HOKKAIDO UNIVERSITY

Title	Sobolev inequalities with symmetry
Author(s)	Cho, Y onggeun; Ozawa, Tohru
Citation	Hokkaido University Preprint Series in Mathematics, 859, 1-8
Issue Date	2007
DOI	http:/hdl.handle.net/2115/69668
Doc URL	bulletin (article)
Type	pre859.pdf
File Information	

Instructions for use

SOBOLEV INEQUALITIES WITH SYMMETRY

YONGGEUN CHO AND TOHRU OZAWA

Abstract

In this paper we derive some Sobolev inequalities for radially symmetric functions in \dot{H}^{s} with $\frac{1}{2}<s<\frac{n}{2}$. We show the end point case $s=\frac{1}{2}$ on the homogeneous Besov space $\dot{B}_{2,1}^{\frac{1}{2}}$. These results are extensions of the well-known Strauss' inequality [11]. Also non-radial extensions are given, which show that compact embeddings are possible in some L^{p} spaces if a suitable angular regularity is imposed.

1. Introduction

In this paper we derive Sobolev inequalities with symmetry. We first consider several Sobolev inequalities for radially symmetric functions in $\dot{H}^{s}\left(\mathbb{R}^{n}\right)$ with $\frac{1}{2}<s<\frac{n}{2}$. There is a sharp result by Sickel and Skrzypczak [8], although the argument below is much simpler and direct and a constant in the inequality in Proposition 1 below is given explicitly in terms of s.

Definition 1.

$$
\begin{aligned}
& \dot{H}_{\mathrm{rad}}^{s}=\left\{u \in \dot{H}^{s}\left(\mathbb{R}^{n}\right): u \text { is radially symmetric }\right\}, s \geq 0 . \\
& \dot{B}_{p, q, \mathrm{rad}}^{s}=\left\{u \in \dot{B}_{p, q}^{s}\left(\mathbb{R}^{n}\right): u \text { is radially symmetric }\right\}, s \geq 0,1 \leq p, q \leq \infty .
\end{aligned}
$$

The inhomogeneous spaces of radially symmetric functions are defined by the same way with spaces H^{s} and $B_{p, q}^{s}$.

Proposition 1. Let $n \geq 2$ and let satisfy $1 / 2<s<n / 2$.
Then

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n} \backslash\{0\}}|x|^{n / 2-s}|u(x)| \leq C(n, s)\left\|(-\Delta)^{s / 2} u\right\|_{L^{2}} \tag{1}
\end{equation*}
$$

for all $u \in \dot{H}_{\mathrm{rad}}^{s}$, where

$$
C(n, s)=\left(\frac{\Gamma(2 s-1) \Gamma\left(\frac{n}{2}-s\right) \Gamma\left(\frac{n}{2}\right)}{2^{2 s} \pi^{n / 2} \Gamma(s)^{2} \Gamma\left(\frac{n}{2}-1+s\right)}\right)^{1 / 2}
$$

and Γ is the gamma function.
Remark 1. For $s=1$ with $n \geq 3$, the inequality (1) reduces to Ni's inequality [6, 7].
Remark 2. The restriction $1 / 2<s<n / 2$ is necessary for $C(n, s)$ to be finite.

[^0]Keywords and phrases. Sobolev inequality, function space with radial symmetry, angular regularity

Remark 3. The inequality (1) fails for $s=n / 2$. Indeed, $u(x)=\mathcal{F}^{-1}\left(\frac{1}{(1+|\xi|)^{n}(1+\log (1+|\xi|))}\right)$ satisfies $u \in H_{\mathrm{rad}}^{n / 2}$, and $u \notin L^{\infty}$ where \mathcal{F} is the Fourier transform [12] and \mathcal{F}^{-1} is its inverse.

