
SOA-based Integration of the Internet of Things in Enterprise Services

Patrik Spiess1, Stamatis Karnouskos1, Dominique Guinard1,2, Domnic Savio1,

Oliver Baecker1,3, Luciana Moreira Sá de Souza1, and Vlad Trifa1,2

1SAP Research,2ETH Zurich,3University of St. Gallen

Email: patrik.spiess@sap.com

Abstract

Advances in the areas of embedded systems, computing,

and networking are leading to an infrastructure composed

of millions of heterogeneous devices. These devices will not

simply convey information but process it in transit, connect

peer to peer, and form advanced collaborations. This “In-

ternet of Things” infrastructure will be strongly integrated

with the environment, and its integration with the enterprise

systems will not only further blur the line between business

IT systems and the real world, but will change the way we

design, deploy, and use services. New opportunities can

emerge for businesses, which can now closely collaborate

with the real world. The work presented here proposes an

architecture for an effective integration of the Internet of

Things in enterprise services.

1 Motivation and Vision

Traditionally, the systems of an enterprise controlling

physical processes (like manufacturing, logistics execution,

energy monitoring, building automation, etc.) use differ-

ent standards for data and communication than its business

software systems. We see a paradigm change as the for-

mer breed of systems increasingly adopt the standards of

the latter. It is expected that this trend will continue, while

in parallel the number of connected devices will explode.

As we are moving towards the ”Internet of Things” as

depicted by [3], millions of devices will be interconnected,

providing and consuming information available on the net-

work and cooperate. As these devices need to interoperate,

the service-oriented approach seems to be a promising so-

lution, i.e. each device should offer its functionality as stan-

dard services, while in parallel it is possible to discover and

invoke new functionality from other services on-demand.

As depicted in Figure 1, future infrastructures will be

service-oriented. As such, new functionality will be intro-

duced by combining services in a cross-layer form, i.e. ser-

Service

M
id

d
le

w
a

re

Service

Service

Service

Service

?

Service

Business Process supported by a cross-layer service

Service
Service

Direct access to

web service enabled

devices

Indirect access to

(web service enabled)

devices via middleware

ERP

WS(A)N
Legacy

(non-WS)

Service

M ediator
Gateway

Service

Dynamic Discovery of Devices / Services & P2P Communication

Service

Figure 1. Vision of Web Service Mash-Ups

vices relying on the enterprise system, on the network it-

self and at device level will be combined. New integration

scenarios can be applied by orchestrating the services in

scenario-specific ways. In addition, sophisticated services

can be created at any layer (even at device layer) taking

into account and based only on the provided functionality

of other entities that can be provided as a service [5]. In

parallel, dynamic discovery [2] and peer-to-peer communi-

cation will allow to optimally exploit the functionality of a

given device. It is clear that we move away from isolated

stand-alone hardware and software solutions towards more

cooperative models.

The convergence of solutions and products towards the

SOA paradigm adopted for smart embedded devices con-

tributes to the improvement of the reactivity and perfor-

mance of industrial processes, such as manufacturing, logis-

tics, and others. This will lead to information being avail-

able in near real-time based on asynchronous events, and

to business-level applications that are able to use high-level

information for various purposes, such as diagnostics, per-

formance indicators, traceability, etc. SOA-based vertical

1

integration will also help to reduce the cost and effort re-

quired to realize a given business scenario as it will not re-

quire any device drivers or third-party solutions.

2 SOCRADES Integration Architecture

To realize an effective integration of the capabilities of-

fered by the Internet of Things, we have designed an archi-

tecture (depicted in Figure 2) that exposes real-world de-

vices with embedded software to standard IT systems by

making them accessible in a service-oriented way. The re-

quirements we want to cover as well as the functionality

to be realized is analyzed in [6],[1]. The architecture im-

plemented hides the heterogeneity of hardware, software,

data formats and communication protocols that is present in

today’s embedded systems. The specifications foster open

and standardized communication via web services at all lay-

ers. The following layers can be distinguished: Application

Interface, Service Management, Device Management, Se-

curity, Platform Abstraction and Devices.

