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ARTICLE

So Many Correlated Tests, So Little Time!
Rapid Adjustment of P Values for Multiple Correlated Tests

Karen N. Conneely* and Michael Boehnke

Contemporary genetic association studies may test hundreds of thousands of genetic variants for association, often with

multiple binary and continuous traits or under more than one model of inheritance. Many of these association tests

may be correlated with one another because of linkage disequilibrium between nearby markers and correlation between

traits and models. Permutation tests and simulation-based methods are often employed to adjust groups of correlated

tests for multiple testing, since conventional methods such as Bonferroni correction are overly conservative when tests

are correlated. We present here a method of computing P values adjusted for correlated tests (PACT) that attains the

accuracy of permutation or simulation-based tests in much less computation time, and we show that our method applies

to many common association tests that are based on multiple traits, markers, and genetic models. Simulationdemonstrates

that PACT attains the power of permutation testing and provides a valid adjustment for hundreds of correlated association

tests. In data analyzed as part of the Finland–United States Investigation of NIDDM Genetics (FUSION) study, we observe

a near one-to-one relationship ( ) between PACT and the corresponding permutation-based P values, achieving the2r 1 .999

same precision as permutation testing but thousands of times faster.
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Improvements in genotyping technology and the accom-

panying reductions in genotyping cost have led to an un-

precedented wealth of genetic data to analyze. In genome-

wide association (GWA) studies, it has become routine to

genotype hundreds of thousands of SNP markers. Even

candidate-gene studies may now involve hundreds or thou-

sands of SNPs. Studies may test multiple binary and con-

tinuous outcome variables for genetic association—for ex-

ample, one or more diseases and a set of disease-related

quantitative traits. It is also possible to test each SNP for

association in several ways—for example, by allowing

competing models of inheritance when the true model is

unknown. The ability to perform so many tests brings with

it a greater potential than ever before to identify disease-

predisposing variants but also a new set of issues regarding

the most efficient way to use the available information.

An important issue affecting large-scale association an-

alyses is how best to adjust for multiple testing, given the

likely correlation between many of the tests. With the den-

sity of SNPs in contemporary candidate-gene and GWA

studies, linkage disequilibrium (LD) ensures that there of-

ten will be correlation between tests performed on nearby

SNPs. Additionally, phenotypic traits collected for a par-

ticular study are likely to be correlated, and tests based on

different models of inheritance, such as the recessive and

dominant models, will certainly be correlated. A danger

of using traditional methods, such as Bonferroni correc-

tion, in this context is that truly interesting findings may

be rendered insignificant by an overly severe correction.

For L independent tests with a preset significance level

a, ∼aL of the tests will appear significant by chance alone.

Without adjustment for multiple testing, the expected

type I error rate for the group of tests (the probability that

at least one test is significant given no true association) is

, rather than a, the target type I error rate.L1 � (1 � a) ≈ aL

The best P values can be adjusted for multiple testing with

the Bonferroni procedure, which effectively multiplies the

best P value (Pmin) by L, or with the more precise Šidák

procedure, which computes the adjusted P value as 1 �

and guarantees a type I error rate of a for in-L(1 � P )min

dependent tests.1

Although Bonferroni and Šidák adjustments are valid in

the case of independent tests, they tend to be overly con-

servative in association studies in which the tests are cor-

related. A valid adjustment for multiple testing must ac-

count for the correlation between tests. Permutation tests

provide a valid adjustment if the data are permuted in a

way that simulates the null hypothesis but maintains the

original correlation structure. Randomly permuting and

reanalyzing the data many times and comparing the per-

mutation-based results with the original results allows es-

timation of the probability of observing a P value as small

as the original minimum, given the correlation between

tests. This solution is attractive because of its simplicity

and robustness and is often considered the gold standard

for analysis. However, in the context of large association

studies, permutation is likely to require too much com-

putation time, so computationally efficient alternatives

are desirable.

Some proposed alternatives have focused on extending
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the Bonferroni or Šidák adjustments to account for the

correlation between tests. When the L tests are correlated,

the true probability of observing a P value as small as Pmin

is smaller than the Šidák estimate , becauseL1 � (1 � P )min

there is less variation between test statistics than if the

tests were independent, which makes extreme test statis-

tics less likely. In effect, it is as though fewer tests were

performed; for this reason, several studies suggest replac-

ing L in with an estimate of the effectiveL1 � (1 � P )min

number of independent tests.2–4 However, the suggestion

that a single parameter fully captures the correlation struc-

ture has been rejected in the majority of cases when tested

on SNPs in LD.5,6 Salyakina et al.6 also found in simulation

studies of Nyholt’s method2,3 that the “nominal 5% type

I error rate varied from under 3% to over 7%” and that,

whereas this approach “may be useful as an exploratory

tool, it is not an adequate substitute for permutation

tests.”6(p19)

A shortcoming of methods based on an effective num-

ber of tests is that they do not account for the distribution

of the test statistics. The Šidák-adjusted P value has iden-

tical form regardless of distribution, which is appropriate

for independent tests; however, the analogous probability

for correlated tests depends on the joint distribution of

the test statistics, and any valid extension of the Šidák

method must take this into account. If the test statistics

follow an asymptotic multivariate normal distribution, as

is true for many tests, the adjusted P values may be com-

puted as multivariate normal probabilities. This strategy

has been used elsewhere in survival analysis7,8 and clinical

trials9 for �10 correlated tests. More recently, Lin10 and

Seaman and Müller-Myhsok11 employed this strategy in

the genetics literature to adjust P values from a larger num-

ber of tests. In these studies, as in permutation tests, rep-

licates of the test statistics are simulated under the null

hypothesis of no association. However, these methods

achieve greater speed than do permutation tests, by sim-

ulating the test statistics directly from the asymptotic dis-

tribution rather than permuting and reanalyzing the en-

tire data set in each replicate.

