearest-neighbor spin-exchange interaction. The main
merit of these models does not lie in their microscopic
accuracy or realism but rather in their conceptual sim-
plicity. However, despite their simplicity, these models
are still very hard to solve, and their phase diagram can-
not be compared directly with experiments.

The t-J model certainly contains an AF phase at half
filling. While it is still not fully settled whether it has a
d-wave SC ground state with a high transition tempera-
ture sPryadko et al., 2003d, it is reasonably convincing
that it has strong d-wave pairing fluctuations sSorella et
al., 2002d. Therefore it is plausible that a small modifica-
tion could give a robust SC ground state. The basic mi-
croscopic hypothesis of the SOs5d theory is that AF and
SC states arise from the same interaction with a com-
mon energy scale of J. This common energy scale justi-
fies the treatment of antiferromagnetism and supercon-
ductivity on an equal footing and is also the origin of an
approximate SOs5d symmetry between these two phases.
By postulating an approximate symmetry between the

AF and SC phases, and by systematically testing this
hypothesis experimentally and numerically, one should
be able to resolve the question of the microscopic
mechanism of high-Tc superconductivity. In this context,
early numerical diagonalizations showed that the low-
lying states of the t-J model fit into irreducible represen-
tations of the SOs5d symmetry group sEder et al., 1998d.
If the SOs5d symmetry is valid, then high-Tc supercon-
ductivity shares a common microscopic origin with the
antiferromagnetism, which is a well understood phe-
nomenon.

The basic idea is to solve these models by two steps.
The first step is a renormalization-group transformation,
which maps these microscopic models to an effective su-
perspin model on a plaquette, typically of the size of
2a32a or larger. This step determines the form and the
parameters of the effective models. The next step is
to solve the effective model either through accurate
numerical calculations or tractable analytical calcula-
tions.

There is a systematic method to carry out the first
step. Using the contractor-renormalization-group
sCORE; Morningstar and Weinstein, 1996d approach,
Altman and Auerbach s2002d derived the projected
SOs5d model from the Hubbard and t-J models. Within
the approximations studied to date, a simple and consis-
tent picture emerges. There are only five low-energy
states on a coarse-grained lattice site, namely, a spin-
singlet state and a spin-triplet state at half filling and a
d-wave hole pair state with two holes. These states cor-
respond exactly to the local and dynamical superspin
degrees of freedom hypothesized in the top-down ap-
proach. The resulting effective SOs5d superspin model,
valid near the underdoped regime, contains only bosonic
degrees of freedom. This model can be studied by quan-
tum Monte Carlo simulations up to very large sizes, and
the accurate determination of the phase diagram is pos-
sible sin contrast to the Hubbard and t-J modelsd be-
cause of the absence of the minus-sign problems. Once
the global phase diagrams are determined, fermionic ex-
citations in each phase can also be studied by approxi-
mate analytic methods. Within this approach, the effec-
tive SOs5d superspin model derived from the
microscopic physics can give a realistic description of the
phenomenology and phase diagram of the high-Tc cu-
prates and account for many of their physical properties
sDorneich et al., 2002a, 2002bd. This agreement can be
further tested, refined, and possibly disproved. This ap-
proach can be best summarized by the following block
diagram:
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While the practical execution of the first step already
introduces errors and uncertainties, we need to remem-
ber that the Hubbard and the t-J models are effective
models themselves, and they contain errors and uncer-
tainties compared with the real materials. The error in-
volved in our coarse-grain process is not inherently
larger than the uncertainties involved in deriving the
Hubbard and the t-J models from more realistic models.
Therefore, as long as we study a reasonable range of the
parameters in the second step and compare them di-
rectly with experiments, we can determine these param-
eters.

This review is intended as a self-contained introduc-
tion to a particular theory of the high-Tc cuprates and
related materials and is organized as follows. Section II
describes three toy models which introduce some impor-
tant concepts used in the rest of the paper. Section III
introduces the concept of the SOs5d superspin and its
symmetry transformation, as well as effective dynamical
models of the superspin. The global phase diagram of
the SOs5d model is discussed and solved numerically in
Sec. IV. Section V introduces exact SOs5d symmetric mi-
croscopic models, the numerical tests of the SOs5d sym-
metry in the t-J and Hubbard models, and the Altman-
Auerbach procedure of deriving the SOs5d model from
microscopic models of the high-Tc cuprates. Section VI
discusses the p-resonance model and the microscopic
mechanism of high-temperature superconductivity. Fi-
nally, in Sec. VII, we discuss experimental predictions of
the SOs5d theory and make comparisons with the tests
performed so far. The readers are assumed to have a
general knowledge of quantum many-body physics and
are referred to several excellent textbooks for pedagogi-
cal introductions to the basic concepts and theoretical
tools sSchrieffer, 1964; Pines and Nozières, 1966; Abri-
kosov et al., 1993; Auerbach, 1994; Tinkham, 1995;
Anderson, 1997; Sachdev, 2000d.

II. THE SPIN FLOP AND THE MOTT-INSULATOR-TO-

SUPERCONDUCTOR TRANSITION

Before presenting the full SOs5d theory, let us first
discuss a much simpler class of toy models, which in-
cludes the anisotropic Heisenberg model in a magnetic
field, the hard-core lattice boson model, and the
negative-U Hubbard model. The low-energy limits of
these models are all equivalent to each other and can be
described by a universal quantum field theory, the SOs3d
quantum nonlinear sigma model. Although these models
are simple to solve, they exhibit some of the key prop-
erties of the high-Tc cuprates, including strong correla-
tion, competition of different orders, low superfluid den-
sity near the insulating phase, maximum of Tc, and the
pseudogap behavior.

The spin-1 /2 anisotropic AF Heisenberg model on a
square lattice is described by the following Hamiltonian:

H = o
kx,x8l

SzsxdVsx,x8dSzsx8d + J o
kx,x8l

fSxsxdSxsxd

+ SysxdSysxdg − Bo
x

Szsxd . s3d

Here, Sa= 1
2ta is the Heisenberg spin operator and ta is

the Pauli matrix. J describes the nearest-neighbor ex-
change of the xy components of the spin, while Vsx ,x8d
describes the z component of the spin interaction. We
shall begin by considering only the nearest-neighbor sde-
noted by kx ,x8ld spin-interaction V. B is an external
magnetic field. At the point of B=0 and J=V, this model
enjoys an SOs3d symmetry generated by the total spin
operators:

Sa = o
x

Sasxd, fSa,Sbg = ieabgSg, fH,Sag = 0. s4d

The order parameter in this problem is the Néel opera-
tor, which transforms according to the vector represen-
tation of the SOs3d group,

Na = o
x

s− dxSasxd, fSa,Nbg = ieabgNg. s5d

Here s−dx=1 if x is on an even site and s−dx=−1 if x is on
an odd site. The symmetry generators and the order pa-
rameters are canonically conjugate degrees of freedom,
and the second part of Eq. s5d is similar to the Heisen-
berg commutation relation fx ,pg= i" between the ca-
nonically conjugate position and momentum. Just as p

can be expressed as s" / id] /]x, one can express

Sa = ieabgNb ]

]Ng , NaSa = 0, s6d

where the second part of the equation, called the SOs3d
orthogonality relation, follows directly from the first. The
symmetry algebra, the canonical conjugation, and the
orthogonality constraint are fundamental concepts im-
portant to the understanding of the dynamics and the
phase diagram of the model.

Let us first consider the classical, mean-field approxi-
mation to the ground state of the anisotropic Heisen-
berg model defined in Eq. s3d. For V.J, the spins like to
align antiferromagnetically along the z direction. In the
Ising phase, Szsxd= s−1dxS, the ground-state energy per
site is given by eIsingsBd=−szV /2dS2, where z is the coor-
dination number, which is 4 for the square lattice. Note
that the energy is independent of the B field in the Ising
phase. For larger values of B, the spins “flop” into the
XY plane and tilt uniformly toward the Z axis fsee Fig.
2sadg. Such a spin-flop state is given by Szsxd=S cos u and
Sxsxd= s−1dxS sin u. The minimal energy configuration is
given by cos u=B /zSsV+Jd, and the energy per site for
this spin-flop state is eXYsBd=−zJS2 /2−B2 /2zsV+Jd.
Comparing the energies of both states, we obtain the
critical value of B where the spin-flop transition occurs:
Bc1=zSÎV2−J2. On the other hand, we require ucos uu
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ø1, which implies a critical field Bc2=zSsV+Jd at which
ucos uu=1, and the staggered order parameter vanishes.
Combining these phase-transition lines, we obtain the
class-B transition in the ground-state phase diagram de-
picted in the B-J /V plane fsee Fig. 3sadg. Here and later
in the paper, the “class-B” transition refers to the tran-
sition induced by the chemical potential or the magnetic
field. At the SOs3d symmetric point, V=J and Bc1=0.
For V,J, the ground state has XY order even at B=0,
and there is no spin-flop transition as a function of the
magnetic field B. The Ising-to-XY transition can also be
tuned by varying J /V at B=0, and the phase transition
occurs at the special SOs3d symmetric Heisenberg point.
This type of transition is also depicted in Fig. 3sad and
will be called the class-A transition in this paper.

The spin-1 /2 Heisenberg model can be mapped to a
hard-core boson model, defined by the following Hamil-
tonian:

H = o
kx,x8l

nsxdVsx,x8dnsx8d −
1

2
J o

kx,x8l

fb†sxdbsx8d

+ H.c.g − mo
x

nsxd . s7d

Here bsxd and b†sxd are the hard-core boson annihila-
tion and creation operators and nsxd=b†sxdbsxd is the
boson density operator. In this context, V, J, and m de-
scribe the interaction, hopping, and the chemical poten-
tial energies, respectively. There are two states per site;

u1l and u0l denote the filled and empty boson states, re-
spectively. They can be identified with the spin-up u↑ l
and the spin-down u↓ l states of the Heisenberg model.
The operators in the two theories can be identified as
follows:

bsxd† = s− dxfSxsxd + iSysxdg ,

bsxd = s− dxfSxsxd − iSysxdg , s8d

nsxd = Szsxd +
1

2
.

We see that these two models are identical to each other
when m=B+zV /2. From this mapping, we see that the
spin-flop phase diagram has another interpretation: the
Ising phase is equivalent to the Mott insulating phase of
bosons with a charge-density-wave sCDWd order in the
ground state. The XY phase is equivalent to the super-
fluid phase of the bosons. The two paramagnetic states
correspond to the full and empty states of the bosons.
While Heisenberg spins are intuitively associated with
the SOs3d spin rotational symmetry, lattice boson mod-
els generically have only a Us1d symmetry generated by
the total number operator N=oxnsxd, which transforms
the boson operators by a phase factor: b†sxd→eiab†sxd
and bsxd→e−iabsxd. From this point of view, it is rather
interesting and nontrivial that the boson model can also
have an additional SOs3d symmetry at the special point

FIG. 2. Spin-flop transition. sad The spin-flop transition of the XXZ Heisenberg model; sbd the Mott insulator-to-superfluid
transition of the hard-core boson model or the U,0 Hubbard model. scd Dscription of both transitions as the spin or the
pseudospin flop transition in the SOs3d nonlinear s model, induced either by the magnetic field or by the chemical potential.

FIG. 3. Systems with competing CDW and superfluid phases: sad Zero-temperature phase diagram of the XXZ Heisenberg model,
the hard-core boson model, or the negative-U Hubbard model. Phase I is the Ising or the charge-density-wave sCDWd phase,
phase II is the XY or the superfluid phase, and phase III is the fully polarized or the normal phase. Class-A transition is induced
by the anisotropy parameter g=J /V, while the class-B transition is induced by the chemical potential or the magnetic field. sbd
Finite-temperature phase diagram for the class-A transition in D=2. Because of the SOs3d symmetry at J=V point, the transition
temperature vanishes according to the Mermin-Wagner theorem. scd Finite-temperature phase diagram for the class-B transition
in D=3. Tbc denotes the SOs3d-symmetric bicritical point.
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J=V because of its equivalence to the Heisenberg
model.

Having discussed the Heisenberg spin model and the
lattice boson models, let us now consider a fermion
model, namely, the negative-U Hubbard model, defined
by the Hamiltonian

H = − t o
kx,x8l

fcs
†sxdcssx8d + H.c.g + Uo

x

Sn↑sxd −
1

2
D

3Sn↓sxd −
1

2
D − mo

x

nssxd , s9d

where cssxd is the fermion operator and nssxd
=cs

†sxdcssxd is the electron density operator at site x with
spin s. Here t, U, and m are the hopping, interaction,
and chemical-potential parameters, respectively. A de-
tailed discussion of the negative-U Hubbard model is
given by Micnas et al. s1990d. The Hubbard model has a
pseudospin SUs2d symmetry generated by the operators

h− = o
x

s− dxc↑sxdc↓sxd ,

h+ = sh−d†, hz =
1

2o
s

Snssxd −
1

2
D , s10d

fha,hbg = ieabghg,

where h±=hx± ihy and a=x ,y ,z, as before. Yang and
Zhang sYang, 1989; Yang and Zhang, 1990; Zhang, 1990d
pointed out that these operators commute with the Hub-
bard Hamiltonian when m=0 si.e., fH ,hag=0d; therefore
they form the symmetry generators of the model. Com-
bined with the standard SUs2d spin rotational symmetry,
the Hubbard model enjoys a SOs4d=SUs2d ^ SUs2d /Z2
symmetry. This symmetry has important consequences
in the phase diagram and the collective modes in the
system. In particular, it implies that the SC and CDW
orders are degenerate at half filling. The SC and the
CDW order parameters are defined by

D− = o
i

ci↑ci↓, D+ = sD−d†, Dz =
1

2o
is

s− 1dinis,

s11d
fha,Dbg = ieabgDg,

where D±=Dx± iDy. The last equation above shows that
the h operators perform the rotation between the SC
and CDW order parameters. Thus ha is the pseudospin
generator and Da is the pseudospin order parameter.
Just like the total spin and the Néel order parameter in
the AF Heisenberg model, they are canonically conju-
gate variables. Since fH ,hag=0 at m=0, this exact pseu-
dospin symmetry implies the degeneracy of SC and
CDW orders at half filling.

The phase diagram of the U,0 Hubbard model cor-
responds to a 1D slice of the 2D phase diagram, as de-
picted in Fig. 3sad. The exact pseudospin symmetry im-
plies that the class-B transition line for the U,0

Hubbard model exactly touches the tip of the Mott lobe,
as shown by the B8 line in Fig. 3sad. At m=0, the SC and
CDW orders are exactly degenerate, and they can be
freely rotated into each other. For mÞ0, the system is
immediately rotated into the SC state. One can add ad-
ditional interactions in the Hubbard model, such as a
nearest-neighbor repulsion, which breaks the SUs2d
pseudospin rotation symmetry even at m=0. In this case,
the pseudospin anisotropy either picks the CDW Mott
insulating phase or the SC phase at half filling. By ad-
justing the nearest-neighbor interaction, one can move
the height of the class-B transition line.

We have seen that the hard-core boson model is
equivalent to the Heisenberg model because of the map-
ping s8d. The U,0 model, on the other hand, is only
equivalent to the Heisenberg model in the low-energy
limit. In fact, it is equivalent to a U.0 Hubbard model
at half filling in the presence of a Zeeman magnetic field.
The ground state of the half-filled Hubbard model is
always AF; therefore its low-energy limit is the same as
that of the Heisenberg model in a magnetic field. All
three models are constructed from very different micro-
scopic origins. However, they all share the same phase
diagram, symmetry group, and low-energy dynamics. In
fact, these universal features can all be captured by a
single effective quantum-field-theory model, namely, the
SOs3d quantum nonlinear s model. This model can be
derived as an effective model from the microscopic
models introduced earlier or it can be constructed
purely from symmetry principles and the associated op-
erator algebra as defined in Eqs. s4d and s5d. The fact
that both derivations yield the same model is hardly sur-
prising, since the universal features of all these models
are direct consequences of their symmetry.

The SOs3d nonlinear s model is defined by the follow-
ing Lagrangian density for a unit vector field na with
na

2 =1:

L =
x

2
vab

2 −
r

2
s]inad2 − Vsnd ,

s12d
vab = nas]tnb − iBbgngd − sa ↔ bd ,

where the Zeeman magnetic field is given by Ba

= 1
2eabgBbg. Without loss of generality, we pick the mag-

netic field B to be along the z direction. x and r are the
susceptibility and stiffness parameters and Vsnd is the
anisotropy potential, which can be taken as Vsnd
=−sg /2dnz

2. Exact SOs3d symmetry is obtained when g

=B=0. g.0 corresponds to easy-axis anisotropy or
J /V,1 in the Heisenberg model. g,0 corresponds to
easy-plane anisotropy or J /V.1 in the phase diagram of
Fig. 3. In the case of g.0, there is a phase transition as
a function of B. To see this, let us expand the first term
in Eq. s12d in the presence of the B field. The time-
independent part contributes to an effective potential
Veff=Vsnd− sB2 /2dsnx

2+ny
2d, from which we see that there

is a phase transition at Bc1=Îg /x. For B,Bc1, the sys-
tem is in the Ising phase, while for B.Bc1 the system is

916 Demler, Hanke, and Zhang: SOs5d theory of antiferromagnetism and superconductivity

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



in the XY phase. Therefore tuning B for a fixed g.0
traces out the class-B transition line, as depicted in Fig.
3sad. On the other hand, fixing B=0 and varying g traces
out the class-A transition line, as depicted in Fig. 3sad.
Therefore we see that the SOs3d nonlinear s model has
a phase diagram similar to that of the microscopic mod-
els discussed earlier. For a more detailed discussion of
phase transitions in SOs3d nonlinear s models, we refer
the reader to an excellent review paper by Auerbach et

al. s2000d.
In D=2, both the XY and the Ising phase can have a

finite-temperature phase transition into the disordered
state. However, because of the Mermin-Wagner theo-
rem, a finite-temperature phase transition is forbidden
at the point B=g=0, where the system has an enhanced
SOs3d symmetry. The finite-temperature phase diagram
is shown in Fig. 3sbd. Approaching from the SC side, the
Kosterlitz-Thouless transition temperature TXY is driven
to zero at the Mott to superfluid transition point J /V

=1. In the 2D XY model, the superfluid density and the
transition temperature TXY are related to each other by
a universal relationship sNelson and Kosterlitz, 1977d;
therefore the vanishing of TXY also implies the vanishing
of the superfluid density as one approaches the Mott to
superfluid transition. Scalettar et al. s1989d and Moreo
and Scalapino s1991d have performed extensive quan-
tum Monte Carlo simulations on the negative-U Hub-
bard model and have indeed concluded that the super-
fluid density vanishes at the symmetric point. The SOs3d
symmetric point leads to a large regime below the mean-
field transition temperature in which fluctuations domi-
nate. The single-particle spectral function of the 2D at-
tractive Hubbard model has been studied extensively by
Allen et al. s1999d near half filling. They identified the
pseudogap behavior in the single-particle density of
states within this fluctuation regime. Based on this study,
they argued that the pseudogap behavior is not only a
consequence of the SC phase fluctuations sDoniach and
Inui, 1990; Emery and Kivelson, 1995; Uemura, 2002d
but also a consequence of the full SOs3d symmetric fluc-
tuations, which also include the fluctuations between the
SC and the CDW phases. Figure 3scd shows the generic
finite-temperature phase diagram of these SOs3d models
in three dimensions. In this case, the Ising and the XY

transition temperatures meet at a single bicritical point
Tbc, which has the enhanced SOs3d symmetry. At the
class-A transition point g=B=0, the quantum dynamics
is fully SOs3d symmetric. On the other hand, at the class-
B transition point T=Tbc, only the static potential is
SOs3d symmetric. We shall return to a detailed discus-
sion of this distinction in Sec. III.C.

The pseudospin SUs2d symmetry of the negative-U
Hubbard model has another important consequence.
Away from half filling, the h operators no longer com-
mute with the Hamiltonian, but they are eigenoperators
of the Hamiltonian, in the sense that

fH,h±g = 7 2mh±. s13d

Thus the h operators create well-defined collective
modes in the system. Since they carry charge ±2, they
usually do not couple to any physical probes. However,
in a SC state, the SC order parameter mixes the h op-
erators with the CDW operator Dz, via Eq. s11d. From
this reasoning, Zhang sZhang, 1990, 1991; Demler et al.,
1996d predicted a pseudo-Goldstone mode in the density
response function at wave vector sp ,pd and energy −2m,
which appears only below the SC transition temperature
Tc. This prediction anticipated the neutron-resonance
mode later discovered in the high-Tc cuprates; a detailed
discussion will be given in Sec. VI.

From the toy models discussed in this section, we have
learned a few very important concepts. Competition be-
tween different orders can sometimes lead to enhanced
symmetries at the multicritical point. Universal proper-
ties of very different microscopic models can be de-
scribed by a single quantum field theory constructed
from the canonically conjugate symmetry generators
and order parameters. The enhanced symmetry natu-
rally leads to a small superfluid density near the Mott
transition. The pseudogap behavior in the single-particle
spectrum can be attributed to the enhanced symmetry
near half filling, and new types of collective Goldstone
modes can be predicted from the symmetry argument.
All these behaviors are reminiscent of the experimental
observations in the high-Tc cuprates. The simplicity of
these models on the one hand and the richness of the
phenomenology on the other inspired the SOs5d theory,
which we shall discuss in the following sections.

III. THE SOs5d GROUP AND EFFECTIVE THEORIES

A. Order parameters and SOs5d group properties

The SOs3d models discussed in the previous section
give a nice description of the quantum phase transition
from the Mott insulating phase with CDW order to the
SC phase. However, these simple models do not have
enough complexity to describe the AF insulator at half
filling and the d-wave SC order away from half filling.
Therefore a natural step is to generalize these models so
that the Mott insulating phase with the scalar CDW or-
der parameter is replaced by a Mott insulating phase
with the vector AF order parameter. The pseudospin
SOs3d symmetry group considered previously arises
from the combination of one real scalar component of
the CDW order parameter with one complex or two real
components of the SC order parameter. After replacing
the scalar CDW order parameter by the three compo-
nents of the AF order parameter and combining them
with the two components of the SC order parameters,
we are led naturally to consider a five-component order-
parameter vector and the SOs5d symmetry group that
transforms it.

In Sec. II, we introduced the crucial concepts of the
order parameter and symmetry generator. Both of these
concepts can be defined locally. In the case of the
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Heisenberg AF model, at least two sites, for instance, SW1

and SW2, are needed to define the total spin SW =SW1+SW2 and

the Néel vector NW =SW1−SW2. Similarly, it is simplest to de-
fine the concept of the SOs5d symmetry generator and
order parameter on two sites with fermion operators cs

and ds, respectively, where s=1,2 is the usual spinor
index. The AF order-parameter operator can be defined
naturally in terms of the difference between the spins of
the c and d fermions as follows:

Na =
1

2
sc†tac − d†tadd ,

s14d
n2 ; N1, n3 ; N2, n4 ; N3.

In view of the strong on-site repulsion in the cuprate
problem, the SC order parameter should be defined on a
bond connecting the c and d fermions. We introduce

D† =
− i

2
c†tyd† =

1

2
s− c↑

†d↓
† + c↓

†d↑
†d, n1 ;

sD† + Dd
2

,

s15d

n5 ;
sD† − Dd

2i
.

We can group these five components together to form a
single vector, na= sn1 ,n2 ,n3 ,n4 ,n5d, called the superspin
since it contains both superconducting and antiferro-
magnetic spin components. The individual components
of the superspin are explicitly defined in the last parts of
Eqs. s14d and s15d.

The concept of the superspin is useful only if there is
a natural symmetry group acting on it. In this case, since
the order parameter is five dimensional, it is natural to
consider the most general rotation in the five-
dimensional order-parameter space spanned by na. In
three dimensions, three Euler angles are needed to
specify a general rotation. In higher dimensions, a rota-
tion is specified by selecting a plane and an angle of
rotation within this plane. Since there are nsn−1d /2 in-
dependent planes in n dimensions, the group SOsnd is
generated by nsn−1d /2 elements, specified in general by
antisymmetric matrices Lab=−Lba, with a=1, . . . ,n. In
particular, the SOs5d group has ten generators. The total
spin and the total charge operators,

Sa =
1

2
sc†tac + d†tadd, Q =

1

2
sc†c + d†d − 2d , s16d

perform the rotation of the AF and SC order parameters
within each subspace. In addition, there are six so-called
p operators, first introduced by Demler and Zhang
s1995d, defined by

pa
† = −

1

2
c†tatyd†, pa = spa

†d†. s17d

They perform the rotation from AF to SC and vice
versa. These infinitesimal rotations are defined by the
commutation relations

fpa
† ,Nbg = idabD†, fpa

† ,Dg = iNa. s18d

The total spin components Sa, the total charge Q, and
the six p operators form the ten generators of the SOs5d
group.

The superspin order parameters na, the associated
SOs5d generators Lab, and their commutation relations
can be expressed compactly and elegantly in terms of
the SOs5d spinor and the five Dirac G matrices. The
four-component SOs5d spinor is defined by

Cm = Scs

ds
† D . s19d

They satisfy the usual anticommutation relations

hCm
† ,Cnj = dmn, hCm,Cnj = hCm

† ,Cn
†j = 0. s20d

Using the C spinor and the five Dirac G matrices ssee
Sec. IX.Bd, we can express na and Lab as

na =
1

2
Cm

† Gmn
a Cn, Lab = −

1

2
Cm

† Gmn
abCn. s21d

The Lab operators form the SOs5d Lie algebra and sat-
isfy the commutation relation

fLab,Lcdg = − isdacLbd + dbdLac − dadLbc − dbcLadd .

s22d

The na and the Cm operators form the vector and the
spinor representations of the SOs5d group, satisfying the
equations

fLab,ncg = − isdacnb − dbcnad s23d

and

fLab,Cmg = − 1
2Gmn

abCn. s24d

If we arrange the ten operators Sa, Q, and pa into Lab’s
by the matrix form
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Lab =1
0

px
† + px 0

py
† + py − Sz 0

pz
† + pz Sy − Sx 0

Q
1

i
spx

† − pxd
1

i
spy

† − pyd
1

i
spz

† − pzd 0
2 s25d

and group na as in Eqs. s14d and s15d, we see that Eqs.
s22d and s23d compactly reproduce all the commutation
relations presented previously. These equations show
that Lab and na are the symmetry generators and the
order-parameter vectors of the SOs5d theory. The com-
mutation relation Eq. s23d is the SOs5d generalization of
the SOs3d communication relation as given in Eqs. s5d
and s11d.

In systems where the unit cell naturally contains two
sites, such as the ladder and bilayer systems, the com-
plete set of operators Lab, na, and Cm can be used to
construct model Hamiltonians with the exact SOs5d sym-
metry, as we shall show in Sec. V.A. In these models,
local operators are coupled to each other so that only
the total symmetry generators, obtained as the sum of
local symmetry generators, commute with the Hamil-
tonian. For two-dimensional models containing only a
single layer, grouping the lattice into clusters of two sites
would break lattice translational and rotational symme-
try. In this case, it is better to use a cluster of four sites
forming a square, which does not break rotational sym-
metry and can lead naturally to the definition of a
d-wave pairing operator sZhang et al., 1999; Altman and
Auerbach, 2002d. Then the Lab, na, and Cm operators are
interpreted as the effective low-energy operators de-
fined on a plaquette, which forms the basis for an effec-
tive low-energy SOs5d theory, rather than the basis of a
microscopic SOs5d model.

Having introduced the concept of local symmetry gen-
erators and order parameters based in real space, we
shall now discuss definitions of these operators in mo-
mentum space. The AF and SC order parameters can be
naturally expressed in terms of the microscopic fermion
operators as

Na = o
p

cp+P
† tacp, D† =

− i

2 o
p

dspdcp
†tyc−p

† ,

s26d
dspd ; cosspxd − cosspyd ,

where P;sp ,pd and dspd is the form factor for the
d-wave pairing operator in two dimensions. These op-
erators can be combined into the five-component super-
spin vector na by using the same convention as before.
The total spin and total charge operators are defined
microscopically as

Sa = o
p

cp
†tacp, Q =

1

2o
p

scp
†cp − 1d , s27d

and the p operators can be defined as

pa
† = o

p

gspdcp+P
† tatyc−p

† . s28d

Here the form factor gspd needs to be chosen appropri-
ately to satisfy the SOs5d commutation relation s22d. In
the original formulation of the SOs5d theory, Zhang
s1997d chose gspd=dspd. In this case, the SOs5d symme-
try algebra s22d only closes approximately near the
Fermi surface. Later, Henley s1998d proposed the choice
gspd=sgnfdspdg. This construction requires introducing
form factors for the AF order parameter, as well. When
the momentum-space operators Sa, Q, and pa

† , as ex-
pressed in Eqs. s27d and s28d, are grouped into Lab ac-
cording to Eq. s25d, the symmetry algebra s22d closes
exactly. However, the p operators are no longer short
ranged.

The SOs5d symmetry generators perform the most
general rotation among the five order parameters. The
quantum numbers of the p operators exactly make up
the difference in quantum numbers between the AF and
SC order parameters, as shown in Table I.

With the proper choice of internal form factors, the p
operators rotate between the AF and SC order param-
eters according to Eq. s18d. Analogously to the electro-
magnetic unification presented in the Introduction, the
p operators generate an infinitesimal rotation between
the AF and SC order parameters similar to the infinitesi-
mal rotation between the electric and magnetic fields
generated by the Lorentz transformation. These com-
mutation relations play a central role in the SOs5d
theory and have profound implications for the relation-
ship between the AF and SC orders—they provide a
basis for unifying these two different types of order in a
single framework. In the AF phase, the operator Na ac-
quires a nonzero expectation value, and the p and SC
operators become canonically conjugate variables in the
sense of Hamiltonian dynamics. Conversely, in the SC
phase the operator D acquires a nonzero expectation
value, and the p and AF operators become canonically
conjugate variables. This canonical relationship is the
key to understanding the collective modes in the SOs5d
theory and in high-Tc superconductivity.

919Demler, Hanke, and Zhang: SOs5d theory of antiferromagnetism and superconductivity

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



The SOs5d group is the minimal group to contain both
AF and SC, the two dominant phases in the high-Tc cu-
prates. However, it is possible to generalize this con-
struction so that it includes other forms of order. For
example, Podolsky et al. s2004d demonstrated how one
can combine AF and triplet SC states using an SOs4d
symmetry sRozhkov and Millis, 2002d. Such a construc-
tion is useful for quasi-one-dimensional Bechgaard salts,
which undergo a transition from an AF insulating state
to a triplet SC state as a function of pressure sJerome et
al., 1980; Lee et al., 1997, 2003; Vuletic et al., 2002d.