Remark 4. The inequality (1) fails if $0 \leq s<1 / 2$ and $n \geq 3$. Indeed, $u=$ $\mathcal{F}^{-1}\left(J_{\frac{n}{2}-1}(|\xi|)|\xi|^{-n / 2}\right)$ satisfies $u \in \dot{H}_{\text {rad }}^{s}$ and $u(x)=\infty$ for all $x \in S^{n-1}$, where we note that $u \in \dot{H}_{\text {rad }}^{s}$ if and only if $1-n / 2<s<1 / 2$, since

$$
\left\|(-\Delta)^{s / 2} u\right\|_{L^{2}}^{2}=c_{n} \int_{0}^{\infty}\left|J_{\frac{n}{2}-1}(\rho)\right|^{2} \rho^{2 s-1} d \rho
$$

and that by the asymptotic behavior of Bessel function (10)

$$
u(x)=\int_{0}^{\infty}\left|J_{\frac{n}{2}-1}(\rho)\right|^{2} d \rho=\infty, \quad x \in S^{n-1} .
$$

See also the proof of Proposition 1 below.
In the endpoint case $s=1 / 2$, we have the following propostion.

Proposition 2. Let $n \geq 2$. Then there exists a constant C such that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n} \backslash\{0\}}|x|^{(n-1) / 2}|u(x)| \leq C\|u\|_{\dot{B}_{2,1}^{1 / 2}} \tag{2}
\end{equation*}
$$

for all $u \in \dot{B}_{2,1, \text { rad }}^{1 / 2}$.
Remark 5. The inhomogeneous version of (2) has been given in [8] whose proof is based on the atomic decomposition.

Proposition 3. Let $n \geq 2$ and let s satisfy $1 / 2 \leq s<1$. Then there exists C such that for all $u \in H_{\mathrm{rad}}^{1}$

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n} \backslash\{0\}}|x|^{n / 2-s}|u(x)| \leq C(n, s)\|u\|_{L^{2}}^{1-s}\|\nabla u\|_{L^{2}}^{s} . \tag{3}
\end{equation*}
$$

Remark 6. For $s=1 / 2$, the inequality (3) reduces to Strauss' inequality [11].

Remark 7. For $s=0$, the inequality (3) holds for nonincreasing functions in $|x|$ [2]. For $s=1$, the inequality (3) holds for $n \geq 3$ and fails for $n=2$. See Proposition 1 and Remark 2.

Now we extend the results above on radial functions to the non-radial functions with additional angular regularity. For details, let us define function spaces $H_{\omega}^{s, m}$ and $B_{2,1, \omega}^{s, m}$, $s \geq 0, m \geq 0$ as follows.

Definition 2.

$$
\begin{aligned}
H_{\omega}^{s, m} & =\left\{u \in H^{s}:\|u\|_{H_{\omega}^{s, m}} \equiv\left\|\left(1-\Delta_{\omega}\right)^{\frac{m}{2}} u\right\|_{H^{s}}<\infty\right\} \\
B_{2,1, \omega}^{s, m} & =\left\{u \in B_{2,1}^{\frac{1}{2}}:\|u\|_{B_{2,1, \omega}^{s, m}}^{2} \equiv\left\|\left(1-\Delta_{\omega}\right)^{\frac{m}{2}} u\right\|_{B_{2,1}^{s}}<\infty\right\},
\end{aligned}
$$

where Δ_{ω} is the Laplace-Beltrami operator on S^{n-1}.
The homogeneous spaces $\dot{H}_{\omega}^{s, m}$ and $\dot{B}_{2,1, \omega}^{s, m}$ is similarly defined by the definition of \dot{H}^{s} and $\dot{B}_{2,1}^{s}$. Then we have the following.

Proposition 4. (1) If $1 / 2<s<n / 2$ and $m>n-1-s$, then there exists a constant C such that for any $u \in H_{\omega}^{s, m}$

$$
\begin{equation*}
\sup _{\mathbb{R}^{n} \backslash\{0\}}|x|^{n / 2-s}|u(x)| \leq C\|u\|_{\dot{H}_{\omega}^{s, m}} \tag{4}
\end{equation*}
$$

(2) If $m>n-\frac{3}{2}$, then there exists a constant C such that for any $u \in B_{2,1, \omega}^{\frac{1}{2}, m}$

$$
\begin{equation*}
\sup _{\mathbb{R}^{n} \backslash\{0\}}|x|^{(n-1) / 2}|u(x)| \leq C\|u\|_{\dot{B}_{2,1, \omega}^{\frac{1}{2}, m}} \tag{5}
\end{equation*}
$$

Remark 8. $\quad H_{\omega}^{s, m}$ and $B_{2,1, \omega}^{\frac{1}{2}, m}$ are closed subspaces of H^{s} and $B_{2,1}^{s}$, respectively and they contain H_{rad}^{s} and $B_{2,1, \mathrm{rad}}^{\frac{1}{2}}$ naturally, respectively. We can identify the spaces H^{s} with $\left(1-\Delta_{\omega}\right)^{m / 2} H_{\omega}^{s, m}$ and also $B_{2,1}^{\frac{1}{2}}$ with $\left(1-\Delta_{\omega}\right)^{m / 2} B_{2,1, \omega}^{\frac{1}{2}, m}$.