Here, we present an alternative method of P value ad-

justment that attains even greater speed by avoiding the

need for simulation altogether. We propose comparing the

observed test statistics directly with their asymptotic dis-

tribution through numerical integration. We show that,

for many common association tests, the joint distribution

of the test statistics is multivariate normal with a simple

covariance structure, even for association tests involving

multiple correlated traits, markers, and genetic models.

We demonstrate through simulations and through anal-

ysis of data from the Finland–United States Investigation

of NIDDM Genetics (FUSION) study12 that this method

attains the same accuracy as do permutation tests or their

simulation-based counterparts and is orders of magnitude

faster than those methods.

Methods
P Value Adjusted for Correlated Tests (PACT)

Consider L tests of association with test statistics and PT , … ,T1 L

values P1,…,PL; denote the ordered P values P � P � P �min (2) (3)

. It is common to focus interest on the smallest P values.… � P(L)

However, each individual P value is based on a single hypothesis

test that does not account for the fact that L tests were actually

performed. The Šidák1 P value,

LP p 1 � (1 � P ) , (1)Šidák min

estimates the probability of observing at least one P value �Pmin

under the null hypothesis for L independent tests. We suggest

here an estimator of this probability for correlated tests, which

we denote PACT. Whereas PŠidák depends on only Pmin, PACT is based

on the joint distribution of all L statistics and their cor-T , … ,T1 L

relation structure.

As we show in the “Asymptotic Multivariate Normality of Com-

mon Association Test Statistics” section, many common associa-

tion tests are based on or related to test statistics that are asymp-

totically distributed as multivariate normal with known covari-

ance matrix. We assume here that the vector of test statistics

, where denotes asymptotic (large sample) distribu-
· ·

T ∼ N (0,S) ∼

tion, 0 is an L-dimensional vector of zeroes, and S is an L # L

correlation matrix. Then, for one-sided tests, andP p 1 � F(T )i i

for two-sided tests, where is the standardP p 2 [1 � F(FT F)] Fi i

normal distribution function.

To adjust the minimum observed P value Pmin to reflect the fact

that L correlated tests were performed, we compute the proba-

bility of observing at least one P value as small as Pmin under the

null hypothesis of no association, given that when
·

T ∼ N (0,S)

the null hypothesis is true. Denoting this probability PACT and

letting be random variables from the multivariate nor-Z , … ,Z1 L

mal distribution with covariance matrix S,

�11 � P[max (Z , … ,Z ) ! F (1 � P )] for one-sided tests1 L min

P p ,ACT Pmin�1F F F F( )1 � P max Z , … , Z ! F 1 � for two-sided tests1 L ( )[ ]{ 2

(2)

with the obvious generalization to a combination of one- and

two-sided tests. Figure 1A and 1B illustrates the probabilities for

one- and two-sided tests, respectively, when . The ellipticalL p 2

lines represent the contours of the bivariate normal density func-

tion. PACT is the probability that a random point from this dis-

tribution will fall within the shaded area.

If one applies the sequentially rejective multiple-test procedure

of Holm,13 the ordered P values mayP � P � P � … � Pmin (2) (3) (L)

be adjusted and tested for significance one at a time, starting with

Pmin. We first adjust Pmin for multiple testing by computing PACT

as in equation (2). If , the null hypothesis is rejected forP ! aACT

the test associated with Pmin, and we proceed to P(2). To adjust P(2)

for multiple testing, we can remove the test associated with Pmin

from consideration, since the null hypothesis for this test has

been rejected. We can now compute according to the formula(2)PACT

in equation (2) but replacing Pmin with P(2), L with , and SL � 1

with the covariance matrix between the remaining tests. IfL � 1

, we then reject the null hypothesis associated with P(2)
(2)P ! aACT

and compute , with removed from consideration, con-(3)P ! a PACT (2)

tinuing in this fashion until for some k, at which point(k)P � aACT

we conclude that all remaining tests are insignificant. A good
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Figure 1. Bivariate normal probability represented by PACT when

for one-sided tests (A) and two-sided tests (B). EllipticalL p 2

lines represent the contours of a bivariate normal density function

with positive correlation. Shaded area represents the space (ex-

tending to infinity) over which the probability PACT is measured.

example of this kind of sequential testing in the multivariate

normal case can be found in the work of Wei et al.7

Asymptotic Multivariate Normality of Common Association

Test Statistics

Adjustment for multiple correlated tests with PACT requires that

test statistics be asymptotically distributed as multivariate normal

with known covariance matrix. Seaman and Müller-Myhsok11

have shown that, for association tests based on M markers, one

can apply the result that a vector of score statistics has a multi-

variate normal asymptotic distribution under the null hypothe-

sis.14 We extend this result to include association tests based on

correlated traits by deriving the asymptotic distribution for tests

of association between M markers and K binary and continuous

outcome variables. We show that this result can also be readily

applied when multiple genetic models are tested. Although we

focus on score tests, these results also apply to Wald and likeli-

hood-ratio tests, since they are asymptotically equivalent to the

score test.15

For each individual ( ), leti p 1, … ,N

T( )Y p Y Y … Yi i1 i2 iK

be a vector of K trait variables (where superscript T indicates trans-

pose), which may include both quantitative traits and binary

traits such as disease status. Let Gi be a genotype vector containing

allele counts of 0, 1, or 2 for each of M markers, and let Xi be a

covariate vector that contains 1 as the first element and that can

also include environmental and demographic variables, such as

age and sex.