Application Interface: The SOCRADES Integration

Architecture (SIA) enables enterprise-level applications to

interact with and consume data from a wide range of net-

worked devices using a high-level, abstract interface that

features web services standards. Those standards already

constitute the standard communication method used by the

components of enterprise-level applications. Web services

are the technology canonically used to implement business

processes, which are frequently modeled as orchestrations

of available web services. This allows networked devices

that are connected via the middleware presented here to di-

rectly participate in business processes while neither requir-

ing the process modeler nor the process execution engine to

know about the details of the underlying hardware.

The integration architecture features a messaging sys-

tem, because the application should be able to consume any

events whenever it is ready to and not when a low-level ser-

vice happens to send them. It also allows the application to

interact with devices that are only intermittently connected,

receiving notifications when a certain device becomes avail-

able again or have the system cache the message and deliver

it when the device is ready to receive it. Finally there is

a service catalog that users and applications can query. It

finds and delivers service descriptions and pointers to run-

ning service instances. Both atomic services hosted by the

devices and higher-level composed services are listed here.

Service Management: All functionality offered by net-

worked devices is abstracted by services. Either devices

offer services directly or their functionality is wrapped into

a service representation. On this layer of the integration

architecture and on all layers above, the notion of devices

is abstracted from and the only visible assets are services.

An important insight into the service landscape is to have a

A
p

p
li

c
a
ti

o
n

In
te

rf
a
c
e

Eventing
Invocation

Handler

Application

Service Catalogue

S
e
rv

ic
e

M
a
n

a
g

e
m

e
n

t

Composed Services

Runtime
Service Monitor

D
e
v
ic

e
M

a
n

a
g

e
m

e
n

t
P

la
tf

o
rm

A
b

s
tr

a
c
ti

o
n

D
e
v
ic

e
s

Monitoring and Inventory Service Lifecycle Management

Device
Repository

Device
Monitor

Middleware
Historian

Discovery
Service
Mapper

Service Implementation
Repository

Enterprise Services Proxy Factory

Platform Plugins

Device Service Injector

Platform Plugins

Device Service Proxy

Platform Plugins
Messaging /
Discovery

DPWS Devices
Native / Gateway

WS(A)N RFID OPC-UA Legacy Devices …

Security

Figure 2. SOCRADES Integration Architec-

ture

repository of all currently connected service instances. This

layer also provides a runtime for the execution of composed

services. We support the composition of business processes

primarily by offering an execution service for underspec-

ified BPEL processes, meaning that service compositions

can be modeled as business processes where the involved

partners do not need to be explicitly specified at design time.

This flexibility is needed since the set of services offered at

the device level is dynamic; as (potentially mobile) devices

connect and disconnect or are re-configured, the available

service set changes frequently. Traditional business process

execution languages like BPEL are not built to support such

dynamics. With some proposed extensions to BPEL and the

execution support for the extended processes, the process

modeler has unprecedented flexibility.

Device Management: All devices are dynamically dis-

covered, monitored and their status is available to the en-

terprise services. Furthermore, it is possible to remotely

deploy new services during run-time, in order to satisfy ap-

plication needs.

Security: Both devices and back-end services may only

be accessed by clients that have a certain role and provide

correct credentials that authenticate themselves. This layer

implements the correct handling of security towards the de-

vices and the enterprise-level applications.

Platform Abstraction: As stated before, devices either

offer services directly or their functionality is wrapped into

a service representation. This wrapping is actually carried

out on the platform abstraction layer. In the best case,

a device offers discoverable web services on an IP net-

work. In this case no wrapping is needed because services

are available already. If the device type however does not

have the notion of a service (it might use a message-based

or data-centric communication mechanism), the abstraction

into services that offer operations and emit events can be a

complex task. In addition to service-enabling the communi-

cation with devices, this layer also provides a unified view

on remotely installing or updating the software that runs on

2

Figure 3. Eventing

devices and enables the devices to communicate natively,

i.e. in their own protocol with back-end devices.

Devices: Heterogeneous Devices are expected to con-

nect to the architecture. These include industrial devices,

home devices, or IT systems such as mobile phones, PDAs,

production machines, robots, building automation systems,

cars, sensors and actuators, RFID readers, barcode scan-

ners, or power meters. We used several of the listed types of

devices during prototype implementations as shown in the

Demonstration section.

