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SOBOLEV BOUNDS ON FUNCTIONS
WITH SCATTERED ZEROS, WITH APPLICATIONS
TO RADIAL BASIS FUNCTION SURFACE FITTING

FRANCIS J. NARCOWICH, JOSEPH D. WARD, AND HOLGER WENDLAND

Abstract. In this paper we discuss Sobolev bounds on functions that vanish
at scattered points in a bounded, Lipschitz domain that satisfies a uniform
interior cone condition. The Sobolev spaces involved may have fractional as
well as integer order. We then apply these results to obtain estimates for
continuous and discrete least squares surface fits via radial basis functions
(RBFs). These estimates include situations in which the target function does
not belong to the native space of the RBF.

1. Introduction

The problem of effectively representing an underlying function based on its val-
ues sampled at finitely many distinct scattered sites X = {x1, . . . , xN} lying in a
compact region Ω ⊂ R

n is important and arises in many applications—neural net-
works, computer aided geometric design, and gridless methods for solving partial
differential equations, to name a few.

There are two main ways of dealing with this problem: interpolation of the data
or least squares approximation of the data. In both cases one assumes the data
is generated by a function f belonging to a classical Sobolev space, W k

p (Ω). One
next needs to select an interpolating or approximating subspace of functions. One
choice is to use multivariate splines or finite elements. In this approach, one needs
to decompose Ω into a number of subregions and interpolate or approximate by
multivariate polynomials on each subregion. One then sews together the pieces in
a smooth way to construct the representing surface. This is, in R

n with n ≥ 3, a
nontrivial task.

Another approach, which will be the focus of this paper, is to use radial basis
functions (RBFs). An RBF is a radial function Φ(x) = φ(|x|) that is either posi-
tive definite or conditionally positive definite on R

n. Interpolants for multivariate
functions sampled at scattered sites are constructed from translates of RBFs with
the possible addition of a polynomial term.
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It was Duchon [5] who introduced a type of RBF, the thin-plate spline, which
he constructed via a variational technique similar to those used to obtain ordinary
splines. The error analysis he provided for thin-plate splines involved reproducing
kernel Hilbert space (RKHS) methods and applied to both interpolation and least
squares approximation. Subsequently, the theory of RBF interpolation evolved with
seminal contributions from Micchelli [9], who introduced a wide class of functions for
which interpolation of scattered data was always possible, and Madych and Nelson
[6, 7], who obtained L∞ error estimates for RBF interpolation. Least squares
approximation by RBFs was treated by de Boor, DeVore and Ron [3, 12] in the
case where the underlying domain was R

n and the approximating subspace had
“centers” at the scaled lattice points. In particular, the theory of least squares
approximation on a compact set Ω for scattered data has not gone beyond the
initial work of Duchon.

In this paper we seek to extend the work of Duchon in several directions. The
original work of Duchon dealt with the globally supported thin-plate splines. The
natural spaces to deal with in that setting were the integer-order Sobolev spaces (or
the Beppo-Levi spaces which are Sobolev semi-normed spaces). One of the goals of
this paper is to obtain similar results for the locally supported Wendland functions
[15] in their natural setting of fractional order Sobolev spaces. Another aim of this
paper is to extend the least squares setting estimates to functions which lie outside
the RKHS as has been recently done for the case of interpolation [10].

Recall that the original Duchon estimates applied to the continuous least squares
setting only. That is, one approximated functions that were defined on all of Ω.
We will obtain discrete least squares estimates where it is assumed the function
belongs to an appropriate Sobolev space W k

2 (Ω) but is only known on a discrete
subset X . These results are the first of their kind.

Finally we wish to provide an “intrinsic proof” of all these results which relies
on basic principles.

Central to our approach will be a theorem which gives very precise Sobolev
norm estimates for functions having many zeros in a domain Ω. Note that the
interpolation error function is an example of a function having many zeros. This
same concept will be important in establishing the least squares error estimates
as well. In general, we believe this theorem has applications outside the realm of
RBFs. In particular, a variant of the theorem below can be used to extend to more
general domains some of the interpolation error estimates found in [1, Sec. 4.4].
More precisely, the following will be established in the R

n setting.

Theorem 1.1. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞ and
let α be a multi-index satisfying k > |α|+n/p or, for p = 1, k ≥ |α|+n. Let X ⊂ Ω
be a discrete set with mesh norm h = hX,Ω = supx∈Ω minxj∈X |x−xj | where Ω is a
compact set with Lipschitz boundary which satisfies an interior cone condition. If
u ∈ W k+s

p (Ω) satisfies u|X = 0, then

|u|
W

|α|
q (Ω)

≤ chk+s−|α|−n(1/p−1/q)+ |u|W k+s
p (Ω),

where c is a constant independent of u and h, and (x)+ = x if x ≥ 0 and is 0
otherwise.

Here |u|W m
p (Ω) refers to the (fractional) Sobolev semi-norm (see definitions later).

A precursor of this theorem may be found in [5, Prop. 2] by Duchon, who restricted
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Ω to balls of certain radii and considered only the cases p = 2 and s = 0. In another
direction, Madych and Potter [8] obtained a restricted version of this theorem for
the case p = q and for functions which vanished on the boundary of Ω.

A typical application of Theorem 1.1 can be described as follows. Suppose we
have an interpolation process PX : W k+s

p (Ω) → VX that maps Sobolev func-
tions to a finite dimensional subspace of W k+s

p (Ω) with the additional property
|PXf |W k+s

p (Ω) ≤ |f |W k+s
p (Ω). Then Theorem 1.1 immediately gives error estimates

of the form

|f − PXf |
W

|α|
q (Ω)

≤ chk+s−|α|−n(1/p−1/q)+ |f |W k+s
p (Ω).

We illustrate the above in two different cases. Probably the most prominent
situation is illustrated by classical univariate splines. For example, natural cubic
spline interpolants are known to minimize | · |W 2

2 [a,b] amongst all interpolants from
W 2

2 [a, b].
The second example deals with multivariate radial basis function interpolation.

In our framework the error estimates fall into two parts. Theorem 1.1 gives es-
timates on the interpolation error. Moreover, it is well known that radial basis
function interpolants are also best approximants in certain associated reproducing
kernel Hilbert spaces. Hence, if such a space coincides with an appropriate Sobolev
space, the (semi-)norm of the interpolant can be bounded by the (semi-)norm of
the target function.

Our new approach offers a new paradigm for radial basis function interpolation
error estimates, where estimates on functions with a large zero set replaces the
power function approach.

The outline of the paper proceeds as follows. The remainder of this section will
include the notation and terminology critical for the rest of the paper. In Section
2, the central results concerning Sobolev norm estimates of functions having many
zeros will be obtained. In particular it will be shown that compact domains which
satisfy an interior cone condition may be decomposed into smaller regions which
are star-shaped with respect to a ball. The Sobolev estimates will then be obtained
for these smaller regions and then will be pieced together to obtain similar results
for the larger region. In Section 3, the results of the previous section will then be
applied to both the continuous and discrete least squares approximation problem
to derive error estimates for the case of radial basis functions.

1.1. Notation. We will need to work with a variety of Sobolev spaces. The def-
initions used here follow those used by Brenner and Scott [1]. Let Ω ⊂ R

n be a
domain. For k ≥ 0, k ∈ Z, and 1 ≤ p < ∞, we define the Sobolev spaces W k

p (Ω)
to be all u with distributional derivatives Dαu ∈ Lp(Ω), |α| ≤ k. Associated with
these spaces are the (semi-)norms

|u|W k
p (Ω) =

∑
|α|=k

‖Dαu‖p
Lp(Ω)

1/p

and ‖u‖W k
p (Ω) =

∑
|α|≤k

‖Dαu‖p
Lp(Ω)

1/p

.