To define an SOs4d symmetry for a one-dimensional
electron system, we introduce the total spin, total
charge, and Q operators

Sa =
1

2o
k

sc+,k
† tac+,k + c−,k

† tac−,kd ,

Q =
1

2o
k

sc+,k
† c+,k + c−,k

† c−,k − 2d ,

Q† =
− i

2 o
k

sc+,k
† tyc+,−k

† − c−,k
† tyc−,−k

† d . s29d

Here c±,k
† creates right- or left-moving electrons of mo-

mentum ±kf+k. The spin operators Sa form an SOs3d
algebra of spin rotations given by the second formula of
Eq. s4d. We can also introduce isospin SOs3d algebra by
combining the charge with the Q operators,

Ix =
1

2
sQ† + Qd, Iy =

1

2i
sQ† − Qd, Iz = Q ,

fIa,Ibg = ieabcIc. s30d

Spin and isospin operators together generate an SOs4d
<SOs3d3SOs3d symmetry, which unifies triplet super-
conductivity and antiferromagnetism. We define the
Néel vector and the high-Tc order parameter,

Na =
1

2o
k

sc+,k
† tac−,k + c−,k

† tac+,kd , s31d

Ca =
1

i
o
k

c+,kstytadc−,−k,

and combine them into a single tensor order parameter

Q̂ = 1sRe CW dx sIm CW dx
Nx

sRe CW dy sIm CW dy
Ny

sRe CW dz sIm CW dz
Nz

2 . s32d

One can easily verify that Qaa transforms as a vector
under both spin and isospin rotations,

fSa,Qbbg = ieabgQbg, fIa,Qbbg = ieabcQcb. s33d

One-dimensional electron systems have been studied ex-
tensively using bosonization and renormalization-group
analysis. They have a line of phase transitions between
an antiferromagnetic and a triplet superconducting
phase at a special ratio of the forward- and backward-
scattering amplitudes. Podolsky et al. s2004d pointed out
that anywhere on this line the Q operator commutes
with the Hamiltonian of the system. Hence one finds the
SOs4d symmetry at the AF/triplet SC phase boundary
without any fine-tuning of the parameters. Conse-
quences of this symmetry for Bechgaard salts are re-
viewed by Podolsky et al. s2004d.

Other extensions and generalizations of SOs5d are dis-
cussed by Lin et al. s1998d; Markiewicz and Vaughn
s1998d; Schulz s1998d; Murakami et al. s1999d; Nayak
s2000d; and Wu, Guidry, et al. s2003d.

B. The SOs5d quantum nonlinear s model

In the previous section, we presented the concepts of
local SOs5d order parameters and symmetry generators.
These relationships are purely kinematic and do not re-
fer to any particular Hamiltonian. In Sec. V.A, we shall
discuss microscopic models with exact SOs5d symmetry,
constructed out of these operators. A large class of mod-
els, however, may not have SOs5d symmetry at the mi-
croscopic level, but their long-distance, low-energy
properties may be described in terms of an effective
SOs5d model. In Sec. II, we saw that many different mi-
croscopic models indeed have the SOs3d nonlinear s
model as their universal low-energy description. There-
fore, in order to present a general theory of the AF and
SC phases in the high-Tc superconductors, we first intro-
duce the SOs5d quantum nonlinear s model.

The SOs5d quantum nonlinear s model describes the
kinetic and potential energies of coupled superspin de-
grees of freedom. In the case of the high-Tc cuprates, the
superspin degrees of freedom are most conveniently de-

TABLE I. Quantum numbers of the antiferromagnetic sAFd and the d-wave superconducting sSCd
order parameters, and the p operator. Since the p operator rotates the AF and SC order parameters
into each other, its quantum numbers make up the difference between the AF and SC order param-
eters.

Charge Spin Momentum Internal angular momentum

D, D† or n1, n5 ±2 0 0 d wave
Na or n2,3,4 0 1 sp ,pd s wave

pa, pa
† ±2 1 sp ,pd d wave
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fined on a coarse-grained lattice, with 2a32a lattice
spacing in units of the original cuprate lattice spacing,
where every supersite denotes a snonoverlappingd
plaquette of the original lattice ssee Fig. 29d. There are
44=256 states on a plaquette in the original Hubbard
model, but we shall retain only the six lowest-energy
states, including a spin-singlet state and three spin-
triplet states at half filling, and two paired states with
two holes or two particles away from half filling ssee Fig.
4d. In Secs. V.C and V.D, we shall show, with numerical
calculations, that these are indeed the lowest-energy
states in each charge sector. Additionally, we shall show
explicitly that the local superspin degree of freedom dis-
cussed in this section can be constructed from these six
low-energy states. Proposing the SOs5d quantum nonlin-
ear s model as the low-energy effective model of the
high-Tc cuprates requires the following physical assump-
tions: sid the AF and SC phases and their quantum-
disordered states are the only competing degrees of
freedom in the underdoped regime, and siid fermionic
degrees of freedom are mostly gapped below the
pseudogap temperature. For a d-wave superconductor,
there are also gapless fermion degrees of freedom at the
gap nodes. However, they do not play a significant role
in determining the phase diagram and collective modes
of the system. Our approach is to solve the bosonic part
of the model first, and then include gapless fermions
self-consistently at a later stage sDemler and Zhang,
1999a; Altman and Auerbach, 2002d.

From Eq. s23d and the discussion in Sec. III.A, we see
that Lab and na are conjugate degrees of freedom, very
much similar to fq ,pg= i" in quantum mechanics. This
suggests that we can construct a Hamiltonian from these
conjugate degrees of freedom. The Hamiltonian of the
SOs5d quantum nonlinear s model takes the following
form:

H =
1

2x
o

x,a,b

Lab
2 sxd +

r

2 o
kx,x8l,a

nasxdnasx8d

+ o
x,a,b

BabsxdLabsxd + o
x

V„nsxd… , s34d

where the superspin na vector field is subject to the con-
straint

na
2 = 1. s35d

This Hamiltonian is quantized by the canonical commu-
tation relations s22d and s23d. Here, the first term is the
kinetic energy of the SOs5d rotors, where x has the
physical interpretation of the moment of inertia of the
SOs5d rotors. The second term describes the coupling of
the SOs5d rotors on different sites through the general-
ized stiffness r. The third term introduces the coupling
of external fields to the symmetry generators, while Vsnd
includes anisotropic terms that break the SOs5d symme-
try to the conventional SOs3d3Us1d symmetry. The
SOs5d quantum nonlinear s model is a natural combina-
tion of the SOs3d nonlinear s model, describing the AF
Heisenberg model, and the quantum XY model, describ-

ing the superconductor-to-insulator transition. If we
restrict the superspin to having only components
a=2,3 ,4, then the first two terms describe the symmetric
Heisenberg model, the third term describes the coupling
to a uniform external magnetic field, while the last term
can represent easy-plane or easy-axis anisotropy of the
Néel vector. On the other hand, for a=1,5, the first term
describes the Coulomb or capacitance energy, the sec-
ond term is the Josephson coupling energy, while the
third term describes coupling to an external chemical
potential.

The first two terms of the SOs5d model describe the
competition between quantum disorder and classical or-
der. In the ordered state, the last two terms describe the
competition between the AF and SC orders. Let us first
consider the quantum competition. The first term pre-
fers sharp eigenstates of the angular momentum. On an
isolated site, C;oLab

2 is the Casimir operator of the
SOs5d group in the sense that it commutes with all the
SOs5d generators. The eigenvalues of this operator can
be determined completely from group theory—they are
0, 4, 6 and 10, respectively, for the 1-dimensional SOs5d
singlet, 5-dimensional SOs5d vector, 10-dimensional an-
tisymmetric tensor, and 14-dimensional symmetric,
traceless tensors, respectively. Therefore we see that this
term always prefers a quantum-disordered SOs5d singlet
ground state, which is also a total spin singlet. When the
effective quantum nonlinear s model is constructed by
grouping the sites into plaquettes, the quantum-
disordered ground state corresponds to a plaquette reso-
nating valence bond state, as depicted in Figs. 4sad and
12sad. This ground state is separated from the first ex-
cited state, the fivefold SOs5d vector state, by an energy

FIG. 4. Hilbert space of the projected SOs5d model: sad, sbd,
and scd express the five bosonic states of the projected SOs5d
model in terms of the microscopic states on a plaquette. sdd,
sed, and sfd represent states with well-defined superspin direc-
tions, which can be obtained from the linear combinations of
sad, sbd, and scd. These states are analytically defined in Eq. s55d
and Table II.
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gap of 2/x, which will be reduced when the different
SOs5d rotors are coupled to each other by the second
term. The second term represents the effect of stiffness,
which prefers a fixed direction of the na vector to a fixed
angular momentum. This competition is an appropriate
generalization of the competition between the number-
sharp and phase-sharp states in a superconductor and
the competition between the classical Néel state and the
bond or plaquette singlet state in a Heisenberg antifer-
romagnet. The quantum phase transition occurs near
xr.1.

In the classically ordered state, the last two anisotropy
terms compete to select a ground state. To simplify the
discussion, let us first consider the following simple form
of the static anisotropy potential:

Vsnd = − gsn2
2 + n3

2 + n4
2d . s36d

At the particle-hole symmetric point with vanishing
chemical potential B15=m=0, the AF ground state is se-
lected by g.0, while the SC ground state is selected by
g,0. Here g=0 is the quantum phase-transition point
separating the two ordered phases. This phase transition
belongs to class A in the classification scheme of Sec. II
and is depicted as the A1 transition line in Fig. 13. The
transition point has the full quantum SOs5d symmetry in
the model described above.

It is unlikely that the high-Tc cuprates can be close to
this quantum phase-transition point. In fact, we expect
the anisotropy term g to be large and positive, making
the AF phase strongly favored over the SC phase at half
filling. However, the chemical-potential term has the op-
posite, competing effect and favors superconductivity.
We can observe this by transforming the Hamiltonian
into the Lagrangian density in the continuum limit,

L =
x

2
vabsx,td2 +

r

2
f]knasx,tdg2 − Vfnsx,tdg , s37d

where

vab = nas]tnb − iBbcncd − sa ↔ bd s38d

is the angular velocity. We see that the chemical poten-
tial enters the Lagrangian as a gauge coupling in the
time direction. Expanding the first term in the presence
of the chemical potential m=B15, we obtain an effective
potential

Veffsnd = Vsnd −
s2md2x

2
sn1

2 + n5
2d , s39d

from which we see that the bare V term competes with
the chemical-potential term. For m,mc=Îg /x, the AF
ground state is selected, while for m.mc, the SC ground
state is realized. At the transition point—even though
each term strongly breaks SOs5d symmetry—the com-
bined term gives an effective static potential that is
SOs5d symmetric, as we can see from Eq. s39d. This
quantum phase transition belongs to class B in the clas-
sification scheme of Sec. II. A typical transition of this
type is depicted as the B1 transition line in Fig. 13. Even

though the static potential is SOs5d symmetric, the full
quantum dynamics are not. This can be seen most easily
from the time-dependent term in the Lagrangian. When
we expand the square, the term quadratic in m enters the
effective static potential in Eq. s39d. However, there is
also a m-dependent term involving a first-order time de-
rivative. This term breaks the particle-hole symmetry
and dominates over the second-order time derivative
term in the n1 and n5 variables. In the absence of an
external magnetic field, only second-order time deriva-
tive terms of n2,3,4 enter the Lagrangian. Therefore,
while the chemical-potential term compensates for the
anisotropy potential in Eq. s39d to arrive at an
SOs5d-symmetric static potential, its time-dependent
part breaks the full quantum SOs5d symmetry. This ob-
servation leads to the concept of projected or static
SOs5d symmetry. A model with projected or static SOs5d
symmetry is described by a quantum effective Lagrang-
ian of the form

L =
x

2 o
a=2,3,4

s]tnad2 − xmsn1]tn5 − n5]tn1d − Veffsnd ,

s40d

where the static potential Veff is SOs5d symmetric.
We see that a class-A transition from AF to SC occurs

at a particle-hole symmetric point, and it can have a full
quantum SOs5d symmetry. The class-B transition from
AF to SC is induced by a chemical potential; only static
SOs5d symmetry can be realized at the transition point.
The class-A transition can occur at half filling in organic
superconductors, where the charge gap at half filling is
comparable to the spin-exchange energy. In this system,
the AF-to-SC transition is tuned by pressure, while the
doping level and the chemical potential stay fixed. The
transition from the half-filled AF state to the SC state in
the high-Tc cuprates is far from the class-A transition
point, but static SOs5d symmetry can be realized at the
chemical-potential-induced transition. However, as we
shall see in Sec. IV.B, there are also Mott insulating
states with AF order at fractional filling factors, for in-
stance, at doping level x=1/8. The insulating gap is
much smaller at these fractional Mott phases, and there
is an effective particle-hole symmetry near the tip of the
Mott lobes. For these reasons, a class-A transition with
the full quantum SOs5d symmetry can be realized again
near the tip of fractional Mott phases, as in organic su-
perconductors. Transitions near the fractional Mott insu-
lating lobes are depicted as the A2 and B2 transitions in
the global phase diagram ssee Fig. 13d. In this case, a
transition from a fractional Mott insulating phase with
AF order to the SC state can again be tuned by pressure
without changing the density or the chemical potential.

The SOs5d quantum nonlinear s model is constructed
from two canonically conjugate field operators Lab and
na. In fact, there is a kinematic constraint among these
field operators. In the case of the Heisenberg model, the
total spin operator and the AF Néel order parameter
satisfy an orthogonality constraint, as expressed in Eq.
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s6d. The SOs5d generalization of this constraint can be
expressed as

Labnc + Lbcna + Lcanb = 0. s41d

This identity is valid for any triples a, b, and c, and can
be easily proven by expressing Lab=napb−nbpa, where
pa is the conjugate momentum of na. Geometrically, this
identity expresses the fact that Lab generates a rotation
of the na vector. The infinitesimal rotation vector lies on
the tangent plane of the four-dimensional sphere S4, as
defined by Eq. s35d, and is therefore orthogonal to the na

vector itself. Extending this geometric proof, Wegner
s2000d has shown that the SOs5d orthogonality relation
also follows physically from maximizing the entropy.
Taking the triple a ,b ,c to be 2, 3, 4, and recognizing that
Lab=eabgSg, we find that this identity reduces to the
SOs3d orthogonality relation in Eq. s6d. This SOs5d iden-
tity places a powerful constraint on the expectation val-
ues of various operators. In particular, it quantitatively
predicts the value of the p order parameter in a mixed
state between the AF or SC states. For example, let us
take the a ,b ,c triple to be 1, 2, 5. Equation s41d predicts
that

L15n2 + L52n1 + L21n5 = 0 ⇒ kL25l = kIm pxl =
Qkn2l
kn1l

,

s42d

where we chose the SC phase such that kn5l=0. Here,
Q= kL15l measures the hole density. Since these four ex-
pectation values can easily be measured numerically
and, in principle, experimentally, this relationship can be
tested quantitatively. Recently, Ghosal, Kallin, and Ber-
linsky sGhosal et al., 2002d tested this relationship within
microscopic models of the AF vortex core. In this case,
AF and SC phases coexist in a finite region near the
vortex core, so that both kn1l and kn5l are nonvanishing.
They found that the SOs5d orthogonality constraint is
accurately satisfied in microscopic models.

In this section, we have presented the SOs5d quantum
nonlinear s model as a heuristic and phenomenological
model. The key ingredients of the model are introduced
by observing the robust features of the phase diagram
and the low-energy collective modes of the high-Tc cu-
prate system. This is the top-down approach discussed in
the Introduction. In this sense, the model has a general
validity beyond the underlying microscopic physics.
However, it is also useful to derive such a model directly
from microscopic electronic models. Fortunately, this
bottom-up approach agrees with the phenomenological
approach to a large extent. A rigorous derivation of this
quantum nonlinear s model from an SOs5d-symmetric
microscopic model on a bilayer system will be given in
Sec. V.A, while an approximate derivation from the “re-
alistic” microscopic t-J and Hubbard models will be
given in Sec. V.D.

C. The projected SOs5d model with lattice bosons

In the previous section, we presented the formulation
of the SOs5d quantum nonlinear s model. This model is
formulated in terms of two sets of canonically conjugate
variables—the superspin vector na and the angular mo-
mentum Lab. The two terms that break the full quantum
SOs5d symmetry are the anisotropy term g and the
chemical-potential term m. Therefore this model con-
tains high-energy modes, particularly excitations of the
order of the Mott insulating gap at half filling. For this
reason, Greiter s1997d and Baskaran and Anderson
s1998d questioned whether the effective SOs5d symmetry
could be implemented in the low-energy theory. In the
previous section, it was shown that these two symmetry-
breaking terms could cancel each other in the static po-
tential and the resulting effective potential could still be
SOs5d symmetric. It was also pointed out that the
chemical-potential term breaks the SOs5d symmetry in
the dynamic or time-dependent part of the effective La-
grangian. In response to these observations, Zhang et al.

constructed the projected SOs5d models sZhang et al.,
1999d, which fully project out the high-energy modes,
and obtained a low-energy effective quantum Hamil-
tonian, with an approximately SOs5d-symmetric static
potential.

The first step is to perform a transformation from the
na and Lab coordinates to a set of bosonic operators. We
first express the angular momentum operator as

Lab = napb − nbpa, s43d

where pa is the canonical momentum conjugate to na,
satisfying the Heisenberg commutation relation

fna,pbg = idab. s44d

Furthermore, we can express the canonical coordinates
and momenta in terms of the boson operators as

na =
1
Î2

sta + ta
†d, pa =

1

iÎ2
sta − ta

†d , s45d

where the boson operators satisfy the commutation re-
lation

fta,tb
†g = dab, s46d

and the shalf filledd ground state is defined by tauVl=0.
There are five boson operators: ta= t2 , t3 , t4 are the boson
operators for the magnetic triplet excitations, also called
the magnons, while

t1 =
1
Î2

sth + tpd , t5 =
1

iÎ2
sth − tpd s47d

are the linear combinations of the particle pair stpd and
hole pair sthd annihilation operators. In the SOs5d quan-
tum nonlinear s model formulation, there is an infinite
number of bosonic states per site. However, due to the
first term in Eq. s34d sthe angular momentum termd,
states with higher angular momenta or, equivalently,
higher boson number, are separated by higher energies.
Therefore, as far as the low-energy physics is concerned,
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we can restrict ourselves to the manifold of six states per
site, namely, the ground state uVl and the five bosonic
states ta

†uVl. This restriction is called the hard-core boson
constraint and can be implemented by the condition
ta
†tb

†uVl=0. Within the Hilbert space of hard-core bosons,
the original SOs5d quantum nonlinear s model is
mapped onto the following hard-core boson model:

H = Ds o
x,a=2,3,4

ta
† tasxd + Dc o

x,i=1,5
ti
†tisxd + mo

x

ftp
†tpsxd

− th
†thsxdg − Js o

kxx8l

nasxdnasx8d − Jc o
kxx8l

nisxdnisx8d ,

s48d

where Dc=2/x−2m2x and Ds=2/x−g are the creation
energies for the charge pairs and the triplet magnons, m
is the chemical potential, and Jc and Js are the exchange
energies for SC and AF phases, respectively. In the iso-
tropic case, they are taken to be r in the second term of
Eq. s34d. Expressing ni and na in terms of the bosonic
operators, we see that the Jc and Js terms describe not
only the hopping, but also the spontaneous creation and
annihilation of the charge pairs and the magnons, as de-
picted in Fig. 5.

When Dc=Ds, Jc=Js, and m=0, the model s48d has an
exact quantum SOs5d symmetry. In this case, the energy
to create charge excitations is the same as the energy to
create spin excitations. This situation could be realized
in organic and heavy-fermion superconductors near the
AF phase boundary or in the high-Tc superconductors
near commensurate doping fractions such as x=1/8, as
we shall see in Sec. IV.B. However, for high-Tc systems
near half filling, the energy to create charge excitations
is much greater than the energy to create spin excita-
tions, i.e., Dc@Ds. In this case, the full quantum SOs5d
symmetry is broken but, remarkably, the effective static
potential can still be SOs5d symmetric. This was seen in
the previous section by the cancellation of the aniso-
tropy potential g term by the chemical-potential m term.
In a hard-core boson model s48d with Dc@Ds, a low-
energy effective model can be derived by retaining only
the hole pair state while projecting out the particle pair
state. One imposes the constraint

tp
†sxduVl = 0 s49d

at every site x. The projected Hamiltonian takes the
form

H = Dso
x

ta
† tasxd + D̃co

x

th
†thsxd − Js o

kxx8l

nasxdnasx8d

− Jc o
kxx8l

nisxdnisx8d , s50d

where D̃c=Dc−m. The Hamiltonian s50d has no param-
eters of the order of U. To achieve the static SOs5d sym-

metry, we need Ds, D̃c and Js,Jc. The first condition
can always be met by changing the chemical potential,
whereas the second one requires certain fine tuning.
However, as we shall discuss in Sec. V.D ssee Fig. 31d,
this condition emerges naturally when one derives the
model s50d from the Hubbard model in the relevant re-
gime of parameters.

The form of the projected SOs5d Hamiltonian hardly
changes from the unprojected model s48d, but the defi-
nition of n1 and n5 is changed from

n1 =
1
Î2

st1 + t1
†d =

1

2
sth + tp + th

† + tp
†d ,

n5 =
1
Î2

st5 + t5
†d =

1

2i
sth − tp − th

† + tp
†d s51d

to

n1 =
1

2
sth + th

†d , n5 =
1

2i
sth − th

†d . s52d

From Eq. s51d, we see that n1 and n5 commute with each
other before the projection. However, after the projec-
tion, they acquire a nontrivial commutation relation, as
can be seen from Eq. s52d:

fn1,n5g = i/2. s53d

Therefore the projecting out of doubly occupied sites,
commonly referred to as the Gutzwiller projection, can
be analytically implemented in the SOs5d theory by re-

FIG. 5. Illustration of hopping processes of the magnons and the hole pairs on a ladder. The 3 denotes the center of a plaquette.
An ellipse enclosing two sites denotes a spin singlet. sad Js describes the magnon hopping; sbd Js8 describes the spontaneous creation
and annihilation of a magnon pair; scd Jc describes the hopping of a hole pair; sdd Jc8 describes the spontaneous creation and
annihilation of a hole pair and a particle pair. In the full SOs5d model, Js=Js8 and Jc=Jc8. In the projected SOs5d model, the particle
pair states are removed and Jc8=0.
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taining the form of the Hamiltonian and changing only
the commutation relations.

The Gutzwiller projection implemented through the
modified commutation relations between n1 and n5 is
formally similar to projection onto the lowest Landau
level in the physics of the quantum Hall effect. For elec-
trons moving in a 2D plane, the canonical description
involves two coordinates, X and Y, and two momenta,
PX and PY. However, if the motion of the electron is
fully confined in the lowest Landau level, the projected
coordinate operators become noncommuting and are
given by fX ,Yg= il0

2, where l0 is the magnetic length. In
the context of the projected SOs5d Hamiltonian, the
original rotors at a given site can be viewed as particles
moving on a four-dimensional sphere S4, as defined by
Eq. s35d, embedded in a five-dimensional Euclidean
space. The angular momentum term s1/2xdLab

2 describes
the kinetic motion of the particle on the sphere. The
chemical potential acts as a fictitious magnetic field in
the sn1 ,n5d plane. In the Gutzwiller-Hubbard limit,
where Dc@Ds, a large chemical-potential term is re-

quired to reach the limit D̃c,Ds. The particle motion in
the sn1 ,n5d plane becomes quantized in this limit, as in
the case of the quantum Hall effect, and the noncommu-
tativity of the coordinates sn1 ,n5d given by Eq. s53d
arises as a result of the projection. The projection does
not affect the symmetry of the sphere on which the par-
ticle is moving; however, it restricts the sense of the ki-
netic motion to be chiral, i.e., only along one direction in
the sn1 ,n5d plane ssee Fig. 6d. In this sense, the particle is
moving on a chiral SOs5d-symmetric sphere. The non-
commutativity of the sn1 ,n5d coordinates is equivalent to
the effective Lagrangian fsee Eq. s40d of Sec. III.Bg con-
taining only the first-order time derivative. In fact, from
Eq. s40d, we see that in this case the canonical momenta
associated with the coordinates n1 and n5 are given by

p1 =
dL

dṅ1
= xmn5, p5 =

dL

dṅ5
= − xmn1. s54d

Applying the standard Heisenberg commutation rela-
tion for the conjugate pairs sn1 ,p1d or sn5 ,p5d gives ex-
actly the quantization condition s53d. Note that in Eq.
s54d xm plays the role of Planck’s constant in quantum
mechanics. We see that the projected SOs5d Hamil-
tonian s50d subjected to the quantization condition s53d
is fully equivalent to the effective Lagrangian s40d dis-
cussed in the last section.

Despite its apparent simplicity, the projected SOs5d
lattice model can describe many complex phases, most
of which are seen in the high-Tc cuprates. These differ-
ent phases can be described in terms of different limits
of a single variational wave function of the following
product form:

uCl = p
x

hcos usxd + sin usxdfmasxdta
†sxd + Dsxdth

†sxdgj

3uVl , s55d

where the variational parameters masxd should be real,

while Dsxd is generally complex. The normalization of
the wave function, kC uCl=1, requires the variational
parameters to satisfy

o
a

umasxdu2 + uDsxdu2 = 1. s56d

We can therefore parametrize them as umasxdu2

=cos2 fsxd and uDsxdu2=sin2 fsxd, which is similar to the
SOs5d constraint introduced in Eq. s35d. The expectation
values of the order parameters and the symmetry gen-
erators in this variational state are given by

kCunasxduCl =
1
Î2

sin 2usxdRefmasxdg ,

kCun1sxduCl =
1

2
sin 2usxdRefDsxdg ,

kCun5sxduCl =
1

2
sin 2usxdImfDsxdg , s57d

and

kCuQsxduCl = kCuth
†sxdthsxduCl = sin2 usxduDsxdu2,

kCuSauCl = − kCuieabgtb
†sxdtgsxduCl

= − ieabgsin2 umb
*sxdmgsxd ,

FIG. 6. The chiral SOs5d sphere. This sphere has an
SOs5d-symmetric shape but allows only one sense of the rota-
tion in the SC plane sn1 ,n5d. Small oscillations around the
equator, or the p triplet resonance, are unaffected by the chiral
projection. However, small oscillations around the north pole,
or the p doublet mode, are strongly affected: only one of the
two such modes is retained after the projection.
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kCupasxduCl = kCu
ta
†sxdthsxd

iÎ2
uCl =

sin2 uma
*sxdDsxd

iÎ2
.

s58d

Initially, we restrict our discussion to the case in which
the variational parameters are uniform, describing a
translationally invariant state. Evaluating different
physical operators in this state gives the results summa-
rized in Table II.

As we can see, this wave function not only describes
classically ordered states with spontaneously broken
symmetry, but also quantum-disordered states which are
eigenstates of spin and charge. Generally, Dc and Ds fa-
vor quantum-disordered states, while Jc and Js favor
classically ordered states. Depending on the relative
strength of these parameters, a rich phase diagram can
be obtained.

The phase diagram of the projected SOs5d model with
Jc=2Js;J is shown in Fig. 7. Changing the chemical po-

tential modifies D̃c and traces out a one-dimensional
path on the phase diagram. Along this path the system
goes from the AF state to the uniform AF/SC mixed
phase and then to the SC state. The mixed phase corre-
sponds to only one point on this trajectory si.e., a single
value of the chemical potential mcd, although it covers a
whole range of densities 0,r,rc. This suggests that the
transition may be thought of as a first-order transition
between the AF and SC phases, with a jump in the den-
sity at mc. The spectrum of collective excitations shown
in Fig. 8, however, shows that this phase diagram also
has important features of two second-order phase tran-
sitions. The energy gap to S=1 excitations inside the SC
phase vanishes when the chemical potential reaches the
critical value mc. Such a softening should not occur for
the first-order transition but is required for a continuous
transition into a state with broken spin symmetry. This
shows that models with the SOs5d symmetry have intrin-
sic fine tuning to be exactly at the border between a
single first-order transition and two second-order transi-
tions; in subsequent sections this type of transition will
be classified as a type-1.5 transition. Further discussion
of the phase diagram of the projected SOs5d model is
given in Sec. V.C. Note that effective bosonic Hamilto-

nians similar to Eq. s50d have also been considered by
van Duin and Zaanen s2000d and Park and Sachdev
s2001d.

IV. THE GLOBAL PHASE DIAGRAM OF SOs5d MODELS

A. Phase diagram of the classical model

The two robust ordered phases in the high-Tc cuprates
are the AF phase at half filling and the SC phase away
from half filling. It is important to ask how these two
phases are connected in the global phase diagram as dif-
ferent tuning parameters, such as temperature, doping
level, external magnetic field, etc., are varied. Analyzing
the SOs5d quantum nonlinear s model, Zhang has clas-
sified four generic types of phase diagrams, presented as
Figs. s1Ad–s1Dd in Zhang s1997d. In the next section we
are going to investigate the zero-temperature phase dia-
gram in which the AF and the SC phases are connected
by various quantum-disordered states, often possessing
charge order. In this section, we first focus on the sim-
plest possibility, in which AF and SC are the only two
competing phases in the problem, and discuss the phase
diagram in the plane of temperature and chemical po-
tential, or doping level.

Let us first discuss the general properties of the tran-
sition between two phases, each characterized by its own
order parameter. In particular, we shall focus on the phe-
nomenon of enhanced symmetry at the multicritical
point, at which physically different static correlation
functions show identical asymptotic behavior. In the case
of the CDW-to-SC transition discussed in Sec. II, the
CDW is characterized by an Ising-like Z2 order param-
eter, while the SC is characterized by a Us1d order pa-
rameter. In the case of AF-to-SC transition, the order-
parameter symmetries are SOs3d and Us1d, respectively.
Generically, the phase transition between two ordered
phases can be either a single direct first-order transition
or two second-order phase transitions with a uniform
mixed phase in between, in which both order parameters
are nonzero. This situation can be understood easily by
describing the competition in terms of a Landau-
Ginzburg functional of two competing order parameters
sKosterlitz et al., 1976d, which is given by

TABLE II. Physical properties of various plaquette states classified according to the SOs5d order parameters and symmetry
generators.

Charge Q Spin S AF order knal SC order knil p order kpal

sad Resonating valence bond state: sin u=0 0 0 0 0 0
sbd Magnon state: cos u=0 and sin f=0 0 1 0 0 0
scd Hole-pair state: cos u=0 and cos f=0 −2 0 0 0 0
sdd AF state: 0,sin u,1 and sin f=0 0 indefinite Þ0 0 0
sed SC state: 0,sin u,1 and cos f=0 indefinite 0 0 Þ0 0
sfd Mixed AF/SC state: 0,sin u,1

and 0,sin f,0
indefinite indefinite Þ0 Þ0 Þ0

sgd p state: cos u=0 and 0,cos f,1 indefinite indefinite 0 0 Þ0
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F = r1f1
2 + r2f2

2 + u1f1
4 + u2f2

4 + 2u12f1
2f2

2. s59d

Here, f1 and f2 are vector order parameters with N1
and N2 components, respectively. In the case of current
interest, N1=2 and N2=3 and we can view f1

2=n1
2+n5

2 as
the SC component of the superspin vector, and f2

2=n2
2

+n3
2+n4

2 as the AF component of the superspin vector.

