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Abstract

There are several generalizations of the classical theory of Sobolev spaces as

they are necessary for the applications to Carnot�Carath�eodory spaces� subel�

liptic equations� quasiconformal mappings on Carnot groups and more general

Loewner spaces� analysis on topological manifolds� potential theory on in�nite

graphs� analysis on fractals and the theory of Dirichlet forms�

The aim of this paper is to present a uni�ed approach to the theory of Sobolev

spaces that covers applications to many of those areas� The variety of di�erent

areas of applications forces a very general setting�

We are given a metric space X equipped with a doubling measure �� A
generalization of a Sobolev function and its gradient is a pair u � L�loc�X�� 	 �
g � Lp�X� such that for every ball B � X the Poincar�e�type inequality

Z
B
ju� uBj d� � Cr

�Z
�B

gp d�

���p
holds� where r is the radius of B and � � 
� C � 	 are �xed constants� Working

in the above setting we show that basically all relevant results from the classical

theory have their counterparts in our general setting� These include Sobolev�

Poincar�e type embeddings� Rellich�Kondrachov compact embedding theorem�

and even a version of the Sobolev embedding theorem on spheres� The second

part of the paper is devoted to examples and applications in the above mentioned

areas�

This research was begun while P�H� was visiting the Universities of Helsinki and
Jyv
askyl
a in ����� continued during his stay in the ICTP in Trieste in ���� and �nished
in Max�Planck Institute �MIS� in Leipzig in ����� He wishes to thank all the institutes
for their hospitality� P�H� was partially supported by KBN grant no� �	PO�A	���	���
P�K� by the Academy of Finland grant SA������ and by the NSF�

���� Mathematical Subject Classi�cation� Primary ��E���
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� Introduction

The theory of Sobolev spaces is a central analytic tool in the study of various aspects of
partial di�erential equations and calculus of variations� However� the scope of its appli�
cations is much wider� including questions in di�erential geometry� algebraic topology�
complex analysis� and in probability theory�

Let us recall a de�nition of the Sobolev spaces� Let u � Lp���� where � is an open
subset of IRn� and � � p � �� We say that u belongs to the Sobolev space W ��p��� if
the distributional derivatives of the �rst order belong to Lp���� This de�nition easily
extends to the setting of Riemannian manifolds� as the gradient is well de�ned there�

The fundamental results in the theory of Sobolev spaces are the so�called Sobolev
embedding theorem and the Rellich	Kondrachov compact embedding theorem� The
�rst theorem states that� for � � p � n� W ��p��� � Lp����� where p� � np��n � p��
provided the boundary of � is su�ciently nice� The second theorem states that for
every q � p� the embedding W ��p��� � Lq��� is compact�

Since its introduction the theory and applications of Sobolev spaces have been under
intensive study� Recently there have been attempts to generalize Sobolev spaces to the
setting of metric spaces equipped with a measure� Let us indicate some of the problems
that suggest such a generalization�

�� Study of the Carnot	Carath
eodory metric generated by a family of vector �elds�
�� Theory of quasiconformal mappings on Carnot groups and more general Loewner
spaces� �� Analysis on topological manifolds� �� Potential theory on in�nite graphs� ��
Analysis on fractals�

Let us brie�y discuss the above examples� The Carnot	Carath
eodory metric appears
in the study of hypoelliptic operators� see H
ormander ������ Fe�erman and Phong �����
Jerison ������ Nagel� Stein and Wainger ������ Rotschild and Stein ������ S
anchez�Calle
������

The Sobolev inequality on balls in Carnot	Carath
eodory metric plays a crucial role
in the so�called Moser iteration technique� ������ used to obtain Harnack inequalities and
H
older continuity for solutions of various quasilinear degenerate equations� The proof
of the Harnack inequality by means of the Moser technique can be reduced to verifying
a suitable Sobolev inequality� Conversely� a parabolic Harnack inequality implies a
version of the Sobolev inequality as shown by Salo��Coste� ������ It seems that the
�rst to use the Moser technique in the setting of the Carnot	Carath
eodory metric were
Franchi and Lanconelli� ����� The later work on related questions include the papers
by Biroli and Mosco� ���� ���� Buckley� Koskela and Lu� ����� Capogna� Danielli and
Garofalo� ����� ����� ����� ����� ����� Chernikov and Vodop�yanov� ����� Danielli� Garofalo�
Nhieu� ����� Franchi� ����� Franchi� Gallot and Wheeden� ����� Franchi� Guti
errez and
Wheeden� ����� Franchi and Lanconelli� ����� Franchi� Lu and Wheeden� ����� �����
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Franchi and Serapioni� ����� Garofalo and Lanconelli� ����� Marchi ������

The theory of Carnot	Carath
eodory metrics and related Sobolev inequalities can
be extended to the setting of Dirichlet forms� see Biroli and Mosco� ���� Garattini �����
Sturm� ������

For connections to the theory of harmonic maps see the papers Jost� ������ ������
������ ������ Jost and Xu� ������ Haj�lasz and Strzelecki� ������

The theory of quasiconformal mappings on Carnot Groups has been studied by
Margulis and Mostow� ������ Pansu� ������ Koranyi and Reimann� ������ Heinonen and
Koskela� ������ Vodop�yanov and Greshnov� ������ Results on Sobolev spaces play an
important role in this theory� Very recently Heinonen and Koskela� ������ extended the
theory to the setting of metric spaces that support a type of a Sobolev inequality�

Semmes� ������ has shown that a large class of topological manifolds admit Sobolev
type inequalities� see Section ��� Sobolev type inequalities on a Riemannian manifold
are of fundamental importance for heat kernel estimates� see the survey article ���� of
Coulhon for a nice exposition�

Discretization of manifolds has lead one to de�ne the gradient on an in�nite graph
using �nite di�erences and then to investigate the related Sobolev inequalities� see
Kanai� ������ Auscher and Coulhon� ���� Coulhon ����� Coulhon and Grigor�yan� �����
Delmotte� ����� Holopainen and Soardi� ������ ������ These results have applications
to the classi�cation of Riemannian manifolds� Also the study of the geometry of
�nitely generated groups leads to Sobolev inequalities on associated Cayley graphs�
see Varopoulos� Salo��Coste and Coulhon� ������ and Section �� for references�

At last� but not least� the Brownian motion on fractals leads to an associated Laplace
operator and Sobolev type functions on fractals� see Barlow and Bass� ���� Jonsson ������
Kozlov� ������ Kigami� ������ ������ ������ Kigami and Lapidus� ������ Lapidus� ������
������ Metz and Sturm� ������ Mosco� ������

How does one then generalize the notion of Sobolev space to the setting of a metric
space� There are several possible approaches that we brie�y describe below�

In general� the concept of a partial derivative is meaningless on a metric space�
However� it is natural to call a measurable function g � � an upper gradient of a
function u if

ju�x�� u�y�j �
Z
�
g ds

holds for each pair x� y and all recti�able curves � joining x� y� Thus� in the Euclidean
setting� we consider the length of the gradient of a smooth function instead of the actual
gradient� The above de�nition is due to Heinonen and Koskela� ������

Assume that the metric space is equipped with a measure �� Then we can ask if for
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every pair u� g� where u is continuous and g is an upper gradient of u� the weak version

�Z
B
ju� uBjq d�

���q
� Cr

�Z
�B

gp d�
���p

���

of the Sobolev�Poincar
e inequality holds with q � p � � whenever B is a ball of radius
r� Here C and � � � are �xed constants� barred integrals over a set A mean integral
averages� and uB is the average value of u over B�

If q � � we call ��� a p�Poincar
e inequality� It turns out that a p�Poincar
e inequality
implies a Sobolev�Poincar
e inequality� see Section ��

This approach is however limited to metric spaces that are su�ciently regular� There
have to be su�ciently many recti�able curves� which excludes fractals and graphs� For
more information see Section �� Section ����� Section ����� Bourdon and Pajot �����
Cheeger ����� Franchi� Haj�lasz and Koskela ����� Hanson and Heinonen ������ Heinonen
and Koskela ������ ������ Kallunki and Shanmugalingam ������ Laakso ������ Semmes
������ Shanmugalingam ������ Tyson ������

Recently Haj�lasz� ������ introduced a notion of a Sobolev space in the setting of an
arbitrary metric space equipped with a Borel measure that we next describe�

One can prove that u � W ��p���� � � p � �� where � � IRn is a bounded set
with su�ciently regular boundary if and only if u � Lp��� and there is a non�negative
function g � Lp��� such that

ju�x�� u�y�j � jx� yj�g�x� � g�y��� ���

Since this characterization does not involve the notion of a derivative it can be used
to de�ne Sobolev space on an arbitrary metric space� see Haj�lasz� ������ These spaces
have been investigated or employed in Franchi� Haj�lasz and Koskela ����� Franchi� Lu
and Wheeden� ����� Haj�lasz ������ Haj�lasz and Kinnunen� ������ Haj�lasz and Martio
������ Heinonen ������ Heinonen and Koskela ������ Ka�lamajska ������ Kilpel
ainen� Kin�
nunen and Martio ������ Kinnunen and Martio ������ Koskela and MacManus ������
Shanmugalingam ������

Another approach is presented in the paper of Haj�lasz and Koskela� ������ in which
also some of the results from our current work were announced� Given a metric space
equipped with a Borel measure we assume that a pair u and g� �g � ��� of locally
integrable functions satis�es the family ��� of Poincar
e inequalities with q � � and a
�xed p � � on every ball� that is

Z
B
ju� uBj d� � CP r

�Z
�B

gp d�
���p

� ���

This family of inequalities is the only relationship between u and g� Then we can ask
for the properties of u that follow�
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Yet another approach to Sobolev inequalities on metric spaces is presented in the
paper ���� by Bobkov and Houdr
e� However it is much di�erent from the above men�
tioned setting and it will not be discussed here�

One of the purposes of this paper is to systematically develop the theory of Sobolev
spaces from inequality ���� This includes the study of the relationships between ���� ����
and ���� We show that basically all relevant results from the classical theory have their
counterparts in our general setting� These include Sobolev�Poincar
e type embeddings�
Rellich�Kondrachov compact embedding theorem� and even a version of the Sobolev
embedding theorem on spheres�

We will work with metric spaces equipped with a doubling measure� Such spaces
are often called spaces of homogeneous type� but we will call them doubling spaces� The
reader may �nd many important examples of spaces of homogeneous type in Christ
����� and Stein ������ The class of such spaces is pretty large� For example Volberg and
Konyagin ������ ������ proved that every compact subset of IRn supports a doubling
measure� see also Wu ������ and Luukkainen and Saksman ������

Starting from the work of Coifman and Weiss ����� ����� spaces of homogeneous
type have become a standard setting for the harmonic analysis related to singular inte�
grals and Hardy spaces� see� e�g�� Gatto and Vagi ����� ����� Genebahsvili� Gogatishvili�
Kokilashvili and Krbec ����� Han� ������ Han and Sawyer� ������ Macias and Segovia
������

However it seems that till the last few years there was no development of the theory
of Sobolev spaces in such generality�

There are some papers on Sobolev inequalities on spaces of homogeneous type re�
lated to our work� see Franchi� Lu and Wheeden� ����� Franchi� P
erez and Wheeden�
����� MacManus and P
erez� ������ ������ the last three papers were motivated by our
approach� Also the paper of Garofalo and Nhieu ����� provides a similar approach in
the speial case of Carnot	Carath
eodory spaces�

The reader might wonder why we insist on studying the situation with a �xed
exponent p instead of assuming that ��� holds with p � �� There is a simple reason
for this� Indeed� for each p � � one can construct examples of situations where ���
holds for each smooth function u with g � jruj but where one cannot replace p by any
exponent q � p� Let us give an example to illustrate the dependence on p� Take two
three�dimensional planes in IR� whose intersection is a line L� and let X be the union
of these two planes� The metrics and measures induced from the planes have natural
extensions to a metric and a measure on X� If u is a smooth function on X then we
de�ne g�x� to be jru�x�j whenever x does not belong to L� where ru is the usual
gradient of u in the appropriate plane� and de�ne g�x� to be the sum of the lengths
of the two gradients corresponding to the di�erent planes when x � L� One can then
check that ��� holds for p � � but fails for p � ��
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As we said we want to develop the theory of Sobolev spaces assuming a family of
Poincar
e inequalities ��� and the doubling property� Such an approach has found many
applications in the literature in various areas of analysis and geometry� The applications
include the above mentioned Carnot	Carath
eodory spaces ����� ����� ����� ����� graphs
����� ����� ������ Dirichlet forms ���� ���� ����� ������ quasiconformal mappings ������

This approach has also found many important applications in Riemannian geometry�
The class of open Riemannian manifolds that satisfy both the doubling condition and
the p�Poincar
e inequality is under intensive investigation� see Colding and Minicozzi�
����� ����� Grigor�yan� ����� Holopainen� ������ Holopainen and Rickman� ������ Li and
Wang� ������ Maheux and Salo��Coste� ������ Rigoli� Salvatori and Vignati� ������ Salo��
Coste� ������ ������ ������ Tam� ������ where some global properties of manifolds were
obtained under the assumption that the Riemannian manifold satis�es a p�Poincar
e
inequality and the doubling property�

In ���� Yau� ������ proved that on open Riemannian manifolds with nonnegative
Ricci curvature bounded harmonic functions are constant� Some time later he conjec�
tured that for such manifolds space of harmonic functions with polynomial growth of
�xed rate is �nite dimensional�

Independently Grigor�yan� ����� and Salo��Coste� ������ generalized Yau�s theorem
by proving that bounded harmonic functions are constant provided the manifold satis�
�es the doubling property and the Poincar
e inequality ��� with g � jruj and p � �� It
is known that manifolds with nonnegative Ricci curvature satisfy those two conditions�
see Section ����� Under the same assumptions the result of Yau has been extended to
harmonic mappings� see Li and Wang� ������ and Tam� ������

Very recently Colding and Minicozzi� ����� ����� answered the conjecture of Yau in
the a�rmative� Again the assumptions were that the manifold is doubling and that
the ��Poincar
e holds�

Many of the above Riemannian results have counterparts in the more general set�
tings of Carnot	Carath
eodory spaces� graphs or Dirichlet forms and again the main
common assumption is the same� doubling and Poincar
e�

This common feature was guiding us in our work� The �rst part of the paper is
devoted to general theory and the second part to examples and applications in the
areas mentioned above�

The paper is organized as follows� In Section � we present the setting in which
we later on develop the theory of Sobolev inequalities� In Section � we discuss the
equivalence of various approaches to Sobolev inequalities on metric spaces� Section � is
devoted to some basic examples and conditions that are necessarily satis�ed by spaces
that satisfy all p�Poincar
e inequalities ��� for pairs of a continuous functions and upper
gradients� In Section � we show that if a pair u� g satis�es a p�Poincar
e inequality ����
then ju� uBj can be estimated by a generalized Riesz potential� This together with a
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generalization of the Fractional Integration Theorem implies a variant of the Sobolev�
Poincar
e embedding theorem� In Section � we impose the additional condition that
the space be connected and improve on one of the inequalities from Section �� namely
we prove a variant of the Trudinger inequality� In Section � we prove an embedding
theorem for almost all spheres centered at a given point� In Section � we generalize
the classical Rellich�Kondrachov theorem to the setting of metric spaces� So far all
the results are local in nature� In Section � we introduce the class of John domains
and generalize previous results as global results in John domains� In Section �� we
collect important examples of metric spaces where the theory developed in the paper is
applicable �including open Riemannian manifolds� topological manifolds and Loewner
spaces�� In Section �� we study the theory of Carnot	Carath
eodory spaces that are
associated with a family of vector �elds� from the point of view of Sobolev inequalities
on metric spaces� In Section �� we discuss Sobolev inequalities on in�nite graphs�
Section �� is devoted to applications of the theory to nonlinear potential theory and
degenerate elliptic equations� Section �� is an appendix� where we collect all the results
about measure theory and maximal functions that are needed in the paper�

The exposition is self�contained and the background material needed is the abstract
measure theory in metric spaces� some real analysis related to maximal functions and
the basic theory of classical Sobolev spaces covered by each of the following references�
Evans and Gariepy� ����� Gilbarg and Trudinger� ����� Mal
y and Ziemer� ������ Ziemer�
������

Some examples and applications that illustrate the theory require slightly more� In
Section ������ some familiarity with Lie groups and commutators of vector �elds is
needed and in Section �� we assume basic facts about quasilinear elliptic equations in
divergence form� One can� however� skip reading Sections ������ and �� and it will not
a�ect understanding of the remaining parts of the paper�

We did make some e�ort to give comprehensive references to subjects related to our
work� We are however sure that many important references are still missing and we
want to apologize to those whose contribution is not mentioned�

Notation� Throughout the paper X will be a metric space with a metric d� and a
Borel measure �� The precise assumptions on � are collected in the appendix� If not
otherwise stated� � will be doubling which means that

���B� � Cd��B� ���

whenever B is a ball and �B is the ball with the same center as B and with radius twice
that of B �in the same way we de�ne �B for � � ��� We will call such a metric measure
space X a doubling space and Cd a doubling constant� � � X will always denote an
open subset� Sometimes we will need the doubling property on a subset of X only� we
will say that the measure � is doubling on � if ��� holds whenever B � B�x� r�� x � �
and r � � diam�� By writing v � Lq

loc���� we designate that v belongs to the class
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Lq�B� with respect to � for each ball B � �� If � � X� we will simply write v � Lq
loc�

By Lip �X� we denote the class of Lipschitz functions on the metric space X�

The average value will be denoted by vA �
R
Av d� � ��A���

R
A v d�� If R � � and

v is a measurable function� MRv stands for the restricted Hardy�Littlewood maximal
function

MRv�x� � sup
��r�R

Z
B�x�r�

jvj d��

If R �� we will simply write Mv� Another version of the maximal function is

M�v�x� � sup
r��

�

��B�x� r��

Z
��B�x�r�

juj d��

which applies to v � L�loc��� ��� It is also clear how to de�ne the restricted maximal
function M��Rv�

By Hk we denote the k�dimensional Hausdor� measure� The symbol �E denotes
the characteristic function of a set E� We reserve B to always denote a ball� Observe
that according to the structure of the metric space it may happen that the center and
the radius of the ball are not uniquely de�ned� In what follows� when we write B we
assume that the center and the radius are �xed� Otherwise �B is not properly de�ned�
By C we will denote a general constant which can change even in a single string of
estimates� By writing C � C�p� q� 	� we indicate that the constant C depends on p� q
and 	 only� We write u � v to state that there exist two positive constants C�� and C�
such that C�u � v � C�u�

Some further notation and commonly used results are collected in the appendix�

� What are Poincar�e and Sobolev inequalities�

In this section we describe the general framework and give samples of problems which
are treated later on� Until the end of the section we assume that � is a Borel measure
on a metric space X� but we do not assume that � is doubling� As before � � X
denotes an open set�

De�nition� Assume that u � L�loc��� and a measurable function g � � satisfy the
inequality Z

B
ju� uBj d� � CP r

�Z
�B

gp d�
���p

� ���

on each ball B with �B � �� where r is the radius of B and p � �� � � �� CP � � are
�xed constants� We then say that the pair u� g satis�es a p�Poincar�e inequality in ��
If � � X� we simply say that the pair u� g satis�es a p�Poincar�e inequality�
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Note that if u � Lip �IRn�� g � jruj and p � �� then ��� is a corollary of the classical
Poincar
e inequality�Z

B
ju� uBjp dx

���p
� C�n� p�r

�Z
B
jrujp dx

���p
� ���

Quite often we will call an inequality weak if both sides involve a ball and the radius
of the ball on the right hand side is greater than the radius of the ball on the left hand
side� like in ����

Unfortunately� it is easy to see that� in general� inequality ��� does not hold with
p � � �cf� ���� p� ������ Nevertheless there are many important situations where the
p�Poincar
e inequalities ��� and ��� hold with p � �� For example� they hold when u is
a solution to an elliptic equation of a certain type� see Section ��� For this reason we
include the case p � ��

It is natural to regard a pair u� g that satis�es a p�Poincar
e inequality in � as a
Sobolev function and its gradient� In this sense we will develop the theory of Sobolev
functions on metric spaces with  gradient! in Lp for all p � ��

In the classical approach� the Sobolev spaces are de�ned for p � � only� Moreover�
it was expected that there were no reasonable theory of Sobolev spaces for � � p � ��
see Peetre� ������ However� we obtain a rich theory of Sobolev spaces for all p � �� In
the Euclidean setting� when p � �� our approach is equivalent to the classical one�

In the literature there are a few papers that deal with the Sobolev inequalities for
p � �� see Bakry� Coulhon� Ledoux and Salo��Coste� ���� Buckley and Koskela� �����
Buckley� Koskela and Lu� ����� Calder
on and Scott� ����� Haj�lasz and Koskela� ������

Let us assume that a pair u� g satis�es a p�Poincar
e inequality for p � � in an open
set � � X� We inquire for properties of u that follow from this assumption� A typical
question is whether the Sobolev embedding theorem holds i�e�� whether the p�Poincar
e
inequality in � implies the global Sobolev�type inequality

inf
c�IR

�Z
�
ju� cjq d�

���q
� C

�Z
�
gp d�

���p
� ���

with an exponent q � p� We suggest the reader to look at our earlier paper� ������
where a result of this type was obtained by an elementary method� In the current
paper we obtain stronger results by more complicated methods�

Note that if ���� �� and q � �� then the above inequality is equivalent to�Z
�
ju� u�jq d�

���q
� C �

�Z
�
gp d�

���p
� ���

as for q � � and ���� �� we have

inf
c�IR

�Z
�
ju� cjq d�

���q
�
�Z
�
ju� u�jq d�

���q
� � inf

c�IR

�Z
�
ju� cjq d�

���q
� ���

��



The classical gradient of a Lipschitz function has a very important property� if the
function is constant in a set E� then the gradient equals zero a�e� in E� To have a
counterpart of this property in the metric setting we introduce the truncation property�

Given a function v and � � t� � t� � �� we set

vt�t� � minfmaxf�� v � t�g� t� � t�g�

De�nition� Let the pair u� g satisfy a p�Poincar
e inequality in �� Assume that for
every b � IR� � � t� � t� � �� and 
 � f��� �g� the pair vt�t� � g�ft��v�t�g� where
v � 
�u � b�� satis�es the p�Poincar
e inequality in � �with �xed constants CP � ���
Then we say that the pair u� g has the truncation property�

Let p � � and u � Lip �IRn�� Since v � ��u � b� satis�es jrvt�t� j � jruj�ft��v�t�g
a�e�� the pair u� jruj has the truncation property� More sophisticated examples are
given in Section ���

We close the section with a result which shows that inequality ��� is equivalent to
a weaker inequality provided the pair u� g has the truncation property� The result will
be used in the sequel�

Theorem ��� Let � � X be an open set with ���� ��� Fix � � q � p � �� CP � �
and � � �� Assume that every pair u� g� that satis�es a p�Poincar�e inequality in �
�with given CP and �� satis�es also the global Marcinkiewicz�Sobolev inequality

inf
c�IR

sup
t��

��fx � � � ju�x�� cj � tg�tq � C�

�Z
�
gp d�

�q�p
� ����

Then every pair that satis�es the p�Poincar�e inequality in � �with given CP and �� and
has the truncation property satis�es also the global Sobolev inequality

inf
c�IR

�Z
�
ju� cjq d�

���q
� C�

�Z
�
gp d�

���p
� ����

with C� � � 	 ��C����q�

Remarks� �� We call ���� a Marcinkiewicz	Sobolev inequality� because it implies that
u belongs to the Marcinkiewicz space Lq

w�

�� The result is surprising even in the Euclidean case� inequality ���� seems much
weaker than ���� as the inclusion Lq � Lq

w is proper� Similar phenomena have been
discovered by V� G� Maz�ya� ������ �cf� ����� Section ������� ����� Theorem ���� who
proved that a Sobolev embedding is equivalent to a capacitary estimate which is a
version of inequality ����� The main idea of Maz�ya was a truncation method which is
also the key argument in our proof� This method mimics the proof of the equivalence
of the Sobolev inequality with the isoperimetric inequality� Inequality ���� plays a role
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of the relative isoperimetric inequality and the truncation argument provides a discrete
counterpart of the co�area formula� The truncation method of Maz�ya has become
very useful in proving various versions of the Sobolev embedding theorem with sharp
exponents in the borderline case where interpolation arguments do not work� To see
how the argument works in the case of the classical Sobolev embedding theorem� we
refer the reader to the comments after the statement of Theorem ���� Recently the
truncation method has been employed and even rediscovered by many authors� see
Adams and Hedberg ��� Theorem ������� Bakry� Coulhon� Ledoux and Salo��Coste� ����
Biroli and Mosco� ���� ���� Capogna� Danielli and Garofalo� ����� Franchi� Gallot and
Wheeden� ����� Garofalo and Nhieu� ����� Heinonen and Koskela� ������ ������ Long and
Nie� ������ Maheux and Salo��Coste� ������ Semmes� ������ and Tartar� ������

Proof of Theorem 	�
� Let u� g be a pair which satis�es the p�Poincar
e inequality
in � and which has the truncation property� Choose b � IR such that

��fu � bg� � ����

�
and ��fu � bg� � ����

�
�

Let v� � maxfu � b� �g� v� � �minfu � b� �g� We will estimate kv�kLq and kv�kLq

separately� In what follows v will denote either v� or v��

Lemma ��� Let � be a �nite measure on a set Y � If w � � is a ��measurable function
such that ��fw � �g� � ��Y ���� then for every t � �

��fw � tg� � � inf
c�IR

��fjw � cj � t

�
g��

The proof of the lemma is easy and left to the reader�

By the truncation property the pair vt�t� � g�ft��v�t�g satis�es the p�Poincar
e in�
equality and hence it satis�es ����� Moreover� the function vt�t� has the property
��fvt�t� � �g� � ������� Hence� applying the lemma� we conclude that

sup
t��

��fvt�t� � tg�tq � �q�� inf
c�IR

sup
t��

�
��
jvt�t� � cj � t

�

���
t

�

�q
� �q��C�kg�ft��v�t�gkqLp�

This yields Z
�
vq d� �

�X
k���

�kq��f�k�� � v � �kg�

�
�X

k���

�kq��fv � �k��g�

�
�X

k���

�kq��fv�k���k�� � �k��g�

��



� �	q��C�
�X

k���

�Z
�
gp�f�k���v��k��g d�

�q�p

� �	q��C�

�� �X
k���

Z
�
gp�f�k���v��k��g d�

�Aq�p

� �	q��C�kgkqLp����

In the second to the last step we used the inequality q�p � �� FinallyZ
�
ju� bjq �

Z
�
vq� �

Z
�
vq� � �	q��C�kgkqLp����

This completes the proof�

The following theorem is a modi�cation of the above result�

Theorem ��� Let � � q � p � �� CP � � and � � �� Assume that every pair u�
g that satis�es the p�Poincar�e inequality �with given CP and �� satis�es also the weak
Marcinkiewicz�Sobolev inequality

inf
c�IR

sup
t��

��fx � B � ju�x�� cj � tg�tq
��B�

� C�r
q
�Z

�B
gp d�

�q�p
for every ball B� where r denotes the radius of B� Then every pair u� g that satis�es the
p�Poincar�e inequality �with given CP and �� and has the truncation property satis�es
also the weak Sobolev inequality

inf
c�IR

�Z
B
ju� cjq d�

���q
� C�r

�Z
�B

gp d�
���p

for every ball B with C� � � 	 ��C����q�

The proof is essentially the same as that for Theorem ��� and we leave it to the reader�

� Poincar�e inequalities� pointwise estimates� and

Sobolev classes

Our starting point to the theory of Sobolev spaces on metric spaces is to assume that
the pair u� g satis�es a p�Poincar
e inequality� There are however also other possible
approaches� Recently Haj�lasz� ������ introduced a notion of a Sobolev space in the
setting of metric space equipped with a Borel measure� In this section we will compare
this approach to that based on Poincar
e inequalities �see Theorem ����� The proof
is based on pointwise inequalities which have their independent interest and which we
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state in a more general version than is needed for the sake of the proof �see Theorem ���
and Theorem ����� Finally we compare the class of Lp�pairs of u� g that satisfy a p�
Poincar
e inequality to the classical Sobolev space�

For a detailed study on the equivalence of various approaches to Sobolev inequalities
on metric spaces� see Franchi� Haj�lasz and Koskela� ����� and Koskela and MacManus�
������ Results related to those of this section appear also in Franchi� Lu and Wheeden�
����� Haj�lasz and Kinnunen� ������ Heinonen and Koskela� ������ Shanmugalingam�
������

Given p � � and a triple �X� d� ��� where �X� d� is a metric space and � is a
Borel measure �not necessarily doubling�� Haj�lasz� ������ de�nes the Sobolev space
M��p�X� d� �� as the set of all u � Lp�X� for which there exists � � g � Lp�X� such
that

ju�x�� u�y�j � d�x� y��g�x� � g�y�� a�e� ����

When we say that an inequality like ���� holds a�e� we mean that there exists a set
E � X with ��E� � � such that inequality ���� holds for all x� y � X n E�

If p � �� the space is equipped with a Banach norm kukM��p � kukLp � infg kgkLp�
where the in�mum is taken over the set of all � � g � Lp�X� that satisfy �����

The motivation for the above de�nition comes from the following result�

If � � IRn or if � � IRn is a bounded domain with su�ciently regular boundary�
j 	 j is the Euclidean metric� Hn the Lebesgue measure� and � � p � �� then

W ��p��� � M��p��� j 	 j� Hn� ����

as sets and the norms are equivalent� see ����� and also ������ ������ ������ Here W ��p���
denotes the classical Sobolev space of Lp�integrable functions with generalized gradient
in Lp� If p � �� the equivalence ���� fails� see ����� and also ����� However� for any
open set � � IRn and � � p ��� M��p��� j 	 j� Hn� � W ��p���� see ����� Proposition ���
and also ����� Lemma ���

For the further development and applications of the above approach to Sobolev
spaces on metric space� see Franchi� Haj�lasz and Koskela� ����� Franchi� Lu and Whee�
den� ����� Haj�lasz and Kinnunen� ����� Haj�lasz and Martio� ������ Heinonen� ������
Heinonen and Koskela� ������ Ka�lamajska� ������ Kilpel
ainen� Kinnunen and Martio�
������ Kinnunen and Martio� ������ Koskela and MacManus� ������ Shanmugalingam�
������

Prior to the work of Haj�lasz� Varopoulos� ������ de�ned a function space on a smooth
compact manifold� based on an inequality similar to ����� Recently and independently�
Vodop�yanov� ������ used inequality ���� to de�ne a Sobolev space on a Carnot group�

The following result compares the above de�nition of the Sobolev space with the
approach based on Poincar
e inequalities�

��



Theorem ��� Let X be a doubling space� If � � p ��� then the following conditions
are equivalent�


� u �M��p�X� d� ���

	� u � Lp�X� and there exist C � �� � � �� � � g � Lp�X�� and � � q � p such
that the Poincar�e inequality

Z
B
ju� uBj d� � C r

�Z
�B

gq d�
���q

����

holds on every ball B of radius r�

Remarks� �� In fact we prove the implication �� 
 �� for any p � �� �� Under
much more restrictive assumptions about the measure Theorem ��� has been proved
by Franchi� Lu and Wheeden� ����� see also ����� ����� ������ ������ ������

Proof of Theorem ��
� Integrating inequality ���� over a ball with respect to x and
y we obtain Z

B
ju� uBj d� � Cr

Z
B
g d� �

which proves the implication ��
 �� The opposite implication follows from Theorem ���
and the Maximal Theorem ������

Theorem ��� Let X be a doubling space� Assume that the pair u� g satis�es a p�
Poincar�e inequality ���� p � �� Then

ju�x�� u�y�j � Cd�x� y�
�
�M��d�x�y�g

p�x����p � �M��d�x�y�g
p�y����p

�
����

for almost every x� y � X� where MRv�x� � sup��r�R
R
B�x�r�jvj d��

Before we prove Theorem ��� we show how to use it to complete the proof of the
implication ��
 �� Assume that u� g � Lp�X� satisfy ����� Then inequality ���� holds
with p replaced by q� Note that

�
M��d�x�y�g

q�x�
���q � �Mgq�x����q �

Now� gq � Lp�q� p�q � �� and so the Maximal Theorem ����� implies �Mgq���q � Lp

and hence the claim follows�

Proof of Theorem ��	� Let x� y � X be Lebesgue points of u� by the Lebesgue
di�erentiation theorem �see Theorem ������ this is true for almost all points� Write
Bi�x� � B�x� ri� � B�x� ��id�x� y�� for each nonnegative integer i� Then uBi�x� � u�x�

��



as i tends to in�nity� Using the triangle inequality� the doubling of � and the p�Poincar
e
inequality we conclude that

ju�x�� uB��x�j �
�X
i��

juBi�x� � uBi���x�j

�
�X
i��

Z
Bi���x�

ju� uBi�x�j d�

� C
�X
i��

Z
Bi�x�

ju� uBi�x�j d�

� C
�X
i��

ri

	Z
�Bi�x�

gp d�


��p

� C
�X
i��

ri�M�d�x�y�g
p�x����p

� Cd�x� y��M�d�x�y�g
p�x����p� ����

Similarly�
ju�y�� uB��y�j � Cd�x� y��M�d�x�y�g

p�y����p�

Moreover�

juB��x� � uB��y�j � juB��x� � u�B��x�j� juB��y� � u�B��x�j
� C

Z
�B��x�

ju� u�B��x�j d�

� Cd�x� y�

	Z
��B��x�

gp d�


��p
� Cd�x� y��M��d�x�y�g

p�x����p�

The claim follows by combining the above three inequalities� This completes the proof
of Theorem ��� and hence that for Theorem ����

It is interesting to observe that Theorem ��� can be converted� see also Heinonen
and Koskela� ������ This is the content of the following result�

Theorem ��� Let X be a doubling space and u � L�loc�X� ��� � � g � Lp
loc�X� ���

� � p ��� Suppose that the pointwise inequality

ju�x�� u�y�j � Cd�x� y�
�
�M�d�x�y�g

p�x����p � �M�d�x�y�g
p�y����p

�
holds for almost all x� y � X with some �xed � � �� Then the p�Poincar�e inequalityZ

B
ju� uBj d� � CP r

�Z
	�B

gp d�
���p

holds for all balls B� Here CP depends only on p� C� Cd�
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Proof� Fix a ball B with the radius r� Then for almost all x� y � B we have

ju�x�� u�y�j � Cd�x� y�
�
�M�gp�	�B��x��

��p � �M�gp�	�B��y��
��p
�
�

Fix t� � �� Taking an average with respect to x and y� applying Cavalieri�s princi�
ple �see Theorem ������ and the weak type estimate for the maximal function �see
Theorem ������ we obtainZ

B
ju� uBj d� � Cr

Z
B
�M�gp�	�B��

��p d�

� Cr��B���
Z �

�
��fx � B � M�gp�	�B� � tpg� dt

� Cr��B���
�Z t�

�
��B� dt�

Z �

t�

�
C

tp

Z
	�B

gp d�
�
dt
�

� Cr��B���
�
t���B� � Ct��p�

Z
	�B

gp d�
�
�

The claim follows when we choose t� � ���B���
R
	�B g

p d����p� The proof is complete�

Note that the argument used above is similar to that used in the proof of Theo�
rem ������

Theorem ��� suggests the following question� Is it true that if a pair u� g � Lp�X��
� � p � � satis�es a p�Poincar�e inequality in a doubling space X� then there exists
� � q � p such that the pair u� g satis�es a q�Poincar�e inequality
 This seems to be a
very delicate question� see the discussion in the remark in Section � below�

If the answer to the above question were a�rmative� Theorem ��� would imply a
stronger result� u �M��p� p � �� if and only if u � Lp and there is � � g � Lp�X� such
that the pair u� g satis�es a p�Poincar
e inequality�

In the special case when X � IRn� d is the Euclidean metric and � is the Lebesgue
measure� the answer to the above question is in the positive due to the results of
Franchi� Haj�lasz and Koskela� ����� and Koskela and MacManus� ������

The following theorem was proved in ����� The result is a generalization of some
results in ������ ������

Theorem ��� Let u� g � Lp�IRn�� g � �� p � �� Suppose that there exist 	 � � and C
such that Z

B
ju� uBj dx � Cr

�Z
�B

gp dx
���p

�

for all balls B � IRn� Then u � W ��p�IRn� and jruj � C�g a�e� In particular�Z
B
ju� uBj dx � C�r

Z
B
g dx�

for all balls B � IRn�

��



Note that it follows from the results in this section that if a pair u� g � Lp satis�es a
p�Poincar
e inequality� p � �� then u � W ��q

loc � for any � � q � p� Indeed� Theorem ���
together with the weak type estimate for the maximal function and the embedding
Lp
w � Lq

loc for all q � p �see Theorem ������ imply that for some h � Lq
loc the inequality

ju�x�� u�u�j � jx� yj�h�x� � h�y�� holds a�e� Then the claim follows from ����� This
argument� however� does not guarantee that u � W ��p�IRn��

For far reaching generalizations of Theorem ���� see ���� and ����� and also Sec�
tion ���

� Examples and necessary conditions

We �rst discuss three examples that indicate the dependence of the validity of p�
Poincar
e inequalities on the exponent p� Notice that if a pair u� g satis�es a p�Poincar
e
inequality� then it satis�es a q�Poincar
e inequality for all q � p by H
older�s inequality�
The following examples show that this is not the case for q � p�

Example ��� Let X � R� be equipped with the Euclidean metric and let � be the
measure generated by the density d��x� � jx�jtdx� t � �� where x� denotes the second
coordinate of x� Then the Poincar
e inequality ��� holds for each Lipschitz function u
with g � jruj if and only if p � t� ��

The Poincar
e inequality holds as � is an Ap�weight for the indicated values of p� see
����� ����� ����� Theorem ������� ������ On the other hand� the p�Poincar
e inequality
fails for p � � � t and hence for � � p � � � t� To see this� let B be the disk of radius
� and with center ��� ��� Let us consider a sequence ui of Lipschitz functions that only
depend on x� and such that ui � � if x � B and x� � ��i� ui � � if x � B and x� � ��
ui�x� � �i�� log��x�� if ��i � x� � �� ThenZ

B
jruij��t d� � ��i log ������t�

Z �
��i

ds

s

which tends to zero as i approaches in�nity� On the other hand� jui�x��uiBj � ��� for
all x either in the part of B above the line x� � � or in the part below the line x� � ��
Hence the integral of jui � uiBj over B is bounded away from zero independently of i�
and so the �� � t��Poincar
e inequality cannot hold for all Lipschitz functions� Using a
standard regularization argument we can then assume that functions ui in the above
example are C� smooth� so the �� � t��Poincar
e inequality cannot hold for all C�

smooth functions either�

Example ��� Let X � f�x�� x�� � � � � xn� � IRn � x�� � 	 	 	 � x�n�� � x�ng be equipped
with the Euclidean metric of IRn and with the Lebesgue measure� The set X consists
of two in�nite closed cones with a common vertex� Denote the upper cone by X� and
the lower one by X��
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We will prove that the p�Poincar
e inequality ��� holds in X for every pair u� g where
u is a continuous function and g an upper gradient of u if and only if p � n� �For more
information about upper gradients� see Section ������

First we prove that the inequality fails for p � n �and hence for p � n�� Fix

 � �� Since ��x� � log j log jxjj satis�es � � W ��n�Bn��� ����� and ��x� � � as
x� �� we can truncate the function and obtain a continuous function u� � W ��n�X��
such that u���� � �� u��x� � � for jxj � 
 and kru�kLn�X�� � 
� We extend this
function to the lower cone as the constant �� Fix a ball B centered at the origin� Then
kru�kLn�B� � 
 while ku� � u�BkL��B� � C uniformly with respect to 
� and thus the
n�Poincar
e inequality cannot hold�

It remains to prove the inequality for p � n� Since jruj � g for an upper gradient
of u �Proposition ������ it su�ces to prove the p�Poincar
e inequality for the pair u�
jruj� By Theorem ��� it su�ces to verify the pointwise estimate

ju�x�� u�y�j � Cjx� yj�M�jx�yjjrujp�x� �M�jx�yjjrujp�y����p�
We can assume that x and y belong to di�erent cones as the p�Poincar
e inequality
holds in each of those two cones� Then� by the triangle inequality� either ju�x��u���j �
ju�x��u�y�j�� or ju�y��u���j � ju�x��u�y�j��� Assume that the �rst inequality holds�
Let " � X� �B�x� jxj�� Then by the embedding into H
older continuous functions

ju�x�� u���j � Cjx� �j��n�p�
Z


jrujp���p � Cjx� yj�M�jx�yjjrujp�x����p�

This ends the proof of the claim�

Modifying the argument used above one can construct many other examples� Let
for example X be the union of two ��dimensional planes in IR� whose intersection is a
line� Equip X with the ��dimensional Lebesgue measure and with the metric induced
by the Euclidean metrics of the planes� Then the p�Poincar
e inequality holds in X for
all pairs u� g� where u is a continuous function in X and g an upper gradient of u� if
and only if p � ��

A much more general result that allows one to build similar examples in the setting
of metric spaces was proven by Heinonen and Koskela� ����� Theorem ������

Example ��� For each � � p � n there is an open set X � IRn equipped with the
Euclidean metric and the the Lebesgue measure� such that the p�Poincar
e inequality
��� holds for each smooth function u with g � jruj but no Poincar
e inequality holds
for smaller exponents for all smooth functions�

Such an example was constructed by Koskela� ������ We will recall the idea of the
example following ������ Let E � IRn be a compact set such that W ��p�IRn n E� �
W ��p�IRn�� and W ��q�IRn� is a proper subset of W ��q�IRn nE� for all � � q � p� In other
words the set E is W ��p�removable but it is not W ��q�removable for any � � q � p�
Such sets were explicitly constructed in ������ In fact there is a smooth function u in
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IRnnE such that jruj � Lq�IRn�� for all q � p� but the pair u� jruj does not satisfy a q�
Poincar
e inequality in IRnnE for any q � p� The pair satis�es the p�Poincar
e inequality
but jruj 
� Lp�IRn n E� as otherwise we would have u � W ��p�IRn n E� � W ��p�IRn�
and hence it would even satisfy the ��Poincar
e inequality� Thus this example does not
solve the question posed after Theorem ����

Remark� The last example shows that it may happen that a p�Poincar
e inequality holds
for all smooth pairs u� jruj in X and there is a smooth function u in X such that no
q�Poincar
e inequality holds for any q � p for the pair u� jruj� However� in this example
jruj 
� Lp�X� and hence we do not know if a p�Poincar
e inequality for the pair u� g
with g � Lp�X� implies a q�Poincar
e inequality for some q � p� As Example ��� shows�
a q�Poincar
e inequality cannot hold for all q � p in general� but we do not know if it
can hold for some q � p su�ciently close to p�

Let us next describe some necessary geometric conditions for the validity of Poincar
e
inequalities�

De�nition� We say that X is weakly locally quasiconvex if X is path connected and�
for each x � X� there is a neighborhood U and a continuous function 
 with 
��� � �
such that any pair x�� x� of points in U can be joined in X with a curve � of length
no more than 
�d�x�� x���� If any pair x�� x� of points in X can be joined by a curve
whose length is no more than Cd�x�� x��� we say that X is quasiconvex�

Proposition ��� Suppose that X is weakly locally quasiconvex and doubling� Let p �
�� If for each pair u� g of a continuous function and its upper gradient we have a p�
Poincar�e inequality �with �xed CP �� then X is quasiconvex�

Proof� Given a point x� � X� de�ne u�x� � inf�x l��x�� where the in�mum is taken over
all recti�able curves � joining x� x�� As X is weakly locally quasiconvex� u is continuous�
Moreover� it is easy to see that the constant function g � � is an upper gradient of u�
Thus by Theorem ��� we have

ju�x�� u�y�j � Cd�x� y��M��d�x�y�g
p�x� �M��d�x�y�g

p�y����p � �Cd�x� y��

The claim follows from this inequality�

Thus the validity of a p�Poincar
e inequality guarantees the existence of short curves�
If the doubling measure � behaves as the Euclidean volume and the exponent p is no
more than the growth order of the volume� then X cannot have narrow parts� This
conclusion is a consequence of Proposition ��� below� Under the additional assumption
that each closed ball in X be compact� this result can be deduced from the results in
������

Proposition ��� Suppose that X is weakly locally quasiconvex and that ��B�x� r�� �
rs with s � � for each x and all r� Assume that for each pair u� g of a continuous
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function and its upper gradient we have an s�Poincar�e inequality �with �xed �� CP ��
If x� � X� r � �� and x�� x� � B�x�� r� n B�x�� r���� then x�� x� can be joined in
B�x�� Cr� nB�x�� r�C� by a curve whose length does not exceed Cd�x�� x���

Notice that the claim of the proposition would still be true if we replaced the s�
Poincar
e inequality by a p�Poincar
e inequality� p � s� as a p�Poincar
e inequality implies
an s�Poincar
e inequality� by means of the H
older inequality� However we cannot replace
the s�Poincar
e inequality by a p�Poincar
e for any p � s as follows from Example ����

Proof� The proof is very similar to the arguments used in the proof of ����� Corol�
lary ���� and in the proof of Proposition ���� Throughout C � � denotes a constant
whose value can change from line to line but that only depends on the given data�
By Proposition ��� we may assume that d�x�� x�� � C��r� Suppose that x�� x� cannot
be joined in B�x�� Cr� n B�x�� r�C� with C � �� By Proposition ��� we then obtain
recti�able curves F�� F� � B�x�� �r� n B�x�� r���� both of length no more than Cr but
at least C��r and so that d�F�� F�� � C��r� It su�ces to show that F�� F� can be joined
by a curve of length less than Cr inside B�x�� Cr� nB�x�� r�C��

If follows from the s�Poincar
e inequality and from the volume growth condition thatZ
B�x��Cr�

gs d� � C�� ����

for any upper gradient g of any continuous function u that takes on the constant value
� in F� and takes on a value greater or equal to � at each point of F�� Indeed� assume
�rst that juB�x��r�j � ���� Then slightly modifying the proof of ���� we get for all
x � F�

�

�
� ju�x�� uB�x��r�j � Cr��s sup

R���r

	
R��

Z
B�x�R�

gs d�


��s
�

Thus for some Rx � ��r

C��Rx�r �
Z
B�x�Rx�

gs d� �

Now inequality ���� follows from the covering lemma �Theorem ������ and the fact that
if F� � S

Bi�ri�� then
P

i ri � C��r� If juB�x��r�j � ���� then inequality ���� follows by
a symmetric argument� The proof of ���� is complete�

Now set g��x� � �log�C
�
����d�x� x��

�� in B�x�� Cr� n B�x�� C
��r� and extend g� as

zero to the rest of X� Suppose that F�� F� cannot be joined in B�x�� Cr� nB�x�� C
��r�

by a recti�able curve� De�ne u��x� � inf�x
R
�x g� ds where the in�mum is taken over all

recti�able curves that join x to F�� Then g� is an upper gradient of u�� the restriction
of u to F� is zero and u�x� � � at each point of F�� By the preceding paragraph�
we see that the integral of gs� over B�x�� Cr� is bounded away from zero� and hence a
computation using the volume growth condition bounds the constant C in the de�nition
of g� from above� Thus we can �x C so that F�� F� can be joined by a recti�able curve
in B�x�� Cr� nB�x�� C

��r��

��



Set a � inf� l���� where the in�mum is taken over all recti�able curves that join
F� to F� in B�x�� Cr� n B�x�� C

��r�� We de�ne a function u� similarly as we de�ned
u� above using g� � g�� where g��x� � a���U�x�� and �U is the characteristic function
of B�x�� Cr� n B�x�� C

��r�� As we can make the integral of gs� as small as we wish by
choosing the constant C in the de�nition of g� large enough� the reasoning used in the
preceding paragraph shows that the integral of gs� over B�x�� Cr� must be bounded
away from zero� and thus the volume growth condition implies that a � Cr� as desired�

� Sobolev type inequalities by means of Riesz po�

tentials

As it was pointed out in Section �� one of the aims of this paper is to prove a global
Sobolev inequality

inf
c�IR

�Z
�
ju� cjq d�

���q
� C

�Z
�
gp d�

���p
� ����

where q � p� or at least a weak local Sobolev inequality

inf
c�IR

�Z
B
ju� cjq d�

���q
� Cr

�Z
��B

gp d�
���p

� ����

where � � �� and B is any ball of radius r� assuming that the pair u� g satis�es a
p�Poincar
e inequality only�

Inequality ���� requires some additional information on �� while ���� turns out to
be true in a very general setting�

Another question we deal with is how to determine the best possible Sobolev expo�
nent q in the above inequalities ���� and �����

In the remaining part of the section we will be concerned with inequalities of the
type ����� The case of the global Sobolev inequality ���� will be treated in Section ��

Let X be a doubling space� Beside the doubling condition we will sometimes require
that

��B�

��B��
� Cb

�
r

r�

�s
����

whenever B� is an arbitrary ball of radius r� and B � B�x� r�� x � B�� r � r��

Notice that the doubling condition on � always implies ���� for some exponent s
that only depends on the doubling constant of �� This follows by a standard iteration
of the doubling condition� see Lemma ���� in the appendix� Inequality ���� could well
hold with exponents smaller than the one following from the doubling condition and in
the following results s refers to any exponent for which ���� is valid�

��



Theorem ��� Assume that the pair u� g satis�es a p�Poincar�e inequality ���� p � ��
in a doubling space X� Assume that the measure � satis�es condition �	���


� If p � s� then

��fx � B � ju�x�� uBj � tg�tp�
��B�

� Crp
�

�Z
��B

gp d�
���p

�

where p� � sp��s� p� and B is any ball of radius r� Hence for every � � h � p�

�Z
B
ju� uBjh d�

���h
� Cr

�Z
��B

gp d�
���p

�

Moreover for every q such that p � q � s�Z
B
ju� uBjq� d�

���q�
� Cr

�Z
��B

gq d�
���q

�

where q� � sq��s� q� and B is any ball of radius r� If� in addition� the pair u� g
has the truncation property� then�Z

B
ju� uBjp� d�

���p�
� Cr

�Z
��B

gp d�
���p

� ����

	� If p � s� then Z
B
exp

	
C���B���sju� uBj

rkgkLs���B�



d� � C�� ����

�� If p � s� then u �after rede�nition in a set of measure zero� is locally H�older
continuous and

sup
x�B

ju�x�� uBj � Cr
�Z
��B

gp d�
���p

� ����

In particular

ju�x�� u�y�j � Cr
s�p
� d�x� y���s�p

�Z
��B�

gp d�
���p

����

for all x� y � B�� where B� is an arbitrary ball of radius r��

The constants in the theorem depend on p� q� h� s� Cd� �� CP � and Cb only�

Remarks� �� Inequality ���� holds also for functions on graphs� see Theorem �����
�� Assuming that the space is connected we can improve on inequality ����� see Sec�
tion ��
�� Instead of assuming that X be doubling we could assume� for instance� that the
doubling condition holds on all balls with radii bounded from above by r�� �such a
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situation occurs for example on Riemannian manifolds with a lower bound on the Ricci
curvature� see Section ��� or that it holds on a given open set� Then the inequalities of
the theorem would hold on balls with radii bounded from above or on small balls cen�
tered at the open set� We leave it to the reader to check that the proof of Theorem ���
gives such a statement�
�� A modi�cation of the proof shows that the ball ��B can be replaced by �� � 
��B�
the details are left to the reader�
�� We present only one of the possible proofs of the above theorem� The proof can also
be based on the embedding theorem for Sobolev spaces on metric spaces from Haj�lasz�
������ This approach uses the observation that a family of Poincar
e inequalities leads
to pointwise inequalities ����� we do not provide the details here�

Since the proof of the theorem is rather complicated� we begin with some comments
that will explain the idea�

In one of the proofs of the classical Sobolev embedding W ��p�B� � Lp��B�� where
� � p � n� p� � np��n� p�� and B is an n�dimensional Euclidean ball� one �rst proves
the inequality

ju�x�� uBj � CIB� jruj�x�� ����

where IB� g�x� �
R
B g�z�jx� zj��n dz and then applies the Fractional Integration Theo�

rem which states that
IB� � Lp�B� �� Lp��B� ����

is a bounded operator for � � p � n� If p � � one only gets a weak type estimate

jfx � B � IB� g�x� � tgjt n
n�� � C

�Z
B
jg�z�j dz

�n��
n

in place of ����� which� in turn� leads to the embedding W ����B� � Ln��n���
w �B�� Then

the embedding W ����B� � Ln��n����B� follows from Theorem ����

The main idea of our proof of inequalities like ���� or ���� is to mimic the above
argument� Thus the proof splits into two steps�

Assume that a pair u� g satis�es a p�Poincar
e inequality in a given doubling space�
In the �rst step we prove the inequality

ju� uBj � CJ��B��p g� ����

where J��B��p is a suitable generalization of the Riesz potential IB� and then� in the second

step� we prove a version of the Fractional Integration Theorem for the operator J��B��p �
This will complete the proof of ����� The proof of ���� will require a more sophisticated
version of the inequality ����� the details will be completed in Section � where we
introduce an appropriate class of domains � for the Sobolev�Poincar
e embedding �����

Any inequality of the type ���� will be called a representation formula�

��



Before we de�ne J��B��p we start with a discussion on Riesz potentials to explain the
motivation� The classical Riesz potential is de�ned as

I�g�x� � ���n

Z
IRn

g�y�

jx� yjn�� dy� ����

where � � � � n and ���n is a suitable constant� In this paper the exact value of the
constant ���n is irrelevant to us� Moreover� for our purposes� any operator J such that

C�I�g � Jg � C�I�g for g � � ����

is as good as I��

A natural generalization of the Riesz potential to the setting of doubling spaces is

I�g�x� �
Z
X

g�y�d��x� y�

��B�x� d�x� y���
d��y� �

or its local version

I�� g�x� �
Z
�

g�y�d��x� y�

��B�x� d�x� y���
d��y� � ����

We would like to estimate ju�uBj by CI�� g� but� in general� this is not possible� Instead
of that we have to consider a potential which is strictly larger than I�� g�

Observe that the potential de�ned by

eI�� g�x� � �X
i���

�i�
	
��Bi�x��

��
Z
Ai�x���

jg�y�j d��y�


� ����

where Ai�x� � Bi�x� nBi���x� � B�x� �i� nB�x� �i���� is equivalent to I�� g in the sense
of ����� Note that if �i�� � diam�� then Ai�x� � � � �� so all the summands in ����
for �i � �diam� vanish� Thus� replacing the integral over Ai�x� � � by the integral
over Bi�x� and then taking the sum over �i � �diam�� we obtain the new potential

J�� g�x� �
X

�i��diam�

�i�
	Z

Bi�x�
jgj d�



�

which satis�es eI�� g � J�� g� Now we de�ne

J�����p g�x� �
X

�i���diam�

�i�
	Z

Bi�x�
jgjp d�


��p
�

where � � �� p � � and � � � are �xed constants�

The other generalization is

I���pg�x� �
�X

i���

	Z
Ai�x���

jg�y�jpd�p�x� y�
��B�x� d�x� y���

d��y�


��p
�

��



Observe that I����g � I�� jgj� and I���pg � CJ�����p g a�e� Thus once we prove the fractional
integration theorem for J�����p g it is true for I���pg as well�

In Section � we will obtain a version of the representation formula ���� with IB��pg

in place of J��B��p � see Theorem �����

Theorem ��� Let the pair u� g satisfy a p�Poincar�e inequality in a doubling space X�
Then for every ball B � X the representation formula

ju�x�� uBj � CJ��B��p g�x� ����

holds almost everywhere in B�

This representation formula together with a suitable Fractional Integration Theorem
�see Theorem ���� will lead to embedding �����

Proof� The argument is very similar to that used in the proof of inequality �����
Let x � B be a Lebesgue point of u� Put Di�x� � B�x� �i����� Let i� be the least
integer such that �i� � �diamB� Then B � Di��x�� Since uDi�x� � u�x� as i � ��
we obtain

ju�x�� uBj � juB � uDi�
�x�j�

i�X
i���

juDi�x� � uDi���x�j

� C
i�X

i���

����i
	Z

�Di�x�
gp d�


��p
� CJ��B��p g�x��

Theorem ��� Let � � X be an open and bounded set and let � � p ��� � � � ���
Assume that the measure � is doubling on V � fx � X � dist �x��� � ��diam�g�
Moreover� assume that for some constants Cb� s � �

��B�x� r�� � Cb

�
r

diam�

�s
����

whenever x � � and r � �diam� and that g � Lp�V� ���


� If �p � s� then J�����p g � Lp�

w ��� where p� � sp��s� �p�� Moreover

��fx � � � J�����p g � tg� � C�t
�p��diam���p

�

������p
��pkgkp�Lp�V�	� ����

for t � �� and hence for every � � r � p�

kJ�����p gkLr���	� � C��diam���������r���pkgkLp�V�	�� ����

Here the constants C� and C� depend on �� �� p� Cb� s and Cd only�

��



	� If p � q and �q � s� then

kJ�����p gkLq����	� � C�diam����������skgkLq�V�	�� ����

where q� � sq��s� �q� and C � C��� �� p� q� b� s� Cd��

�� If �p � s� then Z
�
exp

	
C���B���sJ�����p g

�diam���kgkLs�V �



d� � C��

where Ci � C��� �� p� b� s� Cd�� i � �� ��

�� If �p � s� then J�����p � L���� �� and

kJ�����p gkL����	� � C�diam����������pkgkLp�V�	��

where C � C��� �� p� b� s� Cd��

Proof of Theorem ���� We modify a standard proof for the usual Riesz potentials�
All the constants C appearing in the proof depend on �� �� p� q� b� s� and Cd only�

Case �p � s� Take arbitrary q � p such that �q � s� Fix � � r � ��diam��
Decompose the sum which de�nes J�����p g into Jrg � Jrg� where Jrg �

P
�i�r and Jrg �P

r��i���diam�� For x � � we have

Jrg�x� �
��X
�i�r

�i�

�A �MV jgjp�x����p � r� �MV jgjp�x����p �

Here MV h denotes the maximal function relative to the open set V �

To estimate Jrg� we apply the lower bound on �

Jrg�x� �
X

r��i���diam�

�i�
	Z

Bi�x�
jgjp d�


��p

� X
r��i���diam�

�i���Bi�x��
���q

	Z
Bi�x�

jgjq d�

��q

� C
X

r��i���diam�

�i���s�q��diam��s�q�������q
�Z

V
jgjq d�

���q

� Cr���s�q��diam��s�q�������q
�Z

V
jgjq d�

���q
�

In the last step we used the fact � � s�q � � to estimate the sum of the series by its
�rst summand� Now

J�����p g�x� � C

	
r� �MV jgjp���p � r���s�q��diam��s�q�������q

�Z
V
jgjq d�

���q

�

��



Note that

r� �MV jgjp���p � r���s�q��diam��s�q�������q
�Z

V
jgjq d�

���q
if and only if

r � �diam���������s
�
kgkLq�V ���MV jgjp���p

�q�s
� ����

If the RHS in ���� does not exceed �diam�� then we take r equal to the RHS� In this
case we get

J�����p g�x� � C�diam����������skgk�q�sLq�V ��MV jgjp�x���s��q��sp� ����

and hence

J�����p g�x�
sp��s��q� � C�diam���sp��s��q�������p��s��q�kgk�qp��s��q�Lq�V � MV jgjp�x�� ����

If the RHS in ���� is greater than �diam�� then we take r � �diam�� Then

J�����p g�x� � C�diam����������qkgkLq�V �� ����

Let A� denote the set of points in � for which ���� holds and let A� consist of those
points in � that satisfy ����� Write �t � fx � � � J�����p g � tg� Then

���t� � ��A� � �t� � ��A� � �t�� ����

If we take q � p� then inequality ���� follows from estimates ����� ����� and �����
the weak type estimate for the maximal function MV jgjp �see Theorem ������ gives

��A� � �t� � ��CDkgk�p���s��p�Lp�V � MV jgjp � tsp��s��p��

� CDt�p
�kgk�p���s��p�Lp�V � kgkpLp�V � � CDt�p

�kgkp�Lp�V �

with D � �diam���sp��s��p�������p��s��p�� and from ���� we obtain A� ��t � � when
t � C�diam����������pkgkLp�V � and for all smaller t

��A� � �t� � ���� � C�diam���p
�

������p
��pt�p

�kgkp�Lq����

This completes the proof of inequality ����� Inequality ���� follows from Theorem ������

To prove inequality ���� we take Lq�p norm on the both sides of inequalities ����
and ���� and then we apply Maximal Theorem ������ we use the fact that q�p � ��

Case �p � s� Notice �rst that

exp�t� �
X
k��

tk

k#
�

��



Secondly� ���� and the H
older inequality give for each integer k � �

kJ�����p gkLk���	� � C�diam���������k���skgkLs�V�	��

By keeping good track of the constants appearing in the proof of ����� one can check
that C � C���� s� b� Cd�k� The desired inequality follows by summing over k� We leave
the details to the reader as we prove a better estimate in the next section under slightly
stronger assumptions�

Case �p � s� The lower bound on � gives

J�����p g�x� �
X

�i���diam�

�i���Bi�x��
���p

	Z
Bi�x�

jgjp d�

��p

� C
X

�i��� diam�

�i���s�p��diam��s�p�������pkgkLp�V �

� C�diam����������pkgkLp�V ��

The proof of Theorem ��� is complete�

Proof of Theorem ��
� All the inequalities but ���� and ���� follow directly from
Theorem ��� and Theorem ���� The H
older continuity estimate ���� follows from ����
and the lower bound ����� If p� � � then inequality ���� is trivial as it is weaker than
the p�Poincar
e inequality� If p� � � it follows from Theorem ��� and from the �rst
inequality in Theorem ������ The proof is complete�

	 Trudinger inequality

When X � Rn and u belongs to the Sobolev class W ��n��� for a ball �� one has the
following Trudinger inequality ������

Z
�
exp

	
C�ju� u�j
jjrujjLn���


n��n���
dx � C��

Here C� and C� depend only on the dimension n� As in case of the Poincar
e inequality�
the exact value of u� is not crucial� In fact� it is easy to see that we may replace it by
the average of u over some �xed ball B �� �� In the previous section we observed that
an s�Poincar
e inequality with s not exceeding the lower order of the doubling measure
results in exponential integrability� We do not know if one could get an analog of the
Trudinger inequality in such a general setting but we doubt it�

In this section we verify an analog of the Trudinger inequality for connected doubling
spaces� Thus the only assumption we need to add is that X be connected� For related
results� see Buckley and O�Shea� ����� and MacManus and P
erez� �����
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Theorem 	�� Assume that X is a connected doubling space and that the measure �
satis�es condition �	�� with s � �� Suppose that the pair u� g satis�es an s�Poincar�e
inequality� Then there are constants C� and C� such that

Z
B
exp

	
C���B���sju� uBj
diam�B�kgkLs���B�


s��s���
dx � C� ����

for any ball B � X�

Remarks� �� It is easy to see that as the space is connected the condition ���� cannot
hold with s � �� We leave the details to the reader� �� The argument employed in the
proof actually shows that the inequality holds with ��B replaced by �� � 
�B�

For the proof of this theorem we need a chain condition� a version of which will also
be used later on�

We say that X satis�es a chain condition if for every 	 � � there is a constant M
such that for each x � X and all � � r � R � diam�X��� there is a sequence of balls
B�� B�� B�� � � � � Bk for some integer k with

�� B� � X nB�x�R� and Bk � B�x� r��

�� M��diam�Bi� � dist �x�Bi� �Mdiam �Bi� for i � �� �� �� � � � � k�

�� there is a ball Ri � Bi � Bi��� such that Bi � Bi�� �MRi for i � �� �� �� � � � � k�

�� no point of X belongs to more than M balls 	Bi�

The sequence fBig will be called a chain associated with x� r� R�

The existence of a doubling measure on X does not guarantee a chain condition� In
fact� such a space can be badly disconnected� whereas a space with a chain condition
cannot have  large gaps!�

Let us show that each connected doubling space satis�es a chain condition� Fix 
�
Write Aj�x� � B�x� �j� n B�x� �j��� for r�� � �j � �R� As � is doubling we can cover
each annulus Aj�x� by at most N balls of radii equal to 
�j with N independent of x� j�
Naturally� N depends on 
� and the smaller the 
� the larger the number N� Consider
the collection of all these balls when r�� � �j � �R� When 
 is su�ciently small�
depending only on 	� the balls �	B with B corresponding to Aj�x� and �	B� with B�

corresponding to Ai�x� do not intersect provided ji�jj � �� The balls B corresponding
to the annuli Aj�x� together with B�x� r���� X n B�x� �R� form on open cover of X�
As X is connected and contains a point inside B�x� r��� and another point outside
B�x� �R�� we can pick a chain of these balls B that joins B�x� r��� to X n B�x� �R��
The required chain is then obtained as the collection of the balls �B from the balls B
di�erent from B�x� r��� in this chain�

��



Lemma 	�� Assume that X satis�es a chain condition and suppose that a pair u� g
satis�es an s�Poincar�e inequality for all balls in X� Then the following holds for almost
every x� Let � � R � diam�X���� There is r and a chain �Bi� corresponding to x� r� R
with 	 � �� such that

ju�x�� uB�
j � C

kX
i��

ri

�Z
�Bi

gs d�
���s

� ����

Proof� As 	 is �xed� conditions � and � of the de�nition of the chain and the Lebesgue
di�erentiation theorem �see Theorem ������ guarantee that uBk

� u�x� for almost all
x when r tends to zero �here k � kr�� For such a point we have for appropriate r and
corresponding k

ju�x�� uB�
j � �

kX
i��

juBi
� uBi��

j

� �
kX
i��

�juBi
� uRi

j� juBi��
� uRi
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� �
kX
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�Z
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ju� uBi
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Z
Ri

ju� uBi��
j d�

�

� C
kX
i��

Z
Bi

ju� uBi
j d�

� C
kX
i��

ri

�Z
�Bi

gs d�
���s

�

The proof is complete�

Proof of Theorem ��
� By the discussion preceding the previous lemma we know
that X satis�es a chain condition� Thus we may assume that the pointwise inequality
���� holds for a given point x�Write r for the radius of the �xed ball B�We may assume
that diamB� � r�C and that Bi � �B� �Bi � ��B for each i�

Fix q � maxfs� s��s� ��g� For � � 
 � q�� we have

ju�x�� uB�
j � C

kX
i��

ri

�Z
�Bi

gs d�
���s

� C
X
i

r���i ���Bi�
��q���s

�
rq�i

Z
�Bi

gs d�
���q �Z

�Bi

gs d�
���s���q

�

As �s� ���s� ��q � ���s� ��q� � �� we can use H
older�s inequality to estimate

ju�x�� uB�
j � C

	X
i

�
r���i ���Bi�

��q���s
� s

s��


 s��
s
	X

i

rq�i M��Bg
s�x�


��q
kgk��s�qLs���B��

��



here we replaced
R
�Bi

gs d� by CM��Bg
s�x� and used the bounded overlap of the balls

�Bi to replace the sum of the integrals of gs over these balls by the integral of gs over
��B�

To estimate the second term in the product� we sum over the balls Bi that corre�
spond to an annulus Aj� let us write Ii�j for the set of indices i corresponding to Aj�
By the construction of the chain we know that we have at most N balls for each �xed
j� Moreover the radii of balls corresponding to di�erent Aj form a geometric sequence
and henceX

i

rq�i M��Bg
s�x� � M��Bg

s�x�
X
j

X
Ii�j

rq�i

� CM��Bg
s�x�

rq�

�� ��q�
� C�q
���rq�M��Bg

s�x��

where C is independent of q� 
� In the last inequality we employed the fact that q
 � ��

For the �rst term� we use the lower bound on ��Bi� and argue as aboveX
i

�
r���i ���Bi�

��q���s
�s��s��� � C�r��s�q��B���q���s�s��s���

X
i

r
�s�q���s��s���
i

� Cq�s� 
q���
�
r�����B���q���s

�s��s���
�

where C is an absolute constant�

If we let 
 � sq��� then q�s� 
q��� � q�s� s�q��� � q� as q � s��s� ��� Hence

ju�x�� uB�
j � Ckgk��s�qLs���B���B���q���sq��q��s����sr �M��Bg

s�x����q �

here C is an absolute constant�

We proceed to estimate the integrals of ju� uBj� By the triangle inequality

ju� uBj � ju� uB�
j� juB�

� uBj �
By controlling the second term by the Poincar
e inequality and using the above pointwise
estimate for the �rst term we arrive atZ

B
ju� uBjq�� d� � Cqq�����s���q��s��B�����q��skgkq���s��Ls���B�r

q��
Z
B
�M��Bg

s���� d�

� Cqrq����B���q��skgkq��Ls���B� �

By the Maximal Theorem �see Theorem ������ and Theorem ����� in the appendixZ
B
�M�rg

s���� d� � C
�
��B�

Z
��B

gs d�
����

and hence we conclude thatZ
B
ju� uBjq�� d� � Cqq�����s���q��s

�
rs
Z
��B

gs d�
�q��s
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where C does not depend on q� Notice that this estimate holds as well for q �
maxfs� s��s� ��g by Theorem ����

Now

exp �tju�x�� uBj�s��s��� �
X
k��

�tju�x�� uBj�ks��s���
k#

�

Integrating over B and using the above estimate we obtainZ
B
exp �tju�x�� uBj�s��s��� d� � � �

X
k��

�Ck�����k
�
tr����B����skgkLs���B�

�ks��s���
�k#

This series converges when tr����B����skgkLs���B� � C�� where C� depends only on
C� s� and the claim follows�


 A version of the Sobolev embedding theorem on

spheres

In order to state our version of the Sobolev embedding theorem on spheres we �rst
have to deal with the problem that u is only de�ned almost everywhere� To take care
of this matter we de�ne u�x� everywhere by the formula

u�x� �� lim sup
r��

Z
B�x�r�

u�z� d��z�� ����

As almost every point is a Lebesgue point� we have only modi�ed u in a set of
measure zero� This rede�nition of u essentially corresponds to picking a representative
of u with nice continuity properties� for related results see Haj�lasz and Kinnunen� ������
and Kinnunen and Martio� ������

We again assume that X is a doubling space and

��B�x� r�� � Cb��B��
�
r

r�

�s
whenever B�x� r� � B� � B�x�� r��� Recall that such an estimate follows from the
doubling condition�

Theorem 
�� Suppose that the pair u� g satis�es a p�Poincar�e inequality and that
p � s � �� Then the restriction of u to the set fx � d�x� x�� � rg is uniformly H�older
continuous with exponent �� �s����p for almost every � � r � r�� In particular� there
is a constant C� and a radius r��� � r � r� such that

ju�x�� u�y�j � C�d�x� y�
���s����pr

�s����p
� �

Z
��B�

gp d����p

whenever d�x� x�� � d�y� x�� � r� The constant C� only depends on p� s� CP � Cb� Cd�
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In the case of Carnot groups a related result has been independently obtained by
Vodop�yanov� ������

The usual Sobolev embedding theorem on spheres �cf� ����� Lemma ������ is based
on showing that the trace of a Sobolev function belongs to a Sobolev class on almost all
spheres� One then uses the Sobolev embedding on the sphere that is lower dimensional
than the ball� In our situation a sphere can be very wild and this approach cannot be
used� We prove the above result using a maximal function argument�

The reader may wonder why the integration is taken over all of ��B� and not over
an annulus� The reason for this is that points on the sphere cannot necessarily be joined
inside an annulus centered at x�� For a trivial example� let X be the real axis� If we
assume that X has reasonable connectivity properties� we obtain a stronger conclusion�

Theorem 
�� Suppose that the pair u� g satis�es a p�Poincar�e inequality and that
p � s � �� Assume that any pair of points in B� n ��B� can be joined by a continuum
F in CB� n C��B� with diamF � Cd�x� y�� Then there is a constant C� and a radius
r��� � r � r� such that

ju�x�� u�y�j � C�d�x� y�
���s����pr

�s����p
� �

Z
C�B�nC

��

�
B�

gp d����p

whenever d�x� x�� � d�y� x�� � r� The constant C� only depends on p� s� C� CP � Cb� Cd�

By combining Proposition ��� and Theorem ��� we obtain the following corollary �recall
that a p�Poincar
e inequality guarantees a q�Poincar
e inequality when q � p��

Corollary 
�� Suppose that X is weakly locally quasiconvex and that C��rs �
��B�x� r�� � Crs with s � � for each x and all r� Let s � � � p � s� Assume that
for each pair u� g of a function and its upper gradient we have a p�Poincar�e inequality�
Then there is a constant C� and a radius r��� � r � r� such that

ju�x�� u�y�j � C�d�x� y�
���s����pr

�s����p
� �

Z
C�B�nC

��

�
B�

gp d����p

whenever d�x� x�� � d�y� x�� � r� The constant C� only depends on p� s� C� CP �

In the preceding corollary we assumed that s � � and that p � s� Both of these
assumptions are necessary� Indeed� the ��Poincar
e inequality holds for the real axis�
but one needs to integrate over balls instead of annuli� The union of the two closed
cones in IRn with a common vertex of Example ��� supports a p�Poincar
e inequality for
all p � n and ��B�x� r�� � rn for each x and all r� One again needs to integrate over
balls instead of annuli�

��



Before proceeding with the proofs of Theorems ��� and ��� let us discuss one more
application� We say that u is monotone if

sup
y�w�B�x�r�

ju�x�� u�y�j � supfju�y�� u�w�j � d�x� y� � d�x� w� � rg

for each ball B�x� r�� Suppose that u is monotone� u has an upper gradient in Ls and
the assumptions of the previous corollary hold� Then u is continuous and

ju�x�� u�y�j � C

	
log

C�M

d�x� y�


���s
kgks�B�x�C�M�

for all x� y with d�x� y� �M� This estimate is commonly used in the Euclidean setting�
We leave it to the reader to deduce this conclusion from the above corollary�

Proof of Theorem ��
� Fix x� y � X and � � � � �� Set B� � B�x� d�x� y��� and
de�ne Bi � B�x� �id�x� y�� when i � � and Bi � B�y� ��id�x� y�� when i � ��

Then� using the Poincar
e inequality and the triangle inequality as in the proof of
Theorem ���� we have
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where

MR�p��g�x� � sup
r�R

r�
	Z

B�x�r�
gp d�


��p
�

Observe that according to ���� the above inequality holds everywhere �cf� �������

Write Gt � fx � B� � M��r��p��g�x� � tg� Then
ju�x�� u�y�j � Ctd�x� y���� ����

for all x� y � Gt�

By the covering Lemma ����� and the lower bound on ��B�x� r��

Hs��p
� �B� nGt� � Ct�prs�

Z
��B�

gpd� �

Recall that the Hausdor� content H�
��E�� � � �� is de�ned as the in�mum of

P
i r

�
i �

where the in�mum is taken over the set of all countable coverings of the set E by balls
with radii ri�
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De�ne v � B� � ��� r�� by the formula v�x� � d�x� x��� Then v is Lipschitz continu�
ous with constant �� and hence� for each set E � B��

Hs��p
� �v�E�� � Hs��p

� �E��

Let � � �s� ���p� Then

H�
��v�B� nGt�� � Ct�prs�

Z
��B�

gp d� �

This implies that the length of the set v�B�nGt� � ��� r�� goes to � as t goes to�� Now
the theorem follows from the observation that for r � ��� r�� n v�B� nGt� the  sphere!
fx � d�x� x�� � rg is contained in Gt and hence inequality ���� applies� The proof is
complete�

Proof of Theorem ��	� Join the points x� y by a continuum F in A � CB� n B��C
with diam�F � � Cd�x� y�� Let r � ����C����d�x� y�� and consider the collection of
all balls B�w� r� with w � A � B�x� �Cd�x� y��� As � is doubling we �nd a cover of
A � B�x� �Cd�x� y�� consisting of k of these balls with k depending only on C�Cd� ��
Pick those balls from this cover that intersect F and order them into a chain� That
is� denoting the balls by Vi� Vi � Vi�� 
� � for i � �� ���� l � �� and x � V�� y � Vl�
assuming that we have l balls� The claim of Theorem ��� follows repeating the proof
of Theorem ��� with the following modi�cation� we de�ne Bi � Vi for i � �� ���� l�
Bi � B�x� �i����C����d�x� y�� for i � � and Bi � B�y� ��i�l����C����d�x� y�� for
i � l� It is helpful to notice here that the balls Bi� for � � i � l� have uniformly
bounded overlap as l � k�

� Rellich�Kondrachov

The classical Rellich	Kondrachov embedding theorem states that� given a bounded
domain � � IRn with smooth boundary� the Sobolev space W ��p���� � � p � �� is
compactly embedded into Lq���� where q � � is any �nite exponent when p � n and
any exponent strictly less that np��n � p� when p � n� Of course� here� the Sobolev
space W ��p��� is de�ned in the classical way�

In the case of Sobolev spaces associated with vector �elds� some compact embedding
theorems have been obtained by Danielli� ����� Franchi� Serapioni and Serra Cassano�
����� Garofalo and Lanconelli� ����� Garofalo and Nhieu� ����� Lu� ������ Manfredini�
������ Rothschild and Stein� ������

In this section we extend the Rellich	Kondrachov theorem to the setting of metric
spaces� As we will see in Section ��� Sobolev inequalities for vector �elds are special
cases of Sobolev inequalities on metric spaces� Hence our result covers many of the
above results� It extends also an earlier result of Haj�lasz and Koskela� ������ from the

��



Euclidean setting� In the case of Sobolev spaces on metric spaces introduced by Haj�lasz�
������ a related compactness theorem has been proved independently by Ka�lamajska�
������

Let � be a Borel measure on X� doubling on �� As usual� � � X denotes an
open subset of a metric space� In order to prove the compactness theorem for Sobolev
functions on �� we need to assume that a kind of embedding theorem holds on �� Thus�
until the end of the section� we make the following assumption�

The open set � � X satis�es ���� �� and there exist exponents p � � and q � �
such that every pair u� g which satis�es a p�Poincar
e inequality ��� in � �with given
constants CP � �� satis�es also the global Sobolev inequality

�Z
�
jujq d�

���q
� C

	Z
�
juj d��

�Z
�
gp d�

���p

� ����

Observe that ���� follows form the Sobolev	Poincar
e inequality ����

Theorem ��� Let X� �� �� p � � and q � � be as above� Let fui� gig be a sequence of
pairs� all of which satisfy the p�Poincar�e inequality ��� in � with given constants CP � ��
If the sequence kuikL���� � kgikLp��� is bounded� then fuig contains a subsequence that
converges in Lw��� for any � � w � q to some u � Lq����

Proof� Let fui� gig be a sequence satisfying the assumptions of the theorem� Since the
sequence fuig is bounded in Lq���� we can select a subsequence �still denoted by fuig�
weakly convergent in Lq��� to some u � Lq���� It remains to prove that this sequence
converges to u in the norm of Lw��� for every � � w � q�

Lemma ��� Let Y be a set equipped with a �nite measure �� Assume that fvig �
Lq�Y �� � � q � �� is a bounded sequence� If vi converges in measure to v � Lq�Y ��
then vi converges to v in the norm of Lw�Y � for every � � w � q�

The lemma is a variant of Proposition ����� We postpone the proof of the lemma for a
moment and we show how to use it to complete the proof of the theorem� According
to the lemma it remains to prove that the functions ui converge to u in measure�

Assume that �c 
� �� otherwise the proof is even simpler� For t � � set �t � fx �
� � dist �x��c� � tg� Fix 
 � � and t � �� For h � t�� �recall that � appears in ����
and x � �t we set

uh�x� �
Z
B�x�h�

u d� and ui�h�x� �
Z
B�x�h�

ui d��

��



We have

��fx � �t � jui � uj � 
g� � ��fx � �t � jui � ui�hj � 
��g�
� ��fx � �t � jui�h � uhj � 
��g�
� ��fx � �t � ju� uhj � 
��g�
� Ai�h �Bi�h � Ch�

Note �rst that

jui�x�� ui�h�x�j � Ch �M�hg
p
i �x��

��p � Ch �M�g
p
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��p

by ���� for almost every x � �t� Thus the maximal theorem �see Theorem ������ gives

Ai�h � �
��

M�g
p
i � C

�



h

�p��
� C

	
h





p Z
�
gpi d�

h���� ��

This convergence is uniform with respect to i as the sequence kgikLp��� is bounded�
It follows from the de�nition of the weak convergence in Lq��� that for every x � ��
ui�h�x� � uh�x� as i � �� so Bi�h � � as i � �� Finally Ch � � by the Lebesgue
di�erentiation theorem �see Theorem ������� Now it easily follows that ui � u in
measure� Thus the proof is completed provided we prove the lemma�

Proof of the lemma� Fix � � w � q� It su�ces to prove that every subsequence
of fvig contains a subsequence convergent to v in Lw�Y �� In what follows all the
subsequences of fvig will be simply denoted by fvig� Take an arbitrary subsequence of
fvig� The convergence in measure implies that this subsequence contains a subsequence
which is convergent almost everywhere� Then by Egorov�s theorem� for any 
 � � there
exists a measurable set E � Y with the property that ��Y n E� � 
 and vi converges
to v uniformly on E� Hence

�Z
Y
jvk � vjjw d�

���w
� ��Y n E���w���q

	Z
Y nE

jvk � vjjq d�

��q

�
�Z

E
jvk � vjjw d�

���w
� C
��w���q �

�Z
E
jvk � vjjw d�

���w
�

which gives lim supj�k�� kvk � vjkLw�Y � � C
��w���q� Since 
 � � was arbitrary� the
subsequence fvig is a Cauchy sequence in Lw�Y � and hence the lemma follows� This
completes also the proof of the theorem�

Below we state another version of the compactness theorem� The proof follows by
some obvious modi�cations to the above proof�

Theorem ��� Let X be a doubling space and let s be the lower decay order of the
measure from �	��� Suppose that all the pairs ui� gi satisfy a p�Poincar�e inequality in

��



X �with �xed constants CP � ��� Fix a ball B and assume that the sequence kuikL��B��
kgikLp���B� is bounded� Then there is a subsequence of fuig that converges in Lq�B� for
each � � q � ps��s� p�� when p � s and for each q � � when p � s�

Notice that this theorem gives compactness in the entire space provided the space has
�nite diameter�

We would like to thank Agnieszka Ka�lamajska for an argument that simpli�ed our
original proof of the compactness theorem�

� Sobolev classes in John domains

In the p�Poincar
e inequality ��� we have allowed g to be integrated over a larger ball
than u is integrated over� One cannot� in general� reduce the radii of the balls on the
right hand side� To see this consider the following example� let � � ��� ������ ������ ��
and u � � on ��� ��� u � � on ��� �� � ��� ��� g � � on ��� �� � ��� �� and g � const� is
very large on ��� ��� The details are left to the reader�

Hence in the Sobolev type inequalities like Theorem ��� or Theorem ��� we have to
integrate g over a larger ball as well�

We show in this section that one can use balls of the same size provided the geometry
of balls is su�ciently nice� This leads us to de�ne John domains�

The �rst subsection is devoted to study of the geometry of John domains and in
the second subsection we study Sobolev inequalities in John domains�

��� John domains

When dealing with Sobolev type inequalities in domains in IRn one usually assumes
that the domain is  nice! in the sense that its boundary is locally a graph of a Lipschitz
function� This notion of being  nice! is not appropriate for the setting of metric spaces
and so one has to de�ne a  nice! domain using only its interior properties� This leads
to John domains�

De�nition� A bounded open subset � of a metric space is called a John domain
provided it satis�es the following  twisted cone! condition� There exist a distinguished
point x� � � and a constant C � � such that� for every x � �� there is a curve
� � ��� l�� � parametrized by the arclength and such that ���� � x� ��l� � x� and

dist ���t���c� � Ct� ����

�The length l depends on x��
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Notice that every recti�able curve in a metric space can be parametrized by ar�
clength� see Busemann� ����� or V
ais
al
a� ������

John domains in IRn were introduced by Martio and Sarvas� ������ They are named
after F� John who considered similar domains in ������

The class of John domains in IRn is much larger than the class of domains with the
interior cone condition� In general� the Hausdor� dimension of the boundary of a John
domain can be strictly larger than n� ��

The above de�nition of John domain is still not appropriate for many metric spaces�
as points in an arc�wise connected metric space may not be joinable by recti�able curves�
For example� if $ � IR� is the von Koch snow�ake curve and � � $ is a nontrivial
subcurve� then � is not a John domain� However� we would like to include at least
some of the metric spaces that lack recti�able curves in the class of John domains� see
Example ���� The following de�nition seems to give a proper generalization of John
domains�

De�nition� A bounded open subset � of a metric space �X� d� is called a weak John
domain provided there is a distinguished point x� � � and a constant � � CJ � � such
that for every x � � there exists a curve � � ��� �� � � such that ���� � x� ���� � x�
and for every t � ��� ��

dist ���t���c� � CJd�x� ��t��� ����

We call such a curve a weak John curve� If �c � �� then we set dist ���t���c� � ��
and hence ���� is always satis�ed�

Notice that this de�nition can be also used in the setting of quasimetric spaces �i�e��
when the triangle inequality is replaced by ��x� y� � K���x� z� � ��z� y��� K � ��� In
general� it can happen that even a very nice metric space does not contain nontrivial
recti�able curves� With the metric ��x� y� � jx� yj��� on the real axis� any interval is
of in�nite length�

Example 
�� If f � S� � S� is a quasiconformal mapping and � � S� is any smooth
Jordan curve� then any connected part of $ � f��� is a weak John domain� This
includes the class of Jordan curves $ � S� such that both components of S� n $ are
John domains� see N
akki and V
ais
al
a� ������

There are also many other fractal sets whose  nice! subsets are weak John domains�
while they cannot be John domains because of the lack of recti�able curves�

Example 
�� Let X be a bounded arc�wise connected metric space� If we take � � X�
then � is weak John domain� since ���� is satis�ed for any curve joining x and x��

The reader may �nd the preceding example somewhat arti�cial� Let us brie�y
clarify the issue� Our aim is to deduce a p�Poincar
e inequality for � whenever such an
inequality holds for all balls in �� that is� B�x� r� � �� If we are given an underlying
space X� then we consider the balls of the space X that are contained in �� Otherwise�
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the collection of the balls can be fairly large� For example� let � be a bounded domain
in IRn so that � equipped with the restrictions of the Euclidean distance and volume
is a doubling space� If we neglect IRn� and consider � as our entire doubling space� we
shall obtain a Poincar
e inequality for �� provided we assume a Poincar
e inequality for
the pair u� g for all balls of �� These balls consist of the intersections of all Euclidean
balls centered in � with �� see Corollary ����

It is known that in the Euclidean case X � IRn the class of weak John domains
coincides with the class of John domains� see V
ais
al
a� ����� Theorem ������ In a metric
space this is no longer true� Clearly every John domain is a weak John domain� but the
converse implication may fail� However� we generalize the result by proving that under
a mild additional condition on the space X� the above two de�nitions are equivalent�
see Proposition ����

The crucial property of John domains for us is that they satisfy a chain condition
that is essential in order to e�ectively use the Poincar
e inequality on the balls contained
in the domain�

Let us slightly modify the chain condition we employed in connection with the
Trudinger inequality�

De�nition� We say that � satis�es a C�	�M� condition� where 	� M � �� if there is
a  central! ball B� � � such that to every x � � and every r � � there is a sequence
of balls B�� B�� B�� � � � � Bk� �B� is �xed and k may depend on x� r� with the following
properties

�� 	Bi � � for i � �� �� �� � � � � k and Bk � B�x� r��

�� M��ri � dist �x� 	Bi� �Mri for i � �� �� � � ��

�� there is a ball Ri � Bi � Bi��� such that Bi � Bi�� �MRi for i � �� �� �� � � ��

�� no point of � belongs to more than M balls 	Bi�

A variant of the above chain condition was employed in Haj�lasz and Koskela� ������
������

Theorem 
�� Assume that X is a metric space which is doubling on � � X� If
� � X is a weak John domain� then � satis�es the C�	�M� condition for any 	 � �
with some M depending on 	� CJ and doubling constant only�

Proof� Assume �rst that � 
� X� Let B� � B�x�� dist �x���
c����	��� Assume that x is

far away from B�� Say x � � n �B�� Let � be a weak John curve� First we de�ne a
sequence of balls B�

i as follows� The centers xi of all balls B
�
i lie on �� Let B�

� �
�
�
B��

Assume that we have already de�ned B�
i� Then we trace along �� starting from the
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center xi towards x� until we leave B�
i for the last time� We let this point be the center

xi�� of B
�
i�� and we de�ne

r�i�� �
CJ

�	
d�x� xi��� � ����

Now we de�ne Bi � �B�
i� Properties �� and �� are evidently satis�ed provided we

choose k large enough� Property �� follows from the fact that consecutive balls have
comparable radii and xi�� lies on the boundary of B�

i�� �ball Ri is centered at xi�� and
of radius equal to minimum of r�i� r

�
i���� For property �� assume that y � 	Bi� �	Bi� �

� � ��	Bil � It follows from the construction that the radii of the balls 	Bij � j � �� �� � � � � l
and the distances between centers of the balls are all comparable to d�x� y�� Indeed� the
radii are comparable and the distance of the centers times �	 are no less than the radii�
Thus there exists a constant t � � such that tBi� � tBi� �� � � � tBil are pairwise disjoint
and all these balls are contained in a ball centered at y and having radius comparable
to d�x� y�� so the doubling condition implies the upper bound for l�

The case when x � �B� is similar� If x � �nB�� we de�ne B� � �
�
B� and the rest of

the argument goes as above� Otherwise� we consider the union of two curves� the weak
John curve for x and the weak John curve for some point y with d�y� x�� �

�
�
dist �x���

c��
This curve� traced �rst from x to x� and then from x� to y� is easily seen to be a John
curve with a new distinguished point y and a new John constant only depending on
CJ � One can then de�ne desired chain by �rst replacing the role of x� in the above
argument by y and then adding a chain joining y to x�� We leave the details to the
reader�

Suppose �nally that � � X� Then X is bounded� We �x x� � � and de�ne
B� � B�x�� diam�X����� The rest of the argument is the same as in the case X 
� �
except that in ���� we replace CJ by �� The proof is complete�

Lemma 
�� Let �X� d� be an arcwise connected metric space such that bounded and
closed sets in X are compact� Assume that the metric d has the property that for
every two points a� b � X the distance d�a� b� is equal to the in�mum of the lengths
of curves that join a and b� Then there exists a shortest curve � from a to b with
d�a� b� � d�a� z� � d�z� b�� for every z � ��

Remark� Observe that the compactness of the sets that are bounded and closed is a
stronger assumption than the space being locally compact� The two conditions are
equivalent if the space is complete�

This lemma is due to Busemann� ���� page ���� �cf� ���� page ������ The idea of the
proof is the following� Let f�kg�k�� be a sequence of recti�able curves joining a with b
and such that the length of �k converges to d�a� b�� Parametrize each �k by arclength�
Scaling the arclength parametrizations we may assume that all curves are de�ned on the
interval ��� ��� Now it easily follows that the family f�kg is equicontinuous �because of
the good parametrization�� By a standard diagonal method we can �nd a subsequence
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of f�kg which converges on a dense subset of ��� ��� The equicontinuity implies the
uniform convergence on the whole interval� It is easy to prove that the length of the
limiting curve is d�a� b�� For a detailed proof� see ���� page ����

Corollary 
�� Let the metric space �X� d� satisfy the assumptions of the above lemma�
Then each ball B � X is a John domain with a universal constant C�

This corollary shows that balls in a Carnot	Carath
eodory metric �see Section ��� are
John domains�

The chain condition is closely connected to the concept of a John domain as the
following proposition shows� Analogs of this result can be found in Buckley� Koskela
and Lu� ����� and in Garofalo and Nhieu� ����� where the authors employ a Boman chain
condition that is di�erent from ours�

Proposition 
�	 Let X be a metric space which is doubling on � � X� Assume that �
has the following local connectivity property� there exists a constant � � � such that for
every ball B with �B � �� every two points x� y � B can be connected by a recti�able
curve contained in �B and of length less than or equal to �d�x� y�� Then the following
three conditions are equivalent


� � is a John domain�

	� � is a weak John domain�

�� � is a C�	�M��domain for each 	 � �� and for some M�

Proof� The implications � 
 � 
 � hold without any local connectivity assumptions
on �� the �rst implication is immediate from the de�nitions and the second one follows
from Theorem ���� We prove the implication � 
 �� Fix x � � and let fBigk� be an
associated chain� for 	 � �� and r � d�x��c��	� We de�ne Bk�� � B�x� d�x��c�����
If the radii of the balls Bi were to increase geometrically when i decreases we would
obtain the John curve simply by joining the centers of the balls in our chain by curves
obtained from the local connectivity condition� However� this need not be the case�
This di�culty can be recti�ed as follows�

If the entire chain is contained in B�x� Cd�x��c��� the bounded overlap condition
for the chain and the doubling property imply that the length of the subchain �i�e�� the
number of balls� joining the boundary of Bk�� to x� does not exceed a uniform constant
that depends on the doubling constant� the constants in the chain condition and on
C� The above connect�the�dots argument applies in this case� Otherwise� we consider
the subchain joining Bk�� to �B�x� Cd�x��c��� Again� the length of this subchain is
bounded by a uniform constant and the radii are bounded from below by a multiple
of d�x��c�� Pick a point y� with d�y�� x� � Cd�x��c� that is contained in one of the
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balls of the subchain� If the constant C is su�ciently large� then d�y���
c� � �d�x��c��

Consider a chain joining y� to x�� We now repeat the above argument for the subchain
joining y� to �B�x� C�d�x��c��� By continuing inductively we obtain a new chain with
the appropriate geometric behavior� We leave it to the reader to provide the details�

��� Sobolev type inequalities

In the main theorem of this section �Theorem ���� we show how the claims of Theo�
rem ��� and Theorem ��� extend to the setting of John domains�

The study of the Sobolev type inequalities in John domains in IRn originated in the
papers of Boman� ����� Bojarski� ����� Goldshtein and Reshetnyak� ����� Hurri� ������
Iwaniec and Nolder� ������ Kohn� ������ and Martio� ������ It was then generalized to the
Carnot	Carath
eodory spaces by Jerison� ������ and then to more general situations by
Franchi� Guti
errez and Wheeden� ����� Garofalo and Nhieu� ����� Haj�lasz and Koskela�
������ Lu ������ ������ Other related references include Buckley and Koskela� ����� �����
����� Buckley� Koskela and Lu� ����� ����� Chen and Li� ����� Chua� ����� Hurri�Syrj
anen�
������ Haj�lasz and Koskela� ������ Franchi� ����� Maheux and Salo��Coste� ������ Salo��
Coste� ������ Smith and Stegenga� ������ ������

Buckley and Koskela� ����� ����� showed that the class of John domains is nearly the
largest one for which one can prove the Sobolev�Poincar
e embedding theorem�

Theorem 
�
 Let X be a metric space equipped with a measure which is doubling on
a weak John domain � � X� Assume that the measure � satis�es the condition

��B�x� r�� � Cb

�
r

diam�

�s
���� �

whenever x � � and r � diam�� If the pair u� g satis�es a p�Poincar�e inequality ����
p � �� in �� then all the claims of Theorem ��
 hold with B and ��B replaced by ��
For example� we get that if � � p � s and the pair u� g has the truncation property�
then

inf
c�IR

�Z
�
ju� cjp� d�

���p�
� C�diam��

�Z
�
gp d�

���p
� ����

where p� � sp��s� p��

If in addition the space is connected and p � s � �� then the Trudinger inequality
holds in �� i�e�� Z

�
exp

	
C�j�j��sju� u�j
diam� kgkLs���


s��s���
d� � C� �

The constants C� C�� C� depend on p� s� �� CP � Cd� Cb and CJ only�
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Remarks� �� As follows from the proof� the above theorem actually holds for any
open set that satis�es the C���M� condition� �� We have stated explicitly only a
generalization of one part of Theorem ���� inequality ����� It is left to the reader to
formulate generalizations of the other cases� �� Observe that ju � u�j is replaced by
ju� cj and in�mum over c � IR is taken� This is necessary if p� � � as then we cannot
apply inequality ����

Proof� By Theorem ��� the domain � satis�es the chain condition for any given
	 � �� Thus we obtain inequality ���� with balls Bi as in the chain condition� in
particular with �Bi � B� The proofs of Theorem ��� and Theorem ��� give the claim�

Corollary 
�� Let X be a doubling space satisfying the assumptions of Lemma ����
Suppose that the measure � satis�es condition �	��� Then all the claims of Theorem ��

hold with the integrals of g taken over B instead of ��B� If in addition the space is
connected and s � �� then the Trudinger inequality ��
� holds with the integral of g
taken over B�

Remark� This corollary applies to the Carnot	Carath
eodory spaces� see Proposi�
tion �����

Proof� By Corollary ��� every ball is a John domain with a universal constant C
and hence we may apply Theorem ���� The proof is complete�

We have already mentioned that any bounded arc�wise connected set � � X is a
weak John domain� To illustrate this issue we state the following special case of the
above results�

Corollary 
�
 Let � � IRn be an arbitrary bounded domain� Assume that jB�x� r� �
�j � Crn� whenever x � � and r � diam�� Assume that u � W ��p���� � � p � n�
satis�es Z

��B
ju� uBj dx � Cr

Z
�B��

jruj dx �
whenever B � B�x� r�� x � � and r � diam�� Then the global Sobolev inequality�Z

�
ju� u�jp� dx

���p�
� C�diam��

�Z
�
jrujp dx

���p
holds� where p� � np��n� p��

Proof� Take X � �� The condition jB�x� r� � �j � Crn means that the space X
equipped with the Lebesgue measure and the Euclidean metric is doubling� Since
X � �� we conclude that � is a weak John domain and hence the claim follows from
Theorem ���� The proof is complete�

As the last application of the chain method we improve the so called representation
formula ����� The result below is a generalization and a simpli�cation of earlier results
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due to Capogna� Danielli and Garofalo� ����� Franchi� Lu and Wheeden� ����� ����� and
Franchi and Wheeden� �����

Theorem 
��� Assume that X is a metric space which is doubling on a weak John
domain � � X� If the pair u� g satis�es a p�Poincar�e inequality ���� p � �� in �� then
for almost every x � � we have the inequality

ju�x�� uB�
j � C

�X
j���

	Z
Aj�x���

g�y�pd�x� y�p

��B�x� d�x� y���
d��y�


��p
�

where Aj�x� � B�x� �j� n B�x� �j��� and B� � B�x�� dist �x���
c�������� x� � �� is a

�xed ball�

In particular when p � � we get

ju�x�� uB�
j � C

Z
�

g�y�d�x� y�

��B�x� d�x� y���
d��y� �

Proof of Theorem ��
�� By Theorem ��� the domain satis�es the C�	�M� condition
with 	 � �� Then we have

ju�x�� uB�
j � �

kX
i��

juBi
� uBi��

j

� C
kX
i��

ri

�Z
�Bi

gp d�
���p

�

Each ball �Bi is covered by a �nite number� say no more than l� of the annuli Aj�x��
Hence if �Bi � Aj�x� 
� � we get

rj

�Z
�Bi

gp d�
���p

� C
j�lX


�j�l

	Z
A��x���

gp�y�d�x� y�p

��B�x� d�x� y���
d��y�


��p
�

Now observe that the doubling condition and the bounded overlapping of the balls �Bi

implies that the number of balls �Bi with �Bi � Aj�x� 
� � is bounded by a constant
not depending on j� This easily implies the claim�

There are several related results when p � �� For the Euclidean case see Goldshtein
and Reshetnyak� ����� Martio� ����� and Haj�lasz and Koskela� ������ for the Carnot	
Carath
eodory case see Franchi� Lu and Wheeden� ����� Capogna� Danielli and Garofalo�
����� and for the case of doubling spaces see Franchi� Lu and Wheeden� ����� Franchi
and Wheeden� �����
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�
 Poincar�e inequality� examples

The purpose of this section is to illustrate the results obtained up to now in the paper�
we collect basic examples of pairs that satisfy p�Poincar
e inequalities�

We will pay particular attention to the validity of the truncation property� Recall
that this property is used to prove the Sobolev embedding in the borderline case with
the sharp exponent�

Two classes of examples� Carnot	Carath
eodory spaces and graphs� require a longer
presentation� and so we discuss them in Sections �� and ���

���� Riemannian manifolds�

The pair u� jruj� where u � Lip �IRn�� satis�es the ��Poincar
e inequality and hence all
the p�Poincar
e inequalities for � � p � �� Obviously the pair u� jruj also has the
truncation property�

This result extends to those Riemannian manifolds whose Ricci curvature is bounded
from below� LetM be a complete Riemannian manifold of dimension n� and let g denote
the Riemannian metric tensor� Denote the canonical measure on M by �� Assume that
the Ricci curvature is bounded from below i�e� Ric � �Kg for some K � �� Then the
Bishop	Gromov comparison theorem implies that

��B�x� �r�� � �n exp�
q
�n� ��K�r���B�x� r���

see Cheeger� Gromov and Taylor� ����� Moreover Buser�s inequality� ����� implies thatZ
B
ju� uBj d� � C�n� exp�

p
Kr�r

Z
B
jruj d��

This shows that for any R � � both the doubling property and the ��Poincar
e inequality
hold on all balls with radii less than R� If we assume that the Ricci curvature is
nonnegative �i�e� K � ��� then we can take R ��� Obviously� the pair of a Lipschitz
function and the length of its gradient has the truncation property in this setting as
well�

Thus the results of our paper imply that in the above setting� the Sobolev�Poincar
e
inequality holds� see Maheux and Salo��Coste� ����� and also Haj�lasz and Koskela�
������

An excellent introduction to the Buser inequality and the comparison theorems can
be found in Chavel�s book� �����

For related and earlier works on Poincar
e and Sobolev inequalities on manifolds
with a bound on the Ricci curvature see Chen and Li� ����� Gallot� ����� Kusuoka and
Stroock� ������ Li and Schoen� ������ Li and Yau� ������ Salo��Coste� ������ ������
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���� Upper gradients�

Let �X� d� �� be a metric space with a Borel measure� not necessarily doubling�

De�nition� We say that a Borel function g � �� ����� is an upper gradient on � of
another Borel function u � �� IR� if for every ��Lipschitz curve � � �a� b�� � we have

ju���b��� u���a��j �
Z b

a
g���t�� dt� ����

Note that g � � is an upper gradient of any Borel function u�

De�nition� We say that the space supports a p�Poincar�e inequality inequality on ��
� � p ��� if every pair u� g of a continuous function u and its upper gradient g on �
satis�es the p�Poincar
e inequality ��� in � �with some �xed constants CP � �� � � ���

If we say that the space supports a p�Poincar
e inequality� then we mean that above
� � X�

Since every recti�able curve admits an arc�length parametrization that makes the
curve ��Lipschitz� the class of ��Lipschitz curves coincides with the class of recti�able
curves modulo a parameter change�

It is necessary to assume that the function g is de�ned everywhere� as we require
the condition ���� for all recti�able curves� We refer the reader to Busemann� ����� or
V
ais
al
a� ����� Chapter ��� for more information on integration over recti�able curves�

The notions of an upper gradient and a space supporting a p�Poincar
e inequality
were introduced by Heinonen and Koskela� ������ and then applied and further devel�
oped by Bourdon and Pajot� ����� Cheeger� ����� Franchi� Haj�lasz and Koskela� �����
Heinonen and Koskela� ������ Kallunki and Shanmugalingam� ������ Koskela and Mac�
Manus� ������ Laakso� ������ Semmes� ������ Tyson� ������ and Shanmugalingam� ������

Notice that above we required the p�Poincar
e inequality for continuous functions
and their upper gradients� If X is su�ciently nice� say quasiconvex and each closed ball
inX is compact� then the p�Poincar
e inequality follows for any measurable function and
its upper gradient� In fact� it would in such a setting su�ce to assume the p�Poincar
e
inequality for Lipschitz functions and their upper gradients� For this see ������

Proposition ���� If u is a Lipschitz function on a Riemannian manifoldM � then any
measurable function g such that g � jruj everywhere is an upper gradient of u� On the
other hand� if g � Lp�M� is an upper gradient of u � Lp�M�� then u � W ��p�M� and
g � jruj almost everywhere�

Proof� The �rst part of the proposition is immediate� the second one follows from
the ACL characterization of the Sobolev space� see for example Ziemer� ����� Theo�
rem �������
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Remark� It is not true� in general� that any upper gradient g of u � C��M�
satis�es g � jruj a�e�� unless we assume that g is locally integrable� As an example
take u�x� � x on ��� ��� Let E � ��� �� be a Cantor set with positive length and set
g�x� � � if x � E� g�x� � � if x 
� E� One can then improve this example and even
obtain g �� everywhere�

Proposition ���� If u is a locally Lipschitz function de�ned on an open subset of a
metric space X� then the function jr�uj�x� � lim supy�x ju�x� � u�y�j�d�x� y� is an
upper gradient of u�

Remark� The proposition is no longer true if we only assume that u is continuous�
Indeed� if u is the familiar nondecreasing continuous function u � ��� �� � ��� �� such
that u��� � �� u��� � � and u is constant on connected components of the complement
of the Cantor set� then jr�u�x�j � � a�e� in ��� ���

Proof of the proposition� Let � � �a� b� � � be ��Lipschitz� The function u � � is
Lipschitz and hence di�erentiable a�e� It easily follows that j�u � ����t�j � jr�u���t��j
whenever u � � is di�erentiable at t� Hence

ju���b��� u���a��j �
Z b

a
j�u � ����t�j dt �

Z b

a
jr�u���t��j dt�

The proof is complete�

Theorem ���� Assume that the space X supports a p�Poincar�e inequality on �� Then
any pair u� g of a continuous function and its upper gradient on � has the truncation
property�

Proof� Let g be an upper gradient of a continuous function u� We have to prove a
family of p�Poincar
e inequalities for all the pairs vt�t� � g�ft��v�t�g� where v � 
�u � b�
�see the de�nition of the truncation property�� Since g is an upper gradient of each of
the functions v� we can assume that u � v� Thus it remains to prove the inequality

Z
B
jut�t� � ut�t�Bj d� � Cr

�Z
�B

gp�ft��u�t�g d�
���p

� ����

The following lemma is due to Semmes� ����� Lemma C����� For reader�s convenience
we recall the proof�

Lemma ���� Let g be an upper gradient of a continuous function u� Let � � t� �
t� ��� and let V be an arbitrary open set such that ft� � u � t�g � V � Then g�V is
an upper gradient of ut�t��

��



Proof� Let � be a curve as in the de�nition of the upper gradient� We have to prove
the analog of ���� for ut�t� and g�V � If either � is contained in V or � is contained in
X n ft� � u � t�g� the claim is very easy� In the general case the curve � splits into a
�nite number of parts� each of which is contained in V or in X n ft� � u � t�g and the
lemma follows by applying the preceding special cases to those pieces of ��

Now we can complete the proof of the theorem� Take t� � s� � s� � t�� Then
fs� � u � s�g � V � where V � ft� � u � t�g� Applying the p�Poincar
e inequality to
the pair us�s�� g�V and passing to the limit as s� � t�� s� � t� we obtain the desired
inequality� This completes the proof�

Theorem ���� is interesting provided we can �nd su�ciently many examples of non�
smooth metric spaces that support a p�Poincar
e inequality� The rest of Section �� is
devoted to the discussion of such examples�

���� Topological manifolds�

De�nition� A metric space X is called Q�regular� Q � � if it is complete metric space
and there is a measure � on X so that C�r

Q � ��B�x� r�� � C�r
Q whenever x � X and

r � diamX�

It is well known that one can replace � in the above de�nition by the Q�dimensional
Hausdor� measure� see for example ����� Lemma C����

Semmes� ������ proved a p�Poincar
e inequality on a large class of Q�regular metric
spaces including some topological manifolds�

The following result is a direct consequence of a more general result of Semmes�
������

Theorem ���� Let X be a connected Q�regular metric space that is also orientable
topological Q�dimensional manifold� Q � �� integer� Assume that X satis�es the local
linear contractibility condition� there is C � � so that� for each x � X and R �
C��diamX� the ball B�x�R� can be contracted to a point inside B�x� CR�� Then the
space supports a ��Poincar�e inequality�

For related inequalities also see� David and Semmes� ����� and Semmes� ������

���� Gluing and related constructions�

Heinonen and Koskela� ����� Theorem ������ proved that gluing two spaces that support
a p�Poincar
e inequality along a su�ciently large common part results in a new space
that also supports a p�Poincar
e inequality� For example� one can glue two copies of the
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unit ball of IR� along the usual �
	
�Cantor set and the resulting doubling space supports

a p�Poincar
e inequality for all p � �� log �
log 	

� This procedure allows one to build plethora

of examples� Hanson and Heinonen� ������ used this type of a construction recently to
build a space that supports the ��Poincar
e inequality but has no manifold points�

Laakso� ������ constructed recently for each Q � � a Q�regular metric space that
supports the ��Poincar
e inequality� Notice that here Q need not be an integer� These
spaces do not admit bi�Lipschitz imbeddings into any Euclidean space� They are ob�
tained as quotients by �nite to one maps of products of intervals with Cantor sets�

The �rst authors to �nd non�integer dimensional Q�regular spaces that support a
Poincar
e inequality were Bourdon and Pajot� ����� Their examples are boundaries of
certain hyperbolic buildings�

���� Further examples�

A huge class of examples of spaces that support p�Poincar
e inequalities is contained
in the class of so�called Carnot	Carath
eodory spaces that are discussed in Section ���
This class includes the Carnot groups that have been mentioned above�

One can also investigate p�Poincar
e inequalities on graphs� see Section ��� Here the
situation is however di�erent� Since the space is disconnected� the notion of an upper
gradient is absurd� Moreover� the truncation property does not hold and it has to be
modi�ed�

There are also many other examples that will not be discussed in the paper� The
main class of such examples is given by Poincar
e inequalities on Dirichlet spaces�
Roughly speaking we are given a pair u� g satisfying a p�Poincar
e inequality on a dou�
bling space and in addition g is related to u in terms of a Dirichlet form� see Biroli
and Mosco� ���� ���� ����� Jost� ������ ������ ������ Sturm� ������ ������ ������ ������ Thus
this example �ts precisely into the setting of our paper� However� the presence of the
Dirichlet form gives additional structure that may lead to results not under the scope
of our more general setting�

The analysis of Dirichlet forms is closely related to the analysis on fractals and
especially with the spectral theory of the Laplace operators� see� e�g�� Barlow and Bass�
���� Jonsson� ������ Kozlov� ������ Kigami� ������ ������ ������ Kigami and Lapidus� ������
Lapidus� ������ ������ Metz and Sturm� ������ Mosco� ������ As it follows form a recent
work of Jonsson� ������ the spectral theory of the Laplace operators on fractals is also
related to the theory of function spaces on fractal subsets of IRn developed by Jonsson
and Wallin� ������ ������ see also Triebel� ������ Some connections with the theory
presented in this paper seem evident� but a better understanding of those connections
is still lacking�
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�� Carnot�Carath�eodory spaces

In this section we give an introduction to the analysis of vector �elds % one of the
main areas where the theory of Sobolev spaces on metric spaces is applicable�

In the �rst subsection we de�ne the so called Carnot	Carath
eodory metric associ�
ated with a family of vector �elds X � �X�� � � � � Xk�� Then� in the second subsection�
we prove that with respect to this metric the  gradient! jXuj associated with the given
family of vector �elds becomes the smallest upper gradient of u� We also deal with
Poincar
e inequalities and Sobolev spaces associated with the given system of vector
�elds�

The main novelty in our approach is that we develop the analysis on Carnot	
Carath
eodory spaces from the point of view of upper gradients� The prime results
of the section are Theorem ���� and Theorem ������

In the last three subsections we consider Carnot groups and vector �elds satisfy�
ing H
ormander�s condition % both are examples where pairs u� jXuj satisfy such a
Poincar
e inequality� We also discuss some other classes of vector �elds that do not
satisfy H
ormander�s condition� but still support Poincar
e inequalities�

���� Carnot	Carath
eodory metric�

Let � � IRn be an open and connected set and let X�� X��� � � �Xk be vector �elds
de�ned in �� with real locally Lipschitz continuous coe�cients� We identify the Xj�s
with the �rst order di�erential operators that act on u � Lip ��� by the formula