The case p = ∞ is defined in the obvious way:

|u|W k
p (Ω) = sup

|α|=k

‖Dαu‖L∞(Ω) and ‖u‖W k∞(Ω) = sup
|α|≤k

‖Dαu‖L∞(Ω).
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For fractional order Sobolev spaces, we use the norms below. Let 1 ≤ p < ∞,
k ≥ 0, k ∈ Z, and let 0 < s < 1. We define the fractional order Sobolev spaces
W k+s

p (Ω) to be all u for which the norms below are finite.

|u|W k+s
p (Ω) :=

∑
|α|=k

∫
Ω

∫
Ω

|Dαu(x) − Dαu(y)|p
|x − y|n+ps

dxdy

1/p

,

‖u‖W k+s
p (Ω) :=

(
‖u‖p

W k
p (Ω)

+ |u|p
W k+s

p (Ω)

)1/p

.

Let X := {x1, . . . , xN} be a finite, discrete subset of Ω, which we now assume to
be bounded. There are three quantities that we associate with X : the separation
radius, the mesh norm or fill distance, and the mesh ratio. Respectively, these are
given by

qX :=
1
2

min
j �=k

|xj − xk|, hX,Ω := sup
x∈Ω

dist(x, X), and ρX,Ω :=
hX,Ω

qX
.

Here, | · | denotes the Euclidean distance on R
n. The first is half the smallest

distance between points in X , the second measures the maximum distance a point
in Ω can be from any point in X , and the final quantity, the mesh ratio, measures
to what extent points in X uniformly cover Ω. Frequently, when the set Ω or X
is understood, we will drop subscripts and write hX or h. Other notation will be
introduced along the way.

2. Bounds for functions with scattered zeros

In this section we obtain Sobolev bounds on functions with scattered zeros in a
bounded Lipschitz domain Ω that satisfies a uniform interior cone condition. This
is done in two main steps. We first obtain results for a special class of domains that
are star-shaped with respect to balls. We then use a decomposition of Ω into such
domains to obtain the general results.

2.1. Domains star-shaped with respect to a ball. We will first obtain our
bounds for a special class of domains. Following Brenner and Scott [1, Chapter 4],
we will say that a domain D is star-shaped with respect to a ball B(xc, r) := {x ∈
R

n : |x− xc| < r} if for every x ∈ D, the closed convex hull of {x} ∪B is contained
in D.

We will deal only with bounded domains. Thus, there will be a ball B(xc, R)
that contains D. Of course, the diameter dD of D satisfies r < dD < 2R. Also,
Brenner and Scott [1, Definition 4.2.16] define the chunkiness parameter γ to be
the ratio of dD to the radius of the largest ball relative to which D is star-shaped.
This parameter comes up in various estimates and it is useful to note that it can
be bounded above; namely, we have

(1) γ ≤ 2R

r
.

Finally, such domains satisfy a simple, interior cone condition, which we now de-
scribe.

Proposition 2.1. If D is bounded, star-shaped with respect to B(xc, r) and con-
tained in B(xc, R), then every x ∈ D is the vertex of a cone C ⊂ D having radius
r and angle θ = 2 arcsin

(
r

2R

)
.
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Proof. It is easy to check that when x ∈ B(xc, r), the condition is satisfied if the
central axis of the cone is directed along a diameter of the ball x ∈ B(xc, r). If x
is outside of that ball, then consider the convex hull of x and the intersection of
the sphere S(x, |x − xc|) = {y ∈ R

n : |y − x| = |xc − x|} with B(xc, r). This is
a cone, and, because D is star-shaped with respect to B(xc, r), it is contained in
D. Its radius is the distance from x to xc. To find its angle θ, consider a triangle
formed by x, xc, and any point on y in the intersection of S(x, |x − xc|) and the
sphere S(xc, r). This is any isosceles triangle, since |xc − x| = |y − x|. The angle
∠xcxy = θ; the side opposite this angle has length r. A little trigonometry then
gives us that |xc − x| sin(1

2θ) = 1
2r. Consequently, we have θ = 2 arcsin

(
r

2|xc−x|
)
.

Moreover, since D ⊂ B(xc, R), we also have |xc − x| ≤ R. Thus, θ ≥ 2 arcsin
(

r
2R

)
.

Finally, r ≤ |x − xc| implies that the cone with vertex x, axis along xc − x, and
angle θ = 2 arcsin

(
r

2R

)
is contained in D. �

Throughout the remainder of this section, D, r, R, γ, θ, and xc are related in
the way described above.

2.1.1. A Bernstein inequality. What we want to do next is to prove a Bernstein
inequality for polynomials restricted to D. Let p ∈ π�(Rn) and assume that ∇p
is not identically zero. The maximum of |∇p(x)| over D occurs at some point
xM ∈ D. Obviously, the maximum is positive. Let η = ∇p(xM )

|∇p(xM )| . Because xM ∈ D,
Proposition 2.1, which holds for D as well as D, implies that xM is the vertex of a
cone C ⊂ D having radius r, axis along a direction ξ, and angle θ = 2 arcsin( r

2R ).
We may adjust the sign of p so that η · ξ ≥ 0. By looking at the intersection of
the cone C with a plane containing ξ and η, we see that there is a unit vector ζ
pointing into the cone and satisfying η · ζ ≥ cos(π/2 − θ) = sin(θ). It follows that

|∇p(xM )| =
∂p

∂η
(xM ) ≤ csc(θ)

∂p

∂ζ
(xM ).

On the other hand, for t ∈ R, p̃(t) := p(xM + tζ) is in π�(R). In particular, it obeys
the usual Bernstein inequality on 0 ≤ t ≤ r:

|p̃′(t)| ≤ (2�2/r) max
t∈[0,r]

|p̃(t)| ≤ (2�2/r)‖p‖L∞(D).

Since p̃′(0) = ∂p
∂ζ (xM ), we have for all x ∈ D,

(2) |∇p(x)| ≤ |∇p(xM )| ≤ csc(θ)
∂p

∂ζ
(xM ) ≤ 2�2

r sin(θ)
‖p‖L∞(D).

Noting that | ∂p
∂xj

| ≤ |∇p(x)| and keeping track of polynomial degrees as we differ-
entiate, we arrive at the following result.

Proposition 2.2. With the notation and assumptions of Proposition 2.1, if p ∈
π�(Rn) and if α is a multi-index for which |α| ≤ �, then

‖Dαp‖L∞(D) ≤ 2|α|(�!)2

r|α| sin|α|(θ)
(
(� − |α|)!)2 ‖p‖L∞(D) ≤

(
2�2

r sin(θ)

)|α|
‖p‖L∞(D).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



748 F. J. NARCOWICH, J. D. WARD, AND HOLGER WENDLAND

2.1.2. Polynomial reproduction and norming sets.

Proposition 2.3. Let p ∈ π�(Rn) and let D be a bounded domain that is star-
shaped with respect to a ball B(xc, r) and also contained in a ball B(xc, R). If the
mesh norm h for X = {x1, . . . , xN} in D satisfies

(3) h ≤ r sin(θ)
4(1 + sin(θ))�2

,

then there exist complex numbers aj(x) such that for any multi-index α with |α| ≤ �

Dαp(x) =
N∑

j=1

aα
j (x)p(xj),

where ∑
j

|aα
j (x)| ≤ 2|α|+1(�!)2

r|α| sin|α|(θ)
(
(� − |α|)!)2 ≤ 2

(
2�2

r sin(θ)

)|α|
.

Proof. See [17, Proposition 3.6] and [11, Lemma 6.2]. �

Remark 2.4. The result derived in [17] is stated with h taken to be the mesh norm
of X relative to D. In fact, in the proof of the result, h is only required to satisfy
the condition that every ball B(x, h) ⊂ D contains at least one point in X , rather
than being the mesh norm. This will be useful later.