These order parameters are determined by minimizing
the free energy F, and are given by the solutions of

2u1f1
2 + 2u12f2

2 + r1 = 0, 2u12f1
2 + 2u2f2

2 + r2 = 0.

s60d

These equations determine the order parameters
uniquely, except in the case when the determinant of the
linear equations vanishes. At the point when

u1u2 = u12
2 s61d

and

r1

Îu1

=
r2

Îu2

, s62d

the order parameters satisfy the relation

f1
2

Îu2

+
f2

2

Îu1

= const, s63d

but they are not individually determined. In fact, with
the rescaling f̃1

2=f1
2 /Îu2 and f̃2

2=f2
2 /Îu1, the free en-

ergy is exactly SOs5d symmetric with respect to the
scaled variables, and Eq. s63d becomes identical to Eq.
s35d in the SOs5d case. Since the free energy depends
only on the combination f̃2

1+ f̃2
2, one order parameter

can be smoothly rotated into the other without any en-
ergy cost. Equation s61d is the most important condition
for the enhanced symmetry. We shall discuss extensively
in this paper whether this condition is satisfied micro-
scopically or close to some multicritical points in the
high-Tc cuprates. On the other hand, Eq. s62d can always
be tuned. In the case of the AF-to-SC transition, the
chemical potential couples to the square of the SC order

FIG. 7. Phase diagram of the projected SOs5d model s50d sfor
the case Jc=2Js;Jd as a function of ds=DS /4J and d̃c= D̃c /4J.
Variation of the chemical potential changes D̃c and traces out a
one-dimensional trajectory as shown by the dotted line. x

=sin2u and y=cos2f.

FIG. 8. Spectra of the collective excitations of the projected SOs5d model as a function of density. The region 0,r,rc corre-
sponds to the uniform mixed phase of superconductivity sSCd and antiferromagnetism sAFd. Region r.rc corresponds to the SC
phase. The left panel shows the spectra of the spin excitations. For r,rc, there are two gapless spin-wave modes and one gapped
spin-amplitude mode. For r.rc, there is a spin-triplet p-resonance mode. The right panel shows the spectra of the gapless charge
excitations sin the absence of long-range interactionsd. For r,rc the charge mode has quadratic dispersion. The dispersion relation
changes from v~k2 to v~k for the r.rc regime.
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parameter, as we can see from Eq. s39d. Therefore r1 can
be tuned by the chemical potential, and Eq. s62d defines
the critical value of the chemical potential mc at which
the phase transition between AF and SC occurs. At this
point, the chemical potential is held fixed, but the SC
order parameter and the charge density can change con-
tinuously according to Eq. s63d. Since the free energy is
independent of the density at this point, the energy,
which differs from the grand canonical free energy by a
chemical-potential term md, can depend only linearly on
the density. The linear dependence of the energy on
doping is a very special, limiting case. Generally, the
energy-versus-doping curve would either have a nega-
tive curvature, classified as type 1, or a positive curva-
ture, classified as type 2 fsee Fig. 9sadg. The special lim-
iting case of “type 1.5” with zero curvature is only
realized at the SOs5d-symmetric point. The linear de-
pendence of the ground-state energy of a uniform
AF/SC mixed state on the density is a crucial test of the
SOs5d symmetry, which can be performed numerically,
as we shall see in Secs. V.B and V.C. The constancy of
the chemical potential and the constancy of the length of
the SOs5d superspin vector s63d as a function of density
can be tested experimentally as well, as we shall discuss
in Sec. V.B.

The constancy of the chemical potential as a function
of the density in a uniform system is a very special situ-
ation which only follows from the enhanced symmetry at
the phase-transition point. In a system with phase sepa-
ration, the chemical potential is also independent of the
total density, but the local density is nonuniform. The
two phases are generally separated by a domain wall.
The SOs5d-symmetric case can be obtained from the
phase separation case in the limit where the width of the
domain wall goes to infinity and a uniform state is ob-
tained. This situation can be studied analytically by solv-
ing Eq. s60d. Defining the parameters that characterize
the deviation from the symmetric point as w=u12

−Îu1u2 and g= sr1 /Îu1−r2 /Îu2d /2, it is obvious that the

phase transition between the two forms of order is tuned
by g, while w determines the nature of the phase transi-
tion. The phase diagram in the sg ,wd plane is shown in
Fig. 9scd. For w.0, the two ordered phases are sepa-
rated by a first-order line. This type of transition is clas-
sified as type 1. On the other hand, when w,0, the two
ordered phases are separated by two second-order
phase-transition lines with an intermediate mixed phase
where two orders coexist, i.e., kf1lÞ0 and kf2lÞ0. This
type of transition is classified as type 2. The limiting
“type 1.5” behavior corresponds to the symmetric point
w=0. Approaching this point from w.0, the first-order
transition becomes weaker and weaker and the latent
heat associated with the first-order transition becomes
smaller and smaller. Therefore the symmetric point can
be viewed as the end point of a first-order transition. On
the other hand, approaching the symmetric point from
w,0, the width of the intermediate mixed phase be-
comes smaller and smaller, until the two second-order
transition lines merge into a single transition at w=0.
From the above discussion, we learn an important les-
son: the phase transition between two ordered phases
can be either a direct first-order transition or two
second-order transitions with an intermediate mixed
phase. Furthermore, the symmetric point realizes a lim-
iting behavior which separates these two scenarios.
Balents, Fisher, and Nayak s1998d and Lee and Kivelson
s2003d pointed out that the type-1 and type-2 transitions
of a Mott insulator induced by varying the chemical
potential are analogous to the two types of
superconductor-to-normal-state transitions induced by a
magnetic field. The magnetic field induces a direct first-
order transition from the SC state to the normal state in
type-1 superconductors, while it induces two second-
order transitions with an intermediate mixed state in the
type-2 superconductors. Indeed, the limiting “type-1.5”
behavior separating the type-1 and the type-2 supercon-
ductors also has a special symmetry, in which
Bogomol’nyi’s bound for the vortex is satisfied as an

FIG. 9. The three types of phase state in the SOs5d model: The energy sad and the free energy sbd can depend on the density of
a uniform AF/SC mixed state with a negative curvature when u12.Îu1u2 sclassified as type 1d or a positive curvature when
u12,Îu1u2 sclassified as type 2d. The SOs5d-symmetric limiting case of zero curvature, classified as type 1.5, is realized when
u12=Îu1u2. scd The type-1 phase transition from the AF to SC state is a direct first-order transition. There are two second-order
transitions from the AF to SC state in the type-2 case. SOs5d symmetry is realized at the intermediate case of type 1.5.
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equality. We note that recent work of Senthil et al. dis-
cussed an alternative scenario for a direct second-order
transition between two phases with different order pa-
rameters and without a higher symmetry at the transi-
tion point. This was achieved by having fractionalized
excitations at the quantum critical point sSenthil et al.,
2004d.

Let us now turn to the finite-temperature phase tran-
sitions. In D=3, finite-temperature phase transitions as-
sociated with continuous symmetry breaking are pos-
sible. The order parameters f1 and f2 can therefore
each have their own phase-transition temperatures, Tc

and TN. The interesting question is how these two
second-order lines merge as one changes the parameter
g or, equivalently, the chemical potential m, which inter-
changes the relative stability of the two ordered phases.
There are two generic possibilities. The type-1 phase
diagram is shown in Fig. 10sad, where the two second-
order phase-transition lines intersect at a bicritical point,
Tbc, which is also the termination point of the first-order
transition line separating the two ordered phases. This
type of phase diagram is realized for u12.Îu1u2. The
first-order transition at mc separates the AF and SC
states with different densities; therefore the T-vs-d phase
diagram shown in Fig. 10sbd contains a region of phase
separation extending over the doping range 0,d,dc.
The type-2 phase diagram is shown in Fig. 10scd, where
Tc and TN intersect at a tetracritical point, below which
a uniform AF/SC mixed phase separates the two pure
phases by two second-order transition lines. This type of
phase diagram is realized for u12,Îu1u2.

In contrast to the conventional superconductors with
a long coherence length, the high-Tc cuprates have a
short coherence length and a large Ginzburg region.
Thus one has the possibility of observing nontrivial criti-
cal behaviors. An interesting point concerns the symme-
try at the multicritical point where TN and Tc sor, more
generally, T1 and T2d intersect. At the multicritical point
defined by r1=r2=0, the critical fluctuations of the order
parameters couple to each other and renormalize the
coefficients of the fourth-order terms u1, u2, and u12.
There are several possible fixed points. The symmetric

fixed point, also known as the Heisenberg fixed point, is
characterized by u1

*=u2
*=u12

* . The OsN1d3OsN2d sym-
metry is enhanced at this point to the higher OsN1
+N2d symmetry. Another fixed point, called the biconi-
cal tetracritical point in the literature, has nonvanishing
values of u1

*, u2
*, and u12

* at the fixed point, which deviates
from the OsN1+N2d symmetry. The third possible fixed
point is the decoupled fixed point, where u12

* =0 and the
two order parameters decouple from each other.

The relative stability of these three fixed points can be
studied analytically and numerically. The general picture
is that there are two critical values, Nc and Nc8. For N1
+N2,Nc, the symmetric bicritical point is stable, for
Nc,N1+N2,Nc8, the biconical point is stable, while for
N1+N2.Nc8, the decoupled point becomes stable.
Renormalization-group sRGd calculations based on the
4−e expansion sKosterlitz et al., 1976d place the value of
Nc close to 4 and the value of Nc8 close to 11. The RG
flow diagram is shown in Fig. 11 for the cases of N1=3
and N2=2. Initially, all RG trajectories flow towards the
symmetric fixed point. The manner in which the trajec-
tories diverge close to the symmetric point depends on
the values of the initial parameters. The trajectories flow
to the symmetric point when u12

2 =u1u2, they flow to the
biconical point when u12

2 ,u1u2, and they flow outside of
the regime of weak-coupling RG analysis when
u12

2 .u1u2. In the case of competition between AF and
SC, N=N1+N2=5 is very close to Nc, leading to two
important consequences. First, the biconical point
breaks the SOs5d symmetry weakly. The value of the
interaction parameters at the biconical fixed point is
given by su1

* ;u2
* ;u12

* d=2p2es0.0905;0.0847;0.0536d. Ex-
trapolating to e=1 gives the root-mean-square deviation
from the symmetric SOs5d point to about 26%, indicat-
ing weak SOs5d symmetry breaking. The second conse-
quence is that the critical exponent associated with the
flow away from the symmetric SOs5d point is extremely
slow. The first loop 4−e expansion gives the value of
1/13 for the exponent associated with the flow away
from the symmetric point. To get an estimate of the or-
der of magnitude, we take the initial value of the scaling

FIG. 10. The finite-temperature phase diagram in D=3 for the class-B1 transition shown in Fig. 13. sad Direct first-order phase
transition between AF and SC, as a function of the chemical potential; sbd first-order AF-to-SC transition as a function of doping,
classified as the type-1 transition; scd two second-order phase transitions with a uniform AF/SC mix phase in between, classified as
a type-2 transition. The AF and SC transition temperatures TN and Tc merge into either a bicritical Tbc or a tetracritical point Ttc.
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variable taking the flow away from the SOs5d fixed point
to be 0.04. This value is obtained by considering the
quantum corrections associated with a projected SOs5d
model sArrigoni and Hanke, 2000d. In this case, a signifi-
cant deviation away from the symmetric point can only
be observed when the reduced temperature is t= sT
−Tbcd /Tbc<10−11, making the departure from the
SOs5d-symmetric point practically unobservable. In-
deed, numerical simulations of the SOs5d models pre-
sented in Sec. IV.C are consistent with SOs5d-symmetric
behavior over a wide range of temperatures and in very
large systems. However, it should be noted that these
models do not prove the ultimate stability of the sym-
metric point.

The question of the stability of the SOs5d-symmetric
bicritical point has been raised and discussed extensively
in the literature sBurgess et al., 1998; Arrigoni and
Hanke, 2000; Hu and Zhang, 2000; Murakami and Na-
gaosa, 2000; Hu, 2001; Aharony, 2002; Calabrese et al.,
2003; Jöstingmeier et al., 2003d. Because the possible
flow away from the bicritical point is extremely slow,
experimental and numerical observation of the
SOs5d-symmetric bicritical behavior should be possible
over a wide range of temperatures, if the starting micro-
scopic parameters are already close to the symmetric
point u12=Îu1u2. The SOs5d-symmetric bicritical point
has a distinct set of critical exponents, summarized by
Hu and Zhang s2000d, which can be distinguished ex-
perimentally from the usual SOs3d and Us1d behavior. In
this sense, the experimental observation of the bicritical
behavior would demonstrate that the microscopic model
of the high-Tc cuprates is close to the SOs5d symmetry.
In Sec. VII.D we shall discuss the analysis of Murakami
and Nagaosa s2000d showing bicritical scaling behavior
in the k-BEDT organic superconductors. If the micro-
scopic parameters are far from the symmetric point u12

=Îu1u2, other critical behaviors could be observed. Aha-
rony s2002d proposed the decoupled tetracritical fixed
point with u12

* =0. As previously discussed, this critical
point can be observed in experiments only if the micro-
scopic value of u12

* is already close to zero sdue to the
extremely slow flows of parametersd. For the high-Tc cu-
prates, the AF vortex core experiments discussed in Sec.
VII.A clearly show that the AF and SC order param-
eters are strongly and repulsively coupled with u12

* .0.
Therefore the decoupled fixed point is unlikely to be
relevant for these materials. However, this behavior
could be realized in some heavy-fermion systems where
different bands are responsible for the AF and SC
phases separately. Kivelson et al. s2001d and Calabrese et
al. s2003d also considered the possibility of tricritical
points, where some of the quartic terms u1, u2, u12 be-
come negative and the sixth-order terms become impor-
tant. In this case, the phase diagram could have topolo-
gies different from those listed here. The reader is
referred to the more extensive discussions of Kivelson et
al. s2001d, especially Figs. 1scd and 1sdd of that reference.
Negative values of the quartic coefficient in the free-
energy equation s59d may come from the runaway flows
shown in Fig. 11. A multicritical point most closely re-
lated to the bicritical point is the biconical tetracritical
point. Its relevance to the high-Tc cuprates has been dis-
cussed by Zhang s1997; Zhang et al., 2002d.

B. Phase diagram of the quantum model

Having discussed the finite-temperature phase dia-
gram of the classical model, we now present the global
phase diagram of the quantum model at zero tempera-
ture. The quantum phase transitions in the SOs5d model
were discussed in Figs. s1Cd and s1Dd of the article of
Zhang s1997d. The quantum critical behavior of the
SOs5d models has also been studied extensively by
Zaleski and Kopec s2000a, 2000bd and Kopec and
Zaleski s2001, 2003d. This section extends the original
analysis to include quantum-disordered states with inho-
mogeneous charge distributions. The analysis carried
out in this section is based on the bosonic projected
SOs5d model, which bears great similarities to the phase
diagrams of the hard-core boson model studied exten-
sively in the literature sFisher et al., 1989; Bruder et al.,
1993; Scalettar et al., 1995; van Otterlo et al., 1995; Pich
and Frey, 1998; Bernardet et al., 2002; Hebert et al.,
2002d. The iterative construction of the global phase dia-
gram of the SOs5d model is also inspired by the global
phase diagram of the quantum Hall effect constructed
by Kivelson, Lee, and Zhang s1992d.

The projected SOs5d model given in Eq. s50d contains
the creation energy and the hopping process of the mag-
nons and hole pairs. The variational wave function for
this model has the general form given in Eq. s55d, with
variational parameters usxd, masxd, and Dsxd=m1sxd
+ im5sxd. The expectation value of the energy in this
state is given by

FIG. 11. Renormalization-group flow in the su1 /u12 ,u2 /u12d
plane. sIn this figure, u=u1, v=u2 and w=u12.d The
renormalization-group flow is initially attracted towards the
symmetric Heisenberg point labeled by H. The RG trajectories
diverge near the Heisenberg model, with a very small expo-
nent. From Murakami and Nagaosa, 2000.
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kCuHuCl = E„usxd,masxd…

= −
Js

2 o
xx8;a=2,3,4

sin 2usxdsin 2usx8dmasxdmasx8d

−
Jc

4 o
xx8;i=1,5

sin 2usxdsin 2usx8dmisxdmisx8d

+ Ds o
x;a=2,3,4

sin2 usxdma
2sxd

+ D̃c o
x;i=1,5

sin2 usxdmi
2sxd . s64d

The variational minimum is taken with respect to the
normalization condition s56d. In the regime when the
quantum fluctuations are small, usxd can be taken to be
fixed and uniform. In this case, the variational energy is
nothing but the energy functional of a classical, gener-
ally anisotropic SOs5d rotor model, which has been stud-
ied extensively numerically sHu, 2001d. At the point Jc

=2Js and D̃c=Ds in parameter space, this rotor model is
SOs5d symmetric at the classical level. However, unlike
the classical SOs5d rotor, the projected SOs5d model also
contains quantum fluctuations and quantum-disordered
phases. The phase diagram of the projected SOs5d
model has been studied extensively by quantum Monte
Carlo simulations sDorneich et al., 2002b; Riera, 2002a,
2002b; Chen, Capponi, et al., 2003; Jöstingmeier et al.,
2003d, and the results will be reviewed in detail in Sec.
IV.C. When the quantum fluctuations are not strong
enough to destroy classical order, the general topology
of the phase diagram is similar to that classified in Sec.
IV.A.

In this section, we discuss the regime in which quan-
tum fluctuations are non-negligible and focus on the glo-
bal phase diagram when classical order competes with
quantum disorder and uniform states compete with non-
uniform states. In Fig. 4 and Table II, we see that the
classically ordered states are obtained from the linear
superpositions of quantum-disordered states. The
quantum-disordered states are realized in the regime
where the kinetic energy of the superspins Ds and Dc

overwhelm the coupling energy of the superspins Js and
Jc, and the superspin vector becomes disordered in the
temporal domain. In this sense, the quantum description
of the superspin goes far beyond the classical Landau-
Ginzburg theory discussed in the previous section.

By arranging the six elementary states from Fig. 4 into
spatially nonuniform patterns, we have infinitely many
possibilities. In addition to the classically ordered AF
and SC states, in Fig. 12 we illustrate some of the basic
nonuniform states and their associated wave functions,
expressed in terms of usxd, masxd, and Dsxd. Striped or-
der was theoretically predicted and experimentally ob-
served in the high-Tc cuprates sZaanen and Gunnarsson,
1989; Tranquada et al., 1995; Kivelson et al., 1998; White
and Scalapino, 1998d. In a typical striped phase, a mag-
netic stripe of width 2a is separated by a charge stripe of
width 2a, where a is the lattice constant. The stripe state

comes in two forms. For in-phase stripes, both the
charge and the spin periodicity are 4a in the direction
transverse to the stripe direction. For out-of-phase
stripes, the charge periodicity is 4a, while the spin peri-
odicity is 8a. A charge stripe can either be insulating or
superconducting. The SC stripes are defined by their
phase angle; the two nearby SC stripes can be either in
or out of phase. The case when both the insulasting and
the SC stripes are out of phase can be viewed as a su-
perspin spiral, in which the superspin direction rotates
continuously along the direction transverse to the
stripes. fSee Fig. 12scd.g Both types of stripes discussed
here have both AF and SC orders. Another possibility is
the checkerboard pair density wave sPDW; Chen et al.,
2002d, depicted in Fig. 12sdd. It can be obtained from the
in-phase stripe by quantum-disordering the hole pairs in
the SC stripe. This state is insulating with AF and charge
orders. We stress that all insulating states in the SOs5d
theory are obtained from the quantum-disordered states
of the hole pairs. Therefore they are paired insulators, in
contrast to ordinary band insulators or a Wigner crystal
state of the electrons.

Some of the inhomogeneous states observed in the
high-Tc cuprates can be described naturally in terms of
the temporal and spatial ordering of the superspin. The
key question is how they are energetically stabilized in
the projected SOs5d model. These spatially nonuniform
states are usually realized when extended interactions
are considered, which take the form

Hext = SVc o
kxx8l

+ Vc8 o
kkxx8ll

Dnhsxdnhsx8d

+ SVssSTd o
kxx8l

+ Vs8sSTd o
kkxx8ll

D
3 o

ST=0,1,2
ft†sxdt†sx8dgST

ftsxdtsx8dgST

+ Jp o
kxx8l

fta
†sxdtasx8dth

†sx8dthsxd + H.c.g

+ Vp o
kxx8l

fnhsxdntsx8d + nhsx8dntsxdg + ¯ . s65d

Here kxx8l and kkxx8ll denote the summation over the
nearest neighbor and the next-nearest neighbor on a
square lattice. ftsxdtsx8dgST

refers to the total spin ST

=0,1,2 combinations of two magnons on sites kxx8l. The
Vc and Vc8 terms describe the interaction of the hole
pairs, the Vs and Vs8 terms describe the interaction of the
magnons, and the Jp and Vp terms describe the mutual
interaction of the hole pair and the magnon. Since the
projected SOs5d model is defined on a coarse-grained
lattice, the density of the hole pairs, nh, is related to the
hole-doping density by nh=2d. The model Hamiltonian
given by H+Hext has been studied extensively by Chen,
Capponi, et al. s2003d by using both quantum Monte
Carlo methods and mean-field theory. Here we summa-
rize the basic qualitative results. In order to study the
phase diagram of this model, we first focus on the charge
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sector. The charge sector of the projected SOs5d model
is the same as the hard-core boson model introduced in
Eq. s7d of Sec. II. This model has been much studied in
the context of superfluid-to-insulator transition sBruder
et al., 1993; Scalettar et al., 1995; van Otterlo et al., 1995;
Pich and Frey, 1998; Bernardet et al., 2002; Hebert et al.,
2002d. Without the extended interactions Vsx ,x8d in Eq.
s3d, the phase diagram of the hard-core boson is given in
Fig. 3sad. Half filling of the original electron systems in
the cuprates corresponds to the vacuum state of the hole
pairs, or phase III in Fig. 3sad. The chemical potential m
induces a transition into the SC state, labeled as phase
II. Further increase of the chemical potential induces a
transition into a checkerboard-ordered state, labeled as
phase I. This is the class-B transition shown in Fig. 3sad.
Phase I corresponds to nh=1/2 of the hole-pair bosons,
or d=1/4 of the original electrons. When extended in-
teractions in Vsx ,x8d are included, a new insulating
phase develops near the overlapping region of phase I
and phase III, with boson density of nh=1/4 of the hole-
pair bosons, or d=1/8 of the original electrons fsee, for
instance, Fig. 2 of Bruder et al. s1993dg. This insulating
phase can have either striped or checkerboardlike
charge order. Generally, the stripe type of insulating or-
der is favored for Vc8@Vc, and the checkerboard-type
order is favored in the opposite limit sPich and Frey,
1998; Hebert et al., 2002d. With even more extended in-
teractions, additional phases develop at lower rational

densities. These Mott insulating phases at various ratio-
nal densities are shown in Fig. 13. The phase boundary
between the insulating phases with charge order and the
SC phases can be generally classified into types 1, 1.5,
and 2, according to the terminology developed in Sec.
IV.A and Fig. 9. In the last two cases, a mixed phase,
called the supersolid phase, develops near the phase
boundary. After understanding the generic phase dia-
gram of the hard-core lattice boson model, we are now
in a position to discuss the full global phase diagram of
the SOs5d model H+Hext, depicted in Fig. 13. Here the
ordinate denotes the typical ratio of Jc /Vc, but it can
obviously be replaced by other similar parameters. The
nh=0 phase corresponds to the AF state at half filling,
where magnons condense into the singlet ground state.
For large values of J /V, a pure SC state is obtained
where the hole pairs condense into the singlet ground
state. However, besides these two robust, classically or-
dered phases, we also see new insulating phases at nh

=1/4, nh=1/8, and nh=3/8 which correspond to d=1/8,
d=1/16, and d=3/16 in the real system. These new in-
sulating states are stabilized by the extended interac-
tions and have both AF and PDW order fsee, for ex-
ample, Fig. 12sddg. As the chemical potential or the
doping level is varied, a given system traces out a one-
dimensional slice in this phase diagram, with typical
slices B1, B2, and B3 depicted in Fig. 13 swe expect the
quantum parameter J /V to be independent of m for a
given family of materialsd. The nature of the phase tran-
sition B1 is similar to that of the classical model already
discussed in Sec. IV.A. In this case, the phase transition
from the AF to SC state can be further classified into
types 1, 1.5, and 2, as discussed in Sec. IV.A, with the
two latter cases leading to an AF/SC mixed phase at the
phase-transition boundary. For lower values of J /V, the
trace B3 encounters the d=1/8 insulating phase. The
key signature of this type of phase transition is that the
SC Tc will display a pronounced minimum as the doping
variation traces through the d=1/8 insulating state. At
the same time, the AF ordering fpossibly at a wave vec-
tor shifted from sp ,pdg will show reentrant behavior as
doping is varied. The phase transition around the frac-
tional insulating phases can again be classified into types
1, 1.5, and 2, with possible AF/SC, AF/PDW, SC/PDW,
and AF/PDW/SC mixed phases.

So far we have classified all quantum phase transitions
in the SOs5d models according to two broad classes.
Class A describes transitions at a fixed chemical poten-
tial, typically at an effectively particle-hole symmetric
point. Class B describes transitions in which the chemi-
cal potential or the density is varied. Each broad class is
further classified into three types, 1, 2, and 1.5, depend-
ing on whether the transition is a direct first-order tran-
sition, two second-order transitions, or an intermediate
symmetric point in between. The full quantum SOs5d
symmetry can only be realized in the class-A, type-1.5
quantum phase transition. The Heisenberg point in the
hard-core boson problem discussed in Sec. II is one such
example. The g=0 point in the SOs5d quantum nonlin-

FIG. 12. Some possible ground states of the projected SOs5d
model ssee also Fig. 4d. The 3 depicts a resonating-valence-
bond sRVBd -like spin-singlet state on a plaquette, the arrow
denotes the direction of the superspin, and the open circles
depict hole pairs. sad A plaquette RVB state, described by
usxd=0 on every plaquette; sbd an in-phase SC stripe with
asxd=0,p /2 ,0 ,p /2, on each stripe; scd a superspin spiral with
asxd=0,p /2 ,p ,3p /2 on each stripe; sdd a hole-pair checker-
board state with asxd=0 everywhere, except on the hole-pair
plaquettes, where u=p /2 and a=p /2.
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ear s model fEq. s34dg is another example. On the other
hand, the static, or projected SOs5d symmetry can be
realized in class-B, type-1.5 transitions. We believe that
the AF-to-SC transitions in the YBCO, BCCO, and
NCCO systems correspond to class-B1 transitions.
These systems have only an AF-to-SC transition, which
can be further subdivided into types 1, 1.5, and 2, but
they do not encounter additional statically ordered frac-
tional insulating phases. On the other hand, the phase
transition in the LSCO system, where Tc displays a pro-
nounced dip at d=1/8, corresponds to the class-B3 tran-
sition ssee Fig. 13d. In the high-Tc cuprates, the charge
gap at half filling is very large, of the order of U

,6 eV; it is not possible to induce the class-A1 transi-
tion from the AF to the SC state by conventional means.
However, the charge gap at the fractional insulating
states is much smaller, of the order of J, and it is possible
to induce the class-A2 insulator-to-superconductor tran-
sition by applying pressure sLocquet et al., 1998; Sato et
al., 2000; Arumugam et al., 2002; Takeshita et al., 2003d.
It would be interesting to determine whether this tran-
sition point could have the full quantum SOs5d symme-
try.

We can see that the concept of the SOs5d superspin
indeed gives a simple and unified organizational prin-
ciple for understanding the rich phase diagram of the
cuprates and other related systems. This construction of
the global phase diagram can obviously be iterated ad
infinitum to give a beautiful fractal structure of self-
similar phases and phase transitions. All of this complex-
ity can be simply reduced to the five elementary quan-
tum states of the superspin.

C. Numerical simulations of the classical and quantum

models

In this section, we review essentially exact numerical
studies of the classical SOs5d model and the quantum
projected SOs5d model on a lattice sHu, 1999b, 2001;
Dorneich et al., 2002b; Riera, 2002a, 2002b; Chen, Cap-
poni, et al., 2003; Jöstingmeier et al., 2003d. In Sec. V.D
we shall discuss the transformation from the microscopic
models into the effective SOs5d models and determine
the effective parameters. Once this is accomplished, the
phase diagram of the model can be determined reliably
by bosonic quantum Monte Carlo simulations. These
calculations can be carried out for system sizes up to two
orders of magnitude larger than fermionic quantum
Monte Carlo simulations, the latter being plagued, in the
physically interesting regime—i.e., close to half filling—
by the minus-sign problem svan der Linden, 1992d. The
effective models can also be studied numerically in three
dimensions, a significant advantage, since there exists no
AF-ordered phase in two dimensions at finite tempera-
ture snor long-range SC orderd. Thus we are forced to
study the 3D case in order to determine the phase dia-
gram and to show that the scaling behavior is consistent
with an SOs5d-symmetric critical behavior within the pa-
rameter regime studied stemperature and system sized.
The study of microscopic models in three dimensions
was made possible due to a major step forward in the
numerically accessible system sizes sSandvik, 1997, 1999;
Dorneich and Troyer, 2001d: in the bosonic projected
SOs5d model ,10 000 sites were included, in contrast to
just ,100 sites in fermionic quantum Monte Carlo cal-
culations sDopf et al., 1992; Dagotto, 1994; Imada et al.,
1998d. The numerical results, obtained by the technique
of stochastic series expansion sSandvik, 1997, 1999d and
reviewed here, show that the projected SOs5d model can
give a realistic description of the global phase diagram
of the high-Tc cuprates and accounts for many of their
physical properties.

The form of the projected SOs5d Hamiltonian is given
in Eq. s50d. The extended SOs5d model also includes the
interactions expressed in Eq. s65d. We shall discuss the
simple SOs5d model first. Zhang et al. s1999d studied this
Hamiltonian analytically within a mean-field approach.

At the special point Jc=2Js;J and Ds= D̃c, the mean-
field level of the ground-state energy of Hamiltonian
s50d depends on the AF and SC order parameters x

= ktx
†l and y= kth

†l only via their combination x2+y2, which
reflects the SOs5d invariance of the mean-field approxi-

FIG. 13. sColord A typical global phase diagram of the ex-
tended SOs5d model in the parameter space of chemical poten-
tial and the ratio of boson hopping energy over interaction
energy ssee Chen, Capponi, et al., 2003 for detailsd. This phase
diagram shows self-similarity among the insulating states at
half filling and other rational filling fractions. There are two
types of superfluid-insulator transition. The quantum phase
transition of class A can be approached by varying the hopping
energy, for example, by applying a pressure and magnetic field
at constant doping. The quantum phase transition of class B

can be realized by changing the chemical potential or doping.
This theoretical phase diagram can be compared with the glo-
bal phase diagram of the high-Tc cuprates. Different families
of cuprates correspond to different traces of class B. For ex-
ample, we believe YBCO is B1-like, BSCO may be close to
B2-like, and LSCO is B3-like. The vertical dash-dotted line
denotes a boundary in the overdoped region beyond which our
pure bosonic model becomes less accurate. All the phase
boundaries in this figure can be classified into direct first-order
transitions stype 1d, two second-order transitions stype 2d, or a
marginal case with enhanced symmetry stype 1.5d. Type-2 tran-
sitions between CDW lobes and the superconducting state lead
to intermediate supersolid phases.