3 Architecture Design

The architecture components presented in the following

subsections have all have been implemented based on open

WS-* standards in Java EE 5 on SAP NetWeaver platform,

using EJB 3.0 and JPA.

3.1 Eventing

This component is an implementation of the WS-

Brokered Notification standard, implementing publish and

subscribe functionality, to distribute information about

events of interest. Both Push or Pull type delivery are sup-

ported and both involve the role of ”Consumer” and ”Pro-

ducer”. Figure 3 shows a high-level view on the Eventing

component.

The Eventing component acts as an intermediary be-

tween a Producer and the entity that has interest in the gen-

erated events. For example, a shop floor device could prop-

agate sensor data through the Eventing component acting as

a Producer.

The WS-Notification standard consists of 3 specifica-

tions: WS-Notification, WS-Brokered Notification, and WS-

Topic.

WS-Notification defines consumer and producer roles

and the interfaces both have to provide. This allows for

a point to point event subscription and delivery. The pro-

ducer needs to provide the notification interface where the

producer sends the notifications to and the producer has to

provide the subscription interface so that the consumer can

subscribe.

Figure 4. Invocation Handler

WS-Brokered Notification builds on top of WS-

Notification and specifies an intermediary called notifica-

tion broker, which is exactly what we have implemented in

the Eventing component. It provides the subscription in-

terface on behalf of the producer and the notification inter-

face on behalf of the consumer. This drastically reduces the

complexity of consumers and producers and allows flexi-

ble relationships, that can involve producers/consumers un-

known at design and deployment time. Additionally, the

broker offers pull point functionality, i.e. it can collect no-

tification for a consumer until it retrieves them, further re-

ducing the complexity of the consumer.

WS-Topics defines hierarchical topic trees that can be

specified and used to declare event types when producing

and event filters when subscribing to events. The event-

ing component implements basic topic expressions, the sim-

plest form of topics specified.

3.2 Invocation Handler

The Invocation Handler (Figure 4) implements function-

ality to act as an intermediary for service invocations. It is

capable of buffering an invocation in case an endpoint is not

available. Furthermore, it supports two different types of

delivery (Direct Service Response and Push) and provides

interfaces for the invoker to query for an invocation request

status and canceling a pending invocation.

When using the Direct Service Response delivery, the

invoker has to supply an endpoint which supports retriev-

ing the service invocation response directly. This endpoint

can be the invoker itself or any other supporting entity. The

Invocation Handler passes the given endpoint as the return

endpoint when invoking the service. The delivery mecha-

nism Direct Service Response is depicted in Figure 4.

When using the Push delivery, the Invocation Handler

receives the service invocation response and publishes it to

the Eventing component. The invoker has to supply the

description of the event that should be used when the re-

sponse is propagated to the Eventing component. Using the

Push delivery implies that the invoker has previously regis-

tered interest for the supplied event description, using one

3

Figure 5. Application Service Catalogue

of the Eventing subscription types (Push/Pull). Therefore

the Eventing component is used as an intermediary for de-

livery of the service invocation response.

The component implements functionality to retrieve the

current status of a request for invocation. This is one of

”Pending” and ”Not Pending”. ”Pending” implies that the

service invocation was not processed, possibly because the

service was not yet available. ”Not Pending” implies that

the service invocation was executed, if the given request

for invocation was registered previously. This functionality

is used by the invoker to know whether a service invoca-

tion happened within a given time or whether there was a

conflict that prevented the service to be executed properly.

The component implements functionality to remove a re-

quest for invocation. The invoker can decide to remove a

request in case a response or the invocation of the service

would result in unwanted consequences or be of no interest.

3.3 Application Service Catalogue

One of our main targets and justification for wanting

WS everywhere is the fact that they enable more flexibil-

ity. Once every service is exposed using the same interfaces

one can really think about combining the services and creat-

ing new behaviors for the application. Yet, composition and

service consumption does not really make sense if services

cannot be searched for. This is the goal of the Application

Service Catalogue. Figure 5 depicts its subcomponents. It

is the search engine of the architecture that enables the ap-

plications to look for services based on queries.