2.1.3. Approximation with averaged Taylor polynomials. In [1, Chapter 4], Brenner
and Scott discuss approximating a function u ∈ W k

p (D) by averaged Taylor polyno-
mials Qku ∈ πk−1(Rn). In this section, we briefly summarize their discussion and
extend some of their results.

The averaged Taylor polynomials are defined as follows. Let Bρ be a ball relative
to which D is star-shaped and having radius ρ ≥ 1

2ρmax, the largest radius of a ball
relative to which D is star-shaped. In particular, we have dD/ρ ≤ 2γ, where γ is
the chunkiness parameter. The averaged Taylor polynomials are then given by

Qku(x) :=
∑
|α|<k

1
α!

∫
Bρ

Dαu(y)(x − y)αφ(y)dy.

Here φ(y) ≥ 0 is a C∞ “bump” function supported on Bρ and satisfying both∫
Bρ

φ(y)dy = 1 and maxφ ≤ Cρ−n, where C = Cn. Finally, the remainder Rku is
defined by

Rku = u − Qku.

The following result provides a bound on Rku.

Proposition 2.5. For u ∈ W k
p (D), with 1 < p < ∞ and k > n/p or with p = 1

and k ≥ n,
‖Rku‖L∞(D) ≤ Ck,n,p(1 + γ)nd

k−n/p
D |u|W k

p (D),

where Ck,n,p = Cn,p
nk−1

(k−1)! (k − n
p )1/p−1 if p > 1 and Ck,n,1 = Cn,1

nk−1

(k−1)! if p = 1.

Proof. See Brenner and Scott [1, Proposition 4.3.2]. We remark that we have
tracked down and made explicit the dependence on γ and k of the constant Ck,n,γ,p

used in [1]. In the process, we employed the identity
∑

|α|=k
k!
α! = nk. �
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To deal with fractional Sobolev spaces, we need a version of the previous result
that applies when u belongs to W k+s

p (D), where 0 < s < 1. We begin with this
lemma.

Lemma 2.6. For 1 < p < ∞ and k > n/p or p = 1 and k ≥ n, if u ∈ W k
p (D), and

P ∈ πk(Rn), then

(4) ‖Rk+1u‖L∞(D) ≤ Ck,n,p(1 + γ)nd
k−n/p
D |u − P |W k

p (D).

Proof. We begin by noting that if P is in πk(Rn), then Qk+1P = P ; that is, Qk+1

reproduces polynomials of degree k. Thus, Rk+1u = Rk+1(u − P ). The obvious
identity Rk+1u = Rku + Qku − Qk+1u then implies that

Rk+1u = Rk+1(u − P ) = Rk(u − P ) + (Qk − Qk+1)(u − P ).

By the triangle inequality and Proposition 2.5, we obtain

(5) ‖Rk+1u‖L∞(D) ≤ Ck,n,p(1 + γ)nd
k−n/p
D |u − P |W k

p (D)

+ ‖(Qk − Qk+1)(u − P )‖L∞(D).

The second of the two terms can be estimated as follows. First, from the definition
of Qk, the fact that maxφ ≤ Cρ−n, and the identity

∑
|α|=k

1
α! = nk

k! , we get

‖(Qk − Qk+1)(u − P )‖L∞(D) ≤ sup
x∈D

∑
|α|=k

∫
Bρ

φ(y)|x − y|k|Dα(u − P )(y)|
α!

dy

≤ dk
D · Cρ−n nk

k!
max
|α|=k

∫
Bρ

|Dα(u − P )(y)|dy.

Applying Hölder’s inequality to the integral above, we see that∫
Bρ

|Dα(u − P )(y)|dy ≤ vol(Bρ)1−1/p‖Dα(u − P )‖Lp(Bρ)

≤ vol(B1)1−1/pρn−n/p‖Dα(u − P )‖Lp(D)

≤ vol(B1)1−1/pρn−n/p|u − P |W k
p (D).

Combining these inequalities and using dD/ρ ≤ 2γ, we arrive at the estimate

‖(Qk − Qk+1)(u − P )‖L∞(D) ≤ Cvol(B1)1−1/p 2n/pnk

k!
d

k−n/p
D γn/p|u − P |W k

p (D).

Obviously, γn/p ≤ (1 + γ)n. Consequently, putting the inequality above together
with (5) yields (4). �

Proposition 2.7. Let 0 < s ≤ 1. For 1 < p < ∞ and k > n/p or p = 1 and k ≥ n,
if u ∈ W k+s

p (D), then

(6) ‖Rk+1u‖L∞(D) ≤ Ck,n,p(1 + γ)n(1+1/p)d
k+s−n/p
D |u|W k+s

p (D).

Proof. The case s = 1 is a consequence of Proposition 2.5, so we may assume that
s < 1. Let P = Qk+1u and note that P ∈ πk(Rn). The identity,

(7) DβQmu = Qm−|β|Dβu,
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which is found in [1, Proposition 4.1.17], holds for |β| ≤ m− 1. In particular, if we
take β = α, |α| = k and m = k + 1, then we have

DαQk+1u = Q1Dαu =
∫

Bρ

φ(y)Dαu(y)dy,

which is of course a constant. Since
∫

Bρ
φ(y)dy = 1, we note that

Dαu(x) − DαQk+1u(x) =
∫

Bρ

φ(y)
(

Dαu(x) − Dαu(y)
)

dy.

From this, a simple manipulation, bounds on φ and |x − y| ≤ dD, and Hölder’s
inequality, it follows that∣∣Dαu(x) − DαQk+1u(x)

∣∣ ≤
∫

Bρ

φ(y)|x − y|s+n/p |Dαu(x) − Dαu(y)|
|x − y|s+n/p

dy

≤ Cρ−nd
s+n/p
D

∫
Bρ

|Dαu(x) − Dαu(y)|
|x − y|s+n/p

dy

≤ Cn,pd
s+n/p
D ρ−n/p

∥∥∥∥Dαu(x) − Dαu(y)
|x − y|s+n/p

∥∥∥∥
Lp(D,dy)

.

Raise both sides to the power p. Integrate in x over D and sum over all |α| = k.
The result is

|u − P |p
W k

p (D)
≤ Cp

n,pd
sp+n
D ρ−n

∑
|α|=k

∫
D

∫
D

|Dαu(x) − Dαu(y)|p
|x − y|n+sp

dydx.

The double integral on the right is just |u|p
W k+s

p (D)
. Again using dD/ρ ≤ 2γ and

taking the pth root of both sides, we obtain

|u − P |W k
p (D) ≤ 2n/pCn,pd

s
Dγn/p|u|W k+s

p (D).

Applying Lemma 2.6 yields the result. �

Corollary 2.8. Let 0 < s ≤ 1. For u ∈ W k+s
p (D),

‖Dαu − DαQk+1u‖L∞(D) ≤ Ck,n,p(1 + γ)n(1+1/p)d
k+s−|α|−n/p
D |u|W k+s

p (D),

provided that 1 < p < ∞ and k > |α| + n/p, or p = 1 and k ≥ |α| + n.