Remark 9. $H_{\omega}^{s, m}$ is a Hilbert space with the same inner product as L^{2} space and its dual space is given by $H_{\omega}^{-s,-m}$.

From the decay at infinity we deduce compact embeddings of $H_{\omega}^{s, m}$ and $B_{2,1, \omega}^{\frac{1}{2}, m}$ into some L^{p} spaces as follows. See $[2,3,4,8,9]$ for the radial case.

Corollary 1. The embedding $H_{\omega}^{s, m} \hookrightarrow L^{p}$ is compact for $1 / 2<s<n / 2, m>n-1-s$ and $2<p<2 n /(n-2 s)$.

Corollary 2. The embedding $B_{2,1, \omega}^{\frac{1}{2}, m} \hookrightarrow L^{p}$ is compact for $m>n-3 / 2$ and $2<p<$ $2 n /(n-1)$.

2. Proofs

2.1. Proof of Proposition 1. We use the following Fourier representation for radially symmetric functions as

$$
\begin{equation*}
u(x)=|x|^{1-\frac{n}{2}} \int_{0}^{\infty} J_{\frac{n}{2}-1}(|x| \rho) \widehat{u}(\rho) \rho^{\frac{n}{2}} d \rho \tag{6}
\end{equation*}
$$

where J_{ν} is the Bessel function of order ν, \widehat{u} is the Fourier transform normalized as

$$
\widehat{u}(\xi)=(2 \pi)^{-n / 2} \int e^{-i x \cdot \xi} u(x) d x
$$

and we have identified radially symmetric functions on \mathbb{R}^{n} with the corresponding functions on $(0, \infty)$.

By the Cauchy-Schwarz inequality and the Plancherel formula, we have

$$
\begin{align*}
& |x|^{\frac{n}{2}-s}|u(x)| \\
& \leq|x|^{1-s}\left(\int_{0}^{\infty}\left|J_{\frac{n}{2}-1}(|x| \rho)\right|^{2} \rho^{1-2 s} d \rho\right)^{1 / 2}\left(\int_{0}^{\infty}|\widehat{u}(\rho)|^{2} \rho^{2 s+n-1} d \rho\right)^{1 / 2} \\
& =\left(\int_{0}^{\infty}\left|J_{\frac{n}{2}-1}(\rho)\right|^{2} \rho^{1-2 s} d \rho\right)^{1 / 2}\left(\frac{\Gamma\left(\frac{n}{2}\right)}{2 \pi^{n / 2}} \int|\xi|^{2 s}|\widehat{u}(\xi)|^{2} d \xi\right)^{1 / 2} \tag{7}\\
& =C(n, s)\left\|(-\Delta)^{s / 2} u\right\|_{L^{2}}
\end{align*}
$$

as required.
2.2. Proof of Proposition 2. We use the following estimates on Bessel functions:

$$
\begin{align*}
& \sup _{r \geq 0}\left|J_{\frac{n}{2}-1}(r)\right| \leq 1 \tag{8}\\
& \sup _{r \geq 0} r^{1 / 2}\left|J_{\frac{n}{2}-1}(r)\right| \leq C \tag{9}
\end{align*}
$$

The first inequality (8) follows from the integral representation (see [13])

$$
\begin{aligned}
& J_{\frac{n}{2}-1}(r)^{2}=\frac{2}{\pi} \int_{0}^{\pi / 2} J_{n-2}(2 r \cos \theta) d \theta \\
& J_{m}(t)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (m \theta-t \sin \theta) d \theta, m \in \mathbb{Z}
\end{aligned}
$$

The second inequality (9) follows from the first and the well-known asymptotics (see [10])

$$
\begin{equation*}
J_{\nu}(r) \sim \sqrt{\frac{2}{\pi r}} \cos \left(r-\frac{(2 \nu+1) \pi}{4}\right) \quad \text { as } \quad r \rightarrow \infty \tag{10}
\end{equation*}
$$