Many of the commonly used tests for association between traits

and genotype are based on or related to the score statistics from

a generalized linear model. Such tests include the simple test of

equal allele frequency for cases and controls, the Cochran-Ar-

mitage test for trend,16,17 and linear and logistic regression. A key

assumption of generalized linear models is that

( ) ( )E Y FX ,G ph h ,ik i i ik

where h is a function, and

T Th p X a � G b ,ik i k i k

where is a vector of covariate effects that includes an interceptak

term and is an M-dimensional vector of genetic effects. Underbk

this assumption, a linear combination of genotypes and co-hik

variates provides all the information necessary to predict the

mean trait value, but the relationship between predicted trait

value and may be nonlinear. For example, in a trend test orhik

logistic regression model,

hike
( )h h p .ik hik1 � e

If K traits are tested for association with M genotypes, the KM-

dimensional vector of score statistics is

N

˜( )U p Y � Y � G ,�b i i i
ip1

where is the vector of predicted trait values given covariates,Ỹi

with the assumption of no genetic association, and represents�

the Kronecker product. As we show in appendix A,

·

( )U ∼ N 0,V ,b b

where can be estimated asVb

T T T �1 T( )Q � GG � GX XX XG ,[ ]

the Kronecker product of the sample covariance matrices of traits

and genotypes, conditioned on covariates. Here,

[ ]G p G G … G1 2 N

and

[ ]X p X X … X1 2 N
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Table 1. Three Examples of Covariance Matrices of Test Statistics R

Example Trait(s) Marker(s) R

1 Two traits with correlation r Single SNP 1 r
R pY [ ]r 1

2 Single trait Two SNPs with correlation r 1 r
R pG [ ]r 1

3 Two traits with correlation r Two SNPs with correlation r

1 r r rr

r 1 rr r
R � R pY G

r rr 1 r[ ]
rr r r 1

are matrices of genotypes and covariates, respectively, and

N
T˜ ˜( ) ( )Q p Y � Y Y � Y� i i i i

ip1

is the trait covariance matrix, conditioned on X.

The P values from individual association tests are generally

based on test statistics that are normalized to have variance of 1.

A vector of L score statistics, , is easily transformed to a nor-Ub

malized vector of test statistics, T, by computing each element

of T as

Ub,l
T p ,l �Vb,ll

where is the lth element of , and is the lth elementU U Vb,l b b,ll

along the diagonal of for ; it is also common to workV l p 1, … ,Lb

with . It is easy to show that , where
·

2 �1T p U V U T ∼ N (0,R)l b,l b,ll b,l

is the correlation matrix corresponding to the covariance ma-R

trix . With use of this fact, PACT can then be computed as inVb

equation (2), given only Pmin and . , in turn, can generally beR R

estimated as a simple function of the sample correlation matrices

of traits and markers, conditioned on any covariates. Appropriate

estimates of are shown for a few examples in table 1.R

The above model may be trivially extended to include tests

based on multiple genetic models. For example, if a marker is

tested for association in three ways, with the assumption of ad-

ditive, dominant, and recessive models, it can be assigned three

elements in Gi, each containing the appropriate genotype code.

For instance, the genotype codes for an individual with two copies

of the reference allele would be 2, 1, and 1 for the additive, dom-

inant, and recessive models, respectively. The score statistics and

covariance matrix are then computed as usual.

Implementation of PACT Method

Computation of PACT in equation (2) requires integration of the

multivariate normal density function. Although the integral has

no closed-form solution, multivariate normal probabilities can be

integrated numerically when the covariance matrix is known or

can be estimated. Genz18,19 and Genz and Bretz20 have developed

a computationally efficient method for numerical integration of

the multivariate normal distribution, which is available as Fortran

code that can handle integrands of up to 1,000 dimensions.21 This

Fortran code has been incorporated into the package mvtnorm22

in the R software environment,23 and the latest version of

mvtnorm (versions �0.8) provides sensible estimates of the mul-

tivariate normal integral for up to 1,000 dimensions.22 We apply

Genz’s algorithm as implemented in mvtnorm to estimate PACT

for several common association tests. In the interests of com-

putational efficiency, we may choose the requested precision level

depending on the magnitude of the P values and the nature of

the analysis. For example, one may desire a quick low-precision

analysis for exploratory purposes or for clearly nonsignificant re-

sults but may want to devote more computational resources to a

high-precision final analysis. Our R code for computation of PACT

is available online (see authors’ Web site).

Assessment of Type I Error Rate and Power

To estimate the type I error rate and power of adjusting for mul-

tiple testing with PACT, we performed simulations that involved

both binary and quantitative traits. In each case, we estimated

type I error by simulating 100,000 data sets under the null hy-

pothesis, where trait was assigned at random, independent of

genotype. Similarly, we estimated power by creating 10,000 rep-

licate data sets in which trait was influenced by genotype. For

each simulation, we performed the relevant set of association tests

and computed three overall P values: PACT and PŠidák, as in equa-

tions (1) and (2) above, and Pperm. To calculate Pperm, we first created

1,000 permutations of the original data by randomly shuffling

individual genotype vectors while leaving the trait data and any

covariates intact. In this way, the permuted samples simulated

the null hypothesis of no association but maintained the original

correlation between genotypes, between traits, and between traits

and covariates. We tested each of these 1,000 samples for asso-

ciation and estimated Pperm as the proportion of samples with a

minimum P value as low as that observed in the original data.

Although 1,000 permutations is much lower than we would use

in practice, it is sufficient for estimating type I error and power

at the significance level that we chose to use.a p .05

Binary trait simulations.—We simulated case-control status for

1,389 individuals genotyped for 20 HNF1A SNPs as part of the

FUSION study of the genetics of type 2 diabetes (T2D).12 HNF1A

is one of six genes known to be involved in maturity-onset di-

abetes of the young24 and was analyzed by FUSION as a potential

candidate gene for T2D.25 Of the 20 SNPs genotyped for the study,

most had been chosen to be nonredundant ( ), and, as fig-2r ! 0.8

ure 2 shows, only moderate LD was present.

