
Vol. 30 no. 12 2014, pages 1660–1666
BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btu077

Sequence analysis Advance Access publication February 13, 2014

SOAPdenovo-Trans: de novo transcriptome assembly with short

RNA-Seq reads
Yinlong Xie1,2,3,y, Gengxiong Wu2,y, Jingbo Tang2,4,y, Ruibang Luo2,3,5,y, Jordan Patterson6,
Shanlin Liu2, Weihua Huang2, Guangzhu He2, Shengchang Gu2,7, Shengkang Li2,
Xin Zhou2, Tak-Wah Lam3, Yingrui Li5, Xun Xu2, Gane Ka-Shu Wong2,6,8,* and
Jun Wang2,9,10,11,*
1School of Bioscience and Bioengineering, South China University of Technology 510006, Guangzhou, China, 2BGI-
Shenzhen, Shenzhen 518083, China, 3HKU-BGI Bioinformatics Algorithms and Core Technology Research Laboratory
and Department of Computer Science, University of Hong Kong, Pokfulam, Hong Kong, 4Institute of Biomedical
Engineering, XiangYa School of Medicine, Central South University, Changsha 410008, China, 5BGI-tech, BGI-
Shenzhen, Shenzhen 518083, China, 6Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada,
7Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China, 8Department
of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada, 9The Novo Nordisk Foundation Center for
Basic Metabolic Research, University of Copenhagen, Copenhagen DK-2200, Denmark, 10Department of Biology,
University of Copenhagen, Copenhagen DK-2200, Denmark and 11Princess Al Jawhara Center of Excellence in the
Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Associate Editor: Inanc Birol

ABSTRACT

Motivation: Transcriptome sequencing has long been the favored

method for quickly and inexpensively obtaining a large number of

gene sequences from an organism with no reference genome.

Owing to the rapid increase in throughputs and decrease in costs of

next- generation sequencing, RNA-Seq in particular has become the

method of choice. However, the very short reads (e.g. 2�90 bp paired

ends) from next generation sequencing makes de novo assembly to

recover complete or full-length transcript sequences an algorithmic

challenge.

Results: Here, we present SOAPdenovo-Trans, a de novo transcrip-

tome assembler designed specifically for RNA-Seq. We evaluated

its performance on transcriptome datasets from rice and mouse.

Using as our benchmarks the known transcripts from these well-

annotated genomes (sequenced a decade ago), we assessed how

SOAPdenovo-Trans and two other popular transcriptome assemblers

handled such practical issues as alternative splicing and variable ex-

pression levels. Our conclusion is that SOAPdenovo-Trans provides

higher contiguity, lower redundancy and faster execution.

Availability and implementation: Source code and user manual are

available at http://sourceforge.net/projects/soapdenovotrans/.

Contact: xieyl@genomics.cn or bgi-soap@googlegroups.com

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Transcript sequences and gene expression levels can now be ef-

ficiently obtained using RNA-Seq on next-generation sequencing

technologies, providing increased throughputs and decreased

costs. Applications for RNA-Seq include discriminating expres-

sion levels of allelic variants and detecting gene fusions (Maher

et al., 2009). To carry out these types of analyses requires an

assembler that can reconstruct the transcripts from very short

reads (e.g. 2� 90bp paired ends). Assemblers such as Cufflinks

(Trapnell et al., 2010), Scripture (Guttman et al., 2010) and

ERANGE (Mortazavi et al., 2008) recover transcript sequences

by aligning the reads to a reference genome. However, reference

genomes are not always available, especially if the genome is

unusually large and/or polyploid, which is often the case for

plants. In these situations, de novo assembly is required. The

challenge is not only to recover full-length transcripts but also

to identify alternative splice forms in the presence of variable

gene expression levels.