We apply the Littlewood-Paley decomposition $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ on $\mathbb{R}^{n} \backslash\{0\}$ to (4) to obtain

$$
\begin{equation*}
u(x)=|x|^{1-\frac{n}{2}} \sum_{j \in \mathbb{Z}} \int_{0}^{\infty} J_{\frac{n}{2}-1}(|x| \rho) \psi_{j}(\rho) \varphi_{j}(\rho) \widehat{u}(\rho) \rho^{\frac{n}{2}} d \rho \tag{11}
\end{equation*}
$$

where $\psi_{j}=\varphi_{j-1}+\varphi_{j}+\varphi_{j+1}$ and $\operatorname{supp} \varphi_{j} \subset\left\{2^{j-1} \leq \rho \leq 2^{j+1}\right\}$.
As in (7), we have

$$
\begin{aligned}
& |x|^{(n-1) / 2}|u(x)| \\
& \leq|x|^{1 / 2} \sup _{j \in \mathbb{Z}}\left(\int_{0}^{\infty}\left|J_{\frac{n}{2}-1}(|x| \rho)\right|^{2} \psi_{j}(\rho)^{2} d \rho\right)^{1 / 2} \\
& \quad \cdot \sum_{j \in \mathbb{Z}}\left(\int_{0}^{\infty}\left|\varphi_{j}(\rho) \widehat{u}(\rho)\right|^{2} \rho^{n} d \rho\right)^{1 / 2} .
\end{aligned}
$$

By (9), we estimate

$$
\begin{align*}
& |x|^{1 / 2} \sup _{j \in \mathbb{Z}}\left(\int_{0}^{\infty}\left|J_{\frac{n}{2}-1}(|x| \rho)\right|^{2} \psi_{j}(\rho)^{2} d \rho\right)^{1 / 2} \\
& \leq C \sup _{j \in \mathbb{Z}}\left(\int_{0}^{\infty} \frac{1}{\rho} \psi_{j}(\rho)^{2} d \rho\right)^{1 / 2} \tag{12}\\
& \leq C \sup _{j \in \mathbb{Z}}\left(\int_{2^{j-2}}^{2^{j+2}} \frac{1}{\rho} d \rho\right)^{1 / 2} \leq C
\end{align*}
$$

This proves (2) since

$$
\sum_{j \in \mathbb{Z}}\left(\int_{0}^{\infty}\left|\varphi_{j}(\rho) \widehat{u}(\rho)\right|^{2} \rho^{n} d \rho\right)^{1 / 2}
$$

is equivalent to the seminorm on $\dot{B}_{2,1, \mathrm{rad}}^{1 / 2}$.
2.3. Proof of Proposition 3. If we use Cauchy-Schwartz inequality as in (7), we have for any $M>0$

$$
\begin{aligned}
& |x|^{n / 2-s}|u(x)| \\
& \leq|x|^{1-s}\left(\int_{0}^{M|x|}\left|J_{\frac{n}{2}-1}(|x| \rho)\right|^{2} \rho d \rho\right)^{1 / 2}\left(\int_{0}^{M|x|}|\widehat{u}(\rho)|^{2} \rho^{n-1} d \rho\right)^{1 / 2} \\
& +|x|^{1-s}\left(\int_{M|x|}^{\infty}\left|J_{\frac{n}{2}-1}(|x| \rho)\right|^{2} \rho^{-1} d \rho\right)^{1 / 2}\left(\int_{M|x|}^{\infty}|\widehat{u}(\rho)|^{2} \rho^{n+1} d \rho\right)^{1 / 2} \\
& \leq|x|^{-s}\left(\int_{0}^{M}\left|J_{\frac{n}{2}-1}(r)\right|^{2} r d r\right)^{1 / 2}\|u\|_{L^{2}} \\
& +|x|^{1-s}\left(\int_{M}^{\infty}\left|J_{\frac{n}{2}-1}(r)\right|^{2} r^{-1} d r\right)^{1 / 2}\|\nabla u\|_{L^{2}} .
\end{aligned}
$$