The catalogue is composed of three subcomponents:

QueryEngine: The QueryEngine is the core of the search;

it consumes a simple text query and returns an ordered list

of matching Service Types. In order to go beyond the sim-

ple query matching of a service name or description it first

uses a concrete instance of a pluggable component called

QueryStrategy with the goal to define how the simple query

should be extended before processing. The use of a Query-

Strategy component prevents from locking the architecture

Figure 6. Composed Services Runtime (CSR)

with a search method that is not appropriate.

BestEffortComponent: This is responsible for selecting

the best possible device running the selected service. ”Best”

is here meant in terms of QoS (Quality of Service). It takes

into account the information held by the Device Monitor

namely, status, battery life, etc.

OnDemandDiscoveryAndDeployment: This compo-

nent is responsible for initializing the dynamic search for

services. When a service type corresponding to the query is

found but the Best Effort component does not find a running

instance, the On Demand Discovery and Deployment com-

ponent will try: (i) to force a discovery for such a service,

using the Discovery component, and (ii) to inject the ser-

vice on a device, using the Service Mapper and the Device

Service Injector.

3.4 Composed Services Runtime

Composed services are described in BPEL, which com-

municates with service partners over partner links. At de-

sign time, all partner links must be bound to concrete ser-

vice types. Only the actual endpoints can be unknown at

design time. CSR can host several composed services, de-

pending on the device capacity, e.g. RAM or CPU power.

Moreover, as we need a JVM to run CSR, the performance

of CSR also depends on the garbage collector and the Java

heap size of that JVM. CSR (depicted in Figure 6) basi-

cally provides two interfaces for web service consumers:

the interface for deploying/undeploying composed services

and the interface for using composed services. For deploy-

ing new composed services, CSR hosts a service called De-

ployment Service. Deploying a composed service on CSR

means that a SOAP message is sent to the Deployment Ser-

vice, containing the URL location of the BPEL description

of the new composed service and also the URL location of

the deployment descriptor of that service. A new composed

service instance is created, hosted on CSR, and represented

in the Service Monitor. During the execution of a composed

service runtime, CSR asks the Service Monitor for the cost

4

Figure 7. Service Monitor

information of each sub-service invocation, in order to cal-

culate the total cost of the whole composed service execu-

tion. CSR stores this total cost into the Service Monitor,

indicating the performance of the composed service. CSR

has also the functionality to log the response time of each

individual sub-service invocation and size of the SOAP re-

quest/response. From this information, CSR can update the

cost information of each individual service instance in the

Service Monitor.

3.5 Service Monitor

The service monitor (depicted in Figure 7 is storing fast-

changing, live and up-to-date data about the currently us-

able service instances. The storage is realized as a in-

memory data structure rather than a database structure for

fast access and to allow performing easy updates. Examples

of usage include: a service detects that it is malfunctioning

and self-reports that fact to the service monitor which gen-

erates an alert. Similarly when a device joins the network,

the Service Monitor picks up the events from the Discovery

component and stores the fact that the services are there.

3.6 Monitoring and Inventory

The Monitoring and Inventory is composed of several

components: Device Repository, Device Monitor, Middle-

ware Historian, and Discovery.

The Device Repository component is responsible for

storing static information about the devices available in the

system. To facilitate the registration of numerous devices

that have common characteristics, the Device Repository

supports the concept of Device Type. The Device Type

contains Properties and Features which describes common

characteristics of a class of devices. For example, a wireless

sensor node such as a SunSPOT (www.sunspotworld.

com)can be registered as a Device Type with tempera-

ture and acceleration sensors as features. Numerous sen-

sor nodes can be registered using the same device type as

reference.

Figure 8. Monitoring and Inventory

Figure 9. Device Discovery

The Device Monitor monitors devices and detects

events like failures. When a malfunction is detected, the

component triggers a Fault Event which is propagated to

interested parties. As each device has different character-

istics and behavior, a set of fault detection techniques is

required to monitor devices. These techniques can make

use of events generated by the devices, for instance to iden-

tify if unexpected value readings were generated. Another

possibility is to invoke specific methods on the devices, for

instance to ping the device in order to verify if it is still ac-

tive. New techniques can be used by implementing another

monitoring method.