Historically, the first de novo assemblers for next-generation

sequencing, like Velvet (Zerbino and Birney, 2008), ABySS

(Simpson et al., 2009) and SOAPdenovo (Li et al., 2010), were

developed for genomes. These programs were intended to re-

cover sequences for genomes of a known (estimated) size with

a defined number of chromosomes. In contrast, transcriptome

assemblers must recover an unknown number of RNA se-

quences, typically on the order of tens of thousands. Further,

transcript sequences are only a few (k)ilobases in length, as com-

pared with chromosomes, which can be hundreds of (M)egabases

in length. Adding to the complexity is that gene expression levels

vary by many orders of magnitude, so that for any non-zero

sequencing error rate the most highly expressed genes will

always harbor many discrepant bases, making it impossible to
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define an absolute threshold for the number of sequencing errors

allowed per assembly. Another issue is that most contemporary
de novo transcriptome assemblers, like Trans-ABySS (Robertson

et al., 2010), Multiple-k (Surget-Groba and Montoya-Burgos,

2010), Rnnotator (Martin et al., 2010), Oases (Schulz et al.,

2012) and Trinity (Grabherr et al., 2011), use the de Bruijn

graph (DBG) schema for computational and memory efficiency,

which means that alternative splice forms transcribed from the

same locus will be combined into a single complicated de Bruijn

sub-graph. This then needs to be addressed.
In recent years, some important changes have been introduced

to improve transcriptome assembly. Oases enumerated all pos-

sible transcripts with the simplifying concept of assembly sub-

graphs and then used a robust heuristic algorithm to traverse

these graphs. Trinity introduced a new error removal model to

account for variations in gene expression levels and then used a

dynamic programming procedure to traverse their graphs.

However, there is a lot of room for improvement, e.g. Oases

produces more redundant transcripts, possibly due to it lacking

an effective error-removal model (Lu et al., 2013), and Trinity

produces fewer full-length transcripts, possibly due to it not

using paired-end data for scaffold construction.
Here we present a de novoRNA-Seq assembler, SOAPdenovo-

Trans, which builds on these previous innovations to overcome a

few remaining issues. SOAPdenovo-Trans incorporates the

error-removal model from Trinity and the robust heuristic

graph traversal method from Oases. In addition, we use a

strict transitive reduction method to simplify the scaffolding

graphs, and provide more accurate results. To assess the

impact of these changes, we evaluated all three assemblers on

rice and mouse, which have established transcriptome data

linked to genome annotations produced over the last decade.

The results here demonstrated that SOAPdenovo-Trans provides

higher contiguity, lower redundancy and faster execution.

2 METHODS

SOAPdenovo-Trans is a DBG-based assembler for transcriptome data,

derived from the SOAPdenovo2 (Luo et al., 2012) genome assembler,

which has an effective scaffolding module that—with some modifica-

tions—is also suitable for transcriptome assembly. However,

SOAPdenovo2 was designed for genomes with uniform sequencing

depth. Thus, its error-removal model is not applicable to RNA-Seq

data. It also does not allow for alternative splicing. Adopting and

improving on concepts from Trinity and Oases resolved these issues

The SOAPdenovo-Trans algorithm (schema in Fig. 1A) consists of two

main steps: (i) contig assembly and (ii) transcript assembly, described

below.

2.1 Contig assembly

DBG construction is done as per SOAPdenovo2, but sequencing errors

are removed in two ways: globally (as in the genome version of

SOAPdenovo2) and locally (which is an addition specific to

SOAPdenovo-Trans). For global error removal, low-frequency k-mers,

edges, arcs (direct linkage between contigs in the DBG) and tips are

removed, and bubbles are pinched. This is done in SOAPdenovo2

under the assumption that most are the result of sequencing errors.

However, for the most highly expressed genes in a transcriptome, sequen-

cing errors often generate k-mers that exceed any reasonable global error

removal threshold. These cannot be corrected by global error removal. In

contrast, for the most lowly expressed genes, such low-frequency k-mers

can legitimately arise in the absence of sequencing errors; hence, in the

global error removal, we only applied a weak depth cutoff (by default�2)

so that these genes are not mistakenly removed from the graph. We then

used Trinity’s error-removal method to handle the remaining sequencing

errors. It defines a percentage threshold for filtration (�5% of the total or

maximal depth of the adjacent graph element, which can refer to k-mers,

arcs or edges), not a constant threshold, and is better suited for highly

expressed genes. Finally, we used the same method as SOAPdenovo2 to

generate contigs.