From (8) and (9) we deduce that $\sup _{r \geq 0}\left|r^{1-s} J_{\frac{n}{2}-1}(r)\right| \leq C$ for any $\frac{1}{2} \leq s<1$. Hence we have for any $M>0$

$$
\begin{aligned}
& |x|^{n / 2-s}|u(x)| \\
& \leq|x|^{-s}\left(\int_{0}^{M}\left|J_{\frac{n}{2}-1}(r)\right|^{2} r d r\right)^{\frac{1}{2}}\|u\|_{L^{2}} \\
& +|x|^{1-s}\left(\int_{M}^{\infty}\left|J_{\frac{n}{2}-1}(r)\right|^{2} r^{-1} d r\right)^{\frac{1}{2}}\|\nabla u\|_{L^{2}} \\
& \leq C|x|^{-s} M^{s}\|u\|_{L^{2}}+|x|^{1-s} M^{-(1-s)}\|\nabla u\|_{L^{2}}
\end{aligned}
$$

The minimization of the RHS of the last inequality with respect to M yields Proposition 3.
2.4. Proofs of Proposition 4 and Corollaries. The proof for (4) follows from the one of Proposition 1 and the spherical harmonic expansion of functions in $H_{\omega}^{s, m}$ [5, 10]. In fact, if we write $u(r \omega)=\sum_{k \geq 0} \sum_{1 \leq l \leq d(k)} f_{k, l}(r) Y_{k, l}(\omega)$, where $d(k)$ is the dimension of space of spherical harmonic functions of degree k and

$$
\begin{equation*}
d(k) \leq C k^{n-2} \text { for large } k \tag{13}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
|x|^{\frac{n}{2}-s} u(|x| \omega)=c_{n} \sum_{k, l}|x|^{1-s} \int_{0}^{\infty} J_{\nu(k)}(|x| \rho) \rho^{\frac{n}{2}} g_{k, l}(\rho) d \rho Y_{k, l}(\omega) \tag{14}
\end{equation*}
$$

where $\omega \in S^{n-1}, \nu(k)=\frac{n+2 k-2}{2}$ and $\widehat{f_{k, l} Y_{k, l}}(\rho \omega)=g_{k, l}(\rho) Y_{k, l}(\omega)$. Here

$$
g_{k, l}(\rho)=c_{n, k} \int_{0}^{\infty} f_{k, l}(r) r^{n-1}(r \rho)^{-\frac{n-2}{2}} J_{\nu(k)}(r \rho) d r
$$

The absolute value of $c_{n, k}$ is bounded by a constant depending only on n. See [10] for this.
Using the Cauchy-Schwarz inequality as in (7), we have

$$
\begin{aligned}
& |x|^{\frac{n}{2}-s}|u(|x| \omega)| \\
& \leq C \sum_{k, l}\left\|Y_{k, l}\right\|_{L^{\infty}\left(S^{n-1}\right)}\left(\int_{0}^{\infty}\left|J_{\nu(k)}(|x| \rho)\right|^{2} \rho^{1-2 s}\right)^{\frac{1}{2}}\left(\int_{0}^{\infty}\left|g_{k, l}(\rho)\right|^{2} \rho^{2 s+n-1} d \rho\right)^{\frac{1}{2}} \\
& \leq C \sum_{k, l} k^{\frac{n-2}{2}}\left(\frac{\Gamma(\nu(k)+1-s)}{\Gamma(\nu(k)+s)}\right)^{\frac{1}{2}}\left(\int_{0}^{\infty}\left|g_{k, l}(\rho)\right|^{2} \rho^{2 s+n-1} d \rho\right)^{\frac{1}{2}}\left\|Y_{k, l}\right\|_{L^{2}\left(S^{n-1}\right)}
\end{aligned}
$$

Here we used the inequality that $\left\|Y_{k, l}\right\|_{L^{\infty}} \leq C k^{\frac{n-2}{2}}\left\|Y_{k, l}\right\|_{L^{2}}$ (see for instance [10]). Using the Stirling's formula for gamma function that $\Gamma(t) \approx t^{t-\frac{1}{2}} e^{-(t-1)}$ for large t (for instance, see [1]) and the fact $-\Delta_{\omega} Y_{k, l}=k(k+n-2) Y_{k, l}$, we have from (13)