933Demler, Hanke, and Zhang: SOs5d theory of antiferromagnetism and superconductivity

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



mation. In the full model, however, quantum fluctua-
tions modify the zero-point energy of the bosons in Eq.
s50d, thereby, giving a correction to the ground-state en-
ergy, which depends on x and y separately, and destroy-
ing SOs5d symmetry sZhang et al., 1999d. Hence it is es-
sential to study the full quantum-mechanical model s50d,
including all quantum fluctuations, which can only be
done by means of numerical simulations. After consid-
ering the single SOs5d model, we then compare the
properties of the projected SOs5d model first in two di-
mensions with a variety of salient features of high-
temperature superconductivity such as the global phase
diagram and the neutron-scattering resonance. Finally,
we review an extension of these studies to the 3D pro-
jected SOs5d model. In particular, we show that the scal-
ing behavior near the multicritical point, within the pa-
rameter regime studied ssystem size and temperatured, is
consistent with an SOs5d-symmetrical behavior. The de-
parture away from SOs5d-symmetric scaling can only oc-
cur in a narrow parameter regime that is hardly acces-
sible either experimentally or numerically.

After numerically solving the projected SOs5d model,
we obtain Fig. 14sad, which gives the mean hole-pair and
magnon densities as a function of the chemical potential
for T /J=0.03 and their T→0 extrapolations sDorneich
et al., 2002bd. Similar to the mean-field results, a jump in
the densities can be clearly seen at mc=−0.175, with a
shift in respect to the mean-field value due to the stron-
ger fluctuations of hole pairs, as can be seen in the
Gaussian contributions sZhang et al., 1999d. The nature
of the phase transition at m=mc can be determined by
studying histograms of the hole-pair distribution for
fixed m=mc. While in a homogeneous phase the density
peaks at its mean value, at m=mc we obtain two peaks,
which indicates a first-order transition with a phase
separation between salmostd hole-free regions and re-
gions with high hole-pair density. From Fig. 14sbd we see
that the transition is of first order for T,TP

= s0.20±0.01dJ at m=mP= s−0.168±0.002dJ. Above TP,
the histograms show strongly fluctuating hole-pair den-
sities, suggesting the presence of critical behavior.

Based on these results, the phase diagram of the 2D
projected SOs5d model is obtained in Fig. 15. Unlike the
generic three-dimensional phase diagrams presented in
Fig. 10, there can be no finite-temperature Néel transi-
tion in D=2 because of the Mermin-Wagner theorem.
On the other hand, a continuous transition of the
Kosterlitz-Thouless type is possible for the SC-to-
normal-state transition at finite temperature. The 3D
phase diagram shown in Fig. 10sad takes the form of Fig.
15 in D=2, where the first-order line separating the AF
and SC phases merges into the continuous Kosterlitz-
Thouless transition at a tricritical point P. The SC phase
with finite superfluid density rs is identified by the
power-law decay of the SC correlation function:

Chsrd = fth
†srd + thsrdgfth

†s0d + ths0dg .

The Kosterlitz-Thouless transition line in Fig. 15sad
separates the power-law fChsrd~r−ag from rapid expo-

nential decay fChsrd~e−lrg. A reliable and accurate dis-
tinction between these two decay behaviors requires a
finite-size scaling with large system sizes, as well as an
efficient quantum Monte Carlo estimator for the Green’s
functions appearing in the correlation function. With its
nonlocal update scheme and with our new estimators for
arbitrary Green’s functions, stochastic series expansion
provides both sfor details, see Dorneich and Troyer,
2001d. An alternative method for detecting a Kosterlitz-
Thouless transition exploits the fact that the superfluid
density jumps from zero to a finite value at the
Kosterlitz-Thouless temperature TKT sNelson and Ko-
sterlitz, 1977d. Within stochastic series expansion, the su-
perfluid density can be measured quite easily by count-
ing winding numbers sHarada and Kawashima, 1997d.
Numerically, this criterion is preferable to the arduous
process of direct determination of decay coefficients.
Figure 15sad plots the phase diagram obtained by apply-
ing both criteria independently. The figure shows that
the projected SOs5d model indeed has a Kosterlitz-
Thouless phase with quasi-long-range order whose
domelike form in m -T space looks like that of the high-
Tc cuprates. Both criteria produce the same clearly pro-
nounced phase separation line. It is well known that a
similar transition cannot occur for antiferromagnets
sChakravarty et al., 1988d and that the finite-T AF cor-
relation length j is always finite and behaves like j
~e2prs/kBT, with rs being the spin stiffness. This fact is
confirmed by our numerical results.

FIG. 14. Effect of the chemical potential and of temperature
on hole density: sad j, hole concentration d=r /2= 1

2 kth
†thl and

s, magnon density Sa
1
2 kta

† tal as a function of the chemical po-
tential m at T /J=0.03. The small inset shows a detailed view of
the m region in which the hole-pair density jumps to a finite
value; sbd hole densities of the coexisting phases on the first-
order transition line from salmostd zero to finite hole density at
m=mc as a function of temperature.
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One condition required for an SOs5d-symmetric point
is that the formation energies of hole-pair bosons and of
magnons be identical. This condition is fulfilled along
the line from S to the tricritical point P in Fig. 15. An-
other necessary condition is that hole pairs and magnons
behave in the same way at long distances. This condition
is fulfilled on the dashed line in Fig. 15, where the AF
and SC correlation lengths j become equal. Interest-
ingly, these two conditions are met swithin error-bar ac-
curacyd at the tricritical point P. Of course, the correla-
tion length is still finite here; however, we find relatively
large j values of order 10 to 15 in the immediate vicinity

of point P, demonstrating the importance of SOs5d criti-
cal fluctuations in this region.

In addition, in realistic electron systems, the long-
range part of the Coulomb repulsion between the dou-
bly charged hole pairs disfavors phase separation, while
extended short-ranged interactions described by Eq. s65d
could lead to the formation of stripes and checkerboard
types of states, as discussed in Sec. IV.B. To study the
effect of off-site Coulomb interaction, we have added
additional nearest-neighbor and next-nearest-neighbor
Coulomb repulsions Vc and Vc8=0.67Vc to the projected
SOs5d model. Indeed, a relatively modest Coulomb re-
pulsion of Vc /J<0.2 is enough to completely destroy the
phase separation. One interesting effect of Coulomb in-
teraction in two dimensions is thus to push down the
tricritical point into a quantum-critical point at T=0. In
Sec. IV.A and in Fig. 9scd, we showed that the
SOs5d-symmetric behavior is recovered at the special
point when a direct first-order transition changes into
two second order transitions. Therefore the extended
Coulomb interaction plays the role of the w parameter
in Fig. 9scd and could restore the SOs5d symmetry at the
quantum critical point.

When larger values of extended interaction param-
eters in Eq. s65d are considered, new insulating phases
are expected, following from the general discussions in
Sec. IV.B and Fig. 13. Indeed, Chen, Capponi, et al.
s2003d have performed extensive quantum Monte Carlo
simulations of the SOs5d model and have determined its
generic phase diagram, as shown in Fig. 16. In addition
to the AF and SC phases, there is an insulating pair-
density-wave state around a doping range of x=1/8,
where hole pairs form a checkerboard state in the AF-
ordered background, as depicted in Fig. 12sdd. Near the
phase boundaries between the AF, PDW, and SC phases,
there are mixed phases with coexisting order. The topol-
ogy of the phase diagram obtained from the simulation
agrees well with the mean-field theory of the extended
SOs5d model. One of the main features of the SOs5d
theory is that it provides an elegant explanation for the
neutron resonance peak observed in some high-Tc cu-
prates at q= sp ,pd sDemler and Zhang, 1995; Zhang,
1997d. We refer the reader to the detailed discussion of
the resonance mode in Sec. VI. Experiments show that
the resonance energy vres is an increasing function of Tc,
i.e., vres increases as a function of doping in the under-
doped region and decreases in the overdoped region
sFong et al., 2000d. Figure 15sbd plots the resonance fre-
quency determined from the spin-correlation spectrum
obtained for the projected SOs5d model. As illustrated
in Fig. 8, the spin-wave excitations are massless Gold-
stone modes in the AF phase at m,mc sand T=0d and
become massive when entering into the SC phase. vres
increases monotonically up to the optimal doping mopt
<1. In the overdoped range of the simple SOs5d model,
however, vres is increasing more, in contrast to what hap-
pens in the cuprates. The resonance peak continuously
loses weight as m increases, which is consistent with ex-
perimental observations sFong et al., 2000d.

FIG. 15. Quantum Monte Carlo simulations for the projected
SOs5d model in D=2: sad Phase diagram fsee Eq. s50d with Jc

=JSg in D=2: The squares between S and the tricritical point P

trace the first-order line of phase separation. The solid line
from P to the right edge of the plot traces the Kosterlitz-
Thouless transition between the SC and normal states. The
dashed line separating Nt striplet-dominated regiond and Nh

shole-pair-dominated regiond describes the line of equal AF
and SC correlation lengths. The small inset shows the same
phase diagram on a larger m scale, covering the whole KT
phase. The tricritical point P appears as a result of the
Mermin-Wagner theorem, which does not allow spin ordering
in D=2 at finite temperature. sbd Energy of a single-magnon
excitation in the projected SOs5d model as a function of the
chemical potential. This corresponds to the resonance energy
of the sp ,pd peak of the spin correlations in the fermionic
model smagnons are defined to carry the momentum of the AF
orderd. The numbers in parentheses indicate the peak weights,
i.e., the area under the peak. s20320 lattice at temperature
T /J=0.1.d From Jöstingmeier et al., 2003.
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A comparison of the critical temperature Tc obtained
from Fig. 15 and the resonance frequency vres at optimal
doping yields the ratio Tc /vres,opt=0.23. Again, this is in
qualitative accord with the corresponding ratio for
YBa2Cu3O6+x, for which the experimentally determined
values Tc=93 K sthus kBTC=8.02 meVd and vres,opt

=41 meV yield Tc /vres,opt=0.20.
Now we turn to the numerical simulations of the

SOs5d models in D=3. Two aims motivate our studies of
the projected SOs5d model in three dimensions. First, we
expect to find both AF and SC phases with real long-
range order. We need to determine which of the two
types of phase diagram introduced in Sec. IV.A ssee Fig.
10d is realized in the numerical simulations. Second, we
would like to determine whether the projected SOs5d
model has a certain multicritical point at which the
SOs5d symmetry is asymptotically restored. Since the cu-
prates have a pronounced 2D layer structure with rela-
tively weak couplings between adjacent CuO2 planes,
the 2D and the isotropic 3D model sdiscussed hered
should be two extreme poles for the possible range of
properties of real high-Tc materials. Most numerical
data reviewed here have been obtained by a finite-size
scaling with lattice sites up to 10 000 sDorneich and
Troyer, 2001; Dorneich et al., 2002a, 2002b; Jöstingmeier
et al. 2003d.

The phase diagram and the scaling behavior of the
classical SOs5d model have been studied in detail by Hu
s2001d by means of classical Monte Carlo simulations.
Classical simulations are by orders of magnitude easier
to perform and less demanding of resources than quan-
tum Monte Carlo simulations; hence very large system
sizes can be simulated and highly accurate data can be
obtained. The classical SOs5d model can be obtained di-
rectly from the quantum SOs5d model by taking the ex-
pectation value of the Hamiltonian in the variational
state, as given by Eq. s64d and assuming a constant value
of usxd. This takes the form

H = − J o
kx,x8l

masxdmasx8d + go
x

ma
2sxd

+ wo
x

ma
2sxdmi

2sxd , s66d

where g=Ds− D̃c is the quadratic symmetry-breaking
term, and w is an additional quartic symmetry-breaking
term. Hu established the Tsgd phase diagram, which is of
the type illustrated in Fig. 10sad. The model has an AF
and a SC phase which meet at a bicritical point
sTbc ,gbc=0d. The boundary lines between the disordered
and AF phases and between the disordered and SC
phases merge tangentially at the bicritical point, which is
an important characteristic of SOs5d symmetry sHu,
2001d. The following scaling properties were determined
by Hu and will be used to study the restoration of SOs5d
symmetry in the projected SOs5d model.

For an analysis of the crossover phenomenon, an an-
satz for the behavior of the helicity modulus Y in the
range T,Tcsgd and g.0 is used, which is suggested by
scaling theory sHu, 2001d:

YsT,gd ~ sg − gbcd
n5/f 3 ffsT/Tbc − 1d/sg − gbcd

1/fg .

s67d

Here, n5 is the critical exponent for correlation length at
n=5 and f the crossover exponent. Using Eq. s67d, the
values of n5 and f can be determined in two steps. First,
performing a g scan of YsT=Tbc ,gd returns the ratio
n5 /f:

YsTbc,gd/YsTbc,g8d = fsg − gbcd/sg8 − gbcdg
n5/f. s68d

Then, f is obtained from the slopes
s] /]TdfYsT ,gd /YsT ,g8dg via

FIG. 16. sColord The phase diagram of the extended SOs5d
model obtained by quantum Monte Carlo simulation. The pa-
rameters used in simulation are Ds=4.8, Vc=4.1010, Vc8

=3.6329, and Jp=Vp=0. The lines are guides to the eye only.
The overall topology of the phase diagram agrees well with the
global phase diagram presented in Fig. 13.

FIG. 17. Scaling of the superfluid density near the SOs5d bi-
critical point obtained by classical Monte Carlo simulations.
The critical behaviors of the superfluid density for various g fit
into a single scaling curve, from which SOs5d scaling exponents
were obtained. From Hu, 2001.
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f = lnSg2 − gbc

g1 − gbc

DY lnS ]

]T
UYsT,g1d

YsT,g18d
U

T=Tbc

Y ]

]T
UYsT,g2d

YsT,g28d
U

T=Tbc

D s69d

if g1, g18, g2, and g28 are related by sg1−gbcd / sg18−gbcd
= sg2−gbcd / sg28−gbcd.0. From the scaling plots pre-
sented in Fig. 17, Hu finds the values n5 /f
=0.523±0.002 and f=1.387±0.030.

According to the scaling ansatz in Eq. s67d, the tran-
sition lines between the disordered and AF phases, and
between the disordered and SC phases near the bicriti-
cal point, should be of the form

B2sg − gbcd
1/f =

Tcsgd
Tbc

− 1

and

B3sgbc − gd1/f =
TNsgd

Tbc

− 1. s70d

The ratio B2 /B3 should be given by the inverse ratio
between the AF and SC degrees of freedom, i.e.,

B2/B3 = 3/2. s71d

The values numerically determined by Hu indeed have
the correct ratio: B2=1/4 and B3=1/6.

We now proceed to the phase diagram of the 3D
quantum SOs5d model sJöstingmeier et al., 2003d. Figure
18 shows the AF and SC phases, as expected. Further-
more, the two phase transition lines merge tangentially
into a multicritical point sat Tbc=0.960±0.005 and gbc

=−0.098±0.001d just as in the classical SOs5d system
sHu, 2001d. The line of equal correlation decay of hole
pairs and triplet bosons also merges into this bicritical
point P—a necessary condition at this point for the res-
toration of SOs5d symmetry. Unlike the corresponding
phase in the classical model sHu, 2001d, the SC phase
only extends over a finite g range due to the hard-core
constraint of the hole-pair bosons and agrees with ex-
perimentally determined phase diagrams of the cu-
prates. Obviously, the quantum-mechanical SOs5d
model is “more physical” in this respect than the classi-
cal SOs5d model. In real cuprates the ratio between the
maximum temperatures Tc and TN is about 0.17–0.25,
whereas in the projected SOs5d model we obtain the
values Tc /J=1.465±0.008 at mopt /J<1.7 and TN /J

=1.29±0.01 at m→`. Hence Tc is slightly larger than TN.
In order to obtain realistic ratio for the transition tem-
peratures, it is necessary to relax the strict condition Js

=Jc /2, where SOs5d symmetry is restored on a mean
field level. Choosing Jc /2=0.225Js yields the correct ra-
tio. However, the static symmetry may still be recovered
at the bicritical point, as discussed in Sec. IV.A. At this
point we are primarily concerned with the multicritical
behavior, so we stay with the simple SOs5d model.

A closer look at the phase transition line between the
points S and P ssee Fig. 18d reveals that this line is

slightly inclined, unlike the vertical line seen in the clas-
sical SOs5d model. This indicates that a finite latent heat
is connected with the AF-SC phase transition. In addi-
tion, this means that m is not a scaling variable for the
bicritical point P, as it is in the classical model. The re-
sult in Fig. 18 shows a phase separation regime at m
=mc on the entire transition line from S to P.

We now review the results of a scaling analysis for the
3D quantum SOs5d model, similar to the one performed
by Hu s2001d in a classical SOs5d system sJöstingmeier et

al., 2003d. From this analysis we also find that the SOs5d
symmetry is restored in the region around the bicritical
point sTbc=0.96, m=−0.098d.

We have determined the critical exponents for the on-
set of AF and SC orders for various chemical potentials
as a function of temperature. Far into the SC range, at
m=1.5, we find that the SC helicity modulus follows the
scaling form sFisher et al., 1973d

Y ~ s1 − T/Tcd
n with n = 0.66 ± 0.02,

which agrees with the values obtained by both the e ex-
pansion and numerical analysis of a 3D XY model. On
the AF side, the error bars are larger. For m=−2.25,

CAFs`d ~ s1 − T/Tcd
b3 with b3 = 0.35 ± 0.03,

as expected for a 3D classical Heisenberg model.
To determine n and f, we use Eqs. s68d and s69d,

which express the scaling behavior in the crossover re-
gime scf. Hu, 2001d. We obtain the ratio

n5/f = 0.52 ± 0.01,

which matches the results of the e expansion sKosterlitz
et al., 1976; Hu and Zhang, 2000d. f is then obtained by
using Eq. s69d. The result is

f = 1.43 ± 0.05,

which also agrees with the e expansion for an SOs5d
bicritical point ssee Fig. 19d and with the results of Hu
s2001d.

Let us finally return to the comment by Aharony
s2002d, who, via a rigorous argument, demonstrated that
the decoupled fixed point is stable, as opposed to the
biconical and SOs5d fixed points. However, he also com-
mented that the unstable flow is extremely slow for the
SOs5d case due to the small crossover exponent.

The scaling analysis of the 3D projected SOs5d model
has produced a crossover exponent which matches the
value obtained from a classical SOs5d model and from
the e expansion. This provides strong evidence that the
static correlation functions at the SOs5d multicritical
point are controlled by a fully SOs5d-symmetric point, at
least in a large transient region. However, the isotropic
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SOs5d and biconical fixed points have very similar criti-
cal exponents. Thus, given the statistical and finite-size
errors, as well as the errors due to the extrapolation of
the e-expansion value to e=1, we cannot exclude the
possibility that the multicritical point on the phase dia-
gram is actually the biconical one. On the other hand,
the biconical fixed point should be accompanied by a
uniform AF/SC mixed region sas a function of chemical
potentiald, which was not observed. The decoupled fixed
point appears to be the least compatible with the nu-
merical results presented above. Even if the bicritical
point were fundamentally unstable, as suggested by
Aharony s2002d, one would have to come unrealistically
close to Tbc to observe this. For example, for the pro-
jected SOs5d models, Arrigoni and Hanke s1999d esti-
mated that deviations from the SOs5d behavior might be
observed only when the reduced temperature becomes
smaller than uT−Tbcu /Tbc,10−11. On the other hand, the
other scaling variables, although initially of the order of

1, rapidly scale to zero due to large, negative exponents.
Therefore the SOs5d regime starts to become important
as soon as the AF and SC correlation lengths become
large and basically continues to affect the scaling behav-
ior of the system over the whole accessible region.

Summarizing, accurate quantum Monte Carlo calcula-
tions show that the projected SOs5d model, which com-
bines the idea of SOs5d symmetry with a realistic treat-
ment of the Hubbard gap, is characterized by an
SOs5d-symmetric bicritical point, at least within a large
transient region. Possible flow away from this symmetric
fixed point occurs only within a narrow region in re-
duced temperature, making it impossible to observe ei-
ther experimentally or numerically. This situation is
common to many systems in condensed-matter physics.
For example, due to the well-known Kohn-Luttinger ef-
fect sKohn and Luttinger, 1965d, the Fermi-liquid fixed
point is always unstable towards a SC state. However,
this effect is experimentally irrelevant for most metals
since it only works at extremely low temperatures. An-
other example is the “ordinary” superconductor-to-
normal-state transition at Tc. Strictly speaking, due to
the coupling to the electromagnetic field, this fixed point
is always unstable sHalperin et al., 1974d. However, this
effect is experimentally irrelevant since the associated
critical region is extremely small. Similarly, irrespective
of the question of ultimate stability, the SOs5d fixed
point is a robust one in a large transient regime, and it
can control the physics near the AF and SC transitions.
For all practical purposes, the multicritical point is domi-
nated by the initial flow toward the SOs5d-symmetric
behavior.

V. MICROSCOPIC ORIGIN OF THE SOs5d SYMMETRY

A. Quantum lattice models with exact SOs5d symmetry

Soon after the general SOs5d theory was proposed, a
class of microscopic fermion models with exact SOs5d
symmetry was constructed sBurgess et al., 1998; Henley,
1998; Rabello et al., 1998; Scalapino et al., 1998; Wu, Hu,
and Zhang, 2003d. These models fall into three general
classes. The first class contains models with two sites per
unit cell, such as the ladder and the bilayer models. In
these models, a simple condition among the local inter-
action parameters ensures full quantum SOs5d symme-
try. The second class contains models with only one site
in the unit cell but with longer-ranged interactions. The
third class contains higher-spin fermion models, in par-
ticular the spin-3 /2 Hubbard model. Remarkably, in this
case the models are always SOs5d symmetric without
any fine-tuning of the local interaction parameters and
doping level.

The microscopic SOs5d-symmetric models in the lad-
der or bilayer models were first constructed by Scala-
pino, Zhang, and Hanke sScalapino et al., 1998d and
have been studied extensively both analytically and

FIG. 18. Quantum Monte Carlo simulations for the projected
SOs5d model in D=3: sad Tsmd phase diagram with Js=Jc /2 and
Ds=Dc=J. Nh is the hole-pair-dominated part, Nt the triplet-
dominated part of the high-temperature phase without long-
range order. The separation line between Nh and Nt is the line
of equal spatial correlation decay of hole-pairs and bosons. sbd
Tsdd phase diagram as a function of hole doping d=nh /2. The
first-order transition line from S to P in the Tsmd diagram be-
comes a forbidden region due to phase separation. These two
phase diagrams are consistent with those presented in Figs.
10sad and 10sbd based on general arguments.
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numerically.3 In these models, there are two sites and
42=16 states in the unit cell. In Sec. III.A we discussed
the construction of SOs5d symmetry operators in terms
of the fermion operators for two sites in the unit cell.
Here we shall address the question of whether the mi-
croscopic Hamiltonian commutes with the SOs5d sym-
metry generators. Three interaction parameters, U, V,
and J, fully characterize the most general local interac-
tions on the two sites, which take the form

Hsxd = USnc↑ −
1

2
DSnc↓ −

1

2
D + sc → dd

+ Vsnc − 1dsnd − 1d + JSW cS
W

d − msnc + ndd . s72d

This Hamiltonian can be solved easily for the 16 states
on two sites, and the six energy levels are given in Fig.
20. Since the SOs5d symmetry generators can be ex-
pressed in terms of the microscopic fermion operators,
we can easily determine the transformation properties of
these states under the SOs5d group. There are three
SOs5d singlet states and two fermionic quartet states,
which form the fundamental spinor representations of
SOs5d. We see that the four fermionic states in each
group are always degenerate, without any fine-tuning of
the interaction parameters. The three spin-triplet states
at half filling and the two paired states away from half
filling form the five-dimensional vector representation,
but they are only degenerate if we specify one condition,
namely,

J = 4sU + Vd . s73d

This condition ensures local SOs5d symmetry within the
unit cell. Remarkably, under this condition, a global
SOs5d symmetry is also obtained for a bipartite lattice
including nearest-neighbor hopping. This is best demon-
strated when we write the model in a manifestly

SOs5d-covariant manner. On a bipartite lattice, we intro-
duce the four-component spinor operator

Casx P evend = Scssxd

ds
†sxd

D , Casx P oddd = Sdssxd

cs
†sxd

D .

s74d

The microscopic Hamiltonian including intra-rung hop-
ping t' and inter-rung hopping ti is given by

H = − 2ti o
kx,x8l

fcs
†sxdcssx8d + ds

†sxddssx8dg

− 2t'o
x

fcs
†sxddssxd + H.c.g + o

x

Hsxd . s75d

Under condition s73d, this Hamiltonian can be expressed
in a manifestly SOs5d-invariant manner:

H = 2ti o
kx,x8l

fCasxdRabCbsx8d + H.c.g + t'sCaRabCb

+ H.c.d + o
x

J

4
Lab

2 sxd + S J

8
+

U

2
DsCa

†Ca − 2d2,

s76d

where the R matrix is defined in Sec. IX.B. This model
was originally constructed for the two-legged ladder sys-
tem, but it works equally well for a two-dimensional bi-
layer system.

The phase diagram of this SOs5d-symmetric model has
been studied extensively in the literature. This simple
model has a rich and rather complex phase diagram, de-
pending on the coupling strength and doping. However,
because of the constraints imposed by the SOs5d symme-
try, the phase diagram is much better understood com-
pared to other related models. In the strong-coupling
limit, three phase boundary lines are determined from
the level crossing of the bosonic states on two sites. At
V=−2U, the E0 state becomes degenerate with the E3
states; at V=−U, the E0 state becomes degenerate with
the E1 states; finally, at V=0 the E1 states become de-
generate with the E3 states. The strong-coupling phase
diagram at half filling is shown in Fig. 20sbd.

3Such studies include Duffy et al., 1998; Lin et al., 1998;
Schulz, 1998; Shelton and Senechal, 1998; Arrigoni and Hanke,
1999; Bouwknegt and Schoutens, 1999; Eder et al., 1999; Furu-
saki and Zhang, 1999; Hong and Salk, 1999; Frahm and Stahls-
meier, 2001d.

FIG. 19. sColord Scaling of TN and Tc near the SOs5d bicritical point. Both TN and Tc merge into the bicritical point tangentially,
with the crossover exponent of f=1.43±0.05.
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In the strong-coupling E0 phase, a robust ground state
is obtained as a product of SOs5d singlets on the rungs.
This type of insulating state does not break any lattice
translational or internal rotational symmetry. Since there
are two electrons per unit cell, this insulating state is also
adiabatically connected to the band insulator state. This
state is separated from the excited SOs5d quintet vector
states by a finite energy gap, D=E1−E0=J. In this re-

gime, we consider the low-energy manifold consisting of
six states, namely, one E0 state uVl and five E1 states
nauVl per rung. The low-energy effective Hamiltonian
can be obtained easily by a second-order strong-
coupling expansion and is exactly given by the SOs5d
quantum nonlinear s model Hamiltonian given in Eq.
s34d, with x−1=J and r=Ji = ti

2 / sU+J /2d. The operators
Lab and na act on the six states in the following way:

LabsxduVsxdl = 0,

Labsxduncsxdl = idbcunasxdl − idacunbsxdl ,

nasxduVsxdl = unasxdl, nasxdunbsxdl = dabuVsxdl . s77d

Since the quantum model is exactly SOs5d symmetric,
the anisotropy term Vsnd vanishes identically. Therefore
we see that the SOs5d quantum nonlinear s model, phe-
nomenologically introduced in Sec. III.B, can indeed be
rigorously derived from the microscopic Scalapino-
Zhang-Hanke model defined on a ladder and on a bi-
layer.

In the E0 regime, the Scalapino-Zhang-Hanke model
on the half-filled ladder has an SOs5d rung singlet
ground state with a finite gap towards the SOs5d quintet
excitations. A chemical-potential term of the order of
the gap induces a second-order quantum phase transi-
tion into the SC phase. On the other hand, the
Scalapino-Zhang-Hanke model on the bilayer has a
quantum phase transition even at half filling, when Ji /J

,1. For J.Ji, the ground state is a Mott insulator with-
out any symmetry breaking, with a finite gap towards
the quintet excitations. For J,Ji, the ground state is
classically ordered and breaks the SOs5d symmetry
spontaneously by aligning the superspin in a particular
direction, which can be either AF or SC. Since the re-
sidual symmetry is SOs4d, the Goldstone manifold of the
s model is a four-dimensional sphere SOs5d /SOs4d=S4.
Away from half filling, the SOs5d symmetry is broken by
the chemical-potential term. According to Table I, the p

operators carry charge ±2, and we have fH ,pa
†g=2mpa

† .
However, although the Hamiltonian does not commute
with all the SOs5d generators, it still commutes with the
Casimir operator Lab

2 . For this reason, all states are still
classified by SOs5d quantum numbers and the SOs5d
symmetry makes powerful predictions despite a broken
symmetry away from half filling. The phase diagram for
the two-dimensional Scalapino-Zhang-Hanke bilayer
model is shown in Fig. 21. For Ji @J, the ground state is
classically ordered. The chemical potential induces a
quantum phase transition from the SOs5d uniform mixed
AF/SC state to the SC state at m=0. This transition is
exactly the superspin flop transition discussed in Sec.
III.B. For Ji !J, the ground state is quantum disordered
at half filling. A second-order quantum phase transition
from the singlet Mott insulator state to the SC state is
induced at finite m=mc. The exact SOs5d bilayer model
offers an ideal theoretical laboratory for studying the
collective modes, especially the p-resonance mode dis-

FIG. 20. Quantum lattice model with exact SOs5d symmetry:
sad Under the condition specified by Eq. s73d, the 16 states on
a rung are classified into six groups, each transforming irreduc-
ibly under the SOs5d group. uVl is an SOs5d singlet state; nauVl
describes five states that transform as SOs5d vectors; Ca

† uVl are
four states that form an SOs5d spinor; four states CauVl also
correspond to a spinor; RabCaCbuVl and RabCa

†Cb
† uVl are two

SOs5d singlet states. The figure also gives energies of all mul-
tiplets for the SOs5d-symmetric ladder model described by
Eqs. s72d and s73d. sbd Strong-coupling phase diagram of the
SOs5d-symmetric ladder model in the sU ,Vd space. The E0, E1,
and E3 phases are regions in parameter space where the re-
spective states have the lowest energy.
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cussed in Sec. VI, since their sharpness is protected by
the exact SOs5d symmetry. The Mott phase has five mas-
sive collective modes, a doublet of charge modes, and a
triplet of spin modes. The energy of the two charge
modes splits at finite chemical potential, and the energy
of one of the charge modes vanishes at the second-order
phase-transition boundary. This charge mode continues
into the SC phase as the phase Goldstone mode. The
spin-triplet mode of the Mott phase continues smoothly
into the SC phase and becomes the pseudo-Goldstone
mode, or the p-resonance mode of the SC phase. The
ordered phase at half filling has four Goldstone modes.
The direction of the order parameter can be smoothly
rotated from AF to SC at half filling. When the order
parameter points in the AF direction, the four Gold-
stone modes decompose into two spin-wave modes and
two charge modes. When the order parameter is rotated
into the SC direction, the four Goldstone modes decom-
pose into a spin triplet and a Goldstone phase mode.
The energy of the triplet Goldstone mode sthe massive
p moded increases continuously with the chemical po-
tential, while the Goldstone phase mode remains gap-
less.