Proof. This follows directly from Proposition 2.7, the identity (7), and the inequal-
ity |Dαu|

W
k+s−|α|
p (D)

≤ |u|W k+s
p (D). �

One can use function-space interpolation theory to prove Proposition 2.7 and
Corollary 2.8. Indeed, the proofs are somewhat simpler. There is a difficulty
in doing this, however. The fractional Sobolev norms then also must come from
interpolation of integer Sobolev spaces. While these are known to be equivalent to
the intrinsic fractional norms we employ here, determining the dependence of the
equivalence constants on the parameters of D is problematic.
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2.1.4. Sobolev bounds for functions with scattered zeros in D. We are now ready
to establish Sobolev bounds for functions with scattered zeros in D. Suppose that
X ⊂ D is finite and has a mesh norm h satisfying the conditions in Proposition 2.3.
In addition, with 0 < s ≤ 1, suppose that u ∈ W k+s

p (D) satisfies u|X = 0, where
k > n/p or, if p = 1, k ≥ n. Let v := u − Qk+1u. Note that if xj ∈ X ,
v(xj) = u(xj) − (Qk+1u)(xj) = −(Qk+1u)(xj). By Proposition 2.3, with � = k, we
thus have for each x ∈ D,

Dα(Qk+1u)(x) = −
N∑

j=1

aα
j (x)v(xj)

and hence that

|Dα(Qk+1u)(x)| ≤
 N∑

j=1

|aα
j (x)|

 max
xj∈X

|v(xj)|

≤ 2
(

2k2

r sin(θ)

)|α|
‖u − Qk+1u‖L∞(D)

≤ 2
(

2k2

r sin(θ)

)|α|
Ck,n,p(1+γ)n(1+1/p)d

k+s−n/p
D |u|W k+s

p (D),

where the last step follows from Proposition 2.7.
Next, let α be a multi-index satisfying k > |α| + n/p, or p = 1 and k ≥ |α| + n.

From Corollary 2.8, the previous inequality, and the triangle inequality, we have

‖Dαu‖L∞(D) ≤
{
1+2

(
2k2dD
r sin(θ)

)|α|}
Ck,n,p(1 + γ)n(1+1

p )d
k+s−|α|− n

p

D |u|W k+s
p (D).

Now, 1 ≤ γ ≤ dD
r ≤ 2R

r = csc(θ/2), sin(θ/2) ≤ sin(θ), and so we have that

‖Dαu‖L∞(D) ≤ 3Ck,n,p2|α|+n+n
p k2|α| csc2|α|+n+n

p (θ/2)d
k+s−|α|− n

p

D |u|W k+s
p (D).

Collecting coefficients in this expression and simplifying, we obtain the following
result.

Proposition 2.9. Let k be a positive integer, 1 ≤ p < ∞, 0 < s ≤ 1, and let α be a
multi-index satisfying k > |α|+ n/p, or, for p = 1, k ≥ |α|+ n. Also, let X ⊂ D be
a discrete set with mesh norm h satisfying (3). If u ∈ W k+s

p (D) satisfies u|X = 0,
then

‖Dαu‖L∞(D) ≤ Ck,n,p,|α| csc2|α|+n(1+1/p)(θ/2)dk+s−|α|−n/p
D |u|W k+s

p (D),

where Ck,n,p,|α| = 3Ck,n,p2|α|+n(1+1/p)k2|α|.

Corollary 2.10. Let 1 ≤ q ≤ ∞. With the notation and assumptions of Proposi-
tion 2.9, we have

|u|
W

|α|
q (D)

≤ Ck,n,p,q,|α| csc2|α|+n(1+1/p)(θ/2)d
k+s−|α|+n( 1

q − 1
p )

D |u|W k+s
p (D).
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Proof. Since card{β ∈ N
n
0 : |β| = |α|} =

(|α|+n−1
n−1

)
= O(|α|n−1) and vol(D)< Cndn

D,
we find that

|u|
W

|α|
q (D)

≤
(|α| + n − 1

n − 1

)1/q

vol(D)1/q max
|β|=|α|

‖Dβu‖L∞(D)

≤ Cn,q,|α|d
n/q
D max

|β|=|α|
‖Dβu‖L∞(D)

≤ Ck,n,p,q,|α| csc2|α|+n(1+1/p)(θ/2)d
k+s−|α|+n( 1

q − 1
p )

D |u|W k+s
p (D).

�

2.2. Lipschitz domains obeying a cone condition. We will now treat a domain
Ω ⊂ R

n that is bounded, has a Lipschitz boundary, and satisfies an interior cone
condition, where the cone has a maximum radius R0 and angle ϕ. Of course, the
cone condition will be obeyed if we use any radius 0 < R ≤ R0.

To begin, we need to cover Ω with domains that are star-shaped with respect to
a ball. We will employ a construction due to Duchon [5]. Let

(8) r =
R sin(ϕ)

2(1 + sin(ϕ))
and Tr :=

{
t ∈ 2r√

n
Z

n : B(t, r) ⊂ Ω
}

,

where R ≤ R0. Fix x ∈ Ω. Duchon (see the proof of [5, Proposition 1]) shows
that the cone Cx ⊂ Ω associated with x contains one of the balls B(t, r), where
t ∈ 2r√

n
Z

n. This of course implies that the set Tr �= ∅ and, since |t − x| < R, that
Cx ⊂ B(t, R) ∩Ω. Moreover, the closed convex hull of {x} ∪B(t, r) is contained in
Cx, because Cx is itself convex.

Instead of fixing x, we now fix t ∈ Tr. Let Dt be the set of all x ∈ Ω such that
the closed convex hull of {x}∪B(t, r) is contained in Ω∩B(t, R). By construction,
each Dt is star-shaped with respect to B(t, r). What we have shown above is that
every x ∈ Ω is in some Dt, so Ω ⊂ ⋃t∈Tr

Dt. Of course, it is also true that Dt ⊂ Ω,
so in fact we have that Ω =

⋃
t∈Tr

Dt.
This implies several useful geometric facts. We have that the diameter of Dt

satisfies dDt < 2R and that the angle of the cone θ in Proposition 2.1 is related
to ϕ via θ = 2 arcsin( r

2R ) = 2 arcsin( sin(ϕ)
4(1+sin(ϕ))). Also, we have that #Tr, the

cardinality of Tr, satisfies #Tr < vol(Ω)/vol(B(t, r)) ≤ CΩ,n,ϕR−n.
There is one more thing that we need. Let χS denote the characteristic function

of a set S. Because Dt ⊂ B(t, R), χDt(x) ≤ χB(t,R)(x) for all x ∈ R
n. By [5,

Proposition 1(iii)], there is a constant M1, which may be taken as M1 = M1(ϕ, n),
such that

∑
t∈Tr

χB(t,R)(x) ≤ M1 for all x ∈ R
n. Consequently,

∑
t∈Tr

χDt(x) ≤
M1. We summarize these remarks below.

Lemma 2.11. With the notation introduced above, we have the following:
(1) Each Dt is star-shaped with respect to the ball B(t, r) and satisfies B(t, r) ⊆

Dt ⊆ Ω ∩ B(t, R), dDt < 2R, and θ = 2 arcsin( sin(ϕ)
4(1+sin(ϕ)) ).

(2) Ω =
⋃

t∈Tr
Dt and #Tr < CΩ,n,ϕR−n.

(3) There exists a constant M1 = M1(ϕ, n) such that
∑

t∈Tr
χDt(x) ≤ M1 for

all x ∈ R
n.

2.2.1. Sobolev bounds for functions with scattered zeros in Ω. We are now ready to
obtain Sobolev bounds for functions having zeros at a finite subset X ⊂ Ω, where
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we let h = hX,Ω be the mesh norm of X in Ω. We will assume that h satisfies the
following condition:

(9) h ≤ k−2Q(ϕ)R0 where Q(ϕ) :=
sin(ϕ) sin(θ)

8(1 + sin(θ))(1 + sin(ϕ))
.

We note that θ = 2 arcsin( sin(ϕ)
4(1+sin(ϕ))), so that Q only depends on ϕ. If this as-

sumption holds, then we can take R = k2h
Q(ϕ) , for then R ≤ R0. Moreover, from

the definition of r in terms of ϕ and R given in (8), we see that h = r sin(θ)
4k2(1+sin(θ)) .

Hence, h satisfies (3) for � = k.
We point out that every ball B(x, h) ⊂ Ω contains at least one point in X .

In particular, if we have B(x, h) ⊂ Dt, this is still the case. By Remark 2.4, if
h = hX,Ω satisfies (3), then the results proved earlier all hold with this h.

That said, we now have the following estimate.