$$
\begin{aligned}
&|x|^{\frac{n}{2}-s}|u(|x| \omega)| \\
& \leq C \sum_{k} k^{\frac{n-2}{2}} d(k)^{\frac{1}{2}}\left(\frac{\Gamma(\nu(k)+1-s)}{\Gamma(\nu(k)+s)}\right)^{\frac{1}{2}} \\
& \cdot\left(\sum_{1 \leq l \leq d(k)} \int_{0}^{\infty}\left|g_{k, l}(\rho)\right|^{2} \rho^{2 s+n-1} d \rho\left\|Y_{k, l}\right\|_{L^{2}\left(S^{n-1}\right)}^{2}\right)^{\frac{1}{2}} \\
& \leq C\left(\sum_{k} k^{2\left(n-\frac{3}{2}-s-m\right)}\right)^{\frac{1}{2}}\left(\sum_{k, l} k^{2 m} \int_{0}^{\infty}\left|g_{k, l}(\rho)\right|^{2} \rho^{2 s+n-1} d \rho\left\|Y_{k, l}\right\|_{L^{2}\left(S^{n-1}\right)}^{2}\right)^{\frac{1}{2}} \\
& \leq C\left(\sum_{k, l} k^{2 m} \int_{0}^{\infty} \int_{S^{n-1}}\left|\mathcal{F}\left(f_{k, l} Y_{k, l}\right)(\rho \omega)\right|^{2} \rho^{2 s+n-1} d \rho d \omega\right)^{\frac{1}{2}} \\
& \leq C\left(\sum_{k, l} \int_{0}^{\infty} \int_{S^{n-1}}\left|\mathcal{F}\left(\left(1-\Delta_{\omega}\right)^{\frac{m}{2}}\left(f_{k, l} Y_{k, l}\right)\right)(\rho \omega)\right|^{2} \rho^{2 s+n-1} d \rho d \omega\right)^{\frac{1}{2}} \\
& \leq C\|u\|_{\dot{H}_{\omega}^{s, m}}
\end{aligned}
$$

where \mathcal{F} is the Fourier transform. This proves part (1).
For the part (2), if we use the Littlewood-Paley decomposition $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ as in the proof of Proposition 2, the we have

$$
\begin{equation*}
|x|^{\frac{n-1}{2}} u(|x| \omega)=c_{n} \sum_{j \in \mathbb{Z}} \sum_{k, l}|x|^{\frac{1}{2}} \int_{0}^{\infty} J_{\nu(k)}(|x| \rho) \rho^{\frac{n}{2}} \psi_{j}(\rho) \varphi_{j}(\rho) g_{k, l}(\rho) d \rho Y_{k, l}(\omega), \tag{15}
\end{equation*}
$$

Since $m>n-3 / 2$, by (12) we deduce that

$$
\begin{aligned}
& |x|^{\frac{n-1}{2}}|u(|x| \omega)| \\
& \leq C \sum_{j \in \mathbb{Z}} \sum_{k, l}\left(\int_{0}^{\infty}\left|\varphi_{j}(\rho) g_{k, l}(\rho)\right|^{2} \rho^{n} d \rho\right)^{\frac{1}{2}}\left\|Y_{k, l}\right\|_{L^{\infty}\left(S^{n-1}\right)} \\
& \leq C \sum_{j \in \mathbb{Z}}\left(\sum_{k} k^{2(n-2-m)}\right)^{\frac{1}{2}}\left(\sum_{k, l} k^{2 m} \int_{0}^{\infty}\left|\varphi_{j}(\rho) g_{k, l}(\rho)\right|^{2} \rho^{n} d \rho\left\|Y_{k, l}\right\|_{L^{2}\left(S^{n-1}\right)}^{2}\right)^{\frac{1}{2}} \\
& \leq C \sum_{j \in \mathbb{Z}} 2^{\frac{j}{2}}\left\|\varphi_{j} \mathcal{F}\left(\left(1-\Delta_{\omega}\right)^{\frac{m}{2}} u\right)\right\|_{L^{2}}=C\|u\|_{\dot{B}_{2,1, \omega}^{\frac{1}{2}}}
\end{aligned}
$$

To show Corollary 1 we use the fact that $H_{\omega}^{s, m}$ is a Hilbert space. Hence any bounded sequence $\left\{u_{j}\right\}$ in $H_{\omega}^{s, m}$ satisfies $u_{j}(x) \rightarrow 0$ as $|x| \rightarrow \infty$ uniformly and has a subsequence converges to u in $H_{\omega}^{s, m}$ weakly. Let us denote the subsequence by $u_{j_{k}}$.