2.2 Transcript assembly

2.2.1 Scaffold construction Reads are mapped back onto the contigs

to build linkages, as per SOAPdenovo2, except that SOAPdenovo-Trans

uses both single-end reads and paired-end reads, while SOAPdenovo2

uses only paired-end reads. This is important because transcripts are

much shorter than chromosomes, so it is essential to use the information

that may only be found in single-end reads. The number of reads is then

used to assign weights to these linkages, and insert sizes from the paired-

ends are used to estimate the distances between linkages.

Fig. 1. Overview of SOAPdenovo-Trans algorithm (A1) Contig assem-

bly: DBG are constructed from reads; sequencing errors are removed;

and contigs are then constructed. (A2–A5) Transcript assembly: single-

and paired-end reads are mapped to the assembled contigs to construct

scaffold graphs. Transcripts are generated by traversing through reliable

paths for each graph. (B) Management of ambiguous contigs.

(C) Linearizing contigs into scaffolds
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2.2.2 Graph simplification Contigs that are identified as being am-

biguous, with multiple successive linkages or of exceptionally high depth

(�two times the mean depth), were masked for scaffold building in the

genome version of SOAPdenovo2. This, however, is inappropriate for

transcriptome assembly because of alternative splicing and variable

gene expression levels. Alternative splicing establishes multiple successive

linkages from a unique contig. The data representation of this appears

analogous to ambiguities in whole genome assembly. Variable gene ex-

pression levels make it impossible to define a contig as repetitive using a

single depth constant. One of the methods by which SOAPdenovo-Trans

copes with these issues is by unconditional removal of short contigs (de-

fault �100bp). This removes not only sequencing errors but also short

ambiguous contigs caused by repeats, which in turn obviates the need for

the scaffolding module to resolve complicated ambiguities. As a result,

this increases its ability to identify alternative splicing events (Fig. 1B).

Conversely, unconditional removal of short contigs results in the creation

of many small gaps, but this is corrected in the final phase of our algo-

rithm by a gap-filling module described in Section 2.2.4.

Linearization of contigs to scaffolds also differs in genome and tran-

scriptome assembly. For genomes, after introducing paired-end reads

with multiple tiers of insert sizes, a starting contig may have multiple

successive contigs at different distances from the starting contig. The

expectation is for these contigs to be linearly integrated into a single

scaffold; however, for transcriptomes, conflicts may legitimately arise

because multiple alternative splice forms share the same starting contig.

To simplify the graphs properly, we used a more stringent linearization

method in SOAPdenovo-Trans (Fig. 1C): For example, three contigs, c1,

c2 and c3, can be linearized if(i) there exists explicit linkage between ‘c1

and c2’, ‘c2 and c3’ and ‘c1 and c3’ and (ii) the distances between c1, c2

and c3 inferred from linkages do not conflict with each other.

2.2.3 Graph traversal Contigs were clustered into sub-graphs accord-

ing to their linkage. Each sub-graph consists of a set of transcripts (alter-

native splice forms) that share common exons. SOAPdenovo-Trans

traverses these sub-graphs using the algorithm from Oases to generate

possible transcripts from linear, fork and bubble paths. For the most

complex paths, only the top scoring transcripts are retained.

2.2.4 Gap filling/correction As noted in Graph Simplification, many

small gaps were introduced by masking contigs �100bp before scaffold

construction. To compensate for this, we used the DBG- based gap-filling

method from SOAPdenovo2. Paired-end information was used to cluster

semi-unmapped reads into the gap regions, and then these reads were

locally assembled into a consensus. In instances where multiple consensus

sequences were assembled, we selected the sequence that had a length

most consistent with the gap size.

2.3 Benchmark to genome

For our first benchmark test dataset, we used rice transcriptome data

from Oryza sativa 9311 (panicle at booting stage). Paired-end sequences

were generated on an Illumina GA platform (Zhang et al., 2010) with

200bp insert sizes and 75bp read lengths. For our analysis, we used a

large (L) and small (S) dataset. The L dataset contained 39.9M reads

totaling 5.98Gbp of sequence, which was obtained from the following:

http://www.ncbi.nlm.nih.gov/sra/SRX017631

http://www.ncbi.nlm.nih.gov/sra/SRX017632

http://www.ncbi.nlm.nih.gov/sra/SRX017633

http://www.ncbi.nlm.nih.gov/sra/SRX017630

The S dataset was down-sampled from the L dataset (using the first

file, SRX017631) and contained 9.8M reads totaling 1.47bp.