Having discussed the E0 regime at length, let us now
turn to the E1 regime, in which the SOs5d quintet state
has the lowest energy. In this case, we can restrict our-
selves to the low-energy manifold of five states on each
rung. The effective theory within this low-energy mani-
fold can again be obtained by the strong-coupling
second-order perturbation theory, and is given by

H = K o
kx,x8l

LabsxdLabsx8d , s78d

where K= ti
2 / sU /2−J /4d. This effective Hamiltonian is

the SOs5d generalization of the AF spin-1 Heisenberg
model. Here we must distinguish between the one-
dimensional ladder model and the two-dimensional bi-

layer model. In one-dimensional models, the ground
state is separated from the SOs5d vector excitation by a
finite-energy gap. In fact, an exact ground state can be
constructed for the SOs5d vector model by generalizing
the AKLT model for the spin-1 chain. Such a state also
preserves the lattice translational and internal rotational
symmetry. However, in two-dimensional bilayer models,
the effective exchange coupling between the SOs5d vec-
tors will lead to a state with spontaneously broken SOs5d
symmetry, with the SOs5d adjoint order parameter
kLablÞ0. This order parameter is formed by the linear
superposition of two SOs5d vector states, na and nb.
Without loss of generality, let us consider the case where
kL15lÞ0. In this case, the SOs5d generators L15,
hL23 ,L24 ,L34j leave the state invariant. These set of gen-
erators form a Us1d3SUs2d symmetry group. Therefore
the Goldstone manifold is the coset space

SOs5d/fUs1d 3 SUs2dg = CP3, s79d

where CP3 is the six sreald dimensional complex projec-
tive space, which can be described by the complex coor-
dinates sz1 ,z2 ,z3 ,z4d, satisfying uz1u2+ uz2u2+ uz3u2+ uz4u2

=1 and with the points related by a Us1d gauge transfor-
mation zi→eiazi identified. Since the CP3 manifold is six
dimensional, there are six Goldstone bosons in this case.
Here we see that there is an important difference be-
tween the SOs5d-symmetric Scalapino-Zhang-Hanke
model and the SOs3d-symmetric Heisenberg model. In
the Heisenberg model, the vector representation is iden-
tical for the adjoint representation: there is only one
type of classically ordered AF state. In the SOs5d case,
the symmetry breaking can occur either in the vector or
the adjoint representations of the SOs5d group, which
are inequivalent, and the resulting Goldstone manifolds
are S4 and CP3, respectively. The adjoint symmetry-
breaking pattern has been used by Murakami, Nagaosa,
and Sigrist to unify p-wave superconductivity with ferro-
magnetism sMurakami et al., 1999d.

In the weak-coupling limit, powerful renormalization-
group analysis has been applied to study the SOs5d sym-
metry in ladder models. The main conclusions are simi-
lar to the strong-coupling analysis; therefore we shall
review only the most remarkable and distinct results.
Lin, Balents, and Fisher sLin et al., 1998d, Arrigoni and
Hanke s1999d, Schulz s1998d, and Shelton and Senechal
s1998d carried out detailed RG analyses and showed that
RG transformation always scales the most generic lad-
der model towards an SOs5d-symmetric ladder model.
This is a remarkable result and shows that the quantum
SOs5d symmetry does not need to be postulated at the
microscopic level but could emerge as a result of scaling
in the long-wavelength and low-energy limit. Moreover,
Lin et al. s1998d showed that even the SOs8d symmetry
could emerge at half filling. Another interesting and re-
markable result was obtained recently. In the transition
region between the singlet E0 phase and the charge-
ordered E3 phase, RG analysis of the weak-coupling
limit showed the existence of a new phase, called the
staggered-flux phase, or the DDW sd-density-waved

FIG. 21. Phase diagram of the bilayer SOs5d model plotted as
Ji /J vs m. The entire phase-transition line from the Mott phase
into any of the ordered phases is a second-order quantum
phase transition. The Mott insulating state has five massive
collective modes. The SOs5d-symmetric AF/SC uniform mixed
state at half filling has four gapless collective modes. The SC
state has a spin-triplet p-resonance mode and one massless
charge Goldstone mode.
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phase, which has staggered circulating current on the
plaquettes sFjaerstad and Marston, 2002; Marston et al.,
2002; Schollwoeck et al., 2003; Wu, Liu, and Fradkin,
2003d. This phase has been proposed to explain the
pseudogap behavior in the high-Tc cuprates sAffleck and
Marston, 1988; Chakravarty et al., 2001d.

Exactly SOs5d-symmetric models can also be con-
structed for the single-layer model sBurgess et al., 1998;
Henley, 1998; Rabello et al., 1998d. In this case, there is
no natural way to group two sites to form a local, four-
component SOs5d spinor. However, one can introduce a
SOs5d spinor in momentum space by defining

tCp = hcp↑,cp↓,gspdc−p+P,↑
† ,gspdc−p+P,↓

† j , s80d

where gspd=sgnscos px−cos pyd= ±1 is the form factor
introduced by Henley s1998d. As discussed in Sec. III.A,
this factor is needed to ensure the closure of the SOs5d
algebra. Indeed, with this choice, the C spinors form the
canonical commutation relation

hCpa
† ,Cp8bj = dabdp,p8

, s81d

hCpa
† ,Cp8b

† j = hCpa,Cp8bj = − gspdRabdp+p8,P. s82d

If we restrict both p and p8 to be inside the magnetic
Brillouin zone, the right-hand side of the second equa-
tion vanishes and the Cpa spinors commute in the same
way as the cps spinors. Any Hamiltonian constructed by
forming singlets of the basic spinors would be manifestly
SOs5d symmetric.

Because of the nonanalyticity associated with the
function gspd, this class of SOs5d-symmetric models con-
tains long-ranged interactions in real space. However,
similar kinds of long-ranged interactions are also present
in the original BCS model due to the truncation of in-
teractions in momentum space. Therefore this class of
SOs5d models can be best viewed as a group of low-
energy effective models resulting from integrating out
states far from the Fermi surface. These models may
address an important issue in the field of high-
temperature superconductivity, which concerns the na-
ture of the quasiparticle spectrum at the d-wave SC-
to-AF transition. In the pure d-wave SC state, the SC
order parameter is described by the form factor dspd
= scos px−cos pyd. When the system is rotated into a uni-
form mixed AF/SC state, the form factor of the resulting
AF order parameter is given by gspddspd= ucos px

−cos pyu, which contains nodes at the same positions as
in the pure d-wave SC state. When doping is further
reduced, a uniform component of the AF gap develops
across the Fermi surface, filling the d-wave nodes. This
uniform AF gap gradually evolves into the AF Mott in-
sulating gap at half filling ssee Fig. 22d. Based on this
scenario, Zacher et al. s2000d explained the d-wave-like
dispersion of the quasiparticle in the insulating state
sRonning et al., 1998d. Filling the d nodes with the uni-
form AF gap also naturally explains the small gap ob-
served in photoemission experiments in the lightly
doped cuprates sShen et al., 2004d. This theory of quasi-

particle evolution is also similar to the scenario of quan-
tum disordering the nodal quasiparticles developed by
Balents et al. s1998, 1999d, Franz, Tesanovic, and Vafek
s2002d, and Herbut s2002d. Recent studies have found
that the generalized Hubbard model for spin-3 /2 fermi-
ons enjoys an exact and generic SOs5d symmetry with-
out any fine-tuning of model parameters and filling fac-
tors sWu, Hu, and Zhang, 2003d. Such a model can be
accurately realized in systems of ultracold atoms on op-
tical lattices, where the interaction is local and s-wave
scattering dominates sJaksch et al., 1998; Greiner, 2002;
Hofstetter et al., 2002d. In the Hubbard model with spin-
1 /2 fermions, two fermions on the same site can only
form a total spin ST=0 state; the ST=1 state is forbidden
by the Pauli principle. Therefore only one local interac-
tion parameter specifies the on-site interaction. By a
similar argument, two spin-3 /2 fermions on the same
site can only form the total spin ST=0,2 states; the ST

=1,3 states are forbidden by the Pauli principle. There-
fore the generalized Hubbard model for spin-3 /2 fermi-
ons is given by

H = − t o
kijl,s

hcis
† cjs + H.c.j − mo

is

cis
† cis

+ U0o
i

P0
†sidP0sid + U2 o

i,m=±2,±1,0
P2m

† sidP2msid ,

s83d

where t is the hopping integral, m is the chemical poten-
tial, and P0

† ,P2m
† are the singlet sST=0d and quintet sST

=2d pairing operators, defined as

P0
†sidfP20

† sidg =
1
Î2

hc3/2
† c−3/2

† 7 c1/2
† c−1/2

† j ,

P2,2
† sid = c3/2

† c1/2
† , P2,1

† sid = c3/2
† c−1/2

† ,

P2,−1
† sid = c1/2

† c−3/2
† , P2,−2

† sid = c−1/2
† c−3/2

† . s84d

Remarkably, this generalized Hubbard model for spin-
3 /2 fermions is always SOs5d symmetric, without any
fine-tuning of parameters and filling factors. This can be
seen easily from the energy-level diagram of a single
site, which contains 16 states and six energy levels for
spin-3 /2 fermions, as depicted in Fig. 23. The E1,4,6 lev-
els are nondegenerate, the degeneracy of the E2,5 levels
is fourfold, and the degeneracy of the E3 level is fivefold.
We see that, without any fine-tuning of interaction pa-
rameters, this pattern of degeneracy exactly matches the
singlet, the quartet sfundamental spinord, and the quin-
tet sfundamental vectord representations of the SOs5d
group. It can also be easily verified that the hopping
term preserves the global SOs5d symmetry. In fact, it
preserves an even larger symmetry group, namely,
SOs8d. The SOs8d symmetry is always broken by inter-
actions; however, under special circumstances, its sub-
groups, SOs7d, SOs6d, and SOs5d3SUs2d can be realized
in addition to the generic SOs5d symmetry. In this paper
we focus mainly on application of the SOs5d theory to
the AF/SC systems. However, from the above discus-

942 Demler, Hanke, and Zhang: SOs5d theory of antiferromagnetism and superconductivity

Rev. Mod. Phys., Vol. 76, No. 3, July 2004



sions, we can see that ultracold atoms on optical lattices
also provide a fertile ground for investigating higher
symmetries in strongly correlated systems, because of
the higher spins of the atoms and the accuracy of the
local-interaction approximation. In the case of the spin-
3 /2 systems, the generic SOs5d symmetry makes power-
ful predictions on the symmetries at quantum phase-
transition lines, spectrum degeneracies, topology of the
ground-state manifolds, and low-energy effective theo-
ries of the Goldstone bosons. With the emerging conver-
gence between the atomic and condensed-matter phys-
ics, we expect symmetry concepts and their multiple
manifestations to play an ever-increasing role in these
fields.

Fermions in exact SOs5d models have a non-Abelian
holonomy associated with them sDemler and Zhang,
1999ad. The four components of an SOs5d spinor repre-
sent four states but only two energy levels, each being
doubly degenerate. As one varies some adiabatic param-
eters and returns to the same starting value, the states
inside a doublet can be rotated into each other by a
unitary transformation. This interesting mathematical
property has been used to predict SOs5d generalization
of the Andreev effect and the non-Abelian Aharonov-
Bohm effect sDemler and Zhang, 1999ad.

B. Variational wave functions

In this section we shall discuss a crucial test of the
SOs5d symmetry by investigating the microscopic wave
functions of the t-J model. In Sec. IV.A, we showed that
the transition from the AF state at half filling to a pure
d-wave SC state away from half filling can generally be
classified into three types. Within the general form of
the static potential as given in Eq. s59d, the type-1 first-
order transition is realized for u12

2 .u1u2. For u12
2 ,u1u2,

the type-2 transition involves two second-order transi-
tions with an intermediate mixed phase in which the AF
and the d-wave SC order coexist uniformly. Only for
u12

2 =u1u2 is an intermediate type-1.5 transition realized,
in which the potential can be rescaled to take an
SOs5d-symmetric form and a smooth rotation between
the AF and the d-wave SC states is possible. If we inves-

tigate only states with uniform densities, these three pos-
sibilities can be distinguished easily by the curvature in
the plot of the ground-state energy as a function of dop-
ing d. The curvature would be negative sconcaved, posi-
tive sconvexd, or zero sflatd for these three possibilities,
as shown in Fig. 9. In the concave case, the uniform
phase would be thermodynamically unstable, and a
Maxwell’s construction leads to a phase-separated
ground state, in which each phase has a distinct density.

This interesting prediction can be tested numerically
in the t-J model. At this moment, exact diagonalization
of the t-J model with large system size is not possible
due to the exponential growth of the Hilbert space, and
reliable Monte Carlo simulation cannot be carried out
due to the fermion minus-sign problem. A successful
method employs the variational quantum Monte Carlo
method ssee, in particular, Gros, 1989; Himeda and
Ogata, 1999; Calandra and Sorella, 2000; Anderson et
al., 2003, and references thereind. Historically, the varia-
tional quantum Monte Carlo method was first used to
investigate the resonating valence bond type of varia-
tional wave function proposed by Anderson s1987d. By

FIG. 22. Evolution of the quasiparticle states when doping is reduced: sad pure d-wave SC gap with nodal quasiparticles; sbd the
pure d-wave SC gap is rotated into an AF gap of the form ucos px−cos pyu; scd a large uniform component of the AF/Mott insulating
gap is developed on top of the ucos px−cos pyu gap when doping is reduced close to zero.

FIG. 23. Eigenstates of the spin 3/2 problem on a single site.
The longer sshorterd arrows denote Sz=3/2 s1/2d and the up
sdownd directions denote the 1 s2d sign. The E1,4 ,6 ssingletd,
E2,5 squartetd, and E3 squintetd sets can also be classified as
SOs5d singlet, spinor, and vector representations.
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investigating various variational wave functions, this
method can address the issue of d-wave pairing in the
ground state and the possibility of a uniform mixed
phase with AF and d-wave SC order for the 2D t-J
model.

The first question is whether the uniform mixed state
has a lower energy than the pure d-wave SC or AF state
near half filling. In earlier work by Zhang et al. s1988d
and by Yokoyama and Ogata s1996d, it was shown that
the Gutzwiller approximation gives a reliable estimate
for the variational energies for the pure d-wave SC state.
However, if the AF order parameter is taken into ac-
count in the Gutzwiller approximation, there exists no
region in the phase diagram where the AF state is stabi-
lized. On the other hand, Himeda and Ogata s1999d
showed that when the variational parameters Dd, DAF,
and m were determined from a variational Monte Carlo
simulation, in which the double occupancy prohibition is
rigorously treated, then the Gutzwiller-projected trial
wave function of the uniform mixed state has a lower
energy than the pure d-wave SC state with DAF=0, in
the doping range 0,d,10%. Using Green’s-function
Monte Carlo with stochastic reconfiguration, Calandra
and Sorella s2000d also concluded that the AF correla-
tion coexists with SC and persists up to d=10%. Himeda
and Ogata used the following Gutzwiller projected trial
wave function:

ucl = PGuc0sDd,DAF,mdl , s85d

where Dd, DAF, and m are the variational parameters re-
lating to d-wave SC and AF orders and m is the chemical
potential. PG=pis1− n̂i↑n̂i↓d stands for the Gutzwiller
projection operator. The wave function uc0sDd ,DAF ,mdl
is a mixed BCS/spin-density-wave function, i.e.,

uc0sDd,DAF,mdl = p
k,ss=±d

suk
ssd + vk

ssddk↑
ssd†d−k↓

ssd†du0l , s86d

where the index s= h±j takes care of the electron opera-
tors acting on the AsBd sublattice in the AF state. The
uk’s and vk’s contain the variational parameters Dd, DAF,
and m and are defined in detail by Himeda and Ogata
s1999d. Figure 24 is reproduced from their paper and
plots the ground-state energy and the staggered magne-
tization as a function of doping d.

We see that in the Himeda and Ogata variational
quantum Monte Carlo work the uniform mixed phase of
the AF and d-wave SC phases has a lower energy than
the pure d-wave SC state up to a doping of about 10%.
At half filling, the energy was found to be close to the
best estimated value in the Green’s-function Monte
Carlo method s−0.1994 to −0.200 76d, which provides
support for the wave-function ansatz equation s86d.

The second point of interest is that, according to the
Himada and Ogata results in Fig. 24, the ground-state
energy is a linear function of doping d in this region,
with essentially zero curvature. This implies that the
chemical potential m is constant. Since the wave function
of Himada and Ogata describes a mixed state with uni-
form density, the energy-versus-doping plot can gener-

ally have three distinct possibilities, as enumerated in
Fig. 9. Therefore, from the fact that the curvature is
nearly flat, we determine that the condition u12

2 =u1u2 is
fulfilled, which places the t-J model at J / t=0.3 into the
domain of attraction of the SOs5d fixed point sArrigoni
and Hanke, 2000; Murakami and Nagaosa, 2000d.

C. Exact diagonalization of the t-J and Hubbard models

In the previous section we discussed the test of the
SOs5d symmetry through the variational wave functions
in the t-J model. In this section, we shall describe nu-
merical calculations of the dynamic correlation functions
and the exact diagonalization of the spectrum, which
also tests the SOs5d symmetry of the microscopic t-J and
Hubbard models. A microscopic model has a symmetry
if its generators G commute with the Hamiltonian H,
i.e., fH ,Gg=0. In the SOs5d theory, the pa operators are
the nontrivial generators of the symmetry. In models
constructed in Sec. V.A, the pa operators indeed com-
mute with the Hamiltonian. However, there are models
in which the symmetry generators do not commute with
the Hamiltonian but satisfy a weaker condition,
fH ,G±g= ±lG±, where l is a c-number eigenvalue fsee,
e.g., Eq. s13d in Sec. IIg. These operators are called
eigenoperators of the Hamiltonian. In this case, from
one eigenstate of the Hamiltonian, one can still generate
a multiplet of eigenstates by the repeated actions of G±.
However, the eigenstates within a multiplet are not de-
generate, but their energies are equally spaced by l. A
classic example is the precession of a spin in a magnetic
field, where

FIG. 24. Doping dependence of the ground-state energy stwo
upper curvesd and staggered magnetization slower curved for
the t-J model with J / t=0.3. The state with uniform AF and
d-wave SC order has lower energy than the pure d-wave SC
state for 0,d,10%; furthermore, the energy of the uniform
AF/SC mixed state depends linearly on d, fitting into the
SOs5d-symmetric type-1.5 transition classified in Fig. 9. From
Himeda and Ogata, 1999.
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H = v0Sz; fH,S±g = ± v0S± s87d

and v0 is the Lamor frequency of the spin precession.
Although in this case the spin rotational symmetry is
broken explicitly by the magnetic field in the z direction
and the eigenstates within the multiplets are no longer
degenerate, the multiplet structure of the symmetry is
still visible in the spectrum and can be sampled by the
ladder operators. If one calculates the dynamical re-
sponse function of S±, only a single d peak is present at
v=v0.

The pa operators defined in Eq. s28d do not commute
with the Hubbard or t-J model Hamiltonian, but analyti-
cal and numerical calculations show that they are ap-
proximate eigenoperators of these model, in the sense
that

fH,pa
†g < vppa

† s88d

is satisfied in the low-energy sector. This means that the
dynamic autocorrelation function of the pa operators
contains a sharp pole at vp, with broad spectral weight
possibly distributed at higher energies. Using a T-matrix
approximation, Demler and Zhang s1995d verified this
approximate equation with vp=Js1−nd /2−2m. This cal-
culation will be reviewed in Sec. VI.D. The first numeri-
cal test for a low-energy SOs5d symmetry in a micro-
scopic model has been performed by Meixner et al.
s1997d using the Lanczos s1950d exact diagonalization
technique. The analysis presented in their paper showed
that the dynamical correlation function of the p opera-
tor,

pa
†svd = −

1

p
ImkC0

Nupa

1

v − H + E0
N+2 + ih

pa
† uC0

Nl ,

s89d

where H is the standard Hubbard Hamiltonian, uC0
Nl its

ground state with N electrons, and E0
N the corresponding

ground-state energy, yielded a single sharp excitation
peak at low-energy vp, accompanied by an incoherent
background at higher energies. The large separation be-
tween the peak and the continuum and the large relative
spectral weight of the peak demonstrated that indeed
the p operator is an approximate eigenoperator of the
Hamiltonian ssee Fig. 25d. Also in accordance with the
perturbative result of Demler and Zhang s1995d, the pre-
cession frequency vp decreases for decreased doping.
Furthermore, a comparison with a bubble approxima-
tion for this correlation function showed that the sharp
peak near vp originated solely from vertex corrections
si.e., collective behaviord.

Not only can the dynamic correlation function of the
pa operators s89d be measured numerically for micro-
scopic models, thus providing a test of the approximate
SOs5d symmetry, but they can also be directly measured
in neutron-scattering experiments in the SC state. We
shall discuss these experiments in Sec. VI.

Exact numerical diagonalization of the t-J and Hub-
bard models gives eigenstates and eigenvalues on a
finite-size cluster, whose degeneracy pattern can be used

directly to test the SOs5d symmetry. In order to explain
the main idea, let us first examine the variational wave
function of the projected SOs5d model given in Eq. s55d.
This wave function describes a broken-symmetry state
formed by a linear superposition of states with different
spin or charge quantum numbers. This type of state can
only be realized in infinite systems. On a finite-size
system, all eigenstates must have definite spin
and charge quantum numbers. Denoting t†sxd
=masxdta

†sxd+Dsxdth
†sxd, we can expand the coherent

state described by Eq. s55d as

uCl = Scos uN + cos uN−1 sin uo
x

t†sxd

+ cos uN−2 sin u2 o
xÞy

t†sxdt†syd

+ cos uN−3 sin u3 o
xÞyÞz

t†sxdt†sydt†szd + ¯ D .

s90d

For Dsxd=0, we see that the AF-ordered state can be
expressed as a linear superposition of states with differ-
ent numbers of magnons, forming states with different
total spins. While states with different total spins are
separated by finite energy gaps in a finite-size system,
these energy gaps could vanish in the thermodynamic
limit, allowing magnons to “condense” into the ground
state. For masxd=0, we see that the SC state can be ex-
pressed as a linear superposition of states with different
numbers of hole pairs, with different total charge. A

FIG. 25. Exact diagonalization results for the dynamical cor-
relation function of the p operator on a 10-site Hubbard sys-
tem with U=8t. A single d-function-like peak with pronounced
weight is visible near v=0 for the p operator, proving the
eigenoperator relation s88d in the low-energy regime. This pre-
cession frequency vp decreases with decreasing doping. An
alternatively constructed s-wave p operator, with gspd in Eq.
s28d given by gspd=cos px+cos py, shown in the bottom graph
exhibits only incoherent behavior and hardly any weight snote
the difference in the y scaled. Here knl denotes average elec-
tron density, with knl=1 being at half filling. From Meixner et

al., 1997.
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smooth rotation from the AF state to the SC state be-
comes possible if one can freely replace each magnon by
a hole pair without energy cost. This places a powerful
requirement on the spectrum. The Sxt†sxduVl term in
Eq. s90d contains a single magnon state with sS=1,Q
=0d or a single hole-pair state with sS=0,Q=−1d. SOs5d
symmetry requires them to be degenerate. This can be
easily achieved by tuning the chemical potential, which
changes the energy of the hole-pair state without chang-
ing the energy of the magnon state. Once the chemical
potential is fixed, there are no additional tuning param-
eters. The SxÞyt†sxdt†syduVl term in Eq. s90d contains a
two-magnon state with sS=2,Q=0d, a one-magnon/one-
hole-pair state with sS=1,Q=−1d, and a two-hole-pair
state with sS=0,Q=−2d. SOs5d symmetry again requires
them to be degenerate, which is a highly nontrivial test.
We can easily perform this analysis for states with differ-
ent numbers of magnons and hole pairs.

This pattern of the energy levels has been tested di-
rectly in the exact diagonalization of the t-J model by
Eder, Hanke, and Zhang s1998d. The t-J model, because
of its more limited Hilbert space sno double occupan-
ciesd, allows the exact diagonalization of larger systems
s18, 20, and more sitesd. Since the t-J model explicitly
projects out the states in the upper Hubbard band, some
of the questions about the compatibility between the
Mott-Hubbard gap and SOs5d symmetry can also be an-
swered explicitly. In exact diagonalization studies, total
energy, momentum, angular momentum, spin, and the
charge quantum numbers of the low-energy states can
be determined explicitly. These quantum numbers are
summarized in Fig. 26sad.

Eigenstates obtained from the t-J or Hubbard Hamil-
tonian can always be interpreted as multiparticle states
of the underlying electron. However, it would be highly
nontrivial if the low-energy states could also be inter-
preted as multiparticle states formed from the collective
degrees of freedom such as the magnons and the hole
pairs. The first finding of Eder et al. s1998d is that this is
indeed the case. Figure 27 shows the first four sn=0 to
n=3d sets of low-lying states of an 18-site t-J model
sEder et al., 1998d. We see that the lowest-energy state in
the S=1, Q=0 sector indeed has s-wave-like rotational
symmetry and total momentum sp ,pd, as expected from
a magnon; the lowest-energy state in the S=0, Q=−1
sector indeed has a d-wave-like rotational symmetry and
total momentum 0. Similarly, states with higher S and Q
have quantum numbers expected from multiple mag-
nons and hole pairs. This finding confirms the basic as-
sumption of the SOs5d theory, that the low-energy col-
lective degrees of freedom can be described by the
superspin alone.

At the next level, the pattern of symmetry can itself
be tested. The level n of a given multiplet indicates the
total number of magnons and hole pairs. If SOs5d sym-
metry is realized at a given chemical potential mc, we
would expect the free energy to depend only on n, the
total number of magnons and hole pairs, but not on the
difference between the number of magnons and hole

pairs. As shown in Fig. 26, the energy can depend on Q
with three generic possibilities, as in the discussions we
presented in Sec. IV.A and Fig. 9. Only when the energy
depends linearly on Q can the free energy be indepen-
dent of Q at a given critical value of the chemical poten-
tial. From Eq. s27d we see that the energy levels indeed
have this remarkable structure: states whose total
charges differ by DQ=−1 have nearly the same differ-
ence in energy. Therefore the energy is approximately a
linear function of Q or doping, similar to the situation
discussed in Sec. V.B. To be more precise, the mean level
spacing within each multiplet sup to Q=−2d is −2.9886
with a standard deviation of 0.0769. This standard devia-
tion is much smaller s,J /8d than the natural energy
scale J of the t-J model and comparable to or even
smaller than the average SC gap. If one now adds the
chemical-potential term Hm=−2mQ and chooses m=mc

equal to the mean level spacing, the superspin multiplets
are nearly degenerate. At m=mc, magnons can be
smoothly converted into hole pairs without free-energy
cost. This means that in each term of the expansion in
Eq. s90d one can freely substitute ta

† or th
† for t†, and the

direction of the superspin vector can be freely rotated
from the AF to the SC direction. The smallness of the
standard deviation indicates the flatness in the energy-
versus-doping plot discussed in the previous section. If
the standard deviation were significantly different from
zero, this would indicate significant curvature in the
energy-versus-doping plot. Therefore the smallness of
the standard deviation obtained by the exact diagonal-
ization is consistent with the flatness of the energy-
versus-doping plot obtained from the variational wave
function discussed in the previous section.

Another important aspect of the SOs5d symmetry is
the Wigner-Eckart theorem sGeorgi, 1982d. This theo-
rem provides a selection rule for the matrix elements of
the operators based on the SOs5d symmetry of the sys-
tem. It implies, for example, that the p operators fsee

FIG. 26. The magnon and hole-pair states obtained at level n,
which is the total number of magnons and hole pairs, after
expanding out the coherent state s55d. These states are classi-
fied by their sSz ,Qd quantum numbers in sad. The energy is
independent of the Sz quantum number because of the SOs3d
spin rotation symmetry. The energy can depend on Q with
three generic possibilities, as depicted in sbd. sCompare with
Fig. 9.d If the energy depends linearly on Q, there is no free-
energy cost to rotate magnons and hole pairs into each other,
and the potential energy is SOs5d symmetric. This multiplet
structure was tested in the t-J model and is shown in Fig. 27.
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Eq. s28dg can only move us within a given multiplet,
since they are symmetry generators. On the other hand,
AF and d-wave SC order parameters fsee Eq. s26dg
should move us between different multiplets. Both fea-
tures have been verified in the numerical calculations of
Eder et al. s1998d.

We conclude this subsection with a general remark.
Exact diagonalizations se.g., those of Dagotto, 1994d
commonly study ground-state correlations, but their spa-
tial decay is often inconclusive as a test of order due to
small system size. Discussions in this section show that it
is possible that the sexcitedd eigenstates reveal a well-
defined structure characteristic of a particular symmetry.
Our strategy is to use the finite-size calculations as input
for effective models describing the collective degrees of
freedom such as the superspin, or the magnons and the
hole pairs. Since quantum Monte Carlo calculations can
be performed for these models in a large-size system,
the question of long-range order and their competition
can be firmly established.

D. Transformation from the microscopic model to effective

SOs5d models

From the two previous sections we have learned that
both the variational wave function and the exact diago-
nalization of the t-J model show that the ground state
and low-lying excited states in the low-doping range can
be completely described in terms of the superspin de-
gree of freedom, with an approximate SOs5d symmetry.
Altman and Auerbach s2002d pioneered a systematic
procedure in which they derived the effective bosonic
SOs5d model directly from the microscopic Hubbard and
t-J models through a renormalization-group transforma-
tion called the contractor renormalization sCOREd
method sMorningstar and Weinstein, 1996d. This map-
ping has several distinct advantages. First, this approach
helps to visualize clearly which processes and which ex-

citations dominate the low-energy physics of the system.
Second, it directly determines the parameters of the ef-
fective models defined in Eqs. s50d and s65d in terms of
the microscopic parameters. The bosonic systems are of-
ten much easier to analyze numerically, as one does not
have to worry about Pauli principles, Slater determi-
nants, and the infamous sign problem in the quantum
Monte Carlo algorithms. In this section, we shall de-
scribe the work of Altman and Auerbach.

Since we want to construct bosonic quasiparticles, we
have to divide the lattice into effective sites containing
an even number of elementary sites swith one electron
per sited. In order to conserve the symmetry between the
x and y directions in the system, the original projected
SOs5d model is formulated on a plaquette of 232 el-
ementary sites. First we begin with the low-energy
eigenstates of the Heisenberg plaquette, which are de-
termined easily. We find the nondegenerate ground state
uVl ssee Fig. 6 for a real-space representation in terms of
the microscopic states on a plaquetted with energy E0
=−2J and total spin S=0. This singlet state will be the
vacuum state of the effective bosonic projected SOs5d
model. The next energy eigenstates are three triplet
states ta

† uVl with energy Et=−J and spin quantum num-
bers of S=1. All other energy eigenstates of the Heisen-
berg plaquette have higher energies and can be ne-
glected in the low-energy effective model. It should be
noted that the quasiparticles ta, which carry spin 1 and
charge 0, are hard-core bosons because one cannot cre-
ate more than one of them simultaneously on a single
plaquette.