Now choose a smooth function φ supported in the ball of radius $R+1$ and with value 1 in the ball of radius R. By the standard argument one can easily show that for each R the mapping $u \mapsto \varphi u$ is compact from H^{t} to $H^{t^{\prime}}$ if $t^{\prime}<t$. By the compactness above and Sobolev embedding we may assume that the sequence $\varphi u_{j_{k}}$ satisfies that for $2 \leq q<\frac{2 n}{n-2 s}$

$$
\begin{equation*}
\left\|\varphi u_{j_{k}}-\varphi u\right\|_{L^{q}} \rightarrow 0 \text { as } k \rightarrow \infty \tag{16}
\end{equation*}
$$

Thus we have

$$
\left\|u_{j_{k}}-u\right\|_{L^{p}} \leq\left\|\varphi\left(u_{j_{k}}-u\right)\right\|_{L^{p}}+\left\|(1-\varphi)\left(u_{j_{k}}-u\right)\right\|_{L^{p}} \equiv I_{k}+I I_{k}
$$

with $I_{k} \rightarrow 0$ as $k \rightarrow \infty$ by (16) since $2<p<\frac{2 n}{n-2 s}$. From the uniform convergence that $\left|u_{j_{k}}(x)\right|+|u(x)| \rightarrow 0$ as $|x| \rightarrow \infty$ it follows that

$$
\limsup _{k \rightarrow \infty} I I_{k} \leq \sup _{k}\left\|u_{j_{k}}-u\right\|_{L^{\infty}(|x|>R)}^{\frac{p-2}{p}} \rightarrow 0 \text { as } R \rightarrow \infty .
$$

This proves the compactness of the embedding $H_{\omega}^{s, m} \hookrightarrow L^{p}$.
Since $B_{2,1, \omega}^{\frac{1}{2}, m} \hookrightarrow H_{\omega}^{\frac{1}{2}, m}$, one can adapt the same arguments (compactness of cut-off mapping and uniform convergence at infinity) as above except for weak-* convergence of $u_{j_{k}}$ to u in $B_{2,1, \omega}^{\frac{1}{2}, m}$ for the compactness of embedding $B_{2,1, \omega}^{\frac{1}{2}, m}$ to L^{p}. This completes the proof.

References

[1] G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, Academic Press, 1995.
[2] T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics. 10, AMS, 2003.
[3] J. Chabrowski, On compact embeddings of radial Sobolev spaces and their applications, Commun. Partial Differential Equations, 17(1992), 941-952.
[4] Y. Ebihara and T.P. Schonbek, On the (non)compactness of the radial Sobolev spaces, Hiroshima Math. J. 16(1986), 665-669.
[5] J. Kato, M. Nakamura and T. Ozawa, A generalization of the weighted Strichartz estimates for wave equations and an application to self-similar solutions, Commun. Pure. Appl. Math. 60(2007), 164-186.
[6] W.-M. Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J. 31(1982), 801-807.
[7] W. Rother, Some existence results for the equation $\Delta U+K(x) U^{p}=0$, Commun. Partial Differential Equations. 15(1990), 1461-1473.
[8] W. Sickel and L. Skrzypczak, Radial subspaces of Besov and Lizorkin-Triebel classes: extended Strauss lemma and compactness of embeddings, The Journal of Fourier Analysis and Applications. 6(2000), 639-662.
[9] L. Skrzypczak, Rotation invariant subspaces of Besov and Triebel-Lizorkin space: compactness of embeddings, smoothness and decay of functions, Rev. Mat. Iberoamericana, 18(2002), 267-299.
[10] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
[11] W. A. Strauss, Existence of solitary waves in higher dimensions, Commun. Math. Phys. 55(1977), 149-162.
[12] M. E. Taylor, Partial Differential Equations I, Basic Theory, Applied Mathematical Sciences 115, Springer, 1996.
[13] G. Watson, A Treatise on the Theory of Bessel Functions, Reprint of the second (1944) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995.

Department of Mathematics, POSTECH, Pohang 790-784, Republic of Korea
E-mail address: changocho@postech.ac.kr
Department of Mathematics, Hokkaido University, Sapporo, 060-0810, Japan
E-mail address: ozawa@math.sci.hokudai.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 46E35; Secondary 42C15.