For type I error estimation, we randomly assigned case-control

status in each simulation. For power estimation, we chose 1 of

the 20 SNPs as a disease SNP and randomly assigned case-control

status according to a multiplicative model of disease risk for each

individual, where genotype relative risk (GRR) was chosen to en-

sure a roughly equal number of cases and controls and a corre-

lation of ∼0.12 between case-control status and the disease gene.

This corresponded to a GRR of 1.2 if the disease SNP was our
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Figure 2. LD (r2) between 20 SNPs from HNF1A

Figure 3. Correlation structures used in simulations of 10 cor-

related traits. A, Uncorrelated traits. B, Equal correlation between

traits. C, Autocorrelated traits. D, Independent blocks of correlated

traits. E, Negatively correlated blocks of correlated traits.

most common SNP, with a minor-allele frequency (MAF) of 0.48,

and a GRR of 1.4 if the disease SNP was our least common SNP

( ). Individuals missing genotype data for the diseaseMAF p 0.04

SNP were assigned the mean GRR. To model the common situ-

ation in which the genotyped SNPs are proxies for a disease-

predisposing variant that was not genotyped, we then omitted

the disease SNP from consideration and tested only the remaining

19 SNPs for association when estimating power. For estimation

of the type I error rate, there was no disease SNP, so, in this case,

we tested all 20 SNPs.

We first tested each of the 19 or 20 SNPs for association with

a Cochran-Armitage test for trend,16,17 which assumes an additive

model of disease risk. In each case, we computed PACT, PŠidák, and

Pperm to adjust for the 19 or 20 tests. Since 215 individuals were

missing data on at least one genotype, we performed each as-

sociation test by using only individuals with data for the SNP

being tested, but we estimated the covariance matrix by using

genotype data from all individuals, with missing genotype data

for each SNP filled in with the mean allele count for that SNP.

Using the same data, we also tried testing every SNP under the

additive, dominant, and recessive models and adjusting for all

the tests with PACT, PŠidák, and Pperm. For SNPs with !20 minor-allele

homozygotes, we omitted the relevant dominant or recessive

model from analysis. This led to the exclusion of four models,

for a total of 56 tests, before also removing the disease SNP from

consideration.

For the same 1,389 genotyped individuals, we simulated five

correlated binary traits according to a probit model. For each

simulation, we first generated five equally correlated random var-

iables from the multivariate normal distribution forZ , … ,Zi1 i5

each individual i. For , each binary trait Yij was definedj p 1, … ,5

as 1 if , and 0 otherwise. The resulting five binary traits wereZ 1 0ij

equally correlated with one another, with all pairwise correlations

≈0.7. For power estimation, we allowed one trait to be influenced

additively by the disease SNP by defining it to be 1 if Z � (G �ij i

, and 0 otherwise, where is the disease allele count (0,Ḡ)b 1 0 Gi

1, or 2) for individual i, and is the mean allele count over allḠ

individuals with genotypes for the disease SNP. For individuals

missing genotypes for the disease SNP, we set to 0. We then¯G � Gi

used Cochran-Armitage trend tests to test each of the 20 SNPs

for association with each of the five traits, for a total of 100 tests

(or 95 when the disease SNP is omitted). We again used PACT, PŠidák,

and Pperm to adjust for the 95 or 100 tests.

Quantitative-trait simulations.—We first simulated data sets of

2,000 individuals with 10 correlated quantitative traits and ge-

notype data for a single SNP with allele frequency 0.5. We as-

signed trait values according to the linear model Y p a X �ij j i

, where Gi is the allele count for individual i, Xi is a co-b G � �j i ij

variate generated as a linear function of Gi and a random normal

component, such that the correlation between Xi and ,G ∼ 0.25i

is a random component, and and are parameters that� a bij j j

determine the effect of the covariate and genotype on trait j. For

each trait, was drawn from a normal distribution tightly cen-aj

tered around a fixed effect size, so that covariates had a similar,

though not identical, effect on the 10 traits. We set forb p 0j

when computing type I error and andj p 1, … ,10 b 1 0 b p 01 j

for when computing power. We simulatedj p 2, … ,10 � p (� ,i i1

from the multivariate normal distribution ,T
� , … ,� ) N (0,R )i2 i10 Y

with one of the five correlation structures shown in figure 3. For

each simulation, we tested the SNP for association with each trait

separately with a linear regression of the trait value on allele count

and the covariate. We used the results from the 10 tests to com-

pute PŠidák, PACT, and Pperm. We performed simulations for lower

(0.2), higher (0.7), and extremely high (0.99) values of r and t

(where ).r p t

We next randomly drew HNF1A genotypes for each individual

and simulated 10 traits, using a similar linear model with no

covariates. We tested the traits for association with the 20 HNF1A

SNPs, for a total of 200 tests. We estimated type I error as in our

previous simulations; to estimate power, we simulated a model

where is influenced by the least common of the 20 SNPsYi1

( ). When 200 tests were involved, estimation of PpermMAF p 0.04

was too computationally intensive, so, in this case, we estimated

PŠidák and PACT only.