The Middleware Historian acts as an event archive for

the architecture. Data from the devices (due to events or in-

vocation), middleware system information, debugging mes-

sages, etc. can be stored there and are accessible for corre-

lation of events.

The Discovery component is able to find devices present

on a network, and retrieve information about them and their

hosted services to be used by other components from the ar-

chitecture. Two distinct functional modes are implemented

by the discovery unit. The first is referred to as ”passive

discovery”, whose role is to listen to the network for an-

nouncements from new, unknown devices that connect to

the network, dynamically retrieve their metadata and use the

eventing mechanism to notify the systems about the devices

and their hosted services. The second mode, called ”active

discovery”, is responsible for dynamic search of specific de-

vices or services, and particularly suited for contexts where

5

www.sunspotworld.com
www.sunspotworld.com

Figure 10. Service Lifecycle Management

new devices with unknown capabilities continuously con-

nect to the system.

3.7 Service Lifecycle Manager

The service lifecycle management [4] (depicted in Fig-

ure 10) component consists of two main sub-components:

the Service Mapper and the Service Implementation Repos-

itory. The Service Mapper (SM) performs deployment

planning and deployment execution within the SOCRADES

middleware. Whenever a business process is created it de-

cides how this process can be represented by the middle-

ware respectively by the services hosted on devices within

the device layer of the middleware. The SM therefore gen-

erates desired service mappings that describe which ser-

vices on which devices may be used during execution of

a business process (while the actual decision about the used

service instance is made by the Service Monitor at run-

time). Desired mappings are then transformed into deploy-

ment lists, which describe actions to be performed in order

to establish a desired mapping. Actions included in a de-

ployment list may be (un)deployment, (de)activation, mi-

gration, or configuration of services. The decisions of the

SM therefore tremendously influence the reliability of the

SOCRADES middleware and thus the reliability of all busi-

ness processes based on it.

The Service Implementation Repository (SIR) saves all

services which are available for composition of new ser-

vices, orchestration of business process or deployment

within the SOCRADES middleware. Saving a service

means saving its metadata as wells as associated arbitrary

content like service implementations. The SIR is therefore

a registry repository rather than only a repository as indi-

cated by its name. The SIR generally offers two kinds of

operations related to services which together make up the

service lifecycle management of the SIA: management and

query. Management refers to the publication of new ser-

vices, updating existing services (incl. versioning), creation

of configurations and deprecation of services. Querying a

service may be done using different query languages and

Figure 11. Device Service Injector

constructs and may search for service metadata or associ-

ated implementations. All operations may be approved be-

fore execution according to rules and guidelines thus en-

forcing a governance process.

3.8 Device Service Proxy

The device service proxy eases the integration of several

categories of heterogeneous devices. Plugins can be writ-

ten that uniformly address devices based on their capabili-

ties. As an example, we have implemented a Devices Pro-

file for Web Services (DPWS) plug-in that can dynamically

discover and integrate any DPWS device (such as the ones

described in the Demonstration section). Similarly other de-

vices based on OPC-UA, specific RFID or legacy protocols

can be integrated provided that a platform plug-in is written

for their category.

3.9 Device Service Injector

The Device Service Injector (DSI) is responsible for the

execution of deployment levels and steps during the pro-

cessing of a deployment list by the Service Mapper. The

DSI utilizes various injectors. For each deployment plat-

form supported by the SOCRADES middleware one injec-

tor implementation exists of which various instances dur-

ing runtime may be started. Each instance registers itself

during start up with the DSI and may thus be used for the

deployment execution. Injector implementations may ei-

ther run locally as a subcomponent of the DSI or as remote

components possibly on different subnets/locations. This

allows the DSI to always choose the most suitable injec-

tor currently available for each specific deployment step.

Incoming deployment steps are saved within a command

queue and are executed either sequentially or in parallel.