In their CORE study of the 2D Hubbard model, Alt-
man and Auerbach s2000d started from the spectrum of
lowest-energy eigenstates of the 232 plaquette for 0, 1,
and 2 holes, respectively. The corresponding lowest
spectrum of the triplet sta

†d, pair boson sth
†d, and fermi-

onic excitations is presented in Fig. 28. The ground state
of two holes, also depicted in Fig. 6, is described by

FIG. 27. The low-energy states within each total spin and charge sector sSz ,Qd of the 18-site cluster t-J model with J / t=0.5. The
states are grouped into different multiplets and are labeled by spin, charge, point-group symmetry, and total momentum. A1
denotes the totally symmetric representation and B1 the dx2−y2-like representation of the C4v symmetry group. The quantum
numbers of these states match those of the magnon and hole-pair states shown in Fig. 26. Furthermore, the energy depends
approximately linearly on Q, demonstrating the SOs5d symmetry of the interaction potential among the magnons and hole pairs.
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th
†uVl =

1
ÎZb

So
ij

dijci↑cj↓ + ¯ DuVl , s91d

where dji is +1 s−1d on vertical shorizontald bonds within
a plaquette and “¯” stands for higher-order sU / td op-
erators. Zb is the wave-function normalization. We note
that th

† creates a Cooper-like hole pair with internal
d-wave symmetry with respect to the vacuum. The cru-
cial point here is that while there is no hole-pair binding
for the Hubbard model on a dimer, there is binding in
the range of U / tP s0,5d for a plaquette, a rather well-
known fact ssee, for instance, Hirsch et al., 1988d. How-
ever, this does not guarantee the integrity of the pair
binding on the infinite lattice, documented by the fact
that the hopping energy t is much larger than the pair
binding energy, nor does it guarantee long-range SC or-
der. To gain more insight into these questions, one has to
construct Heff via a CORE procedure ssee Fig. 29d.

In order to understand how the triplets and pair
bosons behave on an infinite lattice, we must determine
the boson hopping energies and the corresponding effec-
tive Hamiltonian. A suitable approach for this has been
suggested by Morningstar and Weinstein on the basis of
the CORE technique, which has been shown for the 2D
Hubbard model sAltman and Auerbach, 2002d, t-J lad-
ders sCapponi and Poilblance, 2002d, and earlier for
Heisenberg chains and ladders sMorningstar and Wein-
stein, 1996d to be extremely accurate. For example,
Morningstar and Weinstein obtained a very accurate 1D
Heisenberg-model ground-state energy. This is even
more impressive considering the latter model has long-
range, power-law decaying spin correlations.

In order to implement the CORE technique, the lat-
tice is decomposed into small block units, as shown in
Fig. 30, where H0 is the intrablock Hamiltonian and V is
the part describing the coupling between the two neigh-
boring blocks. The M low-energy states hua0lji

M are kept
in each block i shere M=4 in the 232 plaquette id to
define a reduced Hilbert space. The full Hamiltonian is
then diagonalized on N connected units sin our example
in Fig. 30, N=2d, i.e., for the ssuperblockd Hamiltonian
HS. The MN sin our case, MN=42d lowest-energy states
uCnl with energy en, n=1¯MN are retained. These true
eigenstates of the Ns=2d block problem, huCnlj, are then
projected onto the reduced Hilbert space spanned by
the tensorial product ua1

0¯aN
0 l of the Ms=4d states of

each block, i.e.,

uCn8l = o
a1¯aN

ka1
0 ¯ aN

0 luCnlua1
0 ¯ aN

0 l , s92d

and Gram-Schmidt orthonormalized, finally yielding the

states huC̃nlj. Then, the new superblock srenormalizedd
Hamiltonian is defined as

H̃S = o
n

MN

enuC̃nlkC̃nu . s93d

By construction H̃S has the same eigenvalues en as HS

for n=1, . . . ,MN. Having constructed the new super-

block or renormalized Hamitonian H̃S, one can write sin
our N=2 exampled

H̃S = H̃0 ^ I + I ^ H̃0 + Ṽ , s94d

where H̃0 is simply the projected block Hamiltonian:

FIG. 28. Low-energy spectrum of the Hubbard model on a
plaquette. Eigenstates are labeled by total spin S and plaquette
momentum qx,qy=0,p. Truncated high-energy states are
shaded. The vacuum is defined as uVl, and quantized operators
connect the vacuum to the lowest eigenstates as shown. sIn this
figure, t† denotes the magnon creation operator ta

† , and b† de-
notes the hole-pair creation operator th

†.d

FIG. 29. Illustration of the basic idea of the contractor
renormalization-group sCOREd method. To implement this
method, one first decomposes the original lattice in plaquettes,
and then truncates the spectrum of a given plaquette to the
five lowest states, i.e., singlet, hole-pair, and three magnon
states. An effective Hamiltonian for these bosons can then be
calculated using the CORE method. Left: local bosons in the
original lattice. Gray rectangle denotes the singlet RVB vacua,
circles denote holes, and the sets of two parallel vertical arrows
denote magnons. Right: local bosons on the lattice of the
plaquette. Leaf-like pattern denotes a local d-wave hole pair
on a plaquette. Canted arrows denote local magnons on the
plaquette. The singlet RVB vacuum is denoted by an empty
site.
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H̃0 = o
n=1

M

enuan
0lkan

0u . s95d

The above equation s94d gives the new renormalized in-

terblock coupling Ṽ, restricted to the reduced Hilbert
space. In the next step, one repeats the above proce-
dure, replacing H0 and V in the original superblock

Hamiltonian HS by H̃0 and Ṽ, and so on.
The projection onto the original plaquette product ba-

sis in Eq. s92d expresses, of course, the above-discussed
proliferation and possibly spatial decay of the block ex-
citations. More generally, this is incorporated within the
CORE method, in a superblock consisting of N blocks
and a corresponding Hamiltonian containing N-body in-

teractions. The construction to obtain Ṽ fEq. s94dg is dif-

ferent and, obviously, one also obtains Ṽ terms, connect-
ing N clusters instead of just N=2 scalled the range-N
approximationd. It has been shown in the above-cited
various applications that the above range-2 approxima-
tion sN=2d and at most N=3 interactions already yield
very accurate results. Thus, with a proper and physically
motivated choice of the truncated basis, range-N inter-
actions decay rapidly with N.

Altman and Auerbach s2002d limited their CORE cal-
culation to range-2 boson interactions striplets, hole-pair
bosond leaving out the fermion state. From Fig. 30, it is
clear that this amounts to diagonalizing two coupled s2
32d plaquettes, for instance, an eight-site Hubbard clus-
ter, which is very straightforward by the Lanczos tech-
nique. The resulting effective Hamiltonian for this
range-2 four-boson model is exactly the projected SOs5d
model defined in Eq. s50d plus more extended interac-
tions defined in Eq. s65d. Following Altman and Auer-
bach, we compare in Fig. 31 the magnitudes of the mag-
non hopping Js sdenoted as Jt /2.Jtt /2 by Altman and
Auerbach, 2002d and the hole-pair hopping Jc sdenoted
as Jb by Altman and Auerbachd for a range of sU / td
values.

The first observation is that Jt,Jtt,0.6J; therefore
the triplet terms have a similar magnitude to those ob-
tained previously sSachdev and Bhatt, 1990; Gopalan et
al., 1994d.

The second finding is crucial. The region of equal
Jt sJttd and Jb, equal magnon and pair-boson hopping,
occurs very close to U / t=8. Thus the value of the pro-
jected SOs5d model with Jt=Jb occurs in the physically
relevant regime. It is known from a large body of nu-
merically essentially exact evaluations of the 2D Hub-
bard model that it reproduces the salient features of the
high-Tc cuprates precisely in this regime ssee, for ex-
ample, Dagotto, 1994; Imada et al., 1998d. This gives yet
another piece of evidence, in addition to those discussed
in Secs. V.B and V.C, that realistic microscopic models
can be described effectively by the projected SOs5d
model close to the symmetric point.

Altman and Auerbach s2002d and Capponi and Poil-
blanc s2002d also calculated the coefficient and terms on
Hint in Eq. s65d, which contains triplet-triplet, pair-pair,
and pair-triplet interactions. These interaction terms
were found to be small compared to Hb and Ht, but their
influence has yet to be studied in detail. They also esti-
mated the truncation error of discarding range-3 terms,
which, for physically relevant U values, was found to be
very small s1%d.

An issue still left open is the role of fermions. Altman
and Auerbach have extended the above four-boson
model to a boson-fermion model by augmenting the
bosons with single-hole fermions “by hand.” This is cer-
tainly a first step. However, a consistent low-energy
theory has to treat bosons and fermions within the
CORE procedure on an equal footing. It should be
noted that the short-range effects of the fermions on the
effective boson couplings were included in the above
range-2 calculation. Altman and Auerbach estimated
the fermion-boson interaction by including the hole fer-
mions dispersion ad hoc, i.e., using the single-hole band

FIG. 30. This figure illustrates the construction of a “super-
block” and its Hamiltonian Hs out of two neighboring blocks,
with intrablock Hamiltonian H0 and interblock coupling V sin
the block basis: sH0dn,n8

= kan
ouHuan

ol=en
odn,n8

and sV0dnm,n8m8

= kan
oam

o uVua
n8

o a
m8

o ld.
FIG. 31. sColord Boson hopping energies vs Hubbard U. The
intersection region near U=8 is close to the projected SOs5d
symmetry point. All energies are in units of t.
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structure extracted previously by various groups for
large clusters sDagotto, 1994d.

In summary, the application of the CORE algorithm
to the Hubbard model has demonstrated two features
that are of immediate relevance for the SOs5d theory:
the d-wave hole pairs already present in the 2D Hub-
bard model on a single 232 plaquette maintain their
integrity in the infinite square lattice. The low-energy
degrees of freedom are indeed described solely by the
superspin. Second, the hole-pair and magnon stripletd
hopping fulfills the projected SOs5d condition in the
physically relevant sU / td range.

VI. PHYSICS OF THE p RESONANCE AND THE

MICROSCOPIC MECHANISM OF SUPERCONDUCTIVITY

A key experimental manifestation of a higher symme-
try is the emergence of new particles or new collective
modes. Historically, this line of reasoning has led to im-
portant discoveries in particle physics. For example,
Gell-Mann used the SUs3d symmetry of the strong inter-
action to predict the V− resonance. Similarly, the elec-
troweak unification based on the SUs2d3Us1d symmetry
led to the prediction of the W± and the Z bosons. In a
strongly interacting system, whether in particle physics
or in condensed-matter physics, typical excitations have
short lifetimes and broad line shapes. However, if higher
symmetries are present, the selection rules associated
with the symmetry prevent the excitation from decaying.
The SOs5d symmetry of antiferromagnetism and super-
conductivity naturally predicts a new class of collective
excitations, called the p resonance or p mode for short,
which are the spseudo-dGoldstone modes of spontane-
ous symmetry breaking. The p resonance can be identi-
fied naturally with the neutron resonance observed in
the high-Tc cuprates sRossat-Mignod, Regnault, Vettier,
Bourges, et al., 1991; Mook et al., 1993; Fong et al., 1995d.
In this section we shall review basic experimental facts
about such resonances and discuss a theoretical scenario
in which they originate from the pseudo-Goldstone
modes associated with the SOs5d symmetry. The opera-
tor of the p mode is a symmetry generator of the SOs5d
symmetry, so the appearance of a low-lying resonance
signals a small energy difference between the d-wave SC
and AF ground states of the doped cuprates. The idea of
the near degeneracy of the d-wave SC and AF states lies
at the heart of the SOs5d approach, which assumes that
fluctuations between these two states exhaust the low-
energy sector of the system. Hence experimental obser-
vation of the low-lying resonances provide a key foun-
dation to the SOs5d approach to competing AF and SC
in the cuprates. In this section we provide several per-
spectives on the p excitations. First, we use the SOs5d
nonlinear sigma model to describe them as pseudo-
Goldstone modes of the approximate SOs5d symmetry
of the system. Second, we show that Fermi-liquid analy-
sis of the weakly interacting electron gas in a two-
dimensional tight-binding lattice produces the p mode
as a sharp collective mode and gives a simple picture of

this excitation as an antibound state of two electrons
with the total spin S=1 and with the center of mass mo-
mentum P= sp ,pd. Such excitation contributes to the
spin-fluctuation spectrum, measured by the inelastic
neutron scattering, only in the SC state when there is a
condensate of Cooper pairs. Finally, we discuss an im-
portant role that the p resonance plays in stabilizing the
SC state.

A. Key experimental facts

A resonant peak in the SC state of the cuprates was
first observed in optimally doped YBa2Cu3O7 sRossat-
Mignod, Regnault, Vettier, Bourges, et al., 1991; Rossat-
Mignod, Regnault, Vettier, Burlet, et al., 1991; Rossat-
Mignod et al., 1992d. Further experiments sMook et al.,
1993; Fong et al., 1995d established that this is a magnetic
resonance sspin S=1d at the AF wave vector P= sp ,pd,
which appears in the SC state. It has a constant energy
v0=41 meV at all temperatures and an intensity that is
strongly temperature dependent and vanishes at Tc.
Similar resonances were then found in underdoped
YBa2Cu3O6+x sDai et al., 1996, 1998; Fong et al., 1996,
2000; Mook et al., 1998; Stock et al., 2003d, in
Bi2Sr2CaCu2O8+d sFong et al., 1999; He et al., 2001d, and
Tl2Ba2CuO6+d sHe et al., 2002d.

An important feature of magnetic scattering in under-
doped YBa2Cu3O6+x sDai et al., 1996, 1998; Mook et al.,
1998; Fong et al., 2000d is that the resonance precursors
are detectable above Tc. Magnetic correlations, how-
ever, are strongly enhanced in the SC state, and there is
a cusp in the temperature dependence of the resonant
scattering intensity at Tc sFong et al., 2000d. The doping
dependence of the resonance energy and intensity indi-
cates a strong enhancement of magnetic fluctuations as
we approach half filling: for underdoped YBa2Cu3O6+x

the resonance energy decreases with decreasing doping,
and the intensity increases sFong et al., 2000d. For over-
doped Bi2Sr2CaCu2O8+d it was found that the energy
decreased sHe et al., 2001, 2002d, which led to the sug-
gestion that the resonance energy follows the SC transi-
tion temperature sHe et al., 2001d.

The presence of a magnetic resonance in the SC states
of many cuprates suggests that it is closely related to SC
pairing. This idea was reenforced by the experiments of
Dai et al. s2000d, in which the SC coherence in
YBa2Cu3O6.6 was suppressed by applying a magnetic
field. It was found that the resonance intensity decreased
without any noticeable change in the resonance energy.
Finally, Dai et al. s1996d demonstrated that the exchange
energy associated with the resonance has the right mag-
nitude, temperature, and doping dependences to de-
scribe the SC condensation energy of YBa2Cu3O6+x ma-
terials.

B. Contribution of p resonance to the spin-correlation

function

Resonance that appears in the SC state suggests that
what gets scattered is Cooper pairs, which are only
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present below Tc. Based on this idea Demler and Zhang
s1995d proposed that the resonance observed in inelastic
neutron-scattering experiments is due to the presence of
the p mode, a sharp collective mode in the particle-
particle channel at momentum P= sp ,pd with spin S=1.
In the normal state such an excitation does not contrib-
ute to the magnetic spectrum, since the latter is deter-
mined by fluctuations in the particle-hole channel. Be-
low Tc, on the other hand, condensed Cooper pairs
couple the particle-hole and particle-particle channels
sDemler and Zhang, 1995; Demler, Kohno, and Zhang,
1998d and cause the p excitation to appear as a sharp
resonance in the magnetic spectrum with intensity set by
the strength of mixing of the two channels, uDsTdu2,
where DsTd is the amplitude of the SC order parameter.
Such a scenario provides a natural explanation for the
key properties of the observed resonance: its energy is
essentially the energy of the p mode in the normal state
and is temperature independent sDemler, Kohno, and
Zhang, 1998d, whereas the intensity of the resonance is
set by uDsTdu2 and vanishes at Tc.

Coupling of the particle-particle p channel and the
particle-hole AF channel may be understood using the
commutation relations between the operators pa and Nb

given in Eq. s18d. In the SC state, the d-wave SC order
parameter that enters the right-hand side of Eq. s18d can
be replaced by its expectation value in the ground state.
Hence the commutator of p and N becomes a c number,
and the two fields become conjugate variables, just as
coordinate and momentum are conjugate to each other
in elementary quantum mechanics. The result of such
coupling is that the p mode appears as a sharp reso-
nance in the spin-fluctuation spectrum. To demonstrate
this we consider the spin-spin correlation function at
wave vector P,

xsP,vd = − iE e−ivtkTNastdNas0dldt

= o
n

uknuNau0lu2H 1

v − En + i0
−

1

v + En − i0J .

s96d

Here u0l is the ground state and n summation goes over
all excited states of the system. One of the excited states
is created by the p operator defined in Eq. s28d,

upal =
1

N
pa

† u0l , s97d

where N is the normalization factor.
It is useful to realize that if p† acting on the ground

state creates an excited state, then p should annihilate it
fotherwise it would create a state of lower energy than
the ground state sPines and Nozieres, 1966dg. Then we
have

1 = kpauupal =
1

N 2 k0upapa
† u0l

=
1

N 2 k0ufpa,pa
†gu0l <

s1 − nd

N 2 , s98d

where n is the filling fraction sn=1 corresponds to half
fillingd. In writing the last equality we assumed
kfgspdg2l=1 when averaged around the Fermi surface.

If we separate the contribution of the p state to
xsP ,vd, we have

xsP,vd = ukpauNau0lu2
1

sv − vp + i0d

+ part regular at vp. s99d

The resonant contribution to xsP ,vd can be expressed
as

xressP,vd =
1

N 2 uk0upaNau0lu2
1

sv − vp + i0d

=
1

N 2 uk0ufpaNagu0lu2
1

sv − vp + i0d

<
uk0uDu0lu2

s1 − nd

1

sv − vp + i0d
. s100d

The expectation value in the numerator of the last ex-
pression is simply the amplitude of the superonducting
d-wave order parameter. We emphasize that Eq. s100d
does not rely on the details of the microscopic model but
only on the commutation relations between the p, N,
and D given by Eq. s18d fthis is somewhat analogous to
the f-sum rule sPines and Nozieres, 1966dg. To relate the
order parameter to what one typically measures in ex-
periments, we use BCS-type arguments to connect the
order parameter to the quasiparticle gap ssee, however,
Uemura et al., 1989; Emery and Kivelson, 1995d k0uDu0l
=CD0 /VBCS. Here D0 is the maximal gap for Bogoliubov
quasiparticles at the antinodal point, VBCS is the interac-
tion strength that we expect to be of the order of the
nearest-neighbor exchange coupling J, and C is a dimen-
sionless constant of the order of unity. Therefore we find

xressP,vd = C2 uD0u2

J2s1 − nd
1

v − vp + i0
. s101d

As we go to the underdone regime, D0 remains constant
or increases slightly, and the factor 1−n decreases.
Equation s101d predicts that the intensity of the reso-
nance should increase; this increase has been observed
in the experiments of Fong et al. s2000d.

It is useful to note that contributions from modes
other than the p excitation do not spoil the result in Eq.
s100d. If most of the p spectrum is accommodated in an
interval svp−n ,vp+n8d, one can use the Cauchy-
Schwarz inequality to prove a rigorous and model-
independent result sDemler, Kohno, and Zhang, 1998d
that
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1

p
E

vp−n

vp+n8

dv ImxressP,vd ù
uDu2

1 − n
. s102d

The left-hand side of this equation represents the con-
tribution of the p mode to the spin-excitation spectrum,
and the right-hand side gives its lower bound. Exact
equality holds when the p operator is an exact eigenop-
erator and hence there is only one energy eigenstate,
which satisfies k0upaunlÞ0.

Thus a simple picture of the resonant neutron scatter-
ing is as follows: when an incoming neutron is scattered
off one of the electrons in a Cooper pair, it transfers a
momentum of sp ,pd to this electron and flips its spin. At
the end of the scattering process the Cooper pair has
quantum numbers of the p mode, spin S=1, and mo-
mentum P. If the energy transfer matches the energy of
the p excitation, we have a resonance. In the next two
sections we build upon this simple argument to establish
a more detailed picture of the p resonance in two
cases—the strong-coupling limit described by the SOs5d
nonlinear s model, and the weak-coupling limit where
Fermi-liquid-type analysis can be applied.

C. p resonance in the strong-coupling regime: the SO~5!

nonlinear s model and the projected SO~5! model

In this section we review how the resonant peak ob-
served in inelastic neutron-scattering experiments ap-
pears in the SOs5d nonlinear s model, signalling compe-
tition between the AF and SC ground states. We use the
Hamiltonian of this model fsee Eq. s34dg to write the

operator equations of motion sȮ= ifH ,Ogd for the order
parameters na and symmetry generators Lab, with a ,b
= h1, . . . ,5j. For m.mc= 1

2
Îg /x the system is in the SC

ground state, which we can take to be along the n1 di-
rection. Linearizing the equations of motion around n1
we obtain

x]t
2n5 = r¹k

2n5, s103d

x]t
2na = r¹k

2na − fxs2md2 − ggna. s104d

The first equation describes the Goldstone mode of
the spontaneously broken charge Us1d symmetry
sBogoliubov-Anderson moded, and the second equation
describes a triplet massive excitation of the superspin in
the direction of the AF state ssee Fig. 32d.

In a model with exact SOs5d symmetry, superspin or-
dering reduces the symmetry from SOs5d to SOs4d and
should be accompanied by the appearance of four Gold-
stone modes fSOs5d and SOs4d have ten and six symme-
try generators, respectivelyg. In the case of approximate
SOs5d symmetry that we discuss here, explicit symmetry
breaking turns some of the Goldstone modes into
pseudo-Goldstone excitations, i.e., they acquire a finite
energy. This is similar to a chiral symmetry breaking in
quantum chromodynamics, where the small mass of the
quarks leads to a finite mass of pions, which are the

Goldstone bosons of chiral symmetry breaking sWein-
berg, 1995d, but it does not change the fundamental na-
ture of the latter.

The doping dependence of the resonance energy fol-
lows immediately from Eq. s104d,

vp = 2Îm2 − mc
2 ~ Îx − xc. s105d

The resonance energy is zero at the SOs5d-symmetric
point m=mc and increases with doping x according to a
square root law, where xc is the critical doping. Vanish-
ing of the resonance energy at mc is a special property of
the SOs5d-symmetric point, and for a generic first-order
transition between the AF and SC phases fsee Fig. 10sadg
the resonance energy would remain finite at the transi-
tion point. When there is an intermediate uniform mixed
AF/SC phase fthe type-2 transition shown in Fig. 10scdg,
the doping dependence of the resonance energy also
obeys Eq. s105d with mc corresponding to the boundary
between the SC and AF/SC phases smc2 in Fig. 10d. Soft-
ening of the p mode in this case demonstrates a continu-
ous transition into a state with magnetic order sSachdev
and Vojta, 2000; Demler et al., 2001d.

The dispersion of the p-resonance mode is model de-
pendent. Hu and Zhang s2001d studied the dispersion of
the p-resonance mode in the projected SOs5d model us-
ing the strong-coupling expansion and concluded that
the p mode can have a downward dispersion away from
the P point, reaching a minimum at some incommensu-
rate wave vector. This model could possibly give a uni-
fied description of the neutron-resonance mode and the
incommensurate magnetic fluctuations in the high-Tc cu-
prates.

In Sec. III.C we discussed the projected SOs5d model
that forbids double occupancy of the Cooper pairs by
introducing chirality into the SC rotations. As was
pointed out before, such a projection does not affect
small fluctuations around the SC state ssee Fig. 6d and
does not change the relation s105d.

FIG. 32. The order-parameter space of the SOs5d theory. p
operator performs a rotation between the AF and the d-wave
SC states. This small fluctuation is the new Goldstone mode of
the SOs5d theory.
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D. p resonance in weak coupling: the Fermi-liquid

analysis

In this section we consider a weakly interacting elec-
tron gas in a two-dimensional square lattice and show
that the Fermi-liquid analysis of this system gives rise to
a p mode that is very similar to the collective mode we
discussed earlier in the strong-coupling limit. Using per-
turbative Fermi-liquid analysis to describe strongly in-
teracting electron systems such as cuprates may cause
reasonable objections from some readers. We remind
the reader, however, that the goal of this exercise is to
complement the strong-coupling discussion presented in
the earlier sections. The benefit of the weak-coupling
discussion is that it provides a simple picture of the p
mode as an antibound state of two electrons in the spin-
triplet state having a center-of-mass momentum P and
sitting on the neighboring lattice sites.

Our starting point is the t-J-type model on a two-
dimensional lattice,

H = − t o
kijls

cis
† cjs + Uo

i

ni↑ni↓ + Jo
kijl

SW iS
W

j. s106d

Note that we do not impose a no-double-occupancy con-
straint but include the on-site Hubbard repulsion.
Within the Hartree-Fock discussion presented here, the
Hubbard U only renormalizes the band structure and
does not affect collective excitations of the order of J. In
the rest of the paper we shall therefore disregard the U
term in the Hamiltonian s106d and assume that we work
with the renormalized parameters.

To begin, we consider adding two noninteracting elec-
trons to an empty two-dimensional lattice with the con-
dition that the center of mass of the pair has momentum
q. For a general q the energy of such a pair, given by
eq−k+ek, depends on the relative momentum of the two
electrons. Therefore we have a continuum of particle-
particle excitations. When the center-of-mass momen-
tum is P= sp ,pd, the whole particle-particle continuum
collapses to a point. This can be verified by taking the
tight-binding dispersion ek=−2tscos kx+cos kyd and is
shown schematically in Fig. 33. The collapse of the con-
tinuum makes it easier to create resonant states by add-
ing interaction between the electrons. For example, the
J term in the Hamiltonian s106d introduces an energy
cost of J /4 for electrons sitting on the nearest-neighbor
sites when their spins point in the same direction. Thus,
if we make a two-electron pair in such a way that the
two electrons form a triplet pair on the nearest-neighbor
sites and have a center-of-mass momentum sp ,pd, we
get an antibound state separated from the continuum by
energy J /4. The argument above can be generalized to
the case of adding two electrons on top of the filled
Fermi sea. We recall that collective modes correspond to
poles of the vertex functions sAbrikosov et al., 1993d. In
the case of p resonance, we are interested in the
particle-particle vertex, which we describe by Dyson’s
equation sDemler and Zhang, 1995d after separating the
spin-triplet component of the interaction at the center-

of-mass momentum P from the d-wave symmetry of the
electron pair,

HJ =
J

4o
pp8

dpdkcp+Pa
† ss2sW dabc−pb

† c−kgssW s2dgdck+Pd

+ ¯ , s107d

where dp is defined in Eq. s26d. From the equation pre-
sented in Fig. 34 we find the triplet particle-particle ver-
tex

Tsp,p8,P,vd =

J

4
dpdp8

1 −
J

4o
k

dk
2 1 − nk − nk+P

v − ek − ek+P

s108d

and observe that it has a pole at energy

vp = − 2m +
J

4
s1 − nd . s109d

The first term in Eq. s109d originates from the kinetic
energy of the tight-binding Hamiltonian ep+ep+P=−2m,
and the second part describes the nearest-neighbor ex-
change interaction of the triplet pair of electrons in the
presence of a filled Fermi sea. The s1−nd factor de-
scribes the blocking of the states below the Fermi energy
from the phase space available for two-particle scatter-
ing. In the Hartree-Fock theory the chemical potential is
proportional to doping; hence we find that the resonance
energy in Eq. s109d scales with x. It is useful to point out
that including the near-neighbor density interaction
Vokijlninj in the Hamiltonian s106d will not change our
discussion as long as the system remains in the d-wave
SC state sMeixner et al., 1997; Demler, Kohno, and
Zhang, 1998d. Such an interaction affects equally the p
mode and Cooper pairs that constitute the ground state.

One can also ask how to use the perturbative ap-
proach to demonstrate the appearance of a p resonance
in the spin-fluctuation spectrum below Tc. In Fig. 35 we

FIG. 33. The two-particle continuum and the p excitation for
the tight-binding model. Note that the continuum of two-
particle states collapses to a point when the center-of-mass mo-
mentum is P= sp ,pd. The p mode emerges as an anti bound
state above the continuum.
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show that when we compute the spin-spin correlation
function in the SC state, we need to include scattering of
spin fluctuations at momentum sp ,pd into the p pair,
which corresponds to mixing the particle-particle ladder
of diagrams into the particle-hole bubble. This contribu-
tion requires two anomalous Green’s functions and is
therefore proportional to uDu2. Detailed calculations
based on the generalized random-phase approximation
for the model s109d were presented by Demler, Kohno,
and Zhang s1998d; in Fig. 36, we show only a represen-
tative plot of a spin-spin correlation function xsq ,vd
computed with an account of the p channel.

In summary, we have used a Fermi-liquid analysis to
establish a simple picture of the p resonance; a triplet
pair of electrons sitting on nearest-neighbor sites with
the d-wave function of the pair and with the center-of-
mass momentum P.

E. Resonance precursors in the underdoped regime

In the underdoped cuprates the p resonance does not
disappear above Tc but remains as a broad feature at
higher temperatures sDai et al., 1996, 1998; Fong et al.,
1996; Mook et al., 1998d, with only a cusp in the tempera-
ture dependence of the intensity signalling the onset of
the long-range d-wave SC order sFong et al., 2000d.
Demler and Zhang s1999b; Zhang, 1998d have pointed
out that the most likely origin of these resonance pre-
cursors is the existence of strong d-wave SC fluctuations
in the pseudogap regime of the underdoped cuprates. A
precursor of p resonance in the spin-spin correlation
function can be identified with a process in which a p
pair and a preformed Cooper pair propagate in opposite
directions, as shown in Fig. 37. Because uncondensed
Cooper pairs have a finite energy, we expect precursors
to appear at a slightly higher energy than the resonance
itself and to have a width of the same order as the tem-
perature sDemler and Zhang, 1999bd.

F. Implications for experiments and comparison to other

theories

In Sec. VI.C we discussed the p resonance as a
pseudo-Goldstone mode of the SOs5d nonlinear s
model, and in Sec. VI.D we gave a simple microscopic
picture of the p mode as a sharp collective mode in the
particle-particle channel with spin S=1 and momentum
P= sp ,pd. From Eq. s100d, we can see that the
p-resonance intensity due to the contribution from the
particle-particle channel scales with the square of the SC
order parameter, namely,

IsPd =E dv ImxressP,vd ~ ukDsx,B,Tdlu2. s110d

Here we have explicitly shown the dependence of the
SC order parameter Dsx ,B ,Td on doping x, magnetic
field B, and temperature T. This simple scaling relation
therefore makes powerful predictions about the reso-
nance intensity. It has been tested in a number of experi-
ments. Our analysis explains several puzzling features of
the resonance observed in experiments. The first is the
striking contrast between its temperature-dependent in-
tensity and the temperature-independent energy. In the
case of the Bardasis-Schrieffer exciton sBardasis and
Schrieffer, 1961d that appears as a bound state below the
quasiparticle gap for s-wave superconductors, both the
energy and the intensity of the exciton are determined
by the SC gap; hence, as the temperature is increased in
the SC state, both the resonance energy and its intensity
decrease. In the case of the p mode, on the other hand,
a different behavior of the resonance intensity and en-
ergy are expected. The energy is essentially given by the
energy of the p mode in the normal state and does not
change with temperature. The resonance intensity is set
by the d-wave SC order parameter, as given in Eq. s110d;
it decreases with increasing temperature and vanishes at
Tc. Equation s110d also predicts that the suppression of
the SC coherence by a magnetic field should lead to a

FIG. 34. Dyson’s equation for the p resonance. The function
dspd is defined in Eq. s26d.