Finally, we performed both the single-SNP and 20-SNP simu-

lations for a set of five binary and five continuous traits. We

generated 10 multivariate normal random variables according to

the model , with Xi, Gi, �ij, aj, and bj definedZ p a X � b G � �ij j i j i ij

as above. We defined the five continuous traits as forY p Zij ij

and the five binary traits by setting ifj p 1, … ,5 Y p 1 Z 1ij ij
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Table 2. Type I Error Rate and Power When 20 HNF1A SNPs Are Tested for Association with Binary Traits

Disease SNP MAF r2
total

a r2
max

b

One Binary Trait Tested Five Binary Traits Tested

On Additive Model On Three Models On Additive Model

PŠidák PACT Pperm PŠidák PACT Pperm PŠidák PACT Pperm

None (type I error) … … … .0301 .0503 .0507 .0247 .0500 .0508 .0259 .0495 .0502

Most common SNP .48 .88 .78 .899 .927 .925 .859 .911 .910 .806 .857 .859

Moderately frequent SNP .20 .93 .19 .419 .535 .538 .338 .482 .484 .280 .385 .377

Least common SNP .04 .91 .79 .878 .916 .915 .811 .874 .874 .686 .772 .773

SNP least predicted by others .05 .42 .35 .387 .475 .476 .296 .401 .402 .220 .304 .299

a r2
total p Proportion of variance in disease SNP allele count explained by the other 19 SNPs.

b r2
max p Maximum pairwise r2 between disease SNP and each of the other 19 SNPs.

, and 0 otherwise, for . Each binary trait had a1.25 j p 6, … ,10

prevalence of ∼0.1, and we chose the covariance of , such that�i

all pairwise trait correlations were between 0.5 and 0.7. We es-

timated type I error and power as in previous simulations.

Performance of other methods.—We also used the simulations de-

scribed above to estimate the type I error rate for two methods

that estimate an effective number of tests (see introductory par-

agraphs). For the method of Cheverud2 and Nyholt,3 we com-

puted the effective number of tests as ,1 � (L � 1) (1 � Var (l) /L)

where L is the number of tests performed and is the var-Var (l)

iance of the eigenvalues from the correlation matrix between the

tests. For the method of Li and Ji,4 we computed the effective

number of tests as

L

F F F F F F( )I l �1 � l � l ,� ( )[ ]i i i 
ip1

where is 1 if the absolute value of the ith eigenvalueI (Fl F � 1)i

, and 0 otherwise, and is the largest integer � .Fl F � 1 Fl F Fl Fi i i

For each method, we computed a multiple-testing–adjusted P

value by substituting the effective number of tests for L in the

Šidák formula. We then estimated the type I error rate as described

above.

Comparison Between PACT and Pperm in FUSION Data

To assess how closely estimates of PACT correspond to gold-stan-

dard estimates based on Pperm, we analyzed 3,575 SNPs in and near

224 candidate genes that were genotyped for 1,161 T2D-affected

subjects and 1,174 control individuals with normal glucose tol-

erance from the FUSION study (K. L. Mohlke, personal commu-

nication). We first tested the 3,007 SNPs that had �20 individuals

in each of the three genotype classes for association with T2D,

using the additive, dominant, and recessive models and con-

trolling for age category, sex, and birth region as covariates. For

each SNP, we estimated both PACT and Pperm to adjust for the three

tests, providing 3,007 comparisons between PACT and Pperm.

We next tested all 3,575 SNPs for association with 18 quanti-

tative T2D-related traits (residualized on age category, sex, and

birth region) on the 1,174 controls. For each SNP, we estimated

both PACT and Pperm, to adjust for the 18 correlated tests, which

provided 3,575 comparisons between PACT and Pperm. To provide

additional comparisons between PACT and Pperm for highly signif-

icant tests, we simulated nine additional SNPs with minimum P

values of , , , , ,�5 �6 �6 �6 �71 # 10 5 # 10 2.5 # 10 1 # 10 5 # 10

, , , and and adjusted these�7 �7 �8 �82.5 # 10 1 # 10 5 # 10 2.5 # 10

minimum P values for multiple testing with PACT and Pperm.

For all comparisons, we computed PACT at increased precision

for more-significant SNPs and under the assumption that covar-

iates were independent of genotype. For Pperm, we performed

1,000,000 permutations for the 10 most-significant SNPs, 100,000

for the next 190 significant SNPs, and 10,000 for all other SNPs.

For the nine SNPs simulated to be highly significant, we per-

formed 10,000,000 permutations.

Results
Type I Error Rate and Power for Simulated Data

Table 2 presents estimates of type I error rate (first row)

and power (subsequent rows) for PŠidák, PACT, and Pperm when

the 20 HNF1A SNPs are tested for disease association. The

estimates in the first row (based on 100,000 simulation

replicates each) show that both PACT and Pperm have type I

error rates ∼0.05 and are thus valid in all cases consid-

ered—that is, when the 20 SNPs are tested for association

with a binary trait under an additive model or under three

competing models or when the SNPs are tested for asso-

ciation with five correlated binary traits. Tests based on

PŠidák are conservative in each case. A similar pattern was

observed for a levels of .01, .001, and .0001 or when the

true model was dominant or recessive (data not shown).

Each of the next four rows of table 2 present power

estimates with a different SNP modeled as the disease-

predisposing SNP: the most common SNP ( ),MAF p 0.48

a moderately frequent SNP ( ), the least com-MAF p 0.20

mon SNP ( ), and the SNP least well predictedMAF p 0.04

by a linear function of the others. The power estimates

(based on 10,000 simulation replicates each) show that

tests based on PACT have near identical power to permu-

tation tests and are consistently more powerful than tests

performed with Šidák (or Bonferroni) adjustment. Results

were similar for the other 16 SNPs (data not shown).

Table 3 presents estimates of type I error rate and power

for tests of association with traits correlated as in figure

3, with ; data are presented for 10 quantitativer p t p 0.7

traits in rows 1–5 and for five binary and five quantitative

traits in row 6. When a single SNP is tested for association,

PACT and Pperm provide valid tests and PŠidák is overly con-

servative, except when traits are independent, as in the

first row of table 3. There is near identical power for PACT

and Pperm, whereas PŠidák has reduced power in each situ-

ation except independence. Results are similar even when

20 correlated SNPs are tested for association with 10 cor-
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Figure 4. A, Estimates of PACT and Pperm for 3,007 SNPs tested for

disease association under three genetic models. B, Estimates of

PACT and Pperm for 3,584 SNPs tested for association with 18 quan-

titative traits. Unblackened circles represent 3,575 SNPs genotyped

for the candidate-gene study. Blackened circles represent nine

simulated SNPs.