Delivery of execution results to the Service Mapper may be

performed asynchronously. In case errors occur during ex-

ecution of deployment steps, all steps of the same job are

6

Figure 12. Enterprise Services Proxy Factory

either canceled if they are still in the command queue or

compensated if they were already executed.

3.10 Enterprise Services Proxy Factory

The Enterprise Services Proxy Factory provides inter-

faces for the creation of virtual devices that act as inter-

mediaries between the device level and enterprise services.

Such proxies might contain a definable set of adapters for

enterprise services and provide their respective device in-

terfaces on a target platform. The component defines a set

of requirements that need to be fulfilled in order to deploy

such virtual devices on a target platform. This includes the

installation of platform support on the one hand and one

the other hand the formal description of a mapping between

device level and enterprise service messages. The Enter-

prise Services Proxy Factory includes subcomponents that

facilitate the process of mapping a device level invocation

message to a target enterprise service request and support a

customizable set of rules that are applied when converting

messages.

4 Demonstration

To demonstrate that the aforementioned ideas can be re-

alized, we have used state of the art technologies to im-

plement prototypes. Several prototypes have been imple-

mented as proof of concept.

The systems described have common characteristics

where we focus on smart devices like sensors, PLCs or

IT devices that offer web service interfaces, either di-

rectly or through the use of gateways or service mediators.

Through these interfaces they offer functional services (e.g.

start/stop, swap to manual/automatic mode) or status infor-

mation (e.g. power consumption, mode of operation, usage

statistics). In our prototypes, the business logic services are

supported by a service composition engine and visualized

using a visualization toolkit. An operator can use existing

tools like SAP Manufacturing Integration and Intelligence

(SAP MII) to create the business rules. The SIA enables

sophisticated business software such as ERP or PLM sys-

tems to interact with the real world. By making web service

mash-ups of services running on the enterprise, middleware,

Figure 13. Heterogeneous Web-Service en-

abled Devices in an Event-based Infrastruc-

ture

and device layer, we can provide users with a rich visualiza-

tion of the real-world status.

The integration of heterogeneous devices is clearly de-

picted in our latest prototype that successfully shows how

several devices supporting web services (or being wrapped

by them) can be integrated via the proposed architecture.

We have taken several IP devices and wrapped their func-

tionality with web services. More specifically as depicted

in Figure 13 we used the following devices: An RFID

reader: Appearing RFID tags are read by the reader which

raises events showing info with respect to the tag. Each tag

is considered to be integrated with a product and serves as a

token that links it with business information (e.g. order de-

tails). A robotic arm: The functionality (grab, move, etc.)

of the robotic arm controller has been wrapped. An elec-

tricity IP switch: An alarm lamp has been attached in an

electricity IP switch, which offers the on/off functionality as

a web service. Wireless sensors: One sensor controls the

emergency button. The emergency button has been attached

to the IO pins of the SunSPOT wireless sensor. Pressing or

releasing the button is captured by the SunSPOT, and an

WS-event is generated. Another wireless sensor is used for

vibration monitoring. The capability of SunSPOTs to mea-

sure acceleration is used for vibration monitoring via the

sensor mounted on the robotic arm. This sensor monitors

the transportation conditions of the product to make sure it

adheres to the product-specific quality guidelines.

Composing application scenarios is dynamically done by

orchestrating the available services. The dynamicity also

comes from the fact that the SIA is an event-based infras-

tructure. A typical scenario is the following: As production

parts arrive at the factory shop floor they are equipped with

an RFID tag. As they reach the processing point, the tag

is read by the RFID reader. An event is generated by the

reader with all the necessary data like the RFID number and

stored on the network. The robot gets notified by this event

7

Figure 14. Real time reporting via Enterprise

reporting tools

(as it has subscribed to the service) and picks up the pro-

duction part. By matching data from the enterprise system

and the RFID tag, it knows how to further process the part.

In parallel the SunSPOT sensor mounted on the robot mon-

itors the vibration and if it exceeds a specific threshold an

event is raised to immediately stop the process (quality con-

trol). The same holds true for the emergency switch, if an

operator at the shop floor for any reason wants to immedi-

ately stop the process (e.g. due to an accident) s/he presses

this switch, which is controlled by a SunSPOT that again

generates an event.