Theorem 2.12. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞,
and let α be a multi-index satisfying k > |α| + n/p, or p = 1 and k ≥ |α| + n.
Also, let X ⊂ Ω be a discrete set with mesh norm h satisfying (9). If u ∈ W k+s

p (Ω)
satisfies u|X = 0, then

(10) |u|
W

|α|
q (Ω)

≤ Ck,n,p,q,|α|,ϕhk+s−|α|−n(1/p−1/q)+ |u|W k+s
p (Ω),

where (x)+ = x if x ≥ 0 and is 0 otherwise.

Proof. The case q = ∞ follows from Proposition 2.9 and the decomposition given
in Lemma 2.11, Ω =

⋃
t∈Tr

Dt. Thus, we will assume 1 ≤ q < ∞. For such q, the
decomposition Ω =

⋃
t∈Tr

Dt implies that we have

|u|
W

|α|
q (Ω)

=

 ∑
|β|=|α|

∫
Ω

|Dβu(x)|qdx

1/q

≤
∑

t∈Tr

∑
|β|=|α|

∫
Dt

|Dβu(x)|qdx

1/q

=

(∑
t∈Tr

|u|q
W

|α|
q (Dt)

)1/q

≤ (#Tr)
( 1

q − 1
p)

+

(∑
t∈Tr

|u|p
W

|α|
q (Dt)

)1/p

,

where #Tr is the cardinality of Tr and where the last bound follows from standard
inequalities relating p and q norms on finite dimensional spaces. Next, by this
inequality and Corollary 2.10, where we use dDt < 2R = 2k2h/Q(ϕ), we obtain

|u|
W

|α|
q (Ω)

≤ C′
k,n,p,q,|α|,ϕ(#Tr)

( 1
q − 1

p)
+hk+s−|α|+n( 1

q − 1
p )

(∑
t∈Tr

|u|p
W k+s

p (Dt)

)1/p
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for each t ∈ Tr. Now, since Dt ⊂ Ω, we have by Lemma 2.11,∑
t∈Tr

|u|p
W k+s

p (Dt)
=

∑
|β|=k

∫
Ω

(∑
t∈Tr

χDt(x)

)∫
Dt

|Dβu(x) − Dβu(y)|p
|x − y|n+sp

dydx

≤ M1

∑
|β|=k

∫
Ω

∫
Ω

|Dβu(x) − Dβu(x)|p
|x − y|n+sp

dydx

≤ M1|u|pW k+s
p (Ω)

.

Putting these two inequalities together yields

|u|
W

|α|
q (Ω)

≤ M
1/p
1 C′

k,n,p,q,|α|,ϕ(#Tr)
( 1

q − 1
p )

+hk+s−|α|+n( 1
q − 1

p )|u|W k+s
p (Ω).

Now, by part (2) of Lemma 2.11 and R = k2h/Q(ϕ), we see that #Tr < Ch−n.
Inserting this in the inequality above gives us

|u|
W

|α|
q (Ω)

≤ Ck,n,p,q,|α|,ϕh
k+s−|α|+n( 1

q − 1
p )−n( 1

q − 1
p )

+ |u|W k+s
p (Ω).

Using n
(

1
q − 1

p

)
−n

(
1
q − 1

p

)
+

= −n(1/p− 1/q)+ in the previous inequality yields

(10). �

2.2.2. Sobolev bounds on discrete �q norms. In practical situations, bounds on con-
tinuous norms, such as those we have investigated above, are less important than
bounds on discrete norms. Our aim here is to obtain estimates similar to those
in Theorem 2.12, again for u|X = 0, but with continuous norms replaced by the
discrete ones that we now define.

Let Y = {y1, . . . , yM} be a finite subset of Ω, and denote its separation radius
by qY , its mesh norm by hY , and its mesh ratio by ρY := hY /qY . Let 1 ≤ q ≤ ∞.
(Note that q is not the same quantity as qY .) For a continuous function u defined
on Ω, define the norm �q(Y ) by

(11) ‖u‖�q(Y ) =

{ (
1
M

∑M
j=1 |u(yj)|q

)1/q

for 1 ≤ q < ∞,

max1≤j≤M |u(yj)| for q = ∞.

As before, we also define �q(Y )-derivative norms when u is in Ck(Ω) and 1 ≤ q < ∞:

(12) |u|wk
q (Y ) =

∑
|α|=k

‖Dαu‖q
�q(Y )

1/q

and ‖u‖wk
q (Y ) =

∑
|α|≤k

‖Dαu‖q
�q(Y )

1/q

.

The q = ∞ norms are defined in the obvious way. We now state the analog of
Theorem 2.12 for the discrete norms.

Theorem 2.13. Let k be a positive integer, 0 < s ≤ 1, 1 ≤ p < ∞, 1 ≤ q ≤ ∞,
and let α be a multi-index satisfying k > |α| + n/p, or p = 1 and k ≥ |α| + n.
Also, let X ⊂ Ω be a discrete set with mesh norm h = hX satisfying (9). Let
Y = {y1, . . . , yM} ⊂ Ω be a second discrete set, with hY ≤ h. If u ∈ W k+s

p (Ω)
satisfies u|X = 0, then

(13) |u|
w

|α|
q (Y )

≤ Ck,n,p,q,|α|,ϕ,Ω ρ
n/q
Y hk+s−|α|−n(1/p−1/q)+ |u|W k+s

p (Ω),
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where the discrete norm on the left above is defined in (12). In particular, if |α| = 0,
then

‖u‖�q(Y ) ≤ Ck,n,p,q,ϕ,Ω ρ
n/q
Y hk+s−n(1/p−1/q)+ |u|W k+s

p (Ω).

Proof. The q = ∞ case is a direct consequence of Theorem 2.12 and ρY ≥ 1. We
therefore assume that q < ∞. Let Dt be one of the star-shaped domains from the
decomposition of Ω given in Lemma 2.11. From the L∞ bound in Proposition 2.9,
the conditions on Dt in Lemma 2.11, and the fact that dDt ≤ 2R = 2k2h/Q(ϕ), we
have that ∑

yj∈Dt

|Dαu(yj)|q ≤ Ch(k+s−|α|)q−nq/pcard(Dt ∩ Y )|u|q
W k+s

p (Dt)
.

To estimate card(Dt ∩ Y ), we note that every point yj in Dt ∩ Y is the center of
the ball B(yj , qY ). Now, by construction, Dt ⊂ B(t, R) and qY ≤ hY ≤ h ≤ R, so
every B(yj , qY ) ⊂ B(t, 2R). Hence, the number of points in Dt ∩ Y satisfies the
bound

card(Dt ∩ Y ) ≤ vol(B(t, 2R))
vol(B(yj , qY ))

=
(

2R

qY

)n

.

Recall from the previous section that we chose R = k2h
Q(ϕ) , and so we have∑

yj∈Dt

|Dαu(yj)|q ≤ q−n
Y h(k+s−|α|)q+n−nq/pC′|u|q

W k+s
p (Dt)

,

where C′ depends on n, p, q, ϕ, |α|. Sum over t ∈ Tr on both sides. Since every
yj ∈ Y is in at least one Dt, we have

M∑
j=1

|Dαu(yj)|q ≤
∑
t∈Tr

∑
yj∈Dt

|Dαu(yj)|q

≤ q−n
Y h(k+s−|α|)q+n− nq

p C′∑
t∈Tr

|u|q
W k+s

p (Dt)
.

The sum on the left above is M‖Dαu‖q
�q(Y ). To deal with the sum on the right,

note that standard inequalities relating p and q norms on a finite dimensional space
give ∑

t∈Tr

|u|q
W k+s

p (Dt)
≤ (#Tr)

q( 1
q − 1

p )
+

(∑
t∈Tr

|u|p
W k+s

p (Dt)

)q/p

.