Table 3. Type I Error Rate and Power When 10 Correlated Quantitative Traits Are Tested for Association

10 Traits Tested for Association with

One SNP and a Covariate 20 Correlated HNF1A SNPs

Type I Error Rate Power Type I Error Rate Power

Trait Correlation Structure PŠidák PACT Pperm PŠidák PACT Pperm PŠidák PACT PŠidák PACT

Independent traits .0498 .0499 .0496 .819 .819 .816 .0325 .0514 .780 .821

Equicorrelated traits .0302 .0502 .0503 .826 .880 .878 .0216 .0507 .778 .852

Autocorrelated traits .0393 .0494 .0495 .820 .842 .839 .0274 .0499 .777 .833

Independent blocks of traits .0386 .0497 .0501 .824 .850 .848 .0264 .0501 .779 .836

Negatively correlated blocks of traits .0327 .0496 .0500 .825 .870 .868 .0234 .0503 .779 .846

Five binary and five quantitative traits .0341 .0491 .0488 .825 .864 .860 .0263 .0517 .781 .844

related traits, for a total of 200 tests. Similar results were

also observed for lower levels of correlation ( )r p t p 0.2

(data not shown) and extremely high levels of correlation

( ) (data not shown). As expected, the powerr p t p 0.99

gains of PACT and Pperm over PŠidák were smaller when r p

and were greater when .t p 0.2 r p t p 0.99

We ran additional simulations testing up to 1,000 equi-

correlated quantitative traits ( ) for association withr p 0.7

a single SNP and a covariate (data not shown). For 300,

400, and 500 tests, respective estimated type I error rates

were .0121, .0112, and .0102 for PŠidák and were .0506,

.0499, and .0517 for PACT, which suggests that PACT can

achieve the target type I error rate for several hundred

tests, whereas PŠidák is increasingly conservative. For 600,

750, and 1,000 tests, the respective estimated type I error

rates were .0102, .0093, and .0086 for PŠidák and were .0550,

.0593, and .0648 for PACT, which indicates a possible bias

or reduction in the precision of PACT when the number of

tests is extremely large.

For the two methods based on the effective number of

tests (data not shown), we found that the methods of

Cheverud2 and Nyholt3 tended to be overly conservative

and that the method of Li and Ji4 was anticonservative in

all cases, except when tests were completely independent.

When a binary trait was tested for association with 20

HNF1A SNPs, the type I error rates for the two methods

were 0.0389 and 0.0613 for just the additive model and

were 0.0297 and 0.0667 when three genetic models were

tested. When 10 traits were tested for association with a

single SNP and a covariate, both methods had a type I

error rate ∼0.05 when traits were independent; for the

other trait-correlation structures, the type I error rate had

a range of 0.0460–0.0504 with the Cheverud and Nyholt

methods and of 0.0615–0.0666 with the method of Li and

Ji.4

PACT and Pperm in FUSION Data

Figure 4 shows the relationship between PACT and Pperm in

the context of a FUSION study of 3,575 SNPs in 224 can-

didate genes for T2D (K. L. Mohlke, personal communi-

cation). PACT and Pperm are plotted on a log scale to em-

phasize the smallest P values (upper right of the fig. 4

panels). We obtained the values of PACT and Pperm in figure

4A by testing each SNP for association under the additive,

dominant, and recessive models and by adjusting the min-

imum P value from these three tests for multiple testing.

We obtained the values of PACT and Pperm in figure 4B by

testing each SNP for association with 18 correlated T2D-
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Table 4. Computation Time Required to Estimate a P Value of .0001 with SE �.00001

Correlation Structure

Computation Time

PACT PDSA Pperm

Any N Any N N p 200 N p 1,000 N p 2,000

200 Autocorrelated SNPs 3.54 s 212 s 1.75 h 10.8 h 13.9 h

HNF1A with 20 SNPs .71 s 43.8 s 825 s 2,044 s 1 h

20,000 HNF1As with 20 SNPs each 3.94 h 10.1 d .52 years 1.29 years 2.28 years

related traits and adjusting the minimum P value for each

SNP for the 18 tests. Figure 4B also includes data for nine

highly significant simulated SNPs, indicated by blackened

circles. In all cases, PACT and Pperm track each other quite

closely, with all points falling very near the identity line

( for both figures).2r 1 0.999

Computation Speed: Comparisons of Methods

Because the goal of our proposed method is to estimate P

values with the same accuracy and precision as permu-

tation tests in less time, we timed computation of P values

at a constant level of precision. We compared timings for

PACT, Pperm, and one of the simulation-based methods (de-

scribed above) that has been shown to attain the accuracy

of permutation tests—the direct simulation approach (DSA)

of Seaman and Müller-Myhsok.11 We implemented all three

methods in R, using the code for the DSA provided on the

authors’ Web site. For each method, we measured the time

required to compute an adjusted P value for a fixed Pmin

(chosen such that pACT, PDSA, or ) at a givenP ≈ .0001perm

level of precision ( ). Attainment of this levelSE � 0.00001

of precision requires ∼1,000,000 permutations for Pperm

and ∼1,000,000 simulations for PDSA. Since the speed of

Pperm depends on sample size, we present timings for three

typical sample sizes. For computational efficiency, we

tested for association with a simple Cochran-Armitage test

for trend16,17; models requiring additional computation,

such as logistic or even linear regression, would have pe-

nalized the permutation tests to a much greater degree.

For example, if we had instead tested for association with

a logistic-regression model of trait on genotype with age

and sex as covariates, the timings for PACT and PDSA would

show no noticeable change, but computation of Pperm

would have taken 1300 times longer.