FIG. 35. p-resonance contribution to the spin susceptibility in
the SC state.

FIG. 36. Spin susceptibility in the SC state for the model s106d.
The wave vector is along the 0 to sp ,pd direction. Susceptibil-
ity was computed using the self-consistent linear response for-
malism in Fig. 35. The peak at sp ,pd comes from the p reso-
nance. From Demler, Kohno, and Zhang, 1998.
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rapid decrease in the resonance intensity without chang-
ing the resonance energy. This prediction was confirmed
experimentally in a striking experiment by Dai et al.
s2000d, whose results are reproduced in Fig. 38. The
SOs5d theory predicts sDemler and Zhang, 1995; Zhang,
1997d that with decreasing doping the resonance inten-
sity should increase fsee Eq. s101dg and its energy should
decrease fsee Eqs. s105d and s109dg, both of which were
observed by Fong et al. s2000d, as we show in Fig. 39.
Note that for small values of the chemical potential
there is a small difference in the precise vp vs m relation
obtained from the nonlinear s model and from Fermi-
liquid analysis. We expect the strong-coupling expres-
sion s105d to be more reliable close to the AF/SC tran-
sition, where m,mc, and suggest that comparison of the
doping dependence of the resonance energy sFong et al.,
2000d and the chemical potential sIno et al., 1997; Fuji-
mori et al., 1998d should be an important test of the
SOs5d theory.

After this p-resonance theory was developed by
Demler and Zhang s1995d, alternative descriptions of
the resonance were proposed.4 These typically discuss
the resonance as a magnetic exciton that is overdamped
in the normal state but becomes sharp in the d-wave SC
state when a gap opens up for single-particle excitations.
In the d-wave SC state, the particle-particle channel and
the particle-hole channels are mixed into each other and
there are, strictly speaking, no rigorous distinctions
among these different theories. However, the quantita-
tive predictions differ in important details. Near the Tc

transition, the p-resonance theory predicts the sharp on-
set of magnetic resonance due to coupling to the
particle-particle channel, whose contribution to the mag-
netic scattering can be rigorously established via the
Cauchy-Schwarz inequality, as shown in Eq. s102d. Some
of these alternative theories expect a gradual broaden-
ing of the resonance rather than a sharp reduction of the
intensity as Tc is approached from below. The

p-resonance theory predicts that the energy of the mag-
netic resonance mode will be independent of the tem-
perature near Tc, while some of the alternative theories
predict that the mode energy should vanish as the SC
gap. In Sec. VII.E, we shall discuss a rigorous distinction
between the p mode in the particle-particle channel and
the magnetic exciton in the particle-hole channel in the

4Such descriptions include Barzykin and Pines, 1995; Blum-
berg et al., 1995; Liu et al., 1995; Mazin and Yakovenko, 1995;
Onufrieva and Rossat-Mignod, 1995; Bulut and Scalapino,
1996; Millis and Monien, 1996; Yin et al., 1997; Assaad and
Imada, 1998; Morr and Pines, 1998; Weng et al., 1998; Brinck-
mann and Lee, 1999; Yoshikawa and Moriya, 1999; Sachdev
and Vojta, 2000; Manske et al., 2001; Norman and Pepin, 2003.

FIG. 37. Feynman diagram for the p resonance below Tc con-
trasted with the diagram above Tc. The 1 denotes the anoma-
lous scattering in the SC state which converts a particle into a
hole and vice versa.

FIG. 38. Suppression of the resonance intensity by the mag-
netic field. From Dai et al., 2000.

FIG. 39. Doping dependence of the resonance energy and in-
tensity measured in neutron-scattering experiments. From
Fong et al., 2000.
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normal state, and we shall discuss an experimental pro-
posal by which this distinction can be tested.

Several proposals have been made regarding the im-
plications of the resonance peak for various properties
of the cuprates ssee Kee et al., 2002, for a critical re-
viewd. Scattering of quasiparticles on the p mode was
argued to be responsible for the “kink” in the quasipar-
ticle dispersion sJohnson et al., 2001d, the “peak-dip-
hump” structure measured in ARPES sEschrig and Nor-
man, 2000; Abanov et al., 2001d, and the pseudogap seen
in optical conductivity sSchachinger et al., 2001d. Super-
conducting pairing mediated by the p resonance was
suggested by Carbotte et al. s1999d, Orenstein s1999d,
Abanov et al. s2001d, and Zasadzinski et al. s2003d, and
the relation between the resonance intensity and the
condensate fraction was pointed out by Chakravarty and
Kee s2000d. We do not discuss these proposals here, but
in the next section we shall review the important role
that the resonance plays in the thermodynamics of the
SC state. We shall argue that the SC condensation en-
ergy may be accounted for by the lowering of spin-
exchange energy due to the appearance of the resonance
below Tc sDemler and Zhang, 1998d.

G. The microscopic mechanism and the condensation

energy

The central question in the field of high-Tc supercon-
ductivity concerns the microscopic mechanism of super-
conductivity. In conventional superconductors, the pair-
ing interaction is mediated by the phonon interactions
ssee Maksimov et al., 1997, for a reviewd. Within the
weak-coupling BCS theory, the vertex corrections are
suppressed by a small parameter, namely, the ratio of the
electron mass to the mass of the nuclei. Thus the inter-
action which mediates the pairing of electrons can be
unambiguously determined. In the case of high-
temperature superconductivity, the dominant interac-
tions are the Coulomb interaction and the AF exchange
interaction. In such a strongly coupled system, the tradi-
tional approach based on the Feymann diagram expan-
sion does not work, and the nature of the pairing inter-
action is not easily revealed by studying low-order
diagrams. However, the mechanism of superconductivity
can still be addressed by identifying which of the inter-
action terms in the Hamiltonian lead to a lowering of
the energy of the SC state. By comparing the magnitude
of the energy saving associated with a particular interac-
tion term with the actual experimental measurement of
the condensation energy, the mechanism of supercon-
ductivity can be unambiguously identified. In our discus-
sion in the previous section we showed that the p mode
contributes to the spin fluctuation spectrum below Tc

and therefore enhances AF correlations in the SC state.
Demler and Zhang s1998d showed that p resonance can
be promoted from being a consequence of superconduc-
tivity to being the real driving force behind electron
pairing. By analyzing the neutron-scattering data, Dem-
ler and Zhang demonstrated that a reduction of the AF
exchange energy in the superconducting state due to the

appearance of the p resonance can be sufficient to sta-
bilize superconductivity. In this section we provide the
details of this argument focusing on the microscopic t-J
model, and we discuss its relevance to the condensation
energy of YBa2Cu3O6+x materials. We also demonstrate
that this scenario can be formulated as an additional
contribution to the BCS coupling constant in the weak-
coupling regime.

1. The p-resonance contribution to the condensation

energy

The SC condensation energy is defined as the energy
difference between the SC and the normal states at T

=0 sSchreiffer, 1964; Tinkham, 1995d. In type-I supercon-
ductors it can be obtained directly by measuring the
critical value of the magnetic field Hc at the first-order
transition between the normal and SC states. At the
transition point, the energies of the two phases are equal
snote that at T=0 the free energy is equal to the energyd
and, assuming that the normal state is not affected by
the magnetic field, we obtain the condensation energy
per unit cell

EC = EN − ES =
V0Hc

2

8p
, s111d

where V0=a3b3c is the volume of the unit cell. For
type-II superconductors including the high-Tc materials,
such a simple argument is not available. However, one
can use Landau-Ginzburg theory to relate the conden-
sation energy to Hc1 and Hc2, or alternatively to the SC
coherence length j0 and London penetration depth l
sTinkham, 1995d:

Hc
2 =

F0

8pj0l
, s112d

where F0=hc /2e is the SC flux quantum. An alternative
approach to measuring the condensation energy is to
integrate the difference between the SC and the normal-
state specific heat from T=0 to Tc, where the normal-
state specific heat below Tc is defined as extrapolation
from temperatures above the transition point sLoram et
al., 1990, 1994d. To be more precise, let us consider the
condensation energy of the optimally doped
YBa2Cu3O7. Taking the characteristic values j0
=12–20 Å and l=1300–1500 Å, with a=b=3.85 Å and
c=11.63 Å, we find a condensation energy of EC

=3.5–12 K per unit cell. The determination of the EC of
this material using specific-heat measurements by sLo-
ram et al., 1990, 1994d gives EC=6 K per unit cell.

Ideally, one would like to start with a microscopic
model that has the kinetic energy of electrons and ions
and the Coulomb energies of all particles, and to calcu-
late the condensation energy from first principles. Al-
though this is possible in principle, in practice this ap-
proach is very hard to accomplish because of the large
scales involved in both the kinetic and the Coulomb en-
ergies. A method that is easier to pursue in practice is to
start with an effective model defined on a much smaller
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energy scale and try to calculate the condensation en-
ergy within this effective model. This approach has been
undertaken by Scalapino and White s1998d within the
t-J model. In the t-J Hamiltonian in Eq. s2d, we have two
terms: the kinetic energy of electrons swith the
Gutzwiller projection operatord and the exchange en-
ergy of electrons. In analogy to conventional supercon-
ductors, we expect that the transition into the SC state is
driven primarily by a lowering of the interaction part of
the Hamiltonian, i.e., the exchange term sin conven-
tional superconductors the relevant interaction is the
electron-ion Coulomb interactiond. Is it possible then to
find the change in the exchange energy between the nor-
mal and SC states? Scalapino and White made the in-
sightful observation that the value of the J term in Eq.
s2d is directly related to the dynamic spin structure factor
x9sq ,vd, the quantity that is being measured directly in
neutron-scattering experiments. And the change in the
exchange energy, DEJ=EJ

N−EJ
S, can be directly ex-

pressed as a frequency and momentum integral of the
difference in dynamic spin structure factors xN9 sq ,vd
−xS9sq ,vd as follows:

DEJ = 3JS a

2p
D2E

−p/a

p/a

d2qE
0

` ds"vd
p

3fxN9 sq,vd − xS9sq,vdgfcossqxad + cossqyadg .

s113d

In Eq. s113d the form factor arises from the nearest-
neighbor interaction. This equation applies to quasi-two-
dimensional systems, and q= sqx ,qyd is a two-
dimensional in-plane momentum. A generalization of
Eq. s113d to bilayer systems, the case relevant for
YBa2Cu3O6.35, is given by Demler and Zhang s1998d.

The quantity xN9 sq ,vd in Eq. s113d is not the normal-
state spin structure above Tc but rather an extrapolated
normal-state quantity at T=0. Experimentally, one has
to carefully identify features in x9sq ,vd which change
abruptly at Tc. From inelastic neutron-scattering experi-
ments we know that the most drastic change between
the SC and normal-state spin structure factors is the ap-
pearance of the 41-meV scattering peak. Even for un-
derdoped materials, which have many more AF fluctua-
tions in the normal state, the main change between the
normal and SC states is the appearance of the resonance
sFong et al., 2000d. It is reasonable, then, to take Eq.
s113d for DEJ, calculate the contribution of the p reso-
nance, and argue that this will be the dominant contri-
bution. For optimally doped YBa2Cu3O6.35, Fong et al.

s1996d measured the absolute intensity of the resonance
e0

`ds"vdxS9sP ,vd to be 0.52 at T=10 K. This resonance
has a Gaussian profile centered at P with a width k2D

=0.23 Å−1, so the two-dimensional integral can be easily
estimated, and

DEJ =
3

2
pSa

2
k2DD21

2

0.52

p
= 0.016J . s114d

Taking J=100 meV we find that the change in the ex-
change energy between the normal and SC states is ap-
proximately 18 K per unit cell. This remarkable number
tells us that the resonance alone can account for the SC
condensation energy.

Regarding our estimate of DEJ in Eq. s114d, a com-
ment must be made. The dynamic spin-structure factor
Ssq ,vd satisfies the sum rule sScalapino et al., 1998d

3S a

2p
D2E

−p/a

p/a

d2qE
0

` ds"vd
p

x9sq,vd = s1 − xdSsS + 1d .

s115d

Therefore the spectral weight for the resonance needs to
come from other regions in q-v space. In obtaining Eq.
s114d we made an additional assumption that in the nor-
mal state this weight was spread uniformly in q in
x9sq ,vd and did not contribute to Eq. s113d, since any
uniform component in x9sq ,vd is canceled by the
fcossqxad+cossqyadg factor in Eq. s113d. It is also useful
to point out that the weight of the resonance is less than
1% of the total sum rule sDemler and Zhang, 1998; Kee
et al., 2002d, which, when multiplied by the AF exchange
energy J, gives the correct order of magnitude for the
condensation energy.

The condensation energy argument can be general-
ized to finite temperatures. In this case the resonant
peak intensity at temperature T should be related to the
free-energy difference between the SC and normal
states, which in turn is given by the integral of the
specific-heat difference above T. This hypothesis has
been analyzed by Dai et al. s1999d, who showed that the
temperature derivative of the resonant peak intensity
follows very closely the specific-heat anomaly for differ-
ent dopings of YBa2Cu3O6+x. We show this comparison
in Fig. 40. For optimal doping there is a BCS-type
anomaly in the specific heat at Tc, which corresponds to
the resonance appearing abruptly in the SC state. For
underdoped samples the specific-heat anomaly is broad-
ened, which agrees with the resonance precursors ap-
pearing above Tc. This highly nontrivial experimental
test establishes the contribution of the p resonance to
the condensation energy.

We therefore see that the p-resonance mode naturally
accounts for the condensation energy in the high-Tc su-
perconductors. The AF exchange interaction is lowered
in the SC state, and this energy saving can drive the
transition from the normal state to the superconducting
state. Within this scenario, the AF exchange energy is
decreased, while the kinetic energy is increased below
the SC transition. On the other hand, a number of theo-
ries argue that the dominant driving mechanism of high-
temperature superconductivity is the saving of the ki-
netic energy, either along the c axis, or in the CuO2
plane sAnderson, 1997; Chakravarty et al., 1999; Hirsch
and Marsiglio, 2000d. The c-axis kinetic-energy-saving
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mechanism has been definitively ruled out experimen-
tally sMoler et al., 1998d. Measurement of the ab-plane
kinetic energy has not yielded conclusive results
sMolegraaf et al., 2002; Keimer, 2004d. The
p-resonance-based AF exchange energy saving is an ex-
perimentally established mechanism, which can account
for the condensation energy in the high-Tc cuprates. Re-
cent experiments indicate that phonon-mediated attrac-
tion also plays a role in the mechanism of high-
temperature superconductivity sLanzara et al., 2001d. It
is possible that various mechanisms contribute construc-
tively to the condensation energy in the high-Tc super-
conductors. In this case, it is important to measure the
relative magnitudes of various contributions and identify
the leading contribution to the condensation energy.

2. Microscopic discussions and relation to BCS

pairing

In the theory of Demler and Zhang s1998d, the saving
of the AF exchange energy arises from the coupling of

the AF order parameter NW to the pW operator in the SC
state. This coupling leads to additional spectral weight,
proportional to uDu2, in the AF spin-correlation function,
thus lowering the AF exchange energy. This argument is
generally valid, in both strong- and weak-coupling limits.
However, it is also useful to connect this theory to the
conventional BCS pairing theory in the weak-coupling
limit. In the limit of weakly interacting electron gas, we

can formulate this scenario as a contribution to the BCS
coupling in the d-wave channel. In Fig. 41, we show a
schematic representation of such a contribution: a Coo-
per pair splits into two virtual excitations—a magnon

sNW d and a p particle spW d—which then recombine into a
Cooper pair. One can easily verify that the quantum
numbers are matched in this process: quantum numbers
of the combination of the p mode scharge 2, momentum
P, spin S=1d and the magnon scharge 0, momentum P,
spin S=1d sum to exactly the quantum numbers of the
Cooper pair scharge 0, momentum q=0, spin S=0d. This
may also be formulated using electron Green’s func-
tions, as shown in Fig. 42. We start with a Cooper pair
formed by the electrons sp↑ d and s−p↓ d. After the latter
electron emits a magnon, shown as an upper particle-
hole ladder with total momentum P and spin Sz=−1, we
have two electrons with momentum P and spin Sz=1.
These are exactly the quantum numbers of the p mode
that we describe by the lower particle-particle ladder in
Fig. 42.

VII. KEY EXPERIMENTAL PREDICTIONS

A. The antiferromagnetic vortex state

A fundamental prediction of the SOs5d theory is the
smooth rotation from the AF state to the SC state as the
doping density is varied. As shown in Sec. V.B and V.C,
this prediction has been tested numerically within the
t-J model, with good agreement. However, testing this
prediction directly in experiments would be much
harder, since the doping level of most cuprates cannot be
controlled well in the regime where the transition from
the AF to SC state is expected to occur. Therefore,
Zhang s1997d and Arovas et al. s1997d proposed testing
this prediction in the vortex state of underdoped cu-
prates. Around the center of the vortex core, the phase
of the SC order parameter winds by ±2p, and its ampli-
tude is constrained to vanish at the center for topologi-
cal reasons. In conventional BCS superconductors, the
metallic Fermi-liquid ground state is realized inside the
vortex core. In the SOs5d theory, the SC order param-
eter is embedded as a component of a higher-
dimensional order parameter, namely, the superspin.
When the amplitude of the SC order parameter vanishes
in the vortex core, the amplitude of the superspin order
parameter can still remain constant, provided that the

FIG. 40. sColord Temperature dependence of the resonance
intensity compared to the specific heat. From Dai et al., 1999.

FIG. 41. SC pairing between electrons mediated by exciting a
virtual magnon-p-mode pair.
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superspin vector slowly rotates from the SC direction
into the AF direction as the vortex core is approached.
The superspin configuration near the vortex core is
shown in Fig. 43. This type of topological field configu-
ration is known as the meron solution, meaning half of a
Skyrmion sRajaraman, 1982d. Figure 43 shows the rota-
tion of the superspin in the vicinity of a vortex core. The
AF order, which develops around the center of the vor-
tex core, can be measured directly in experiments and
can provide a quantitative test of the SOs5d symmetry.

When the SC order is destroyed in the vortex core,
the closest competing order develops in the vortex state.
Aside from commensurate or incommensurate magnetic
order and charge order, a number of novel correlation
states have been proposed, including, for example, cir-
culating orbital currents sChakravarty et al., 2001; Lee,
2002d and fractionalized excitations sSachdev, 1992;
Senthil and Fisher, 2001d. The vortex core state can pro-
vide a key test for various forms of the competing orders
that have been proposed sSachdev and Zhang, 2002d.

Magnetic field provides a clean tuning parameter that
can be used to investigate quantum transitions between
the SC and AF phases. By solving both the SOs5d non-
linear sigma model and the Landan-Ginzburg model of
competing AF and SC order parameters, Arovas et al.
s1997d predicted the existence of the AF vortex state in
the underdoped cuprates and further suggested a sys-
tematic experimental search for the AF vortex state in
neutron scattering and muon spin-rotation experiments.
These authors also predicted that the magnetic-field-
induced AF moment should increase linearly with the
applied magnetic field, or the number of vortices in the
system, when the applied magnetic field is small com-
pared to the upper critical field Bc2. While the original
analysis of Arovas et al. focused on the regime where the
transition between AF and SC is a direct first-order tran-
sition fcorresponding to Fig. 10sad of the phase diagramg,
Demler et al. s2001d and Zhang et al. s2002d analyzed the
case in which there are two second-order phase transi-
tions with an intervening uniform AF/SC mixed phase,
corresponding to Fig. 10scd of the phase diagram. In this
case the AF order extends far beyond the vortex core
region. The analysis of Demler et al. s2001d and Zhang et
al. s2002d demonstrates that the suppression of the SC
order in this regime is dominated by circulating super-

currents and leads to a logarithmic correction to the lin-
ear dependence of the field-induced moment. Recently,
a number of experiments have been performed to test
the prediction of the AF order in the vortex state. Neu-
tron scattering under a magnetic field can directly mea-
sure the field-induced AF moment. Katano et al. s2000d
measured enhanced magnetic scattering in the
La2−xSrxCuO4 crystal at x=12% doping. The intensity of
elastic magnetic peaks around the sp ,pd point increases
at B=10 T by as much as 50%. Lake et al. s2001d ob-
served enhanced dynamic AF spin fluctuations in an op-
timally doped La2−xSrxCuO4 crystal at x=16% doping in
an applied magnetic field. Without an applied field, the
SC state has a spin gap of about 6 meV. An applied field
of B=7 T introduces a spectral weight in the energy
range of 3–4 meV. The mixed AF/SC phase has been
also investigated in crystals of both underdoped
La2−xSrxCuO4 at x=10% doping and La2CuO4+y. In
both materials the applied magnetic field strongly en-
hances the quasistatic AF ordering sKhaykovich et al.,
2002; Lake et al., 2002d. The field dependence of the
induced AF scattering is approximately linear, as pre-
dicted by Arovas et al. s1997d, and it agrees quantita-
tively with the B lnsB /Bc2d form proposed by Demler et

al. s2001d, with the correct value of Bc2. Another method
of measuring the AF order is nuclear magnetic reso-
nance sNMRd. In the vortex state, the magnetic field is
distributed inhomogeneously over the sample, with the
maxima centered at the vortex cores. The NMR fre-
quency thus correlates directly with the location of the
nucleus in the vortex lattice. Using NMR on the 17O
nucleus of YBa2Cu3O7 under a magnetic field as high as
40 T, Mitrovic et al. s2001, 2003d detected a sharp in-
crease of the 1/T1T rate near the vortex core as the
temperature was lowered, indicating enhanced AF or-
dering ssee also Curro et al., 2000d. Kakuyanagi et al.

s2002d performed Tl NMR in a Tl2Ba2CuO6+d sample. Tl
NMR provides a more direct test of AF ordering, since
the 205Tl nucleus is located directly above the Cu spins.

FIG. 42. Diagrammatic representation of SC pairing mediated
by exciting a virtual-magnon p-mode pair: solid lines, electron
propagators; dashed lines, interactions. The upper particle-
hole ladder corresponds to the magnon and the lower particle-
particle ladder corresponds to the p mode. FIG. 43. sColord SC vortex with AF core. Far from the center

of the vortex core, the superspin vector lies in the SC plane
and winds around the vortex core by 2p. The superspin vector
lifts up to the AF direction as it approaches the center of the
vortex core. The arrows represent the direction of the super-
spin and the color scale represents the magnitude of the AF
order parameter.
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The temperature dependence of the 1/T1T rate shows
that the AF spin correlation is significantly enhanced
inside the vortex core, compared with regions outside.
The last class of magnetic experiments we discuss are
the muon spin rotation smSRd experiments. When
muons are stopped inside a solid, their spin precesses
around the local magnetic field. Since muons decay pre-
dominantly along the direction of their spin, the spatial
decay pattern yields direct information about the local
magnetic-field distribution in a solid. Miller et al. s2002d
performed a mSR experiment in an underdoped
YBa2Cu3O6.5 system under a magnetic field of B=4 T.
They found that the local magnetic-field distribution had
a staggered pattern, superimposed on a uniform decay
away from the vortex core. The staggered magnetic field
detected at the muon site was about 18 G. All the ex-
periments discussed above were carried out at fields far
below the upper critical field Bc2, which in hole-doped
materials typically exceeds 60 T. In order to establish
the nature of the competing state, one has to perform
experiments close to Bc2. This was achieved in recent
neutron-scattering experiments on an electron-doped
Nd1.85Ce0.15CuO4 crystal in magnetic fields up to 14 T,
far above the upper critical field Bc2 sKang et al., 2003d.
Kang et al. found field-induced AF scattering at sp ,p ,0d
and observed that the AF moment scales approximately
linearly with the applied field up to Bc2. The AF mo-
ment decreases with the magnetic field in the range be-
tween Bc2 and 14 T. Their experimental data and the
theoretical fit are shown in Fig. 44. The experimental
findings of Kang et al. s2003d have been confirmed by
Fujita et al. s2003d in a related, electron-doped material,
Pr1−xLaCexCuO4. While Nd1.85Ce0.15CuO4 material con-
tains the magnetic Nd moment, the Pr1−xLaCexCuO4
material studied by Fujita et al. does not contain such
magnetic ions, thus confirming that the field-induced AF
moment cannot be due to any spurious effects associ-
ated with the Nd moments sMang et al., 2003d. As we
shall see below, the wide field range of the neutron data
enables quantitative comparisons with theoretical mod-
els.

Since the original theoretical prediction of the AF
vortex state, tremendous theoretical progress has been
made on the subject of AF vortex lattices.5 Based on the
variational solution of the t-J model, Ogata s1999d con-
cluded that the vortex core has an AF phase with an
ordered moment about 10% of the full moment. This
calculation established the microscopic basis of the AF
vortex core. The initial AF vortex solutions were based
on the static mean-field theory. In the weak-field regime
where the vortex cores are separated far from each

other, enhanced AF order can be viewed either as dy-
namic fluctuations of the AF order parameter due to the
finite size of the vortex core or as the bulk AF fluctua-
tion pulled below the spin gap and spatially bound near
the vortex cores. This dynamic picture was developed by
Bruus et al. s1999d, Demler et al. s2001d, and Hu and
Zhang s2002d and could apply to experiments by Lake et
al. in optimally doped LSCO. Classical Monte Carlo cal-
culations of the SOs5d model also show the existence of
the AF vortex lattice sHu, 1999ad. While the original
theory of the AF vortex state was developed for the
commensurate AF order, it can also be generalized to
the case in which the AF ordering wave vector deviates
from the sp ,pd point, as in the LSCO system sHu and

5See, for example, Alama et al., 1999; Bruus et al., 1999; Hu,
1999a; Ogata, 1999; Andersen et al., 2000; Han and Lee, 2000;
Mortensen et al., 2000; Demler et al., 2001; Franz and Te-
sanovic, 2001; Chen et al., 2002; Chen and Ting, 2002; Franz,
Sheehy, and Tesanovic, 2002; Ghosal et al., 2002; Hu and
Zhang, 2002; Juneau et al., 2002; Kivelson et al., 2002; Zhang et

al., 2002.

FIG. 44. sColord Field dependence of the AF moment for dif-
ferent parameters of the Landau-Ginzburg theory sas defined
by Chen, Wu, and Zhang, 2003d. The parameters are r1=r2
=a2, r1=−1, r2=−0.85, u1=u2=1, and x=42.4. Here the param-
eters are chosen such that the maximum SC order is 1 and the
SC coherence length at zero field equals the lattice constant a

of the lattice model. sad Field dependence for different values
of u12. The curvature strongly depends on u12. sbd Fit to the
neutron-scattering results of Kang et al. s2003d of the
Nd1.85Ce0.15CuO4 crystal with u12=0.95. Bc2 is about 6.2 T in
this sample. The experimental data are obtained by subtracting
the magnetic-field response along the c axis from the magnetic-
field response in the ab plane, so that the response from the
Nd moment can be removed.
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Zhang, 2002; Zhang et al., 2002d. Antiferromagnetic or-
dering inside the vortex core has a profound effect on
the electronic structure of the vortex, since it opens up
an insulatorlike energy gap inside the vortex core where
the conventional SC gap vanishes. The conventional
theory of d-wave vortices based on Bogoliubov–de
Gennes mean-field theory predicts a large and broad
peak at the Fermi energy in the local density of states,
the so-called zero-energy peak, and at the vortex core
sWang and Macdonald, 1995d. However, scanning tun-
neling spectroscopy in BSCCO, giving the local density
of states around the vortex core directly, shows only a
small double-peak structure at energies of 7 meV sPan
et al., 2000d. A similar situation was observed in YBCO
compounds sMaggioaprile et al., 1995d. The suppression
of the local density of states due to AF ordering inside
the vortex core could naturally explain this phenomenon
sOgata, 1999; Andersen et al., 2000; Chen and Ting,
2002d. However, other forms of order or the smallness of
the core size could also offer alternative explanations
sTsuchiura et al., 2003d.

While experimental observation of an AF vortex state
confirms a major prediction of the SOs5d theory, most of
these experiments have not directly tested the symmetry
between AF and SC in the strictest sense. In the follow-
ing, we shall discuss two aspects of the AF vortex state
which directly pertain to SOs5d symmetry. The spatial
variation of the AF and SC order parameters around the
vortex core leads to a region of space where both order
parameters coexist. In this region, the p order param-
eter, whose magnitude can be quantitatively predicted
by the SOs5d orthogonality relation in Eq. s41d, also de-
velops. Ghosal, Kallin, and Berlinsky s2002d have quan-
titatively verified this relationship from their numerical
solution of the t-J model around the vortex core. It
would be desirable to find a way to measure the p order
parameter and test this relation experimentally.

The detailed experimental data now available up to
Bc2 in electron-doped cuprates allow for a quantitative
test of SOs5d symmetry. As discussed in Sec. IV.A,
within models of competing AF and SC order, a crucial
test for SOs5d symmetry is the relation u12

2 =u1u2 for the
quartic term in Eq. s59d. Deviation from the SOs5d rela-
tion determines the curvature of the ground-state
energy-versus-doping plot, which can be used to deter-
mine the nature of the transition between the AF and
SC states. Recently, Chen, Wu, and Zhang s2003d nu-
merically solved the Landau-Ginzburg model with com-
peting AF and SC order in the vortex state and found
that the deviation from the SOs5d relation u12

2 =u1u2 also
determines the curvature of the field-induced AF mo-
ment versus the magnetic-field plot for magnetic fields
up to Bc2. The neutron-scattering data obtained in
NCCO superconductors sKang et al., 2003d can be fitted
by u12

2 /u1u2=0.95, showing that this system has only a
5% deviation from SOs5d symmetry. When the magnetic
field exceeds Bc2, it causes canting of the spin moments,
thereby reducing the AF moment while increasing the
ferromagnetic moment. Thus the SOs5d theory quantita-

tively explains the experimental data over the entire
magnetic-field range below 14 T. The experimental re-
sults of Fujita et al. s2003d in Pr1−xLaCexCuO4 are quan-
titatively similar. We note that the mean-field analysis of
the Ginzburg-Landau free energy does not include
quantum fluctuations of the AF order fthe first term in
Eq. s34dg. The latter should be important when the AF
moments are strongly localized inside the vortex cores.
We expect that proximity-effect-type coupling between
neighboring AF vortices should be sufficient to suppress
such fluctuations.

In the above discussions we focused on the AF mo-
ments of static vortices in the SC state. The SOs5d model
has also been extended to study thermally activated
phase slips in one-dimensional wires sSheehy and Gold-
bart, 1998d. One can also construct a dual effect to the
AF vortices: Goldbart and Sheehy s1998d proposed AF
hedgehogs with SC cores.