The sum
∑

t∈Tr
|u|p

W k+s
p (Dt)

was dealt with in proving Theorem 2.12, where we

showed that it is bounded by M1|u|pW k+s
p (Ω)

. Also, recall that #Tr < Ch−n. Using
these bounds in our earlier inequality and dividing by M , we obtain

‖Dαu‖q
�q(Y ) ≤ M−1q−n

Y h
(k+s−|α|)q+n−nq/p−nq( 1

q − 1
p )

+C′CqM
q/p
1 |u|q

W k+s
p (Ω)

.

Summing over all multi-indices α of fixed length, simplifying the exponent of h,
and suppressing constants, we arrive at

(14) |u|q
w

|α|
q (Y )

≤ M−1q−n
Y h

(k+s−|α|)q−nq( 1
p− 1

q )
+C′′|u|q

W k+s
p (Ω)

.

Our last task is to estimate M , the number of points in Y , from below. Since
the mesh norm of Y relative to Ω is hY , every x ∈ Ω is in one of the closed balls
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B(yj , hY ), and so their union covers Ω. It follows that the number of such balls,
M , satisfies M ≥ vol(Ω)/vol(B(yj , hY )) or, equivalently,

M−1 ≤ vol(B(yj , hY ))
vol(Ω)

≤ CΩ,nhn
Y .

Insert this in (14), simplify, and collect constants. Taking the qth root of both sides
then completes the proof. �

3. Least squares error estimates for RBFs

In this section, we will apply the estimates that we obtained in the previous
section to obtain error estimates for both continuous and discrete least squares
RBF surface fitting in a domain Ω in R

n. We make the same assumptions on Ω
as we did above; namely, Ω is bounded, has a Lipschitz boundary, and satisfies an
interior cone condition, where again the cone is assumed to have a maximum radius
R0 and angle ϕ.

3.1. RBFs, native spaces, and least squares.

3.1.1. Positive definite RBFs. We will concentrate on radial basis functions Φ :
R

n → R that have a positive, algebraically decaying Fourier transform. To be more
precise, we assume that

(15) c1(1 + ‖ω‖2
2)

−τ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2
2)

−τ , ω ∈ R
n,

where c1, c2 > 0 are some constants and τ > n/2. In this case it is well known that
the native space NΦ = NΦ(Rn) associated to Φ is the Sobolev space

(16) W τ
2 (Rn) := {f ∈ L2(Rn) : f̂(·)(1 + ‖ · ‖2

2)
τ/2 ∈ L2(Rn)}

and the native space norm

‖f‖2
NΦ

:=
∫

Rn

|f̂(ω)|2
Φ̂(ω)

dω

is obviously equivalent to the Sobolev norm

(17) ‖f‖2
W τ

2 (Rn) := ‖f̂(·)(1 + ‖ · ‖2
2)

τ/2‖L2(Rn).

Later on, we will also deal with the case of thin-plate splines. The details of
treating them differ somewhat from the more usual RBF case above. So, even
though their treatment is in fact easier, they will be handled separately. Until
then, we assume that the RBF Φ has a Fourier transform Φ̂ satisfying (15).

As is well known, the great utility in RBFs is that for any finite subset X =
{x1, . . . , xN} ⊂ R

n and arbitrary complex numbers {d1, . . . , dN}, one can find a
unique function v from the span of VX,Φ = span{Φ(x−xj)}N

j=1 such that v(xj) = dj ,
j = 1, . . . , N . In addition, interpolants satisfy a minimum principle. If f is in the
native space NΦ and if we let the interpolant to f on X from VX,Φ be IXf , then

min
v∈VX,Φ

‖f − v‖NΦ = ‖f − IXf‖NΦ .

In particular, since we can take v = 0 on the left above, we also have

‖f − IXf‖NΦ ≤ ‖f‖NΦ .

These observations lead to the following lemma, which we will need in the sequel.
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Lemma 3.1. Let τ > n/2, f ∈ W τ
2 (Ω), X = {x1, x2, . . . , xN} ⊂ Ω, and let

IXf ∈ VX,Φ be the unique function that interpolates f on X. If Φ̂ satisfies (15),
then there exists a constant CΩ,Φ, depending on Ω and Φ, such that

‖f − IXf‖W τ
2 (Ω) ≤ CΩ,Φ‖f‖W τ

2 (Ω).

Proof. We will require extension theorems for W τ
p (Ω), where Ω is a bounded Lip-

schitz domain. For the case in which τ is a nonnegative integer we may use the
extension operator E constructed by Stein [14, §VI.3] to extend any f in W τ

p (Ω) to
a function defined on W τ

p (Rn), for 1 ≤ p ≤ ∞. Brenner and Scott [1, p. 280] give
a brief discussion concerning extensions for fractional Sobolev spaces (i.e., τ �∈ Z).
They point out that combining results of DeVore and Sharpley [4, Theorems 6.1
and 6.7] immediately yields the existence of E in the fractional case as well, pro-
vided only that 1 ≤ p < ∞. In particular, E exists for p = 2, the value of p we are
concerned with here.

Since Ef = f on Ω and since the values of f |X uniquely determine the interpolant
from VΦ,X , we have that IXEf = IXf . Consequently, we obtain this chain of
inequalities:

‖f − IXf‖W τ
2 (Ω) = ‖Ef − IXEf‖W τ

2 (Ω)

≤ ‖Ef − IXEf‖W τ
2 (Rn)

≤ c
−1/2
2 ‖Ef − IXEf‖NΦ

≤ c
−1/2
2 ‖Ef‖NΦ

≤ (c1c2)−1/2‖Ef‖W τ
2 (Rn)

≤ (c1c2)−1/2‖E‖‖f‖W τ
2 (Ω).

Setting CΩ,Φ := (c1c2)−1/2‖E‖ completes the proof. �

We now employ this lemma and the results obtained in the previous section to
derive bounds on f − IXf , in both continuous and discrete norms, for the case
p = 2.

Proposition 3.2. Suppose τ = k + s, where k is a positive integer and 0 < s ≤ 1.
Let α be a multi-index satisfying k > |α| + n/2, and let X ⊂ Ω be a discrete set
with mesh norm h satisfying (9). If f ∈ W τ

2 (Ω) and if 1 ≤ q ≤ ∞, then

(18) |f − IXf |
W

|α|
q (Ω)

≤ Ck,n,q,|α|,Ω,Φhτ−|α|−n(1/2−1/q)+‖f‖W τ
2 (Ω).

In addition, the continuous least squares error (q = 2) satisfies the bound,

(19) min
v∈VX,Φ

‖f − v‖L2(Ω) ≤ Ck,n,Ω,Φhτ‖f‖W τ
2 (Ω).

Proof. Apply Theorem 2.12 to u = f − IXf , with p = 2. Using Lemma 3.1 then
gives us (18). Since IXf ∈ VX,Φ, we also have that

(20) min
v∈VX,Φ

‖f − v‖L2(Ω) ≤ ‖f − IXf‖L2(Ω).

The estimate (19) then follows from (18) with q = 2 and |α| = 0. �

The case where the discrete norm is to be bounded, rather than the continuous
one, can be dealt with in a similar way.
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Proposition 3.3. Suppose τ = k + s, where k is a positive integer and 0 < s ≤ 1.
Let α be a multi-index satisfying k > |α| + n/2. Also, let X ⊂ Ω be a discrete set
with mesh norm h = hX satisfying (9). Let Y = {y1, . . . , yM} ⊂ Ω be a second
discrete set, with hY ≤ h. If f ∈ W τ

2 (Ω), and if 1 ≤ q ≤ ∞, then

(21) |f − IXf |
w

|α|
q (Y )

≤ Ck,n,q,|α|,Ω,Φ ρ
n/q
Y hτ−|α|−n(1/2−1/q)+‖f‖W τ

2 (Ω),

where | · |
w

|α|
q (Y )

is defined in (12). Also, the discrete least squares error satisfies
the bound,

(22) min
v∈VX,Φ

‖f − v‖�2(Y ) ≤ Ck,n,Ω,Φ ρ
n/2
Y hτ‖f‖W τ

2 (Ω).