Table 4 compares timings for PACT, Pperm, and PDSA for

three representative situations. The first row shows tim-

ings when 200 autocorrelated tests are adjusted for mul-

tiple testing. This example is meant to approximate the

correlation between a series of nonredundant SNPs along

a chromosome, since correlation is generally high between

neighboring SNPs and decays with distance. In this case,

computing PACT is ∼60 times faster than computing PDSA

and thousands of times faster than computing Pperm. Sim-

ilar timings for 20, 40, 60, 80, and 100 autocorrelated tests

demonstrate that the computational time required in-

creases approximately linearly to the number of tests for

all three estimators (data not shown). We also computed

PACT for even smaller P values and greater dimension. Ad-

justment of a minimum P value of 10�8 with PACT with

of the estimate required 11 s for 200 autocor-SE � 10%

related tests, 25 s for 500 tests, and 70 s for 1,000 tests.

The same computation for only 200 tests would have re-

quired 13 h for PDSA and 100–800 h for Pperm, depending

on sample size.

The second row of table 4 presents the computational

time required to test the 20 HNF1A SNPs for association.

In this case, PACT can be computed 60 times faster than

PDSA and up to 5,000 times faster than Pperm. The third row

uses the information from the second to consider the pros-

pect of 20,000 independent blocks of 20 SNPs with the

correlation structure of HNF1A, illustrating what might

occur if we tested sets of SNPs from every gene in the

human genome. In this situation, permutation testing is

essentially infeasible except with massive amounts of par-

allelization, whereas the same analysis can be performed

with PACT in a single afternoon.

Discussion

Permutation testing, when performed appropriately, pro-

vides an unbiased test of the null hypothesis and is widely

considered the gold standard with which other estimators

and tests can be compared. Its main disadvantages are the

time and computational resources required to obtain pre-

cise P value estimates, so alternative tests that provide

similar results with less computational burden can be

quite attractive, particularly when a large number of tests

is involved or when data are frequently reanalyzed in light

of new samples or genotypes.

Whereas conventional distribution-based statistical tests

typically require minimal computational resources, permu-

tation tests are often employed when the asymptotic dis-

tribution of the statistic is unknown or difficult to model.

However, for many of the tests commonly used in GWA

studies, the asymptotic joint distribution of the test sta-

tistics is known, which makes analytical methods possi-

ble. As we show above, the asymptotic distribution of test

statistics from association tests between correlated traits,

markers, and models is often multivariate normal with

known covariance matrix. However, the most significant

test statistic from a group of multivariate normal test sta-

tistics has a distribution function that, although known,

cannot be computed analytically because of the lack of a

closed-form solution to the multivariate normal integral.
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Lin10 and Seaman and Müller-Myhsok11 have suggested

simulation-based approaches that can approximate the

null distribution of ordered test statistics much more

quickly than can permutation tests. Our PACT method relies

on numerical integration of the distribution function and

can approximate the null distribution much more quickly

than permutation or simulation-based approaches.

The data presented here suggest that tests based on PACT

are appropriate substitutes for those based on permutation

testing, since PACT consistently attains results essentially

identical to those of permutation-based P values, both for

simulated data and over thousands of association tests

performed as a part of a large candidate-gene study (K. L.

Mohlke, personal communication). Whereas Lin10 and Sea-

man and Müller-Myhsok11 have also demonstrated that

their estimators (denoted here as PLin and PDSA, respec-

tively) provide valid tests and attain the accuracy of Pperm,

PACT demonstrates greater gains in computational effi-

ciency. PACT is typically thousands of times faster than per-

mutation-based P values at a given level of precision. This

makes PACT potentially useful in the contexts of both large-

scale candidate-gene studies, in which thousands of tests

may be performed, and GWA studies, in which millions

of tests may be performed. Since the precision of this

method can be traded for speed, PACT can be tailored both

to initial exploratory tests for which speed is especially

important and to more-definitive tests for which greater

precision is needed; it can also be computed at increased

precision for more-interesting results.

Like any estimator, PACT is not appropriate for every anal-

ysis. It was designed to adjust the minimum P value and

other ordered P values for a large number of 1-df tests. An

advantage of this method is that it allows easy identifi-

cation of the particular traits, variants, and genetic models

associated with the most-interesting results. This approach

is especially relevant if we are looking for a small number

of reasonably large genetic effects. If we instead expect a

large number of very small effects, a joint analysis of all

associations simultaneously might be more appropriate.

Typically, these methods are based on multiple-df tests,

which are outside the scope of PACT, but PLin and PDSA re-

main useful alternatives to permutation testing in those

situations. For example, the DSA software computes an

adjusted P value for product methods,26,27 as well as for

the minimum P value.11

The validity of PACT (as well as that of PLin and PDSA)

depends on knowledge of the correct asymptotic distri-

bution. Although many common association test statistics

are asymptotically multivariate normal, use of the asymp-

totic distribution requires reasonably large sample sizes

and cell counts and may not be appropriate in all cases—

for example, dominant or recessive models with a rare

minor allele. The solution we have employed here and

elsewhere (K. L. Mohlke, personal communication)25,28 is

to drop dominant or recessive models with low cell counts

from the analysis; another solution would be to rely on

exact tests, such as Fisher’s exact test, for these models. A

related issue is that sample size must be substantially larger

than the number of tests for asymptotic properties to hold;

however, simulations have shown that PLin can achieve

the target type I error rate when the number of tests far

exceeds the sample size.10 For situations where the asymp-

totic distribution is unknown or the sample size is too

small for asymptotic properties to hold, however, permu-

tation testing may be the appropriate choice. The algo-

rithm of Kimmel and Shamir,29 which relies on impor-

tance sampling to sample from the null distribution in a

way that mimics permutation testing, can also be com-

puted thousands of times faster than permutation tests

and does not require assumptions about the asymptotic

distribution. A direct comparison of the asymptotic meth-

ods discussed here and this importance sampling method

has not been performed but would be of great interest.