Once such an emergency event is propagated, devices

that consume it react accordingly. The robot receives the

emergency shutdown event and immediately stops its op-

eration. Also the IP electricity switch, once it receives the

event, turns on the emergency light. At business layer, there

is an enterprise application such as shop-floor reporting re-

alized by the SAP product Business Objects. There, we

have a real-time monitoring of the shop-floor status as the

application also subscribes to all events raised. The plant

manager can immediately see the status of the ERP orders

(Figure 14), the production progress, the device status, as

well as a global view on all factories and the possible side-

effects of a production line delay due to shop-floor device

malfunctions.

All of the communication is done via web service tech-

nologies and the realization of this specific scenario became

possible by having a composition of the available function-

ality that all devices and applications expose as a service. In

legacy systems, integration of a new device or reassignment

of its role would result in reconsidering how the device inte-

grates with other devices and how they control it. However

with the SOA approach described, the implementation of a

new scenario is possible by modifying the orchestration of

the services already available.

An online demo of the Integration Architecture is avail-
able at http://socrades.dyndns.org:50000/SIA_

demo_web/demo-intro.html.

5 Conclusion and Future Work

We have presented the design of an architecture that can

strongly couple the envisioned Internet of Things infrastructure

with enterprise services. The majority of the specified functional-

ity has been implemented and trialed.

The approach is event-based and its interaction with external

entities as well as internal communication is based on web ser-

vices. Theoretically each component could be hosted in different

locations. As an example, parts of the architecture could be run-

ning in the cloud offering high-performance services, while parts

interacting locally with the devices could run even on embedded

systems located at the device layer.

The design and implementation was done with scalability in

mind. However, we plan to conduct extended scalability and per-

formance tests in the future. A special focus will be on perfor-

mance tests when running DPWS on resource-constrained devices.

Future work will also include the extension of the architecture

to support additional devices using OPC-UA and REST plug-ins.

Validation trials with real-world devices are planned in the au-

tomation and energy domain.

Acknowledgments

The authors would like to thank the European Commission and

the partners of the European IST FP6 project Service-Oriented

Cross-layer infRAstructure for Distributed smart Embedded de-

vices SOCRADES (www.socrades.eu), for their support.

References

[1] L. M. S. de Souza, P. Spiess, D. Guinard, M. Koehler,

S. Karnouskos, and D. Savio. Socrades: A web service based

shop floor integration infrastructure. In Proc. of the Internet

of Things (IOT 2008). Springer, 2008.
[2] W. K. Edwards. Discovery systems in ubiquitous computing.

IEEE Pervasive Computing, 5(2):7077, 2006.
[3] E. Fleisch and F. Mattern. Das Internet der Dinge. Springer,

1 edition, July 2005.
[4] T. Frenken, P. Spiess, and J. Anke. A Flexible and Extensible

Architecture for Device-Level Service Deployment, volume

5377 of LNCS, pages 230–241. Springer, December 2008.
[5] F. Jammes and H. Smit. Service-oriented paradigms in indus-

trial automation. IEEE Transactions on Industrial Informat-

ics, 1(1):62–70, Feb. 2005.
[6] S. Karnouskos, O. Baecker, L. M. S. de Souza, and P. Spiess.

Integration of soa-ready networked embedded devices in en-

terprise systems via a cross-layered web service infrastruc-

ture. In Proc. of the 12th International Conference on Emerg-

ing Technologies & Factory Automation (ETFA), pages 293–

300, 25–28 Sept. 2007.

8

http://socrades.dyndns.org:50000/SIA_demo_web/demo-intro.html
http://socrades.dyndns.org:50000/SIA_demo_web/demo-intro.html
www.socrades.eu

	Motivation and Vision
	SOCRADES Integration Architecture
	Architecture Design
	Eventing
	Invocation Handler
	Application Service Catalogue
	Composed Services Runtime
	Service Monitor
	Monitoring and Inventory
	Service Lifecycle Manager
	Device Service Proxy
	Device Service Injector
	Enterprise Services Proxy Factory

	Demonstration
	Conclusion and Future Work