The second benchmark test dataset was mouse transcriptome data

from Mus musculus (dendritic cells). Paired-end sequences were generated

on an Illumina GAII platform (Grabherr et al., 2011) with 300bp insert

sizes and 76bp read lengths. Here, the L dataset contained 36.1M reads

totaling 5.49Gbp (after quality filtering, see the filtering steps in the

supplement), and was obtained from the following:

http://www.ncbi.nlm.nih.gov/sra/SRX062280

The S dataset was down-sampled from the L dataset (extracting one of

every three reads from the L dataset) and contained 12.0M reads totaling

1.83Gbp.

As Trinity only supports 25-mers, all assemblers were run with

k-mer¼ 25, to make the comparisons ‘fair’. SOAPdenovo-Trans (version

0.99) was run with the parameters: ‘-i 20 -q 5 -Q 2 -H 200 -e 20 -S 48 –r -F

-L 100 -c 2 -t 5’. Oases (version 0.2.8) with Velvet (version 1.2.10) was run

using minimum-length-of-output-transcripts set to 100. Trinity (version

r2013-08-14) was run with minimum-assembled-contig-length-to-report

set to 100. The reference genomes and curated annotations were down-

loaded from the following two Web sites.

Rice: MSU Rice Genome Annotation Project Release 7 at ftp://ftp.plant

biology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_

dbs/pseudomolecules/version_7.0/

Mouse: Mus_musculus.NCBIM37.64 at ftp://ftp.ensembl.org/pub/re

lease-64/fasta/mus_musculus/

Note that for rice, our transcriptome data came from the indica sub-

species, but our reference genome came from the japonica subspecies. We

chose the japonica genome as a reference because these annotations are

more extensively (manually) curated than their indica counterparts.

Ideally, we should have used japonica transcriptome data, but we used

indica transcriptome data instead because there is little japonica data from

the Illumina platform that is freely available. The use of these different

subspecies is not totally unreasonable because they differ on average by

only a fraction of a percent (Yu et al., 2005). We do, however, note that

there are local regions of higher variability that will prevent some indica

transcripts from aligning to the japonica genome.

All of the transcript-to-genome alignments were done in BLAT (Kent,

2002) using a 95% identity cutoff. We required that 95% of the transcript

length be accounted for in one consistent alignment before we deemed the

transcript to be correctly assembled. When that alignment criterion was

not met, we searched for ‘chimeric’ assemblies that would account for

95% of the transcript length with multiple alignments that occurred in

different orientations, on different chromosomes, or in distal regions of

the same chromosome. When a transcript aligned to multiple genome

loci, we selected the locus with the longest alignment. We did not deter-

mine the ‘best’ alignment when different genome loci gave the same

aligned length because this occurred in5 1% of the assemblies. When

multiple transcripts aligned to the same genome locus and we needed a

single representative for our analysis, we selected the largest of these

(putative) alternative splice forms.

3 RESULTS

To compare the performance of SOAPdenovo-Trans, Trinity

and Oases, we assembled two sets of paired-end Illumina data,

(L)arge and (S)mall, for rice and mouse. As both genomes were

sequenced a decade ago, the annotation has been extensively

curated, making these appropriate benchmarks to assess the

assembly software. We chose to assess both plant and animal

transcriptomes because most other studies only assessed animals

(or even simpler organisms like yeast), and we wanted to be sure

that our assembler could handle the difficulties created by plant
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data. Plants have larger gene families and more transposable

elements (TEs); some of these TEs are also highly expressed.

SOAPdenovo-Trans was designed for use in the 1000 plants

(1KP) initiative www.onekp.com, and thus it was essential to

manage these difficulties.

We first assessed the computational demands of the three soft-

ware programs with regard to peak memory and time (Table 1).