The validity of PACT and PDSA also depends on accurate

estimation of the covariance matrix. Improper handling

of missing trait or genotype data can lead to biased co-

variance estimates. Although it is rare for samples to con-

tain complete genotype and trait data for every individual,

only individuals with complete data can be used in com-

putation of sample covariance matrices; otherwise, the

matrices may not be positive definite. However, exclusion

of individuals with incomplete data may lead to biased

estimates of the covariance matrix. Seaman and Müller-

Myhsok11 suggest performing the entire analysis with miss-

ing genotype data imputed, but Lin30 argues that impu-

tation can adversely impact type I error. Lin’s estimator is

based on individual contributions to the score statistic,

and he treats missing data for an individual by setting the

individual component of the appropriate score statistic(s)

to 0. In the case of PACT, an analogous approach is to test

each trait and marker only on individuals with complete

data for that trait and marker but to estimate the covari-

ance matrix of the tests for the full sample, with missing

data for marker m (or trait k) filled in with the mean ge-

notype score for marker m (or the mean value for trait k),

conditional on covariates. Although 115% of individuals

in our first set of simulations (table 2) were missing data

on at least one genotype, PACT achieved the target type I

error when this approach was used.

Valid covariance-matrix estimation also depends on how

many tests are considered at once. The numerical inte-

gration method implemented in the package mvtnorm22

has proved reliable in testing of 750-dimensional integrals

(A. Genz, personal communication), and we observed that

high levels of precision are possible for up to 1,000 di-

mensions. However, even with reliable numerical integra-

tion, precision of the covariance estimates may suffer as

the ratio between the number of parameters in the co-

variance matrix and the number of usable samples in-

creases. In our simulations, tests based on PACT with sam-

ples of 2,000 were consistently valid for 200 dimensions

and appeared to be valid in examples with 300–500 tests.

However, in the examples we considered with 600–1,000

tests, PACT did not achieve the target type I error rate. Fur-
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ther investigation of the appropriate upper limits on di-

mension and how they relate to sample size is warranted.

Seaman and Müller-Myhsok11 treat 0.1 as the upper limit

for the ratio of number of tests (L) to sample size (N),

which seems an appropriate rule of thumb, since the eigen-

values of a sample covariance matrix resemble the eigen-

values of the true matrix quite closely when .31L � N/10

Given conventional sample sizes, large-scale candidate-

gene studies are quite feasible within such a limit, and we

have already used PACT in several (K. L. Mohlke, personal

communication).25,28

With GWA studies becoming a priority, there is also

potential for PACT to be useful on a larger scale. One pos-

sible strategy is to break up large analyses into roughly

independent blocks of hundreds of tests each.11 If we then

compute PACT for each group of tests, the Šidák procedure

can be used to adjust the most-significant values of PACT

for the number of blocks via the sequential Holm13 pro-

cedure (see the “Methods” section). As long as the cor-

relation between the blocks of tests is reasonably low, little

power will be sacrificed by approximating in this way,

since PACT has accounted for the correlation within the

blocks. Use of the PACT method in such a framework has

the potential to facilitate exploration of the genome by

highlighting our most-significant findings without impos-

ing an overly severe penalty when hundreds, thousands,

or millions of association tests are performed.
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Appendix A
Written in terms of covariate effects, the KM-dimen-

sional vector of score statistics is

N N

˜˜ ( ) ˜( ) ( )U a,0 p Y � Y � G p Y � h h � G ,[ ]� �b i i i i i i
ip1 ip1

where is the vectorh̃i

TT T T˜ ˜ ˜[ ]X a X a … X a ,i 1 i 2 i K

and is the maximum-likelihood estimate of whenã ak k

is restricted to 0. A first-order Taylor expansion gives usbk

1 1 � 1
�˜ ˜( ) ( )( ) ( )U a,0 ≈ U a,0 � U a,0 n a � a ,b b b( )� � �a nn n

where and are the stacked vectorsã a

TT T T˜ ˜ ˜[ ]a a … a1 2 K

and

T T T T[ ]a a … a ,1 2 K

respectively. The multivariate central limit theorem32 may

be applied to show that

N
1 ·

( ) ( )U a,0 ∼ N 0,Var Y � h h � G ,[ ]�{ }( )b i i i�n ip1

where is the vectorhi

T T T T[ ]X a X a … X a .i 1 i 2 i K

Since, under the null hypothesis, and G are in-Y � h (h )i i

dependent with mean 0,

N

( )Var Y � h h � G[ ]�{ }i i i
ip1

can be estimated efficiently by , whereTQ � GG

N
T˜ ˜( ) ( )Q p Y � Y Y � Y .� i i i i

ip1

It is also easily shown through Taylor expansion of ˜U (a)a

that

·
�1� ˜( ) ( )n a � a ∼ N 0,Var Y � h h � X ,[ ]{ }( )i i i

where

( )Var Y � h h � X[ ]{ }i i i

can be estimated by . Finally,�1 TQ � XX

� 1
′ T( ) ( )U a,0 p h h � GX ,b i[ ]

�a n

which has sample analogue . Hence,TQ � GX

1 ·

˜( ) ( )U a,0 ∼ N 0,V ,b b�n

where

T T T �1 T( )( ) ( )V p Q � GG � Q � GX Q � XX Q � XGb

T T T �1 T( )pQ� GG � GX XX XG .[ ]
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Web Resource

The URL for data presented herein is as follows:

Authors’ Web site, http://csg.sph.umich.edu/boehnke/p_act.php

(for R code for computation of PACT)
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