Proof. Apply Theorem 2.13 to u = f − IXf . Using Lemma 3.1, with p = 2, then
completes the proof. Again, because IXf ∈ VX,Φ, we have that

(23) min
v∈VX,Φ

‖f − v‖�2(Y ) ≤ ‖f − IXf‖�2(Y ).

The estimate (22) then follows from the interpolation estimate (21) with |α| = 0
and q = 2. �

We remark that in both cases the interpolant is a good approximation to the
least squares fit.

3.1.2. Thin-plate splines. The RBFs we just discussed are all positive definite func-
tions. The thin-plate splines, however, are RBFs that are conditionally positive
definite functions. If k > n/2 is an integer, then we define the thin-plate spline
corresponding to n and k as follows. For ‖x‖2 �= 0, we let

Φn,k(x) := cn,k

{ ‖x‖2k−n
2 for n odd,

‖x‖2k−n
2 log ‖x‖2 for n even,

where cn,k is a constant chosen so that Φn,k is a fundamental solution of the iterated
Laplacian. In terms of the distributional Fourier transform, this is equivalent to
requiring that Φ̂n,k(ω) = ‖ω‖−2k

2 , if ω �= 0.
The native space associated with Φn,k is the Beppo-Levi space,

BLk(Rn) := {f ∈ C(Rn) : Dαf ∈ L2(Rn) for all |α| = k},
which is equipped with the semi-inner product

(f, g)BLk(Rn) =
∑
|α|=k

k!
α!

(Dαf, Dαg)L2(Rn)

and induced semi-norm | · |BLk(Rn). For Beppo-Levi spaces on Ω, similar defini-
tions apply. Both the semi-norm | · |BLk(Rn) and | · |BLk(Ω) are equivalent to the
corresponding Sobolev semi-norms of order k.

An interpolant IXf , which is associated with Φn,k and f |X from a continuous
function f , includes a polynomial piece p ∈ πk−1(Rn) as well as a linear combination
of span{Φn,k(x − xj)}N

j=1. That is, IXf is in

VX,n,k = πk−1(Rn) ⊕ span{Φn,k(x − xj)}N
j=1.

To insure that the interpolant exists, one must make the additional assumption
that the finite set X ⊂ Ω is unisolvent for πk−1(Rn). Under this assumption, the
method reproduces polynomials in πk−1(Rn). In addition, if f is in the native space
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BLk(Rn), then IXf minimizes the semi-norm |f − v|BLk(Rn) among all v ∈ VX,n,k.
As in the previous section, this implies that

|f − IXf |BLk(Rn) ≤ |f |BLk(Rn), f ∈ BLk(Rn).

Now, an extension theorem of Duchon [5, Lemma 3.1] shows the existence of a linear
map Ek : W k

2 (Ω) → BLk(Rn) such that for all f ∈ W k
2 (Ω) we have Ekf |Ω = f

and |Ekf |BLk(Rn) ≤ ‖Ek‖|f |BLk(Ω). Essentially repeating the proof of our own
Lemma 3.1 then yields the following:

Lemma 3.4. Let k > n/2 be an integer, X = {x1, x2, . . . , xN} ⊂ Ω be unisolvent
for πk−1(Rn), and let f ∈ W k

2 (Ω). If IXf ∈ VX,n,k is the unique function that
interpolates f on X, then there exists a constant CΩ,n,k such that

|f − IXf |W k
2 (Ω) ≤ CΩ,n,k|f |W k

2 (Ω) ≤ CΩ,n,k‖f‖W k
2 (Ω).

Recall that a finite, discrete set X ⊂ R
n is unisolvent for πk−1(Rn) if for p ∈

πk−1(Rn) the vanishing of p on X—i.e., p|X = 0—implies that p ≡ 0. Suppose
that we again have X ⊂ Ω, with mesh norm h satisfying (9). We want to show
that under these conditions we have the slightly stronger result that X is unisolvent
with respect to πk(Rn).

Proposition 3.5. Let k ≥ 1 be an integer. If X a finite, discrete subset of X, with
mesh norm h satisfying (9), then X is unisolvent for πk(Rn).

Proof. In Theorem 2.12, take s = 1, |α| = 0, q = ∞, p = 2n. If u is a polynomial
in πk(Rn), with u|X = 0, then, we have that ‖u‖L∞(Ω) ≤ Chk+1/2|u|W k+1

2n (Ω).
Since Dαu ≡ 0 for |α| ≥ k + 1, the norm |u|W k+1

2n (Ω) = 0. It then follows from
Theorem 2.12 that u|Ω = 0 and, since Ω contains open sets, that u ≡ 0. Thus, X
is unisolvent for πk(Rn). �

By our remarks above, the set X being unisolvent implies that for any f ∈ C(Ω),
there is a unique interpolant IXf ∈ VX,n,k for f . This plus the lemma above is
precisely what we require to get the same type of estimates that we obtained in
the last section. In fact, repeating the proofs of Propositions 3.2 and 3.3 yields the
same estimates. We formally state these observations below.

Corollary 3.6. Under the assumptions on X, Ω, and h made in Propositions 3.2
and 3.3, the interpolant IXf ∈ VX,n,k exists and is unique. Moreover, the estimates
in both propositions also hold for IXf ∈ VX,n,k.

3.2. Error estimates for functions outside of NΦ. It is now our goal to es-
tablish discrete and continuous Sobolev-type error estimates for functions that are
outside the native space, but still in a Sobolev space or a Ck-space. More precisely,
if we let τ determine the decay of Φ̂, we will assume either that f ∈ W t

2(Ω), where
τ ≥ t > n/2, or that f ∈ Ck(Ω), τ ≥ k > n/2.

3.2.1. Approximation error estimates. For approximation rather than interpola-
tion, such error estimates have been derived for integer τ in [16], using a technique
introduced in [13]. We will extend this result to positive, real τ . The proof we give
here is simpler than that given in [16]; it is based upon recent results from [10].
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Lemma 3.7 ([10, Proposition 3.7]). Let t ≥ r ≥ 0. If f ∈ W t
2(Rn), then there

exists a constant ct,r such that for every σ > 0 we can choose a band limited function
gσ ∈ Bσ = {f ∈ L2(Rn) : supp

(
f̂
) ⊆ B(0, σ)} with

(24) ‖f − gσ‖W r
2 (Rn) ≤ ct,rσ

r−t‖f‖W t
2(Rn).

Obviously, this result is important mainly in the case of σ > 1, and in such a
situation we will use it now.

Theorem 3.8. Suppose Φ is a positive definite function satisfying (15), with τ ≥
t > n/2, and that X = {x1, . . . , xN} ⊂ Ω has mesh norm h satisfying (9). If
f ∈ W t

2(Ω), then there exists a function v ∈ VX,Φ = span{Φ(· − xj) : xj ∈ X} such
that for every real 0 ≤ r ≤ t,

‖f − v‖W r
2 (Ω) ≤ Cht−r‖f‖W t

2(Ω).

Here, C is a constant independent of f and h.