For both measurements, SOAPdenovo-Trans was more than

competitive with the other two programs.
Alignment of the assembled transcripts to the annotated gen-

omes (Table 2) showed that SOAPdenovo-Trans produced

the fewest transcripts, by more than factor of 2 in the most ex-

treme cases, even after removing assemblies that were shorter

than 300bp. However, the number of annotated genome loci

recovered was consistent among the three algorithms, differing

only by 57%. One might naively attribute the differences in

transcript numbers to alternative splice forms, but we would

advise caution. There could be, for example, non-overlapping

fragments of the same isoform or redundant copies of the

same isoform.
The following analyses are focused only on those transcripts

that aligned to genome loci with annotated genes. We used the

terms series-A and series-B to denote the sets of transcripts that

included or excluded putative alternative splice forms, respect-

ively. Series-A includes all assembled transcripts, while series-B is

a strict subset that includes only the largest assembled transcript

for any given gene.
To properly assess the differences between assemblers, it is

important to first understand how the rice and mouse assemblies

differed from each other. Despite the fact that the rice and mouse

datasets have similar amounts of raw input data, i.e. S and L

datasets (S: rice versus mouse: 1.47 versus 1.83Gbp; L: 5.98

Table 2. Classification of assembled transcripts

Rice Mouse

Small dataset Large dataset Small dataset Large dataset

SOAPde

novo-trans

Trinity Oases SOAPde

novo-trans

Trinity Oases SOAPde

novo-trans

Trinity Oases SOAPde

novo-trans

Trinity Oases

All sizes 61425 107 403 64490 99398 170 880 127 815 48224 96551 42 933 86961 174 992 80454

4300 bp 25800 37 548 36097 38789 64934 75135 16286 29900 27 598 25037 46939 51356

Correct 23682 31 764 30 001 34 718 52 943 61 865 15 959 28 239 26 005 24 318 43 598 47 582

Correct (%) 91.8 84.6 83.1 89.5 81.5 82.3 98.0 94.4 94.2 97.1 92.9 92.7

Chimeric 526 2021 2185 1020 4736 4309 170 1101 757 439 2510 1967

Chimeric (%) 2.0 5.4 6.1 2.6 7.3 5.7 1.0 3.7 2.7 1.8 5.3 3.8

Series-A (includes AS) 21630 28799 27666 28074 43694 53994 13068 22205 21 645 16868 29689 36309

Series-A (non-TE) 20685 27341 26442 26802 41414 51611 – – – – – –

Series-A (%) (non-TE) 95.6 94.9 95.6 95.5 94.8 95.6 – – – – – –

Series-B (excludes AS) 14797 14790 13738 17906 17772 17092 9486 9743 9205 10511 10777 10268

Series-B (non-TE) 14224 14199 13200 17106 16917 16288 – – – – – –

Series-B (%) (non-TE) 96.1 96.0 96.1 95.5 95.2 95.3 – – – – – –

Note: Our analyses generated a successive reduction in the number of assemblies. First, we restricted our analyses to assemblies larger than 300bp. BLAT alignments to the

reference genomes were done at 95% sequence identity. Assemblies were deemed to be correct when�95% of their lengths could be accounted for in one consistent alignment.

If not, assemblies were deemed to be ‘chimeric’ when 95% of their lengths could be accounted for in two or more alignments with different orientations, on different

chromosomes or on distal regions of the same chromosome. We then confined our analysis to assemblies that overlapped with annotated genes. Because multiple assemblies

could align to the same genome locus, we generated two datasets: series-A and -B, which included or excluded putative alternative splicing forms, respectively. In choosing

among the isoforms, whether for series-B or the genome annotations, we always used the longest available sequence. In the case of the rice transcriptome, about 30.3% of the

55 986 annotated genome loci were known to be TEs, but our data showed that this was not a confounding issue. We indicate here the percentage of the assembled transcripts

that were not known to be TEs.