B. The pair-density-wave state

In the quantum-disordered phase of the SOs5d model,
the hole-pair bosons become localized, forming a pair
density wave. Since the superfluid density is low and
pairing is strong in the underdoped regime of the high-
Tc cuprates, the pair-density-wave state competes with
the d-wave SC state. In the global phase diagram shown
in Fig. 13, aside from the half-filled AF insulator, there
are several possible pair-density-wave states surrounded
by the SC phases. In contrast to the superconducting
state, which can be realized for any charge density, each
pair-density-wave state has a preferred charge density,
the dominant one being at doping level x=1/8. Since the
projected SOs5d model is formulated on the plaquettes
of the original lattice, the pair density wave naturally
forms a checkerboard pattern, as depicted in Fig. 45.
This state has a rotationally symmetric charge periodic-
ity of 4a34a near doping level x=1/8. However, con-
necting the period of charge modulation to the hole den-
sity in realistic systems is not always straightforward. In
most cases we find states that have both superconductiv-
ity and periodic density modulation. Hence they may be
best described as supersolids. Supersolid phases are
compressible and can accommodate extra charge with-
out changing the period. Expressed differently, the ex-
cess charge can always be taken by the superfluid part of
the Cooper-pair density without affecting the localized
part. The pair-density-wave state differs from the stripe
state sZaanen and Gunnarsson, 1989; Emery et al.,
1999d, since it does not break the symmetry of p /2 lat-
tice rotations. It is also distinct from the Wigner crystal
of individual holes proposed by Fu et al. s2004d, which
should have a charge periodicity of Î8a3Î8a at the
same doping level. The pair-density-wave state was first
proposed by Chen et al. s2002d in the context of the
SOs5d theory of the vortex state. It also arises naturally
from the plaquette boson approach of Altman and
Auerbach s2002d. Podolsky et al. s2003d discussed how
unconventional states with translational symmetry
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breaking, including the pair-density-wave state, can be
detected in scanning tunneling microscope sSTMd ex-
periments. The relevance of this state to tunneling ex-
periments has also been considered sVojta, 2002; Ander-
sen et al., 2003; Chen et al., 2004d.

As we can see in the global phase diagram shown in
Fig. 13, the pair-density-wave state can be stabilized
near doping of x=1/8, when the superfluid density sor
the kinetic energy of the hole pairsd is small compared to
interaction energy. This situation can be realized in the
vortex core, near the impurities, in the underdoped cu-
prates or in the pseudogap phase. The STM experiments
of Hoffman et al. s2002d measuring the local density of
states near the vortex core demonstrated a 4a34a
checkerboard pattern, consistent with the hole-pair
checkerboard state sChen et al., 2002d shown in Fig. 45.
The vortex core can be either positively or negatively
charged, depending on whether the bulk density is
greater or smaller than that of the nearby pair-density-
wave state sWu et al., 2004d. For example, if the chemical
potential is such that the bulk SC state is on the left
srightd side of the d=1/8 insulator, we expect the vortex
core to have more slessd hole density. The STM experi-
ment of Howald et al. s2002d sees a similar real-space
modulation without the applied magnetic field, possibly
induced by impurities sMcElroy et al., 2003d. More re-
cently, Vershinin et al. s2004d discovered a real-space
modulation of the density of states in the pseudogap
phase above Tc. Enhancement of the translational sym-

metry breaking in the pseudogap regime of the cuprates
has been proposed theoretically by Sachdev and Demler
s2004d. The microscopic picture of this phenomenon has
been studied by Chen et al. s2004d using an extension of
the formalism of Podolsky et al. s2003d for the
pseudogap regime. The analysis of Chen et al. s2004d
shows that the experimentally observed modulation is
inconsistent with an ordinary site-centered charge den-
sity wave and the corresponding modulation of the
Hartree-Fock potential. However, the pair-density-wave
state provides good agreement with the experimental
data.

C. Uniform mixed phase of antiferromagnetism and

superconductivity

The phase diagram obtained from the classical com-
petition between the AF and SC states is shown in Fig.
10. We have classified the phase transitions broadly into
three different types. A type-1 transition involves a di-
rect first-order phase transition between the AF and the
SC phases. A type-2 transition involves two second-
order phase transitions, with an intermediate phase that
is a uniform mixture of AF and SC. The marginal type-
1.5 transition describes the special SOs5d-symmetric case
in which the chemical potential remains constant in the
entire uniform mixed phase. Therefore both type-2 and
type-1.5 transitions predict a uniform mixed phase of AF
and SC.

Evidence for the AF/SC mixed phase exists in the
excess-oxygen doped La2CuO4+y. Neutron-scattering
measurements detect the onset of the AF or spin-
density-wave orders at the same temperature as the su-
perconducting Tc sLee et al., 1999d. This remarkable co-
incidence is the hallmark of a multicritical point, which
we shall return to later. Because the La2CuO4+y system
has an ordering wave vector similar to that of the
La2−xSrxCuO4 system, it should also be classified as a
class-B3 trace in the global phase diagram of Fig. 13,
passing through the 1/8 Mott lobe. However, in this
case, the Mott phase boundary likely belongs to type 1.5
or 2, where the AF and SC order can coexist.

For YBa2Cu3O6+x materials, static magnetic ordering
extending to x<0.5 has been observed recently using
muon spin rotation/relaxation measurements by Miller
et al. s2003d. Preliminary neutron-scattering experiments
by Sidis et al. s2001d and Mook et al. s2002d also have
reported magnetic ordering with a wave vector sp ,pd.
Thus, in this case, we have AF coexisting with SC with-
out any additional charge order. However, it is unclear
whether two phases coexist uniformly in these materials.
Assuming that future experiments verify the existence of
a homogeneous phase with AF and SC orders, we con-
clude that the phase diagram for YBa2Cu3O6+x may be
understood as moving along the B1 line in Fig. 13, when
the system avoids all the PDW lobes but has only AF
and SC orders either separately or in a uniform mixed
phase.

FIG. 45. Illustration of the d-wave pair-density-wave state at
x=1/8. In this state, the d-wave hole pairs occupy every four
nonoverlapping plaquettes on the original lattice. The charge
unit cell is 4a34a. The SOs5d model is defined on the center of
the nonoverlapping plaquettes. Such a state could be realized
around the vortex core, whose center is depicted by the 3 or
realized as a generic competing state whenever SC order is
reduced. In the actual realization of this state, the hole pair
could be much more extended, and the AF ordering could be
much reduced from the classical value.
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Evidence for the mixed phase of superconductivity
and antiferromagnetism has also been obtained recently
in the five-layered high-Tc cuprate HgBa2Ca4Cu5Oy. In
this system, the three inner layers are predominantly an-
tiferromagnetic, while the two outer layers are predomi-
nantly superconducting. In a Cu NMR study, Kotegawa
et al. s2004d obtained firm evidence that the AF inner
layers induce a small magnetic moment in the outer lay-
ers, establishing the case of an AF/SC uniform mixed
phase in this system. However, this type of AF/SC prox-
imity effect was not observed in artificially grown layer
structures sBozovic et al., 2003d.

The above discussions show that there is evidence for
a uniform mixed phase of AF and SC in the high-Tc

cuprates. On the other hand, microscopic probes like
scanning tunneling microscopy sPan et al., 2001d reveal
electronic inhomogeneities characteristic of the type-1
direct first-order transition between AF and SC. There-
fore, depending on material details, some high-Tc com-
pounds show an AF/SC mixed phase, characteristic of
type-2 behavior, while others show microscopic separa-
tion between these two phases, a characteristic more
consistent with type-1 behavior. It is quite remarkable
that such different physical effects can be obtained in
materials that are so similar. A reasonable explanation is
that these systems are actually very close to the
SOs5d-symmetric point exhibiting type-1.5 behavior.
Only in this case could a slight variation tip the balance
towards either the type-1 or type-2 behavior.

A genuine uniform mixed phase of AF and SC has
been observed in several heavy-fermion systems in some
regions of the pressure sPd -versus-temperature sTd
phase diagram sKitaoka et al., 2001, 2002d. Recently,
such coexistence was observed through nuclear quadru-
pole resonance and NMR spectrum measurements in
CeCu2sSi1−xGexd2 with a small concentration, x=0.01, of
Ge. In CeCu2Si2, an SC phase coexists with slowly fluc-
tuating magnetic waves. However, for AF CeCu2Ge2,
which has the same lattice and electronic structure as
CeCu2Si2, it was found that a SC phase could be reached
at a critical pressure Pc,7.6 GPa. Since CeCu2Si2 be-
haves at P=0 like CeCu2Ge2 at Pc, it is argued that the
SC phase in CeCu2Si2 occurs close to an AF phase at
P=0, corresponding to a critical lattice density D=Dc.
This appears to be the reason for the strong AF fluctua-
tions at P=0. A small concentration of Ge expands the
unit-cell volume, reducing D below Dc, and is thus suf-
ficient to pin the magnetic fluctuations and to produce
AF long-range order within the SC phase. Noting that
D=DSif1sVGe−VSidx /VGeg for Ge doping and that D in-
creases with pressure, one can draw a combined phase
diagram as a function of lattice density D sKitaoka et al.,
2002d.

Kitaoka et al. s2002d showed that the phase diagram of
Fig. 46 could be understood in terms of an SOs5d super-
spin picture. This suggests that superconductivity in
CeCu2Si2 could be mediated by the same magnetic inter-
actions as those leading to the AF state in
CeCu2sSi1−xGexd2.

D. Global phase diagram and multicritical points

The SOs5d theory predicts the existence of a multi-
critical point where TN and Tc intersect ssee Fig. 10d and
also predicts the general topology of the global phase
diagram in the space of quantum parameters ssee Fig.
13d. The goal of this section is to establish the connec-
tion between the theoretical quantum phase diagram
proposed in Sec. IV.B and the experimental phase dia-
grams of various families of cuprates. The underlying
assumption for making such a connection is that most of
the material-specific properties can be absorbed into pa-
rameters of the effective Hamiltonian given in Eqs. s50d
and s65d.

One of the best studied phase diagrams of the high-Tc

superconductors is for La2−xSrxCuO4. The presence of
the stripe order in these materials has been well docu-
mented by neutron-scattering experiments sYamada et
al., 1998; Wakimoto et al., 2000, 2001d. For less than 5%
doping the system is in the insulating regime with diag-
onal stripes, and for higher dopings the system is super-
conducting with collinear stripes ssee Fig. 47d. It is natu-
ral to relate this family of cuprates to the B3 trajectory
on the J /V-m phase diagram shown in Fig. 13: with in-
creasing m the system goes through a hierarchy of states
at fractional filling factors that correspond to insulating
pair-density-wave states. Near these magic filling factors,
Tc of the SC state drops dramatically, while magnetic
ordering increases substantially. This is indeed the be-
havior observed in Fig. 47. As discussed in Sec. IV.B, the
two possible patterns of charge ordering are checker-
board and stripes. In the case of La2−xSrxCuO4, stripe
ordering may be stabilized by tilting the CuO6 octahe-
dron toward the f100g tetragonal direction sparallel to
the Cu-O bondsd. The phase diagram in Fig. 13 predicts
that the ordering wave vectors take discrete values that
correspond to different Mott insulating PDW lobes. For
long-range interactions, PDW phases are very densely
packed, so experimentally we may observe an almost
continuous dependence of incommensuration on dop-
ing, such as the one discussed by Yamada et al. s1998d

FIG. 46. The combined phase diagram as a function of lattice
density D in CeCu2sSi1−xGexd2 sD,Dcd and in CeCu2Si2 sDc

øDd under pressure P. Note that D~1/V, where V is the
unit-cell volume, and D=DSif1sVGe−VSidx /VGeg in the former
case. From Kitaoka et al., 2002.
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and Wakimoto et al. s2000d. However, different states in
the hierarchy are not equivalent. For example, at 1 /8
doping we have a very strong insulating phase which
corresponds to insulating stripes or a simple checker-
board pattern of Cooper pairs ssee Fig. 12d. This may
explain the famous “1/8 anomaly” in the Tc-vs-doping
relation for the La2−xSrxCuO4 family of cuprates. An-
other strong PDW phase is that for 1/16 doping, which
may explain why superconductivity disappears close to
this filling ssee Fig. 47d. A staircase of ordering wave
vectors for underdoped cuprates has also been discussed
in the context of doping the spin-Peierls insulating phase
by Vojta and Sachdev s1999d and Sachdev s2002bd.

By adding another external parameter we can tune
our system continuously between B1 and B3 trajecto-
ries. This was done in recent high-pressure experiments
on La1.48Nd0.4Sr0.12CuO4 sLocquet et al., 1998; Sato et al.,
2000; Arumugam et al., 2002; Takeshita et al., 2003d, in
which a pressure of the order of 0.1 GPa was sufficient
to suppress stripe ordering at 1/8 doping and stabilize
the high-temperature SC phase. Such pressure experi-
ments correspond to moving up along the A2 path in
Fig. 13. Applying pressure along this path can directly
induce a superconductor-to-insulator transition.

In contrast to the LSCO family of high-Tc cuprates,
when one varies the carrier density in the YBCO or
BSCO cuprates, there is no evidence for the static
charge order. In these materials, charge-ordered PDW
states can only be realized around vortex cores sHoff-

man et al., 2002d, when the effective Cooper-pair kinetic
energy is reduced, or near impurities sHowald et al.,
2002; McElroy et al., 2003; Vershinin et al., 2004d. We
therefore identify these materials with the B1 trajecto-
ries in the global phase diagram of Fig. 13. In this case,
the AF/SC boundary can be either be type 1 or type 2.
Given the evidence discussed in Sec. VII.C, these sys-
tems seem to be close to the type-1.5 marginal case in
between these two types of phase transition, which
means that they should have approximate SOs5d symme-
try.

Within the class of materials exhibiting the B1 type of
trajectory in the global phase diagram, the SOs5d theory
makes a distinct prediction of the finite-temperature
multicritical point where Tc and TN intersect. An inter-
esting issue discussed in Secs. IV.C and IV is the possi-
bility of analyzing the critical properties of systems ssuch
as many high-Tc cupratesd showing a direct transition
between an AF and a SC phase. In particular, measuring
the critical exponent associated with various physical
quantities near the bicritical AF-SC point can give infor-
mation about the dimension of the symmetry group at
the transition sHu and Zhang, 2000d. Unfortunately, in
the high-Tc cuprates, sample qualities are not high
enough to enable a reliable measurement of the critical
behavior near the multicritical points discussed above.
On the other hand, encouraging experimental evidence
for an SOs5d bicritical point does exist in a class of 2D
organic superconductors called BEDT salts. These ma-
terials share most common physical properties with the
cuprates, and the AF-to-SC transition can be induced in
them by pressure. In particular, recent experiments on
k-sBEDT-TTFd2X sKanoda, 1997d revealed an interest-
ing phase diagram in which Tc and TN intersect each
other at a bicritical point. Kanoda s1997d measured the
NMR relaxation rate 1/T1 in both the AF and the SC
region near the bicritical point. Below a characteristic
temperature T*, 1 /T1 diverged towards the AF transi-
tion temperature, while it exhibited a spin-gap-like be-
havior on the SC side. Murakami and Nagaosa s2000d
analyzed these experimental data in terms of a general-
ized Landau-Ginzburg model including both AF and SC
fluctuations near the bicritical point. Their study concen-
trated on the dynamic critical phenomena, in particular
the relaxation rate 1/T1 around the bicritical point. A
detailed analysis of the data allowed the extraction of
the corresponding critical exponent x. Before discussing
the NMR linewidth, we would like to caution the reader
that there is also a first-order metal-insulator transition
in addition to the AF/SC transition discussed here sLe-
febvre et al., 2000d. The presence of the critical end point
of the metal-insulator transition line may lead to some
additional complications in the analysis.

On the AF side of the phase diagram, the NMR line-
width is proportional to sT−TNd−x when approaching TN

from the normal state. For systems far away from the
bicritical point, the dynamical critical behavior is gov-
erned by the SOs3d Heisenberg model, whose exponent
x=x3<0.315. On the other hand, when the SOs5d bicriti-

FIG. 47. Doping dependence of the SC transition temperature
and magnetic moment for La2−xSrxCuO4. From Wakimoto et

al., 2001.
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cal point governs the critical dynamics, the exponent x

should change to the SOs5d one, x=x5<0.584, as ob-
tained from the e expansion. In Fig. 48, we present a
log-log plot of 1/T1 vs sT−Tcd /T sfrom Murakami and
Nagaosa, 2000, data from Kawamoto et al., 1995d for

sAd k-sBEDT-TTFd2CufNsCNd2gCl ssolid squaresd,
and

sBd deuterated k-sBEDT-TTFd2CufNsCNd2gBr sopen
squaresd.

System sAd is located in the AF region away from the
bicritical point and system sBd is nearly at the bicritical
point. As one can see from the figure, the critical expo-
nent, x, is 0.30±0.40 for system sAd and 0.56±0.40 for
system sBd. These values of x are in reasonably good
agreement with the theoretical ones, and, in particular,
support the fact that the AF/SC bicritical point is gov-
erned by the SOs5d-symmetric fixed point. This is the
first experiment that directly measures the dimension of
the symmetry group close to the AF/SC bicritical point
and determines n to be close to 5. More extensive study
near the critical region is certainly desirable.

A central issue of the high-Tc cuprates concerns the
phase boundary between the AF and SC phases. It is
also in this region that the SOs5d theory makes the most
direct and distinct predictions. The experiments dis-
cussed above seem consistent with the zero-temperature
and finite-temperature phase diagrams presented in
Figs. 13 and 10. However, a detailed quantitative com-
parison is still lacking. As the material properties of the
high-Tc cuprates improve, direct quantitative tests of the
SOs5d theory, such as those performed in the organic
superconductors, may become possible.

E. The particle-particle resonance mode in the normal

state

In this paper we have discussed the scenario in which
the resonance peak in an inelastic neutron-scattering ex-
periment sRossat-Mignod, Regnault, Vettier, Burlet, et
al., 1991; Mook et al., 1993; Fong et al., 1995, 1999; He et

al., 2001d originates from the triplet p mode in the
particle-particle channel. This mode does not disappear
above Tc, but it ceases to contribute to the spin-
fluctuation spectrum, since the particle-particle and
particle-hole channels are decoupled from each other in
the normal state. An important question to ask is
whether one can couple to the p channel directly and
establish the existence of the resonance already in the
normal state. This cannot be done using conventional
electromagnetic probes, which all couple to the particle-
hole channels only, but it is possible using tunneling ex-
periments. Before we discuss the specific proposal of Ba-
zaliy et al. s1997d for detecting p excitations, it is useful
to remind the reader about earlier work on measuring
pairing fluctuations in conventional superconductors
above their transition temperatures sAnderson and
Goldman, 1970d. As originally proposed by Scalapino
s1970d, such fluctuations can be measured in a sandwich

system of two superconductor SC1 and SC2 with differ-
ent transition temperatures in the regime Tc2,T,Tc1.
Resonant coupling between Cooper pairs from the su-
perconductor SC1 and the fluctuating pairing amplitude
in SC2 leads to the peaks in the IV characteristics at
voltages that correspond to half the energy of the pre-
formed Cooper pairs in SC2. The generalization of these
tunneling experiments for detecting the p mode in the
normal state of the cuprate has been suggested by Baza-
liy et al. s1997d and is shown in Fig. 49. In place of the

FIG. 48. sColord Possible SOs5d symmetry in BEDT salts: sad
Phase diagram. From McKenzie, 1997. sbd Log-log plot of T1

−1

vs sT−Tcd /T for sAd k - sBEDT-TTFd2CufNsCNd2gCl sjd, and
sBd deuterated k -BEDT-TTFd2CufNsCNd2gBr shd. sData from
Kawamoto et al., 1995.d
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SC2 region we now have some cuprate material that
shows a resonance in the SC state, e.g., an underdoped
YBCO selectrode C in Fig. 49d, and in place of the SC1
materials we have a different cuprate superconductor
selectrode A in Fig. 49d with a higher transition tempera-
ture than material C. The system should be in the tem-
perature regime Tc

C,T,Tc
A. The main difference be-

tween the setup suggested by Scalapino s1970d and that
proposed by Bazaliy et al. is the presence of a thin layer
of AF insulator between the A and C electrodes. The
reason for this modification is straightforward: we need
to probe the p channel in the C material that corre-
sponds to the particle-particle mode with spin S=1 and
momentum P= sp ,pd, whereas the SC electrode A pro-
vides Cooper pairs with S=0 and momentum q=0. If the
two materials are connected as shown in Fig. 49, a Coo-
per pair traveling across an AF layer B can emit a mag-
non, which converts this Cooper pair into a p pair and
allows resonant coupling between superconductor A
and the p channel of the “normal” electrode C. One
expects to find a resonance in the IV characteristics of
the junction, with a peak in the tunneling current at a
voltage exactly half the energy of the p resonance in the
C electrode snote that this peak only appears when elec-
trons are injected from A to C, so it appears on one side
of the IV curved. The simple qualitative picture de-
scribed above can be made more precise by considering
a tunneling Hamiltonian between materials A and C,

HT = o
pks

Tpk
d aps

† cksciVt + Tpk
f ap+Qs

† ck−seiVt + H.c.

s116d

Here V is the applied voltage, and the apa and cka op-
erators refer to the electronic operators in A and C with
momenta p and k. The ratio of the spin-flip matrix ele-
ment Tpk

f to the direct matrix element Tpk
d is on the or-

der of DSDW /U, where DSDW is the spin-density-wave
gap of the AF insulating material B. The diagram re-
sponsible for the resonant contribution to the tunneling
current is shown in Fig. 50. The triplet vertex G takes
into account interactions needed to create a sharp p
resonance in the A electrode. The magnitude of the
peak in the tunneling current was estimated by Bazaliy
et al. s1997d to be 10 mA mV for a system of area
10−4 cm2. As argued in Sec. VI, it is not easy to distin-

guish the particle-hole and the particle-particle origin of
the p resonance below Tc since these two channels are
mixed. Direct experimental detection of the triplet
particle-particle mode in the normal state would give
unambiguous evidence of the particle-particle nature of
the p-resonance mode.

F. Josephson effect in SC/AF/SC junctions

When discussing the relationship between d-wave su-
perconductivity and antiferromagnetism in the high-Tc

cuprates, one often finds signatures of the nearby mag-
netic phase in experiments performed on the SC mate-
rials. An important question to ask is whether the AF
insulating phase shows any signatures of the nearby SC
state. An intriguing set of experiments that possibly pro-
vides such a demonstration has observed long-range
proximity effects in insulating samples of
YBa2Cu3O6+x-based materials coupled in the a-b plane
directions sBarner et al., 1991; Hashimoto et al., 1992;
Suzuki et al., 1994; Decca et al., 2000d. The AF/SC prox-
imity effect was also observed by Kotegawa et al. s2004d;
however, it seems to be absent in the case of artificially
grown c-axis coupled layers sBozovic et al., 2003d. The
appearance of a long-range proximity effect is very natu-
ral from the point of view of the SOs5d theory, in which
low-energy degrees of freedom correspond to rotation
of the order-parameter between the AF and SC configu-
rations. A theory of the long-range proximity effect
within the SOs5d nonlinear sigma model has been devel-
oped by Demler, Berlinsky et al. s1998d. Let us consider
the SC/AF/SC junction shown in Fig. 51. If we set

FIG. 49. Setting of the tunneling experiment for detecting the
triplet particle-particle p mode in the normal state.

FIG. 50. Second-order tunneling diagram that gives rise to the
resonant coupling of Cooper pairs and p excitations in the
junction shown in Fig. 49.
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Re D=cos u cos f, Im D=cos u sin f, and N3=sin u, then
according to our discussion in Sec. III.B fsee Eqs.
s36d–s39dg, the junction can be described by the effective
Lagrangian density

Lsu,fd =
r

2
hs]iud2 + cos2 us]ifd2j − g sin2 u . s117d

The anisotropy term is given by gA.0 inside the A re-
gion, so that the AF phase would be established in the
bulk. In the superconducting regions on both sides of
the junction we have gS,0, and we should impose
boundary conditions u→0 as x→ ±`. As discussed by
Demler, Berlinsky, et al. s1998d, a simplified case corre-
sponds to taking a strong superconductor limit for which
usx=0,dd=0. The current phase relation can now be ob-
tained by writing the Euler-Lagrange equations for the
functional s117d at a fixed current. The maximal value of
u reached at x=d /2, u0, is determined by the equation

d

2jA

=
cos u0

Îvs
2 + cos2 u0

Kskd ,

k2 =
sin2 u0 cos2 u0

vs
2 + cos2 u0

, s118d

where Kskd is the complete elliptic integral of the first
kind, the dimensionless current vs is equal to IjA, with I
being the actual current through the junction and the
characteristic length is given by

jA = Îr/2gA. s119d

On the other hand, the equation for the phase difference
across the junction, DF, is given by

DF = 2vs −
cos u0

Îvs
2 + cos2 u0

P1s− sin2 u0,kd . s120d

Here P1sn ,kd is a complete elliptic integral of the third
kind. Immediately, one can see that Eq. s120d describes
two different kinds of behavior for d larger or smaller
than dc0=pjA. When d.dc0 we have a conventional
proximity effect with IsDFd=I0sddsin DF and I0sdd
~exps−d /jAd. We observe, however, that the SC corre-
lation length jA may be very long if the system is close to
the SOs5d-symmetric point fgA→0 in Eq. s119dg, which
corresponds to the long-range proximity effect. When
d,dc0 we get more intriguing behavior in Eq. s120d, in
which for small currents the A region is uniformly super-

conducting, i.e., u0=0 sproximity to a strong supercon-
ductor completely suppresses the AF order inside the A
regiond, but when the current exceeds some critical
value, the system goes into a state that has both d-wave
SC and AF orders, i.e., 0,u0,p /2. The resulting non-
trival IsDFd are shown in Fig. 52. We note that the
analysis presented above does not take into account the
long-range part of the Coulomb interaction between
electrons. This may become important for systems with
sufficiently wide AF layers and lead to suppression of
the proximity-induced SC order in the AF layer.

Several consequences of the nonsinusoidal behavior
of the current-phase relation in SAS junctions have been
explored by den Hertog et al. s1999d, including current-
voltage characteristics in the presence of thermal fluc-
tuations, Shapiro steps, and the Fraunhofer pattern.
Decca et al. s2000d used near-field scanning tunneling
microscopy to photogenerate Josephson junctions in un-
derdoped thin films of YBa2Cu8O6+x. They have verified
a long-range proximity effect through insulating layers
but observed a conventional Fraunhofer pattern rather
than the one predicted by den Hertog et al. s1999d. The
geometry of their samples, however, is different from
that of the system studied by Demler, Berlinsky, et al.
s1998d and den Hertog et al. s1999d: the intermediate AF
layer in their case is connected to large AF regions on
both sides of the junctions, which suppresses rotation of
the superspin in the SC direction.

In a related context, Auerbach and Altman s2000d ap-
plied the projected SOs5d theory to predict multiple An-
dreev resonance peaks in SC/AF/SC junctions.

VIII. CONCLUSIONS

In a large class of materials, including the high-Tc cu-
prates, the organic superconductors, and the heavy-
fermion compounds, the AF and SC phases occur in
close proximity to each other. The SOs5d theory is de-
veloped based on the assumption that these two phases
share a common microscopic origin and should be
treated on an equal footing. The SOs5d theory gives a
coherent description of the rich global phase diagram of
the high-Tc cuprates and its low-energy dynamics
through a simple symmetry principle and a unified effec-
tive model based on a single quantum Hamiltonian. A
number of theoretical predictions, including the inten-
sity dependence of the neutron resonance mode, the AF
vortex state, the pair-density-wave state, and the mixed
phase of AF and SC, have been verified experimentally.
The theory also sheds light on the microscopic mecha-
nism of superconductivity and quantitatively correlates
the AF exchange energy with the condensation energy
of superconductivity. However, the theory is still incom-
plete in many ways and lacks full quantitative predictive
power. While the role of fermions is well understood
within the exact SOs5d models, their roles in the pro-
jected SOs5d models are still not fully worked out. As a
result, the theory has not made many predictions con-
cerning the transport properties of these materials.

FIG. 51. The superconductor-antiferromagnet-superconductor
sSC/AF/SCd junction described by Eq. s117d.
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Historically, throughout man’s quest for the basic laws
of nature, symmetry principles have always been a faith-
ful guiding light which time and again led us out of dark-
ness. The enigma of high-temperature superconductivity
poses an unprecedented challenge in condensed-matter
physics. Reflecting upon the historical developments of
physical theories, it seems worthwhile to carry out the
symmetry approach to this problem to its full logical
conclusion. The basic idea of unifying seemingly differ-
ent phases by a common symmetry principle may also
prove to be useful for other strongly correlated systems.

IX. NOTATIONS AND CONVENTIONS

A. Index convention

ta denote Pauli matrices.
a ,b=x ,y ,z denote SOs3d vector spin indices.
s ,s8=1,2 denote SOs3d spinor indices.
a ,b ,c=1,2 ,3 ,4 ,5 denote SOs5d superspin vector indi-

ces.
m ,n=1,2 ,3 ,4 denote SOs5d spinor indices.
i , j=1,5 denote Us1d vector indices for superconduc-

tivity.
x ,x8 denote site indices.

B. Dirac G matrices

The general method introduced by Rabello et al.

s1998d for constructing SOs5d-symmetric models uses the
five Dirac G matrices, Ga sa=1, . . . ,5d, which satisfy the
Clifford algebra,

hGa,Gbj = 2dab. s121d

Rabello et al. introduced the following explicit represen-
tation, which is naturally adapted for discussing the uni-
fication of AF and d-wave SC order parameters:

G1 = S 0 − ity

ity 0
D , Gs2,3,4d = StW 0

0 ttW
D ,

s122d

G5 = S 0 ty

ty 0
D .

Here tW = stx ,ty ,tzd are the usual Pauli matrices and ttW
denotes their transposition. These five Ga matrices form
the five-dimensional vector irreps of SOs5d. Their com-
mutators,

Gab = −
i

2
fGa,Gbg , s123d

define the ten-dimensional antisymmetric tensor irreps
of SOs5d. In the above representation, the 10 Gab’s are
given explicitly by

G15 = S− 1 0

0 1
D ,

Gsi+1dsj+1d = «ijkStk 0

0 − ttk

D si,j = 1,2,3d ,

Gs2,3,4d1 = S 0 − tWty

− tytW 0
D = tyS 0 ttW

− tW 0
D ,

Gs2,3,4d5 = S 0 − itWty

itytW 0
D = ityS0 ttW

tW 0
D .

These G matrices satisfy the following commutation re-
lations:

fGab,Gcg = 2isdacG
b − dbcG

ad , s124d

fGab,Gcdg = 2isdacG
bd + dbdGac − dadGbc − dbcG

add .

s125d

An important property of the SOs5d Lie algebra is the
pseudoreality of its spinor representation. This means
that there exists a matrix R with the following proper-
ties:

R2 = − 1, R† = R−1 = tR = − R , s126d

RGaR = − tGa, RGabR = tGab. s127d

The relations RGabR−1=−sGabd* indicate that the spinor
representation is real, and the antisymmetric nature of
the matrix R indicates that it is pseudoreal. The R ma-
trix plays a role similar to that of eab in SOs3d. In our
representation, the R matrix takes the form

R = S 0 1

− 1 0
D . s128d
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