Proof. Let E be the extension operator discussed in the proof of Lemma 3.1. We
first extend the function f ∈ W t

2(Ω) to a function Ef ∈ W t
2(Rn). Next we pick a

band limited function gσ that approximates Ef according to (24), with σ = 1/h.
Finally, we let v = IXgσ. Then, we have

‖f − v‖W r
2 (Ω) ≤ ‖Ef − gσ‖W r

2 (Rn) + ‖gσ − IXgσ‖W r
2 (Ω)

≤ c1h
t−r‖Ef‖W t

2(Rn) + c2h
τ−r‖gσ‖W τ

2 (Ω)

≤ c3h
t−r‖f‖W t

2(Ω) + c2h
τ−r‖gσ‖W τ

2 (Ω),

where we have used (24), Proposition 3.2, and the continuity of the extension
operator E. To estimate the second term on the right, we observe that ‖gσ‖W τ

2 (Ω) ≤
‖gσ‖W τ

2 (Rn). Now, gσ is band-limited, and so ‖gσ‖W τ
2 (Rn) ≤ cστ−t‖gσ‖W t

2 (Rn) =
cht−τ‖gσ‖W t

2(Rn). (This is trivial to show for p = 2. It is, of course, a special case
of Bernstein’s Theorem for functions of exponential type.) Another application of
(24) and the continuity of E establishes

‖gσ‖W t
2(Rn) ≤ ‖Ef‖W t

2(Rn) + ‖Ef − gσ‖W t
2(Rn) ≤ c4‖Ef‖W t

2(Rn) ≤ c5‖f‖W t
2(Ω).

Combining these bounds results in ‖gσ‖W τ
2 (Ω) ≤ c5h

t−τ‖f‖W t
2(Ω). Overall, this

gives us the estimate,

‖f − v‖W r
2 (Ω) ≤ (c3h

t−r + c2c5h
τ−rht−τ )‖f‖W t

2(Ω) ≤ Cht−r‖f‖W t
2(Ω),

which is what we wished to show. �

3.2.2. Interpolation error estimates. We now turn to error estimates for interpola-
tion of a function f in W k

2 (Ω) by the smoother functions in VX,Φ ⊂ NΦ. In the
special case of interpolation by means of an integer order thin-plate spline, Brown-
lee and Light [2] have obtained Lp error estimates in terms of |f |W k

2 (Ω). We will
treat the general RBF case here, but we will need to work in the space Ck(Ω),
rather than W k

2 (Ω).
We begin with a few remarks about the extension operator E constructed by

Stein [14, §VI.3]. Stein explicitly states that this operator maps W k
p (Ω) boundedly

to W k
p (Rn), for 1 ≤ p ≤ ∞ and for any integer k ≥ 0. In fact, it does a little more
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than that. If f ∈ Ck(Ω), then Stein’s construction yields Ef ∈ Ck(Rn)∩W k
∞(Rn).

Moreover, if k > n/2, then the fact that Ef ∈ W k
2 (Rn) also implies that Êf ∈

L1(Rn), which in turn yields lim|x|→∞ Ef(x) = 0. Of course, we also have the
norm bounds

‖Ef‖W k
2 (Rn) ≤ C1‖f‖W k

2 (Ω) and ‖Ef‖W k∞(Rn) ≤ C2‖f‖Ck(Ω).

Since ‖f‖W k
2 (Ω) ≤ C3‖f‖Ck(Ω), we have that

(25) max
{
‖Ef‖W k

2 (Rn), ‖Ef‖W k∞(Rn)

}
≤ C‖f‖Ck(Ω).

We will now make use of the extension Ef to obtain a band-limited interpolant to
f on X ⊂ Ω. For normalization purposes we will require diam(X) ≤ 1.

Lemma 3.9. Let f ∈ Ck(Ω) and suppose that X = {x1, x2, . . . , xN} ⊂ Ω satisfies
diam(X) ≤ 1. Let qX be the separation radius of X. Then, there is a constant
cn, depending only on the dimension n, such that, for any σ ≥ cn

qX
, there exists a

band-limited function fσ ∈ Bσ for which

(26) f |X = fσ|X and ‖fσ‖W k
2 (Rn) ≤ C‖f‖Ck(Ω).

Proof. The extension Ef is in C0(Rn) ∩ L2(Rn), so [10, Theorem 3.5] gives us the
existence of fσ for which Ef |X = fσ|X . Since Ef |Ω = f , we see that f |X = fσ|X .
In addition, since Ef ∈ W k

2 (Rn) ∩ W k∞ ∩ Ck(Rn), [10, Proposition 3.12] provides
the estimate

‖fσ‖W k
2 (Rn) ≤ max

{
‖Ef‖W k

2 (Rn), ‖Ef‖W k∞(Rn)

}
.

Applying (25) to bound the right side above then yields (26), which completes the
proof. �

Theorem 3.10. Let k and j be integers, with 0 ≤ j < k ≤ τ and k > n/2, and
let f ∈ Ck(Ω). Also suppose that X = {x1, x2, . . . , xN} ⊂ Ω satisfies diam(X) ≤ 1,
with mesh norm h satisfying (9). Then,

(27) |f − IXf |W j
q (Ω) ≤ Cρτ−k

X hk−j−n(1/2−1/q)+‖f‖Ck(Ω),

where ρX = h
qX

is the mesh ratio for X in Ω.

Proof. By Theorem 2.12, we have

(28) |f − IXf |W j
q (Ω) ≤ Chk−j−n(1/2−1/q)+ |f − IXf |W k

2 (Ω).

Choosing σ = cn

qX
in Lemma 3.9, we have the existence of fσ ∈ Bσ that interpolates

f on X . Recall that the interpolation operator IX depends only on f |X = fσ|X , so
IXf = IXfσ. Consequently, we have this chain of inequalities:

|f − IXf |W k
2 (Ω) = |f − IXfσ|W k

2 (Ω)

≤ |f − fσ|W k
2 (Ω) + |fσ − IXfσ|W k

2 (Ω)

≤ |f |W k
2 (Ω) + |fσ|W k

2 (Ω) + |fσ − IXfσ|W k
2 (Ω).

By Proposition 3.2 (or, for the thin-plate splines, Corollary 3.6), with f replaced
by fσ, q by 2, and so on, we have

|fσ − IXfσ|W k
2 (Ω) ≤ Chτ−k‖fσ‖W τ

2 (Ω).
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Obviously, |fσ|W τ
2 (Ω) ≤ ‖fσ‖W τ

2 (Rn). By Bernstein’s inequality for functions of
exponential type, ‖fσ‖W τ

2 (Rn) ≤ cστ−k‖fσ‖W k
2 (Rn). Hence, we have

|f − IXf |W k
2 (Ω) ≤ |f |W k

2 (Ω) + (1 + Chτ−kστ−k)‖fσ‖W k
2 (Rn).

However, σ = cn

qX
, so

|f − IXf |W k
2 (Ω) ≤ |f |W k

2 (Ω) + (1 + Ccτ−k
n ρτ−k

X )‖fσ‖W k
2 (Rn),

where we recall that ρX = h
qX

≥ 1 is the mesh ratio for X in Ω. By (26),
‖fσ‖W k

2 (Ω) ≤ C‖f‖Ck(Ω). In addition, we have the standard estimate |f |W k
2 (Ω) ≤

C′‖f‖Ck(Ω). Combining all of these and simplifying, we obtain

|f − IXf |W k
2 (Ω) ≤ (1 + C′ + Ccτ−k

n ρτ−k
X )‖f‖Ck(Ω)

≤ C′′ρτ−k
X ‖f‖Ck(Ω).

Using this bound in (28) then gives us (27), which completes the proof. �

Our final result is a corollary that deals with the discrete case, rather than the
continuous one.

Corollary 3.11. Let k and j be integers, with 0 ≤ j < k ≤ τ and k > n/2, and
let f ∈ Ck(Ω). Also suppose that X = {x1, x2, . . . , xN} ⊂ Ω satisfies diam(X) ≤ 1,
with mesh norm h satisfying (9). In addition, let Y be a second discrete set, with
hY ≤ h. Then,

(29) |f − IXf |wj
q(Y ) ≤ Cρ

n/q
Y ρτ−k

X hk−j−n(1/2−1/q)+‖f‖Ck(Ω),

where the discrete norm on the left above is defined in (11).

Proof. The proof is nearly identical to the theorem above. The difference is that
at the start one needs to use Theorem 2.13, which is the discrete version of Theo-
rem 2.12. �
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