Table 1. Computational requirements

Method Rice Mouse

Small dataset Large dataset Small dataset Large dataset

Peak memory

(GB)

Time (h) Peak memory

(GB)

Time (h) Peak memory

(GB)

Time (h) Peak memory

(GB)

Time (h)

SOAPdenovo-Trans 10.7 0.2 29.3 0.8 10.5 0.3 16.7 1.0

Trinity 11 4.3 30 10.4 11 4.5 17 8.9

Oases 9.9 0.4 44.2 3.6 9.1 0.5 29.8 2.1

Note: All assemblies were processed with 10 threads, on a computer with two Quad-core Intel 2.8GHz CPUs and 70GB of memory, running CentOS 5.
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versus 5.49Gbp), the rice assemblies contained more genes than

the mouse assemblies, ranging from 49–70% using the series-B

gene counts. This higher number of genes was not due to differ-

ences in transposable element (TE) abundance for rice because

495% of the expressed rice genes were non-TEs. Given that

many more rice genes had to be recovered from the same

amount of sequence data, the read depths per gene were lower;

as a result, the rice assemblies were not as high quality as the

mouse assemblies. Furthermore, we expected that, given no ex-

tensive assembly errors (i.e. ones so extreme that they could not

even be defined as chimeric), all but a very small percentage of

the assembled transcripts should align to the genome. This was

the case for mouse, but not for rice, where close to 10% failed to

align because of subspecies differences, i.e. the use of indica tran-

scriptomes and japonica genome annotations. We could elimin-

ate most of the alignment failures by aligning the transcripts to

combined genomes of both subspecies; however, to avoid the

complications of having two genome annotations, we used

only the alignments to the japonica genome.

Comparisons of the assembled and annotated transcript can,

at least in principle, be complicated if the sequences represent

different isoforms created from different combinations of exons.

Under those circumstances, the concept of ‘full length’ cannot

even be defined by the ratio of lengths. However, in practice,

the overlap between the assembled and annotated transcript is

almost always perfect (Fig. 2). Hence, the two sequences almost

always represent the same isoform. This allowed us to simplify

our calculations for deriving the next plot (Fig. 3), which presents

the cumulant for the assembled transcript lengths versus the

assembled-to-annotation length ratios. What this is meant to

show is the extent to which full-length transcripts are recovered,

for any definition of completeness, without having to choose an

arbitrary threshold like 95% of 100%. The use of total length on

the y-axis is meant to de-emphasize the fact that there are many

small assemblies that, even in aggregate, do not amount to much.

The ideal is a step function with a rapid increase at ratios near

100%, and SOAPdenovo-Trans came closer to this than did

Trinity or Oases. Based on the ‘shoulder’ in the curve, the data

indicated that SOAPdenovo-Trans using only 1.83Gbp of mouse

data outperformed Trinity when it used 5.49Gbp of mouse data.

Note also that the increase begins before ratios of 100%, mean-

ing that in many instances the assembled transcript was longer

than the annotated transcript, which is not unexpected because

untranslated region (UTR) sequences tend to be poorly

annotated.
To put a solid number on how many genes or isoforms were

recovered, we chose an arbitrary threshold, 100 or 95% of the

expected length in Table 3. Here, we only counted the isoforms

that had been recorded in the genome annotations. While it is

possible that the transcriptome data contained isoforms that had

not previously been discovered, it is equally possible that these

‘putative alternative splice forms’ were assembly errors. The only

way to avoid a misleading isoform count is to record only what

had previously been annotated. Rather surprisingly, we found

that Trinity and Oases did not recover more isoforms than

Fig. 3. Cumulants of assembled transcript lengths. In contrast to

Figure 2, where we showed a distribution, here we plot a cumulant.

L(assembly) is the length of the assembled transcript, counting only the

portion that aligned to the genome, while L(annotation) is the length of

the annotated transcript. Notice that the assembly-to-annotation lengths

are plotted in reverse, from large to small. The ideal result is a step

function with a sharp rise at 100%, but it begins to increase prior to

100% because the assembled transcripts contain UTRs that were not

present in the annotated transcripts

Fig. 2. Overlaps between the assembly and annotation. L(overlap) is the

length of overlap between the assembled and annotated transcripts, while

L(assembly) is the length of the assembled transcript counting only the

portion that successfully aligned to the genome. Here, we show the dis-

tribution in the number of assembled transcripts as a function of the

overlap-to-assembly lengths
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SOAPdenovo-Trans, even though they produced many more

assemblies.
To investigate why the assemblers, especially Oases, generated

so many putative alternative splice forms, we did a comparison

of the submaximal transcripts (i.e. all but the largest of the many

transcripts that aligned to a particular genome locus) to the max-

imal transcript (Fig. 4A). In many cases, we saw virtually no

overlap between the submaximal and maximal transcripts,

indicating that the assemblers produced non-overlapping frag-
ments of the same isoform. In many other cases, the overlap to

submaximal ratio was equal to one, which meant no new exons
were recovered, unlike what is typically seen with genuine in-

stances of alternative splicing. We noticed that the assemblers
often produced multiple artifactual transcripts as a result of

minor substitution errors in the raw input data. All had about

the same length, in contrast to the common form of alternative
splicing where exons are added or subtracted, which would result

in 10–20% changes in the transcript lengths (e.g. 1 out of 10
exons in an animal gene or 1 out of 5 exons in a plant gene).

We tested for artifacts of this type by plotting the cumulant for
the transcript lengths as a function of submaximal-to-maximal

lengths (Fig. 4B). The sharp increase as the ratios approach one

showed that all the assemblers created artifacts of this type,
but SOAPdenovo-Trans was the least offensive of the tested

software.

4 DISCUSSION

Sequence assembly using real-world datasets has always required

many subtle algorithmic changes to produce the best results, and
it is clear that no single algorithm has a ‘magic bullet’ that solves

all of the problems. We developed SOAPdenovo-Trans by com-

bining novel concepts introduced by Trinity and Oases with con-
cepts developed for the genome version of SOAPdenovo2.

On top of this, we added modifications of our own, suitable
for transcriptome studies. As demonstrated here, we believe we

have produced an algorithm that substantially improves on the
currently available tools for transcriptome assembly. Given the

complexity of these analyses, however, SOAPdenovo-Trans is

unlikely to be the final word in transcriptome assembly.
In particular, we tested one of the reference-based assemblers,

Cufflinks, and found that it provided even better results than

SOAPdenovo-Trans. These results suggest that, perhaps, there

is information in these datasets that, with additional algorithm
modifications, can be recovered. For example, a multiple k-mers

strategy may improve transcriptome assembly. Current multiple
k-mers assembly strategies generally fall into one of the two

categories: (i) after using different values for k-mer assembly,

Table 3. Evaluations based on number of ‘full-length’ annotations recovered

Rice Mouse

Small dataset Large dataset Small dataset Large dataset

SOAPde

novo-trans

Trinity Oases SOAPde

novo-trans

Trinity Oases SOAPde

novo-trans

Trinity Oases SOAPde

novo-trans

Trinity Oases

Coverage¼ 100%

Genes 386 472 355 1589 1657 1043 2897 3071 2984 4303 4449 4 192

Isoforms 405 524 382 1769 1914 1175 3505 3939 3922 5572 6193 6 298

Coverage� 95%

Genes 1904 1780 1469 5103 4434 3440 6000 5090 5563 7963 6674 7 211

Isoforms 2300 2 229 1849 6237 5633 4353 9043 7619 8975 12 663 10784 13114

Note: The alignment criterion is at least 95% sequence identity covering the entire (or �95%) annotation, and containing at most 5% insertions or deletions.

Fig. 4. Analysis of alternative splice forms. Given a set of assembled

transcripts aligning to the same genome locus, L(submaximal) is the

length of any transcript other than the largest, while L(maximal) is the

length of the largest transcript. L(overlap) is the length of the overlap

between the two. As in Figures 2 and 3, we show a distribution for the

number of transcripts and then a cumulant for the transcript lengths
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separately, the resultant assemblies are merged into one final set.

This might result in a more complete transcript set, but it may

also introduce redundancy; (ii) iterate different k-mer DBG

assemblies during contig construction. This strategy could poten-

tially make the best use of reads and paired-end information, but

whether it is worth developing such an algorithm depends in part

on the ongoing developments in sequencing technology. There is

an expectation of improvements in read lengths in the future. If

so, it would necessarily alter the types of issues faced by tran-

scriptome analysis.

Finally, SOAPdenovo-Trans, unlike Trinity and Oases, does

not yet perform strand-specific assembly, and this is planned for

a future development to further improve this algorithm.
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