Xju�x� � hXj�x��ru�x�i� j � �� �� � � � � k�

We set Xu � �X�u� � � � � Xku�� and hence

jXu�x�j �
�� kX
j��

jXju�x�j�
�A��� �

With such a family of vector �elds one can associate a suitable degenerate elliptic
operator� like for example L � �Pk

j��X
�
jXj� where X

�
j is the formal adjoint of Xj in

L� i�e��
R
Xju v �

R
uX�

j v for all u� v � C�
� � Both the Poincar
e and Sobolev inequalities

for the pair u� jXuj are crucial then for the Harnack inequality for positive solutions
to Lu � � via Moser�s iteration� Since the Poincar
e inequality implies the Sobolev
inequality� one needs only check the validity of a Poincar
e inequality� Of course this
requires strong restrictions on the class of vector �elds�

Even if one is concerned with degenerate elliptic equations of the divergence form

Lu�x� � div �A�x�ru�x�� ����
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with a symmetric� nonnegative semi�de�nite matrix A with smooth coe�cients� it is�
in general� necessary to deal with vector �elds that have only Lipschitz coe�cients as
they arise in the factorization L � �PjX

�
jXj� see Oleinik and Radkevic� ������

For more applications to PDE and references� see Section ���

How does one prove a Poincar
e inequality for the pair u� jXuj� The natural approach
is to bound u by integrals of jXuj along curves and then average the resulting one�
dimensional integrals to obtain the desired Poincar
e inequality�

In order to have such bounds for u in terms of integrals of jXuj� one would like to
know that jXuj is an upper gradient of u� Unfortunately this is rarely the case�

For example� if we have only the single vector �eld X� � ���x� and ��t� � ��� t��
u�x�� x�� � x� in IR�� then ju������ � u������j � �� while jXuj � �� and so jXuj is
not an upper gradient of u� It is not an upper gradient even up to a constant factor�
Roughly speaking� the problem is caused by the fact that &� is not spanned by the Xj�s�

There is a brilliant idea that allows one to avoid this problem by introducing a new
metric �that is described below� in � that makes jXuj an upper gradient of u on a new
metric space� The metric is such that it restricts the class of ��Lipschitz curves to those
for which &� is a linear combination of the Xj�s� To be more precise� it is not always a
metric as it allows the distance to be in�nite�

We say that an absolutely continuous curve � � �a� b� � � is admissible if there
exist measurable functions cj�t�� a � t � b� satisfying

Pk
j�� cj�t�

� � � and &��t� �Pk
j�� cj�t�Xj���t���

Note that if the vector �elds are not linearly independent at a point� then the
coe�cients cj are not unique�

Then we de�ne the distance ��x� y� between x� y � � as the in�mum of those T � �
such that there exists an admissible curve � � ��� T �� � with ���� � x and ��T � � y�

If there is no admissible curve that joins x and y� then we set ��x� y� ���

Note that the space ��� �� splits into a �possibly in�nite� family of metric spaces
� �

S
i�I Ai� where x� y � Ai if and only if x and y can be connected by an admissible

curve� Obviously �Ai� �� is a metric space and the distance between distinct Ai�s is
in�nite�

If we only have the single vector �eld X� � ���x� in IR�� then ��x� y� � jx� yj if x
and y lie on a line parallel to the x� axis� otherwise ��x� y� � �� On the other hand�
if Xj � ���xj for j � �� �� � � � � n in IRn� then � is the Euclidean metric�

The distance function � is given many names in the literature� We will use the
name Carnot�Carath�eodory distance� A space equipped with the Carnot	Carath
eodory
distance is called a Carnot�Carath�eodory space�
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There are several other equivalent de�nitions for the Carnot	Carath
eodory distance�
see� e�g�� Jerison and Sanchez�Calle� ����� and Nagel� Stein and Wainger� ������ The
Carnot	Carath
eodory distance can also be de�ned for Dirichlet forms� see Sturm� ������

It has already been mentioned that Lipschitz vector �elds arise in connection with
degenerate elliptic equations of the divergence form ����� It seems that Fe�erman and
Phong� ����� where the �rst to realize that many important properties of the operator
can be read o� from the properties of the associated Carnot	Carath
eodory metric�
Roughly speaking� they proved that� locally� subellipticity of ���� is equivalent to the
estimate ��x� y� � Cjx� yj� for some 
 � ��

Other connections with degenerate elliptic equations will be discussed later on
in Section ��� We want to emphasize that the scope of applications of the Carnot	
Carath
eodory geometry goes far beyond degenerate elliptic equations and it includes
control theory� CR geometry� and more recently quasiconformal mappings� We refer the
reader to the collection ����� of papers for a comprehensive introduction to the Carnot	
Carath
eodory geometry� Other important references include� Franchi� ����� Franchi and
Lanconelli� ����� Garofalo and Nhieu� ����� ����� Gole and Karidi� ����� Karidi� ������ Liu
and Sussman� ������ Nagel� Stein and Wainger� ������ Pansu� ������ Salo��Coste� ������
������ Strichartz� ������ Varopoulos� Salo��Coste and Coulhon� ������ to name a few�

Lemma ���� Let B�x�R� �� � and let supB�x�R� jXj � M � If � � ��� T � � ��
T � R�M � is an admissible curve with ���� � x� then ����� T �� � B�x�R��

Proof� Assume by contradiction that the image of � is not contained in the ball B�x�R��
Then there is the smallest t� � ��� T � such that jx � ��t��j � R� Note that by the
Schwartz inequality j &��t�j � jX���t��j� Hence

R � jx� ��t��j �
����Z t�

�
&��t� dt

���� � Z t�

�
jX���t��j dt �MT�

which contradicts the assumption T � R�M � The proof is complete�

As as a corollary we obtain the following well known result�

Proposition ���� Let G �� �� Then there is a constant C � � such that

��x� y� � Cjx� yj�
for all x� y � G�

Proof� Let x� y � G and let � � ��� T �� �� ���� � x� ��T � � y� be any admissible curve�
Fix 
 � � such that G� � fx � IRn � dist �x�G� � 
g �� � and set M � supG� jXj�
Obviously B�x�R� � G�� when R � minfjx � yj� 
g� and hence Lemma ���� implies
that T � R�M � minfM��� 
�MdiamG���gjx� yj� This completes the proof�
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If ��x� y� � � for all x� y � �� then � is a true metric �called the Carnot�
Carath�eodory metric�� Proposition ���� implies that id � ��� ��� ��� j 	 j� is continuous�
However� it need not be a homeomorphism as the simple example of the two vector
�elds �x and x��y in IR� shows�

In order to avoid such pathological situations� it is often assumed in the literature
that

id � ��� ��� ��� j 	 j� is a homeomorphism� ����

Fortunately� ���� is true for a large class of vector �elds satisfying the so�called
H
ormander condition which includes Carnot groups �see the following subsections��
and the case of Grushin type vector �elds like those in Franchi� ����� Franchi� Guti
errez
and Wheeden� ����� and Franchi and Lanconelli� �����

To keep the generality we do not assume ���� unless it is explicitly stated�

By a Lipschitz function on � we mean Lipschitz continuity with respect to the
Euclidean metric in �� but when we say that a function is Lipschitz on ��� �� we mean
Lipschitz with respect to the distance �� The same convention extends to functions
with values in � or in ��� ��� Functions that are Lipschitz with respect to � will be also
called metric Lipschitz� Balls with respect to � will be called metric balls and denoted
by eB�

Lemma ���� Every admissible curve � � ��� T �� � is Lipschitz�

Proof� Use the Schwartz inequality�

Proposition ���� A mapping � � ��� T �� ��� �� is an admissible curve if and only if
it is ��Lipschitz i�e�� ����b�� ��a�� � jb� aj for all a� b�

Proof� 
� This implication directly follows from the de�nition of ��

�� Let � � ��� T � � ��� �� be a ��Lipschitz curve� By Lemma ���� it is Lipschitz
with respect to the Euclidean metric on � and hence it is di�erentiable a�e� We have to
prove that � is admissible� Let t� � ��� T � be any point where � is di�erentiable� Since
����t� � 
�� ��t��� � 
 for 
 � �� there exists an admissible curve � � ��� 
 � �� � ��
���� � ��t��� ��
� �� � ��t� � 
� for any � � �� We haveZ ���

�
&��t� dt � ��t� � 
�� ��t�� � &��t��
� o�
��

By the de�nition of an admissible curve there are measurable functions cj�t� such thatP
j cj�t�

� � � and

&��t� �
kX

j��

cj�t�Xj���t��� �
kX

j��

cj�t�
�
Xj���t���Xj�����

�

��



�
kX

j��

cj�t�Xj���t��� � a�t��

Note that� by Proposition ����� Cj��t�� ����j � ����t�� ����� � t� provided 
 and � are
su�ciently small� Hence ja�t�j � jX���t�� � X������j � Ct� as the vector �elds have
locally Lipschitz coe�cients� Thus we conclude that

&��t�� � 
��
Z ���

�
&��t� dt�

o�
�




�

� �




kX
j��

	Z ���

�
cj�t� dt



Xj���t��� � 
��

Z ���

�
a�t� dt�

o�
�



�

Selecting suitable sequences 
l � � and �l � � we conclude that &��t�� �
P

j bjXj���t����P
j b
�
j � �� This completes the proof�

It is well known that any recti�able curve in a metric space admits an arc�
length parametrization� see ���� or ����� Chapter ��� This also holds for the Carnot	
Carath
eodory distance as a Carnot	Carath
eodory space splits into a family of metric
spaces such that each recti�able curve is entirely contained in one of these metric spaces�
Note also that the arc�length parametrization makes the curve ��Lipschitz and hence
admissible� This observation implies the following result�

Proposition ���� The Carnot�Carath�eodory distance between any two points equals
the in�mum of lengths �with respect to �� of curves that join those two points� If the
points cannot be connected by a recti�able curve� then their distance is in�nite�

���� Upper gradients and Sobolev spaces�

The following two results generalize Proposition �����

Proposition ���	 jXuj is an upper gradient of u � C���� on the space ��� ���

Proof� Let � � �a� b�� ��� �� be a ��Lipschitz curve� By Lemma ����� u � � is Lipschitz
and hence

ju���b��� u���a��j �
�����
Z b

a
hru���t��� &��t�i dt

����� �
Z b

a
jXu���t��j dt�

The inequality follows from the fact that � is admissible by Lemma ���� and from the
Schwartz inequality� The proof is complete�

Theorem ���
 Let � � g � L�loc��� be an upper gradient of a continuous function u
on ��� ��� Then the distributional derivatives Xju� j � �� �� � � � � k� are locally integrable
and jXuj � g a�e�
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The proof of the theorem is rather complicated and thus we �rst make some comments
and give applications and postpone the proof until the end of the subsection�

The proof is particularly easy if u � C���� and the vector �elds have C� smooth
coe�cients� We present it now as it may help to understand the proof for the general
case�

Since u is smooth� we do not have to worry about distributional derivatives and we
simply prove that g � jXuj a�e�

The set of the points where jXu�x�j � � is open� Since the desired inequality
holds trivially outside this set� we can assume that jXuj � � everywhere in �� Let
aj�x� � Xju�x��jXu�x�j and let � be any integral curve of the vector �eld Y �

P
j ajXj

i�e�� � � ��T� T �� �� &��t� �
P

j aj���t��Xj���t��� Obviously � is an admissible curve�
Thus � � ��T� T �� ��� �� is ��Lipschitz and hence

ju���t���� u���t���j �
Z t�

t�
g���t�� dt�

for any �T � t� � t� � T � On the other hand

ju���t���� u���t���j �
����Z t�

t�
hru���t��� &��t�i dt

���� � Z t�

t�
jXu���t��j dt�

This yields Z t�

t�
jXu���t��j dt �

Z t�

t�
g���t�� dt� ����

If the vector �eld Y were parallel to one of the coordinate axes� then ���� would imply
that g � jXuj a�e� on almost every line parallel to that axis and hence g � jXuj a�e�
in �� The general case can be reduced to the case of a vector �eld of parallel directions
by the recti�cation theorem� This is obvious if the vector �eld is C��smooth as it is
the usual requirement in the recti�cation theorem� see Arnold� ���� However the same
argument can be also used in the general Lipschitz case� A construction of the Lipschitz
recti�cation is provided in the proof of Theorem ���� �look for ' � G� ���

Now we give two applications of the theorem�

Note that if u is metric L�Lipschitz� then the constant function L is an upper
gradient of u� However� the function u need not be continuous with respect to the
Euclidean metric� even if the Carnot	Carath
eodory distance is a metric� This is easily
seen in the previously discussed example of �x and x��y in IR�� Thus� in order to
apply Theorem ���� to a metric L�Lipschitz function� we need to assume either that
the function is continuous with respect to the Euclidean metric or simply that ����
holds�

The following special case of Theorem ���� was proved by Franchi� Haj�lasz and
Koskela� ����� and in a slightly weaker form earlier by Chernikov and Vodop�yanov�
����� Franchi� Serapioni and Serra Cassano� ����� and Garofalo and Nhieu� �����
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Corollary ���� Assume that ���� holds� If u is metric L�Lipschitz� then the distri�
butional derivatives Xju� j � �� �� � � � � k� are represented by bounded functions and
jXuj � L a�e�

The following version of Meyers	Serrin�s theorem was discovered in its local form by
Friedrichs� ����� �cf� ����� Lemma �������� and later by Chernikov and Vodop�yanov�
���� Lemma ����� Franchi� Serapioni and Serra Cassano� ���� Proposition ������� ����
p� ���� and Garofalo and Nhieu� ���� Lemma �����

Since later on we will need estimates from the proof� rather than the statement
alone� we recall the proof following Friedrich�s argument�

Theorem ���
 Let X � �X�� X�� � � � � Xk� be a system of vector �elds with locally
Lipschitz coe�cients in � � IRn and let � � p � �� If u � Lp��� and �the distri�
butional derivative� Xu � Lp���� then there exists a sequence uk � C���� such that
kuk � ukLp��� � kXuk �XukLp��� � � as k ���

Proof� We will prove that if u has the compact support in �� then the standard molli�er
approximation is a desired approximating sequence� The general case follows then by
a partition of unity argument�

Let Y �x� �
Pn

j�� cj�x����xj � where the functions cj are locally Lipschitz� denote
one of Xj�s� Let ���x� � 
�n��x�
�� � � � � C�

� �Bn��� ����
R
� � �� be a standard

molli�er kernel� For a locally integrable function u we have

Y �u � ����x� �
nX
j��

Z
cj�x� y�

�u

�xj
�x� y����y� dy

�
nX
j��

Z
�cj�x�� cj�x� y��

�u

�xj
�x� y����y� dy

� �Y u� � ���x�
�

nX
j��

Z
�u�x� y�� u�x��

�

�yj

�
�cj�x�� cj�x� y�����y�

�
dy

� �Y u� � ���x� � A�u�x�� ����

where the integrals are understood in the sense of distributions� Note that����� ��yj
�
�cj�x�� cj�x� y�����y�

������ � CL�x� 
�
�n�Bn������ a�e��

where L�x� 
� is the Lipschitz constant of all cj�s on Bn�x� 
�� Hence

jA�u�x�j � CL�x� 
�
Z
Bn�x���

ju�y�� u�x�j dy� ����

��



If u � Lp��� has compact support in �� then it easily follows that kA�ukLp��� � �
as 
 � �� Indeed� it is obvious if u is continuous and in the general case we can
approximate u by compactly supported continuous functions in the Lp norm� If in
addition Y u � Lp���� then �Y u���� � Y u in Lp��� and hence by ����� Y �u����� Y u
in Lp���� The proof is complete�

The following result is a corollary of the above proof�

Proposition ����� Assume that ���� holds� Let u be metric L�Lipschitz in �� Then
the standard molli�er approximation converges to u uniformly on compact subsets of �
and

jX�u � ����x�j � L � jA�u�x�j�
where jA�uj � � as 
 � � uniformly on compact subsets of �� The above inequality
holds for all x � � of distance at least 
 to the boundary�

Proof� Condition ���� is used to guarantee that u is continuous with respect to the
Euclidean metric� which in turn together with ���� implies that jA�u�x�j converges
to zero uniformly on compact sets� By Corollary ����� jY uj � �� � L� for any Y �Pk

j�� cjXj with
P

j c
�
j � �� The desired inequality then results using ���� with the

following choice of the coe�cients� Fix an arbitrary point x� � �� If jX�u�����x��j � ��
then we are done� otherwise we take cj � Xj�u � ����x���jX�u � ����x��j� The proof is
complete�

The theorem below shows that� in a certain sense� the analysis of vector �elds
is determined by the associated Carnot	Carath
eodory metric� The result is also an
a�rmative answer to a question posed by Bruno Franchi�

Theorem ����� Let X and Y be two families of vector �elds with locally Lipschitz
coe�cients in � and such that ���� holds for the induced Carnot�Carath�eodory metrics
�X and �Y � Then the following conditions are equivalent�


� There exists a constant C � � such that C���X � �Y � C�X �

	� There exists a constant C � � such that C��jXuj � jY uj � CjXuj for all
u � C�����

Proof� �� 
 �� Note that if g is an upper gradient of u � C���� on ��� �X�� then
the equivalence of the metrics implies that Cg is an upper gradient of u on ��� �Y ��
This fact� Proposition ����� and Theorem ���� imply that jY uj � CjXuj� The opposite
inequality follows by the same argument�

�� 
 �� Fix x� y � �� and let u�z� � �X�x� z�� Let � � ��� T � � ��� �Y � be an
arbitrary ��Lipschitz curve such that ���� � x� ��T � � y�

��



Let u� � u��� be the standard molli�er approximation� By Proposition ����� jY u�j
is an upper gradient of u� on ��� �Y �� and hence� invoking Proposition ������ we get

�X�x� y�
����� ju����T ��� u�������j �

Z T

�
jY u����t��j dt

� C
Z T

�
jXu����t��j dt � CT � C

Z T

�
jA�u���t��j dt ����� CT�

Now it follows from the de�nition of �Y that �X � C�Y � The opposite inequality follows
by the same argument� The proof is complete�

Let us come back to the question posed at the beginning of the section� How does
one prove a Poincar
e inequality for the pair u� jXuj� The natural approach is to
bound the oscillation of u by integrals of jXuj over admissible curves % this can be
done as jXuj is an upper gradient of u� Then the Poincar
e inequality should follow by
averaging the resulting line integrals� Unfortunately� in general� this program is very
di�cult to handle� and it turns out that many additional assumptions on the vector
�elds are needed� One such a proof of a Poincar
e inequality will be presented later on
�see Theorem ������� Anyhow� if one succeeds in proving a Poincar
e inequality using
the above idea� the resulting inequality holds on metric balls�

Thus the Poincar
e inequality we should expect is

Z
eB ju� ueBj dx � CPr

�Z
� eB jXujp dx

���p
� ����

whenever � eB � � and u � C��� eB�� Here CP � �� � � �� � � p � �� are �xed
constants and� as usual� eB denotes a ball with respect to the Carnot	Carath
eodory
metric ��

Even if proving inequalities like ���� requires many assumptions on X� there are
su�ciently many important examples where ���� holds� Some of them will be discussed
in the following subsections�

Theorem ����� Assume that a system of locally Lipschitz vector �elds is such that
condition ���� is satis�ed� Fix � � �� CP � �� and � � p � �� Then the space
��� ��Hn� supports a p�Poincar�e inequality �with given � and CP � if and only if in�
equality ���� holds whenever � eB � � and u � C��� eB��

Proof� The left�to�right implication is easy to obtain as the function jXuj is an upper
gradient of u� for u � C����� If u � C��� eB�� then we can extend u from the ball
��� 
�� eB to a continuous function on �� next extending jXuj from the same ball to �
by� gives an upper gradient on � of the extension of u� Now applying the p�Poincar
e
inequality on �� � 
� eB to the extended pair and passing to the limit as 
 � � yields
�����

��



For the right�to�left implication we have to prove that� whenever g is an upper
gradient of a continuous function u� then

Z
eB ju� ueBj dx � CP r

�Z
� eB gp dx

���p
� ����

for all � eB � �� Fix a ball eB� We may assume that g � Lp�� eB�� otherwise the
inequality is obvious�

Since g is an upper gradient of u on �� eB� ��� Theorem ���� implies that jXuj � g
a�e� in � eB� Then� by Theorem ����� there is a sequence of functions uk � C��� eB�
such that kuk � uk

Lp�� eB� � kXuk � Xuk
Lp�� eB� � �� Thus� if we pass to the limit in

the inequality ���� applied to uk�s� we obtain the p�Poincar
e inequality for the pair u�
jXuj� This together with the estimate jXuj � g yields ����� The proof is complete�

There is an obvious way to de�ne a Sobolev space associated with a system of vector
�elds� Namely� we de�ne W ��p

X ���� � � p � �� as the set of those u � Lp��� such that
jXuj � Lp���� where Xu is de�ned in the sense of distributions� and we equip the space
with the norm kukLp��� � kXukLp��� under which W ��p

X ��� becomes a Banach space�

According to Theorem ����� when � � p ��� one can equivalently de�ne the space
as the completion of C���� in the above norm�

We will return to the construction of a Sobolev space associated with the system of
vector �elds in Section ���

Proof of Theorem 

��� Let Y �
Pk

j�� cjXj� where cj�s are arbitrarily chosen con�

stant coe�cients with
Pk

j�� c
�
j � ��

Let '�x� t� be the function uniquely de�ned by the conditions '�x� �� � x and
d
dt
'�x� t� � Y �'�x� t��� The properties of ' are collected in the following lemma� For

the proof� see Franchi� Serapioni and Serra Cassano� ���� p������ or Hartman� ������
Hille� ������

Lemma ����� If �� �� �� then there exists T � � such that ' � ��� ���T� �T �� ��
Moreover for every t � ���T� �T �� the mapping '�	� t� � �� � � is bi�Lipschitz onto
the image with the inverse '�	��t�� the mapping '�	� t� is di�erentiable a�e� and

�'i

�xj
�x� t� � �ij � aij�x� t��

where �ij is the Kronecker symbol and jaij�x� t�j � Cjtj� with a constant C which does
not depend neither on x � �� nor on t � ��T� T �� This implies that the Jacobian of '
satis�es

J��x� t� � � � eJ��x� t�� j eJ��x� t�j � Cjtj� ����

for the given range of x and t�

��



Let �� �� �� It su�ces to show that jXuj � g a�e� in ��� the theorem will follow then
by an exhaustion of the domain ��

De�ne the directional derivative of u in the direction of Y by the formula eY u�x� �
d
dt
jt��u�'�x� t���
The plan of the proof of the theorem is the following� In the �rst step we prove thateY u exists a�e� and that j eY uj � g a�e� In the second step we prove that eY u is actually

the distributional derivative and in the last step we show that� by an appropriate choice
of the cj�s� we get j eY uj � jXuj�

Step 
� We show that eY u exists a�e� and j eY uj � g a�e�

If Y �x� � �� then eY u�x� � �� and hence j eY u�x�j � g�x�� Thus it remains to prove
the inequality in the open set where Y 
� ��

Observe that the curves t �� '�x� t� are admissible� and hence� for ��T � t� � t� �
�T �

ju�'�x� t���� u�'�x� t���j �
Z t�

t�
g�'�x� t�� dt�

Thus� if for given x� the function t �� g�'�x� t�� is locally integrable� then the above
inequality implies that the function t �� u�'�x� t�� is absolutely continuous and

j eY u�'�x� t��j � ����� ddtu�'�x� t��
����� � g�'�x� t��� ����

for almost all t � ���T� �T ��
Fix x� � �� with Y �x�� 
� �� and let Bn���x�� �� be a su�ciently small ball contained

in the hyperplane perpendicular to Y �x��� For a moment restrict the domain of de�ni�
tion of ' to G � Bn���x�� ��� ��T� T �� The uniqueness theorem for ODE implies that
' is one�to�one on G� Moreover the properties of ' collected in Lemma ����� imply
that ' is Lipschitz on G and the Jacobian of ' � G � � satis�es C� � jJ�j � C� � �
on G provided � and T are su�ciently small �note that this is the Jacobian of a dif�
ferent mapping than that in ������ Hence jJ��'���z��j�� is bounded on '�G�� Note
that jJ��'���z��j�� is de�ned almost everywhere on '�G�� This follows from the
observation that if E � '�G�� jEj � �� then by the change of variables formula
� � jEj � R

����E� jJ�j and hence j'���E�j � �� The last observation implies also

that if we prove that some property holds for almost all �x� t� � Bn���x�� ��� ��T� T ��
then it is equivalent to say that the property holds for almost all z � '�G��

The set '�G� is open and it contains x�� Since we can cover the set where Y 
� �
with such '�G��s it remains to prove that j eY j � g a�e� in '�G��

In order to prove that for almost every z � '�G� the directional derivative eY u�z�
exists and satis�es j eY u�z�j � g�z�� it su�ces to prove that for almost every x �
Bn���x�� �� the function t �� g�'�x� t��� t � ��T� T � is integrable� and then the claim

��



follows from ����� The integrability follows immediately from the estimateZ
Bn���x����

Z T

�T
g�'�x� t�� dt dx �

Z
��G�

g�z�jJ��'���z��j�� dz � C
Z
��G�

g�z� dz ��

and the Fubini theorem� Thus we proved that j eY uj � g a�e� in '�G� and hence a�e� in
���

Step 	� Now we prove that eY u � Y u� where Y u is the distributional derivative
de�ned by its evaluation on � � C�

� ���� by the formula

hY u� �i � �
Z
uY �� � �

Z
uY ��

Z
u� divY�

In the proof we will need a stronger result than just the inequality j eY uj � g� Let
u��z� � �u�'�z� ���� u�z����� We claim that for every � � C�

� ����Z
u��z���z� dz ��

Z eY u�z���z� dz� ����

Since u� � eY u a�e� it su�ces to prove that� locally� the family fu�g����T is uniformly
integrable� Then the convergence ���� will follow from Proposition ����� According to
the Vall
ee Poussin theorem �see Theorem ������ it su�ces to prove that there exists a
convex function F � ������ ����� such that F ��� � �� F �x��x�� as x��� and
sup�

R
��G� F �ju�j� ��� where G was de�ned in the �rst step�

Since g � L��'�G��� then again by Vall
ee Poussin�s theorem there is a convex
function F with growth properties as above and such that

R
��G� F �g� ��� Now

ju��'�x� t��j � ���ju�'�x� t� ���� u�'�x� t��j � ���
Z t��

t
g�'�x� s�� ds�

Hence Jensen�s inequality implies

F �ju��'�x� t��j� � ���
Z t��

t
F
�
g�'�x� s��

�
ds�

and thusZ
Bn���x����

Z T

�T
F
�
ju��'�x� t��j

�
dt dx � ���

Z
Bn���x����

Z T

�T

Z t��

t
F
�
g�'�x� s��

�
ds dt dx

�
Z
Bn���x����

Z T��

�T
F
�
g�'�x� s��

�
ds dx�

Therefore

sup
����T

Z
��G�

F �ju��z�j� dz � sup
����T

Z
Bn���x����

Z T

�T
F
�
ju��'�x� t��j

�
jJ��x� t�j dt dx

� C
Z
Bn���x����

Z �T
�T

F �g�'�x� s�� ds dx ���

��



which yields desired uniform integrability� This completes the proof of �����

Now we proceed to prove that eY u � Y u� Fix an arbitrary x� � ��� Note that
Y u � Y �u� u�x���� and hence

jh eY u� Y u� �ij �
����Z eY u�� �u� u�x���Y �

����� Z
ju� u�x��j j�j jdivY j � I� � I��

First we prove that sup jh eY u� Y u� �ij � C�x�� 
� ��� where the supremum is taken
over all � � C�

� �B�x�� 
�� with k�k� � �� This inequality implies that eY u� Y u is a
signed Radon measure with total variation on Bn�x�� 
� equal to C�x�� 
��

In what follows we assume that � is compactly supported in Bn�x�� 
� with the
supremum norm no more than �� As Y has locally Lipschitz coe�cients� jdiv Y j is
locally bounded and hence

I� � C
n sup
Bn�x����

ju� u�x��j�

The estimates for I� are more di�cult to handle� In what follows we write u instead of
u� u�x�� and simply assume that u�x�� � �� We haveZ

u�x�Y ��x� dx � lim
t��

�

t

�Z
u�x���x� dx�

Z
u�x���'�x��t�� dx

�
� A�

The change of variables ex � '�x��t� together with ���� yieldsZ
u�x���'�x��t�� dx �

Z
u�'�ex� t����ex��� � eJ��ex� t�� dex�

and hence by ����

A � lim
t��

Z u�x�� u�'�x� t��

t
��x� dx� lim

t��

�

t

Z
u�'�x� t����x� eJ��x� t� dx

� �
Z eY u�x���x� dx� lim

t��

�

t

Z
u�'�x� t����x� eJ��x� t� dx�

Hence

I� �
����limt�� �t

Z
u�'�x� t����x� eJ��x� t� dx����

� C lim
t��

Z
Bn�x����

ju�'�x� t��j dx � C
n sup
Bn�x����

ju� u�x��j�

This and the estimate for I� yields that eY u � Y u is a signed Radon measure whose
total variation on Bn�x�� 
� is estimated from above by

j eY u� Y uj�Bn�x�� 
�� � C
n sup
B�x����

ju� u�x��j�

��



This in turn implies that the measure j eY u� Y uj is absolutely continuous with respect
to the Lebesgue measure� so eY u� Y u � L�loc� and then by the Lebesgue di�erentiation
theorem

j eY u�x��� Y u�x��j � lim
���

Z
Bn�x����

j eY u� Y uj � C lim
���

sup
Bn�x����

ju� u�x��j � �

for almost all x�� Thus eY u � Y u� and hence by Step �� jY uj � g a�e�

Step �� Repeating the above arguments for all the rational coe�cients cj� we con�
clude that there is a subset of �� of full measure such that for all rational cj�s withP

j c
�
j � � there is jPj cjXjuj � g at all points of the set� If jXuj � � at a given point�

then jXuj � g at the point� If jXuj 
� �� then approximating coe�cients ecj � Xju�jXuj
by rational coe�cients and passing to � with the accuracy of the approximation yields
jXuj � jPj ecjXjuj � g� The proof of the theorem is complete�

���� Carnot groups�

The aim of this subsection is to give a background on the so�called Carnot groups
which are prime examples of spaces that support the p�Poincar
e inequality for any
� � p ��� Carnot groups are special cases of Carnot	Carath
eodory spaces associated
with a system of vector �elds satisfying H
ormander�s condition that will be described
in the next subsection� For a more complete introduction to Carnot groups� see Folland
and Stein� ���� Chapter �� and also Heinonen ������

Before we provide the de�nition we need to collect some preliminary notions and
results�

Let g be a �nite dimensional real Lie algebra� We say that g is nilpotent of step
m if for some positive integer m� g�m� 
� f�g� g�m��� � f�g� where g��� � g and
g�j��� � �g� g�j��� A Lie algebra is called nilpotent if it is nilpotent of some step m� A
Lie group G is called nilpotent �of step m� if its Lie algebra is nilpotent �of step m��

Let V be the underlying vector space of the nilpotent Lie algebra g� De�ne the
polynomial mapping � � V � V � V by the Campbell	Hausdor� formula

X � Y �
�X
p��

����p��
p

X
ni�mi��
i���������p

�n� �m� � � � �� np �mp�
��

n�#m�# 	 	 	np#mp#

��adX�n��adY �m� � � � �adX�np�adY �mp��Y� ����

where �adA�B � �A�B�� We adopt here the convention that if mp � �� then the term
in the sum ends with � � � �adX�np��X� Note also that if mp � �� then the term in the
sum is zero�

��



The formal series on the right hand side of ���� is in fact a polynomial� because
the Lie algebra is nilpotent� One can check that the mapping de�nes a group struc�
ture on V with the Lie algebra g� Since connected and simply connected Lie groups
with isomorphic Lie algebras are isomorphic� we obtained a full description of simply
connected nilpotent Lie groups�

In what follows the group identity will be denoted by �� however for the group law
we use multiplicative notation� xy�

One can write formula ���� in the form

X � Y � X � Y �
�

�
�X� Y � � � � �

where the dots indicate terms of order greater than or equal to �� Note that the map
t �� tX is a one parameter subgroup of V � Hence the exponential map exp � g � V
is identity� Then one can �nd a basis in V so that in the induced coordinate system
the Jacobi matrix of the left multiplication by a � V is a lower triangular matrix with
ones on the diagonal� Thus the Jacobi determinant equals one� Hence the Lebesgue
measure is the left invariant Haar measure� The same argument applies to the right
multiplication� and so the Lebesgue measure is the bi�invariant Haar measure�

A Carnot group is a connected and simply connected Lie group G whose Lie algebra
g admits a strati�cation g � V��	 	 	�Vm� �V�� Vi� � Vi��� Vi � f�g for i � m� Obviously
a Carnot group is nilpotent� Moreover a Carnot group is nilpotent of step m if Vm 
� ��
Note that the basis of V� generates the whole Lie algebra g� Carnot groups are also
known as strati�ed groups�

Being nilpotent� Carnot group is di�eomorphic to IRn for some n�

Let X�� X�� � � � � Xk form a basis of V�� We identify X�� X��� � � �Xk with the left
invariant vector �elds�

The following result is due to Chow� ����� and Rashevsky� ������ For modern
proofs see Bella
(che� ���� Gromov� ����� Herman� ������ Nagel� Stein and Wainger� ������
Strichartz� ������ Varopoulos� Salo��Coste and Coulhon� ������

Proposition ����� The Carnot�Carath�eodory distance associated with the basis X��
X��� � � �Xk of V� is a metric i�e�� every two points of the Carnot group can be connected
by an admissible curve�

The aim of this subsection is to prove that a Carnot group with the above Carnot	
Carath
eodory metric supports the p�Poincar
e inequalities for all � � p � � �see
Theorem ������� This is a special case of Jerison�s result �see Theorem ������ that will
be described in the next subsection�

By G we will denote a Carnot group of step m and � will be the Carnot	
Carath
eodory metric associated with the basis X��� � � � Xk of V��

��



As the Carnot	Carath
eodory metric is not given in an explicit form it is quite
di�cult to handle it� Therefore it is convenient to introduce new distances that can be
de�ned explicitly and that are equivalent to the Carnot	Carath
eodory metric�

A Carnot group admits a one�parameter family of dilations that we next describe�

For X � Vi and r � � we set �rX � riX� This extends to a linear map that is an
automorphism of the Lie algebra g� This in turn induces an authomorphism of the Lie
group via the exponential map�

Observe that the metric � has the two important properties of being left invariant
and commutative with �r in the sense that ���rx� �ry� � r��x� y��

A continuous homogeneous norm on G is a continuous function j 	 j � G � �����
that satis�es �� jx��j � jxj� �� j�rxj � rjxj for all r � � and �� jxj � � if and only if
x � ��

One such homogeneous norm is given by jxj � ���� x��

Proposition ����� Let j 	 j be a continuous homogeneous norm� Then the following
results hold�


� There exist constants C�� C� � � such that C�kxk � jxj � C�kxk��m� for jxj � ��
Here k 	 k denotes a �xed Euclidean norm�

	� The distance ��x� y� � jx��yj is a quasimetric i�e�� it has all the properties of
metric but the triangle inequality that is replaced by a weaker condition� there is
a constant C � � such that for all x� y� z � G

��x� y� � C���x� z� � ��z� y��� ����

�� Balls B�x� r� � fy � ��x� y� � rg are the left translates of B��� r� by x� and
B��� r� � �rB��� ���

�� The number Q �
Pm

j�� j dimVj will be called the homogeneous dimension� It
satis�es j�r�E�j � rQjEj and hence jB�x� r�j � CrQ for all x � G and all r � ��
where jEj denotes the Lebesgue measure of the set E�

�� Any two continuous homogeneous norms are equivalent in the sense that if j 	 j�
is another continuous homogeneous norm on G� then there exist C�� C� � � such
that C�jxj� � jxj � C�jxj� for all x � G�

For a proof� see Folland and Stein� ���� Chapter ��� Anyway the proof is easy and it
could be regarded as a very good exercise�

In the literature the concept of a homogeneous norm is de�ned as above but with
the additional property of being C��smooth on G n f�g� This property is irrelevant to

��



us� Thus we delete it and add the adjective  continuous! to indicate that we do not
assume smoothness�

To give an explicit example of a continuous homogeneous norm note that any ele�
ment x � V can be represented as x �

Pm
j�� xj� where xj � Vj� Fix an Euclidean norm

k 	 k in V � Then

jxj �
mX
j��

kxjk��j�

is a continuous homogeneous norm on G �after identi�cation of G with V ��

The continuous homogeneous norm induced by the Carnot	Carath
eodory metric
x �� ���� x� satis�es ���� with C � �� For general continuous norms we only have
C � �� See also Hebisch and Sikora� ������ for a construction of a homogeneous norm
�i�e� smooth on G n f�g� with C � ��

Mitchell� ������ proved that the Hausdor� dimension of a Carnot group is equal to
its homogeneous dimension� see also ���� p� ����� This dimension� in general� is larger
than the Euclidean dimension of the underlying Euclidean space� This shows that the
Carnot	Carath
eodory geometry is pretty wild and the metric is not equivalent to any
Riemannian metric�

It is an exercise to show that inequality �� of the above proposition implies that for
every bounded domain � � G� there are constants C�� C� � � such that

C�kx� yk � ��x� y� � C�kx� yk��m� ����

whenever x� y � �� Note that inequality ���� along with Lemma ��� imply that every
two points can be connected by a geodesic % the shortest admissible curve�

So far we have not given any examples of the Carnot group� Let us �ll the gap right
now�

Example ����	 The most simple nontrivial example of a Carnot group is the Heisen�
berg group IH� � C� IR with the group law

�z� t� � �z�� t�� � �z � z�� t� t� � �Im zz���

The basis consisting of the left invariant vector �elds X� Y� Z� such that X��� � ���x�
Y ��� � ���y� T ��� � ���t� is given by

X �
�

�x
� �y

�

�t
� Y �

�

�y
� �x

�

�t
� T �

�

�t
�

Note that �X� Y � � ��T and all the other commutators are trivial� Thus the Lie
algebra is strati�ed� h � V� � V� with V� � spanfX� Y g and V� � spanfTg� The
Carnot	Carath
eodory metric is de�ned with respect to the vector �elds X� Y � The
group IH� is a nilpotent group of step � and its homogeneous dimension is �� The
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family of dilations is given by �r�z� t� � �rz� r�t� for r � �� Moreover the function
j�z� t�j � �t� � jzj����� is a homogeneous norm�

The following theorem states that a Carnot group supports a ��Poincar
e inequality�
This is a corollary of a much more general theorem of Jerison �see Theorem ������� For
completeness we provide a clever proof due to Varopoulos� ����� �see also ����� page
������

Proposition ����
 Any Carnot group equipped with the Lebesgue measure and the
Carnot�Carath�eodory metric supports a ��Poincar�e inequality�

Proof� Let G be a Carnot group with the Carnot	Carath
eodory metric that we denote
by �� Let u� g be a pair of a continuous function and its upper gradient� It su�ces to
prove that Z

B
ju�x�� uBj dx � Cr

Z
�B
g�x� dx ����

on every ball of radius r� Obviously we can assume that the ball B is centered at �� Set
jzj � ���� z� and let �z � ��� jzj� � G be a geodesic path that joins � with z� Observe
that s �� x�z�s� is the shortest path that joins x with xz� Hence

ju�x�� u�xz�j �
Z jzj

�
g�x�z�s�� ds�

This and the left invariance of the Lebesgue measure yieldsZ
B
ju�x�� uBj dx � �

jBj
Z
B

Z
B
ju�x�� u�y�j dy dx

�
�

jBj
Z
G

Z
G
�B�x��B�xz�ju�x�� u�xz�j dz dx

� �

jBj
Z
G

Z
G

Z jzj

�
�B�x��B�xz�g�x�z�s�� ds dx dz�

Invoking the right invariance of the Lebesgue measure we obtainZ
G
�B�x��B�xz�g�x�z�s�� dx �

Z
G
�B�z�s�����Bz���z�s����g��� d�

� ��B�z�
Z
�B
g��� d�� ����

Here we denote by Bh the right translation of B by h� The above inequality requires
some explanations� If the expression under the sign of the middle interval has a nonzero
value� then � � x�z�s� � yz���z�s� for some x� y � B� Hence z � x��y � �B� Thus
� � x�x��y�s� lies on a geodesic that joins x with y and so ��x� �� � ��y� �� � ��x� y��
which together with the triangle inequality implies � � �B and hence ���� follows� NowZ

B
ju�x�� uBj dx � �

jBj
Z
G

Z jzj

�
��B�z�

Z
�B
g��� d� ds dz

��



�
�

jBj
Z
�B

Z
�B
jzjg��� d� dz

� Cr
Z
�B
g��� d��

The proof is complete�

Remarks� �� The above proof easily generalizes to more general unimodular groups�
see ������ ����� page �����

�� Applying Theorem ��� to inequality ���� we conclude that the ball �B on the right
hand side can be replaced by B� and� moreover� the exponent on the left hand side can
be replaced by Q��Q� ��� where Q is the homogeneous dimension of the group� This
inequality in turn implies the isoperimetric inequality� Such an isoperimetric inequality
was proved �rst in the case of the Heisenberg group by Pansu� ������ and in the general
case of the Carnot groups by Varopoulos� ������

For a more complete treatment of Sobolev inequalities on Lie groups with the
Carnot	Carath
eodory metric� see Gromov� ����� and Varopoulos� Salo��Coste and Coul�
hon� ����� and also Folland ����� ����� Nhieu ������ ������

���� H�ormander condition�

De�nition� Let � � IRn be an open� connected set� and let X�� X��� � � �Xk be vector
�elds de�ned in a neighborhood of �� real valued� and C� smooth� We say that
these vector �elds satisfy H
ormander�s condition� provided there is an integer p such
that the family of commutators of X�� X�� � � � � Xk up to the length p i�e�� the family
of vector �elds X��� � � �Xk� �Xi� � Xi���� � � � �Xi� � �Xi� � �� � � � Xip�� � � ��� ij � �� �� � � � � k� span
the tangent space IRn at every point of ��

The de�nition easily extends to smooth manifolds� but for simplicity we will consider
the Euclidean space only�

As an example take the vector �elds X� � ���x�� X� � xk����x�� where k is
a positive integer� These two vector �elds do not span IR� along the line x� � ��
However X�� X� and commutators of the length k � � do�

Another example is given by vector �elds on a Carnot group� Namely� if G is a
Carnot group �see the previous subsection� with the strati�cation g � V�� � � �� Vm of
its Lie algebra� then the left invariant vector �elds associated with a basis of V� satisfy
H
ormander�s condition�

The above condition was used by H
ormander ������ in his celebrated work on hy�
poelliptic operators� see also Bony ����� Chemin and Xu ����� Fe�erman and S
anchez�
Calle ����� H
ormander and Melin ������ Jerison ������ Morbidelli ������ Nagel� Stein�
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and Wainger ������ Rothschild and Stein ������ S
anchez�Calle ������ Varopoulos� Salo��
Coste and Coulhon ������ Related references will also be given in Section ���

As usual� the Carnot	Carath
eodory distance associated with a family of vector �elds
satisfying H
ormander�s condition will be denoted by ��

The following result provides the full version of the theorem of Chow and
Raschevsky� whose special case was discussed earlier �see Proposition ������� For the
proof� see the references given there� In some more simple settings the theorem was
proved earlier by Carath
eodory� �����

Theorem ����� Let an open and connected set � � IRn and a system of vector �elds
satisfying H�ormander�s condition in � be given� Then any two points in � can be
connected by a piecewise smooth admissible curve� and hence the Carnot�Carath�eodory
distance is a metric�

Nagel� Stein and Wainger� ������ studied the geometry of Carnot	Carath
eodory spaces
in detail and� in particular� they gave a more quantitative version of Chow	Raschevsky�s
theorem� Let us quote some of their results�

In what follows )B�x� r� will denote a ball with respect to the metric ��

Theorem ����
 Let X�� � � � � Xk be a system of vector �elds satisfying H�ormander�s
condition as above� and let � be the associated Carnot�Carath�eodory metric� Then for
every compact set K � � there exist constants C� and C� such that

C�jx� yj � ��x� y� � C�jx� yj��p ����

for every x� y � K� Moreover there are r� � � and C � � such that

j )B�x� �r�j � Cj )B�x� r�j ����

whenever x � K and r � r��

Here� as usual� j )Bj denotes the Lebesgue measure� In the previous subsection we proved
the theorem in the special case of a Carnot group� The general case is however much
more di�cult� see also Gromov� ����� and Varopoulos� Salo��Coste and Coulhon� �����
Section IV���� Estimate ���� has been obtained independently by Lanconelli ������

Assume for a moment that � � IRn� If �� � IRn is bounded with respect to the
Euclidean metric� then by ���� it is also bounded with respect to �� However� if �� is
bounded with respect to �� then it need not be bounded with respect to the Euclidean
metric� Indeed� if one of the vector �elds is x�����x�� then the Carnot	Carath
eodory
distance to in�nity is �nite because of the rapid growth of the coe�cient� Hence� in
general� ���� holds only for r � r� for some su�ciently small r� and r� cannot be
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replaced with � diam 
��
��� even if diam 
��

�� ��� as was required for the measure in
the de�nition of doubling in ���

Proposition ����� is a special case of the following Poincar
e inequality of Jerison
������ see also Jerison and Sanchez	Calle� ������ and Lanconelli and Morbidelli� ������

Theorem ����� Let X�� � � � � Xk be a system of vector �elds satisfying H�ormander�s
condition in �� Then for every compact set K � � there are constants C � � and
r� � � such that for u � Lip � )B�Z


B
ju� u 
Bj dx � Cr

Z
� 
B
jXuj dx� ����

whenever )B is a ball centered at K with radius r � r��

In fact� Jerison proved the inequality with the L� norms on both sides� but the same
argument works with the L� norm� Then Jerison proved that one can replace the ball
� )B on the right hand side of ���� with )B� As we have already seen this can be done in
a much more general setting� see Section ��

���� Further generalizations

The results of the previous two subsections concern Poincar
e inequalities for smooth
vector �elds satisfying H
ormander�s condition� It is a di�cult problem to �nd a large
class of vector �elds with Lipschitz coe�cients such that the Poincar
e type inequalities
hold on the associated Carnot	Carath
eodory spaces� The lack of smoothness does not
permit one to use a H
ormander type condition� There are few results of that type�
see Franchi� ����� Franchi� Guti
errez and Wheeden� ����� Franchi and Serapioni� �����
Franchi and Lanconelli� ����� Jerison and Sanchez�Calle� ������ It seems that Franchi
and Lanconelli� ����� were the �rst to prove a Poincar
e type inequality for a Carnot	
Carath
eodory space� They probably also were the �rst to prove estimates of the type
as in Theorem ������

�� Graphs

Let G � �V�E� be a graph� where V is the vertex set and E the set of edges� We say
that x� y � V are neighbors if they are joined by an edge� we denote this by x � y�
Assume that the graph is connected in the sense that any two vertices can be connected
by a sequence of neighbors� We let the distance between two neighbors to be �� This
induces a geodesic metric on V that we denote by �� The graph is endowed with the
counting measure� the measure of a set E � V is simply the number V �E� of elements
of E� For a ball B � B�x� r� we use also the notation V �B� � V �x� r�� We say that G is
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locally uniformly �nite if d � supx�V d�x� ��� where d�x� is the number of neighbors
of x� The length of the gradient of a function u on V at a point x is

jrGuj�x� �
X
y	x

ju�y�� u�x�j�

Many graphs have the following two properties�

�� The counting measure is doubling i�e��

V �x� �r� � CdV �x� r��

for every x � V and r � ��

�� The p�Poincar
e inequality holds i�e�� there are constants C � � and � � � such
that

�

V �B�

X
x�B

ju�x�� uBj � CPr

	
�

V ��B�

X
x��B

jrGujp�x�

��p

� ����

for any ball B and any function u � V � IR�

Observe that the doubling condition implies that the graph is locally uniformly �nite�

The Euclidean� or more generally� the upper gradients have the truncation property�
Unfortunately the truncation property is no longer valid for the length of the gradient on
a graph� This is because� in general� jrGu

t�
t� j is not supported on the set ft� � u � t�g�

However� intuition suggests that jrGuj should still have properties similar to those of
a gradient with the truncation property�

If v � Lip �IRn� and p � �� then

�X
k���

jrv�k�k��jp �
�X

k���

jrvjp�f�k���v��kg � jrvjp ����

almost everywhere� It turns out that inequality ���� is satis�ed also by the length of
the gradient on a graph� More precisely we have the following estimate�

Lemma ���� Let G be locally uniformly �nite i�e�� d � supx�V d�x� ��� If v � V �
IR and p � �� then

�X
k���

���rGv
�k

�k��

���p �x� � C�p� d�jrGvjp�x�

for each x � V�

Proof� Fix x � V and let

vM�x� � maxfv�w� � ��w� x� � �g �
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vm�x� � minfv�w� � ��w� x� � �g �
Note that jrGvj�x� � jvM�x�� vm�x�j� Assume for simplicity that vm�x� � � �the case
vm�x� � � follows by the same argument�� Let j � ZZ be the least integer and i � ZZ

the largest integer such that

�j � vM�x� � vm�x� � �i�

We have

jvM�x�� vm�x�j � vM�x�� �j�� �
j��X

k�i��

��k�� � �k� � �i�� � vm�x��

Hence

jrGvjp�x� � C

��jvM�x�� �j��jp �
�� j��X
k�i��

�k

�Ap

� j�i�� � vm�x�jp
�A

� C

��jvM�x�� �j��jp � ��� ��p�
j��X

k�i��

�kp � j�i�� � vm�x�jp
�A

� C

�� �

dp
jrGv

�j

�j�� jp�x� �
�� ��p

dp

j��X
k�i��

jrGv
�k��

�k jp�x� � �

dp
jrGv

�i��

�i jp�x�
�A

� C�p�

dp

j��X
k�i

jrGv
�k��

�k jp�x�

�
C�p�

dp

�X
k���

jrGv
�k��

�k jp�x��

The proof is complete�

The inequality of the lemma is a good substitute for the truncation property� it
allows one to mimic the proofs of Theorems ��� and ���� We will generalize Corol�
lary ���� This result deals with sharp inequalities with integrals on the di�erent sides
of the inequality taken over the same domain� As pointed out in Section � a Poincar
e
inequality does not� in general� guarantee that one could use balls of the same size on
the di�erent sides of the inequality� We described a su�cient condition in terms of the
geometry of balls that� in particular� holds for the Carnot�Caratheodory metrics� As �
is a geodesic metric� it should come as no surprise that we can reduce the size of � in
���� down to ��

Theorem ���� Assume that the counting measure is doubling� and that for some con�
stants Cb � �� s � �

V �x� r�

V �x� r��
� Cb

�
r

r�

�s
whenever B�x� r� � B�x�� r��� Suppose that each function u � V � IR satis�es the
p�Poincar�e inequality ���� with a �xed p � ��
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� If � � p � s� then there is a constant C � � such that

	
�

V �B�

X
x�B

ju�x�� uBjsp��s�p�

�s�p��sp

� Cr

	
�

V �B�

X
x�B

jrGujp�x�

��p

����

for any ball B of radius r and any function u � V � IR�

	� If p � s � �� then there are constants C�� C� � � such that

�

V �B�

X
x�B

exp

	
C�V �B���sju�x�� uBj
�diamB�krGukLs�B�


s��s���
� C�

for any ball B of radius r and any function u � V � IR�

�� If p � s� then there is C � � such that

ju�x�� u�y�j � C��x� y���s�prs�pV �B����pkrGukLp�B� �

for all x� y � B� where B is an arbitrary ball of radius r� and for any function
u � V � IR�

The constants C� C�� C� depend on p� s� �� Cd� Cb and CP only�

Remark� If sp��s � p� � �� then we have to replace uB by uB�
in ����� where B� �

������B�

Proof� The proof involves arguments similar to those used in the previous sections�
so we sketch the main ideas only leaving details to the reader�

First of all� under the local �niteness of the graph� one may assume that r � ��� �as
for r � ��� we have a �nite collection of non�isometric balls only�� We follow the line of
ideas from Section �� Given a ball B�x�� r� and a point x � B�x�� r�� we join x to x� by
a chain x � x�� ���� xm of length less than r of vertices� If we trace along the chain for l
steps with l the least integer larger or equal to ��� then B�xl� ��� � B�x�� r�� Following
the chain towards x we may construct a chain B� � B�x�� r������� B�� ���� Bk � B�xl� ��
of balls as in the C���M� condition of Section �� Next�

ju�x�� uB�
j �

l��X
i��

ju�xi���� u�xi�j� juB�xl��� � u�xl�j�
k��X
i��

juBi��
� uBi

j

�
l��X
i��

jrGuj�xi� �
X

y�B�xl���

jrGuj�y�

� C
kX
i��

ri

�� �

V ��Bi�

X
y��Bi

jrGujp�y�
�A��p � ����

��



We employed here the observation that ju�xi���� u�xi�j � jrGuj�xi�� Inequality ����
is a good substitute for ����� ���� as jrGuj�y� equals to the product of the radius and
the Lp�average of jrGuj over the ball �B�y� �����

Now assume that p � s� Write sp��s� p� � p�� Using a version of Theorem ��� as
in Section � we conclude the weak type inequality

sup
t��

V �fx � B � ju�x�� uB�
j � tg�tp�

V �B�
� Crp

�

	
�

V �B�

X
x�B

jrGujp�x�

p��p

�

To obtain the desired strong type inequality one reasons as follows�

De�ne v
 as in the proof of Theorem ��� �with � replaced by B�� It su�ces to
prove suitable Lp� estimates for v� and v�� In what follows v denotes either v� or v��
We have

sup
t��

V fx � B � vt�t� � tgtp�
V �B�

� Crp
�

	
�

V �B�

X
x�B

jrGv
t�
t� jp


p��p
�

and hence

�

V �B�

X
x�B

vp
�

�x� �
�X

k���

�kp
�

V �fx � B � v�
k��

�k�� � �k��g�
V �B�

� Crp
�

�� �

V �B�

X
x�B

�X
k���

jrGv
�k��

�k�� jp�x�
�Ap��p

� Crp
�

	
�

V �B�

X
x�B

jrGvjp�x�

p��p

� Crp
�

	
�

V �B�

X
x�B

jrGujp�x�

p��p

�

If p � s� then the method described above provides us with a chains that are
su�ciently good to mimic the proof of Theorem ����

Once we have good chains also the H
older continuity with the same balls on both
sides follows when p � s�

The proof is complete�

Remarks� �� The doubling property �� and the Poincar
e inequality �� are very
important in the potential theory on graphs� Indeed� independently Delmotte� �����
����� Holopainen and Soardi� ������ and Rigoli� Salvatori and Vignati� ������ proved
that �� and �� imply the so�called Harnack inequality for p�harmonic functions� As
a consequence� they concluded a Liouville type theorem stating that every bounded
p�harmonic function on G is constant� Recall that u � V � IR is ��harmonic if it
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satis�es the mean value property� i�e�� u�x� � d�x���
P

y	x u�y� for all x � V � For a
de�nition of p�harmonic functions with p 
� �� see� e�g�� ������ The proof of the Harnack
inequality employs the Sobolev	Poincar
e inequality as it relies on the Moser iteration�
As we have already seen properties �� and �� imply the Sobolev	Poincar
e inequality�
Papers related to the Harnack inequalities on graphs include Chung� ����� Chung and
Yau� ����� Lawler� ������ Merkov� ������ Rigoli� Salvatori and Vignati� ������ Schinzel�
������ Zhou� ������

The Moser iteration was originally employed in the setting of elliptic and parabolic
equations� see the next section�

�� There are many examples of graphs for which both properties �� and �� are
satis�ed� A very nice example is given by a Cayley graph associated with a �nitely
generated group� We say that the group G is �nitely generated if there is a �nite set
f�igki�� such that every element g � G can be presented as a product g � ���i� 	 	 	��lil �

i � ��� Then the vertex set of the Cayley graph is the set of all elements of G and
two elements g�� g� � G are connected by an edge if g� � g��


�
i for some generator �i�

Thus we may look at �nitely generated groups as geometric objects� This point of view
has been intensively used after Milnor�s paper� ������

We say that the group is of polynomial growth if V �r� � CrC for all r � � and
some C � �� One of the most beautifully results in the area is due to Gromov ����� He
proved that the group is of polynomial growth if and only if it is virtually nilpotent�
and hence by the theorem of Bass� ���� V �r� � rd for some positive integer d�

Thus if the group is of polynomial growth� then it satis�es the doubling property ��
It is also known that it satis�es the ��Poincar
e inequality�

Proposition ���� If G is a �nitely generated group of polynomial growth V �r� � rd�
d positive integer� then there is a constant C � � such that

�

V �B�

X
x�B

ju�x�� uBj � Cr
�

V ��B�

X
x��B

jrGu�x�j

for every ball B � X�

The reader may prove the proposition as an easy exercise mimicing the proof of Theo�
rem ������

Other examples of graphs with properties �� and �� can be found in Holopainen
and Soardi� ������ Coulhon and Salo��Coste� ����� ����� Salo��Coste� ������

�� The analysis on graphs is also important in the study of open Riemannian man�
ifolds because� roughly speaking� one can associate with given manifold a graph with
similar global properties� This method of discretization of manifolds has been in active
use after the papers of Kanai� ������ and Mostow� ������ Related references include
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Auscher and Coulhon� ���� Coulhon ����� ����� ����� Coulhon and Salo��Coste� ����� �����
����� Chavel� ����� Coulhon� ����� Delmotte� ����� ����� Holopainen� ������ Holopainen
and Soardi� ������ ������ Soardi ������ Varopoulos� ������ and Varopoulos� Salo��Coste
and Coulhon� ������

�� Applications to P�D�E and nonlinear potential

theory

The results presented in the paper directly apply to the regularity theory of degen�
erate elliptic equations associated with vector �elds� Below we describe some of the
applications�

���� Admissible weights

Let A � �A�� � � � � Am� � IRn � IRm � IRm be a Carath
eodory function satisfying the
growth conditions

jA�x� ��j � C���x�j�jp��� A�x� �� 	 � � C���x�j�jp�
where � � p � �� C�� C� � � are �xed constants and � � � � L�loc�IR

n�� We will
denote by d� � � dx the measure with the density ��

Given A� we consider the equation

mX
j��

X�
j Aj�x�X�u� � � � � Xmu� � �� ����

where X � �X�� � � � � Xm� is a family of vector �elds with locally Lipschitz coe�cients
in IRn� Recall that X�

j denotes the formal adjoint of Xj� that is�
R
Xjuv �

R
uX�

j v for
all u� v � C�

� �

The theory of nonlinear equations of the type ����� especially when X is a system
of vector �elds satisfying H
ormander�s condition� is an area of intensive research� see�
e�g�� Buckley� Koskela and Lu� ����� Capogna� ����� Capogna� Danielli and Garofalo�
����� ����� Chernikov and Vodop�yanov� ����� Citti� ����� Citti and Di Fazio� ����� Citti�
Garofalo and Lanconelli� ����� Danielli� Garofalo and Nhieu� ����� Franchi� Guti
errez
and Wheeden� ����� Franchi and Lanconelli� ����� Franchi and Serapioni� ����� Garofalo
and Lanconelli� ����� Garofalo and Nhieu� ����� Haj�lasz and Strzelecki� ������ Jerison�
������ Jerison and Lee� ������ ������ Jost and Xu� ������ Lu� ������ ������ ������ Marchi�
������ Vodop�yanov and Markina� ������ Xu� ������ ������ Xu and Zuily� ������ The above
papers mostly deal with the nonlinear theory� References to the broad literature on the
linear theory can be found in these papers�
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Equation ���� is a generalization of the classical weighted p�harmonic equation�
Indeed� if X � r and A��� � ��x�j�jp��� we get the equation

div
�
��x�jrujp��ru

�
� ��

In what follows we assume that the condition ���� is satis�ed i�e� we assume that the
Carnot	Carath
eodory distance � is a metric such that the identity map is a homeo�
morphism between the Euclidean metric and ��

We call u a weak solution of ���� if

Z
IRn

mX
j��

Aj�x�Xu�Xj��x� dx � ��

for any � � C�
� �IRn�� We assume that the weak solution belongs to the weighted

Sobolev space W ��p
X �IRn� �� de�ned as the closure of C� functions in the norm

kuk��p�X�� �
�Z
IRn
ju�x�jp��x� dx

���p
�
�Z
IRn
jXu�x�jp��x� dx

���p
�

Already in the  classical! case i�e� when Xu � ru one has to put many additional
conditions on the weight � in order to have a reasonable theory�

The �rst condition concerns the de�nition of the Sobolev space� One needs the
so�called uniqueness condition which guarantees that the  gradient! X is well de�ned
in the Sobolev space associated to X� Later we will clarify this condition�

The regularity results for solutions to ����� like Harnack inequality and H
older
continuity� are usually obtained via the Moser iteration technique� For that the essential
assumptions are a doubling condition on �� �with respect to the Carnot	Carath
eodory
metric�� the Poincar
e inequality

�Z
eB ju� ueBjp d�

���p
� Cr

�Z
eB jXujp d�

���p
� ����

for all smooth functions u in a metric ball eB� and a Sobolev inequality�Z
eB jujq d�

���q
� Cr

�Z
eB jXujp d�

���p
� ����

with some q � p for all smooth functions u with compact support in a metric ball )B�

Given the above assumptions one can mimic the standard Moser iteration technique
replacing Euclidean balls by metric balls� This leads to the Harnack inequality which
states that if u is a positive solution to ���� on � eB� then

supeB u � C infeB u �

��



where the constant C does not depend on eB� Then the iteration of the Harnack
inequality implies that each weak solution to ���� is locally H
older continuous with
respect to � and hence % if the condition ���� is satis�ed % locally H
older continuous
with respect to the Euclidean metric�

The fact that the above conditions are essential for the Moser iteration was observed
�rst by Fabes� Kenig and Serapioni� ����� They considered the  classical! linear setting�
X � r� p � ��

It seems that Franchi and Lanconelli� ����� were the �rst to apply the Moser tech�
nique for the Carnot	Carath
eodory metric as above� Then the idea was extended
by many authors to more di�cult situations� see� e�g�� Capogna� Danielli and Garo�
falo� ����� Chernikov and Vodop�yanov� ����� Franchi� ����� Franchi and Lanconelli� �����
Franchi� Lu and Wheeden� ����� Franchi and Serapioni� ����� Jerison� ������ Lu� ������
There are moreover many other related papers�

Salo��Coste� ������ and Grigor�yan� ����� independently realized that in certain set�
tings� a Poincar
e inequality implies a Sobolev inequality and hence one can delete
assumption ���� as it follows from ����� This result was extended then to more general
situations by several authors� Biroli and Mosco� ���� Maheux and Salo��Coste� ������
Haj�lasz and Koskela� ������ Sturm� ������ Garofalo and Nhieu� �����

The result presented below �Theorem ����� is in the same spirit� This is a general�
ization of a result of Haj�lasz and Koskela� ������

The following de�nition is due to Heinonen� Kilpel
ainen and Martio� ������ when
X � r and due to Chernikov and Vodop�yanov� ����� in the case of general vector
�elds�

We say that � � L�loc�IR
n�� � � � a�e� is p�admissible� � � p � �� if the measure

de�ned by d� � ��x� dx satis�es the following four conditions�

�� �Doubling condition� ��� eB� � Cd�� eB� for all metric balls eB � IRn�

�� �Uniqueness condition� If � is an open subset of IRn and �i � C���� is a sequence
such that

R
� j�ijp d�� � and

R
� jX�i� vjp d�� �� where v � Lp���� then v � ��

�� �Sobolev inequality� There exists a constant k � � such that for all metric ballseB � IRn and all � � C�
� � eB�

�Z
eB j�jkp d�

���kp
� C�r

�Z
eB jX�jp d�

���p
�

�� �Poincar
e inequality� If eB � IRn is a metric ball and � � C�� eB�� thenZ
eB j�� �eBjp d� � C	r

p
Z
eB jX�jp d��

��



One can easily modify the above de�nition and consider vector �elds de�ned in an
open subset � of IRn with the estimates in the above conditions depending on compact
subsets of �� However for clarity we assume the global estimates� We do not care
to present various results in their most general form� We aim to present the method�
Various generalizations are then obvious�

The uniqueness condition guarantees that any function u � Lp�IRn� �� that belongs
to W ��p

X �IRn� �� has a uniquely de�ned gradient Xu as the limit of gradients Xuk of
smooth functions uk which converge to u in the Sobolev norm� If the uniqueness
condition were not true� then we would �nd uk � C� such that uk � � in Lp��� and
Xu� v 
� � in Lp���� Then the zero function would have at least two gradients � and
v i�e� ��� �� and ��� v� would be two distinct elements in W ��p

X �IRn� ���

Theorem ���� Let � � � � L�loc�IR
n� and let X be a system of vector �elds in IRn

satisfying condition ����� Then the weight � is p�admissible� � � p � �� if and
only if the measure � associated with � is doubling with respect to the metric � �i�e�
��� eB� � Cd�� eB� for all metric balls eB � IRn� and there exists � � � such thatZ

eB ju� ueBj d� � Cr
�Z

� eB jXujp d�
���p

�

whenever eB � IRn is a metric ball of radius r and u � C��� eB��

Proof� The necessity is obvious� Now we prove the su�ciency� First note that the
uniqueness of the gradient �� was recently proved by Franchi� Haj�lasz and Koskela� ����
Corollary ����

Next� by Corollary ���� we conclude the Sobolev	Poincar
e inequality�Z
eB j�� �eBjp� d�

���p�
� Cr

�Z
eB jX�jp d�

���p
�

for all � � C�� eB� with some p� � p �remember that the doubling condition implies
���� with s � log�Cd�� For our purpose the exact value of p� is irrelevant� It is only
important that p� � p� This and the H
older inequality implies the Poincar
e inequality
��

Now we are left with the Sobolev inequality �� Since p� � p we have p� � kp for
some k � �� For � � C�

� � eB� we have�Z
eB j�jkp d�

���kp
�
�Z
eB j�� �eBjkp d�

���kp
� j�eBj�

The Sobolev	Poincar
e inequality provides us with the desired estimate for the �rst
summand on the right hand side� Now it su�ces to estimate j�eBj� The Poincar
e

inequality applied to the ball eB gives�Z
eB j�� �eBjp d�

���p
� Cr

�Z
eB jX�jp d�

���p
� ����

��



and when applied to the ball � eB gives

�Z
eB j�� �

�eBjp d�
���p

�
�Z
�eB j�� �

�eBjp d�
���p

� C�r
�Z
�eB jX�jp d�

���p
� �Cr

�Z
eB jX�jp d�

���p
� ����

Thus 	
�� �� eB�

��� eB�


�Z
eB j�eBjp d�

���p
�

�Z
eB j�eB � �

�eBjp d�
���p

� �Cr
�Z
eB jX�jp d�

���p
�

In the proof of the equality we employ the fact that � is supported in eB and the inequal�
ity follows from the triangle inequality and inequalities ���� and ����� It follows from the
doubling property and the geometry of metric balls in IRn that ���� eB����� eB� � C � �
and hence

j�eBj � C �r
�Z
eB jX�jp d�

���p
�

The proof is complete�

���� Sobolev embedding for � � p � �

The classical Sobolev	Poincar
e inequality

�Z
B
ju� uBjp� dx

���p�
� C

�Z
B
jrujp

���p
�

holds when � � p � n� It is easy to see that it fails when � � p � �� and even a
weaker version of the Poincar
e inequality fails for the range � � p � �� For an explicit
example� see Buckley and Koskela� �����

However Buckley and Koskela� ����� and in a more general version Buckley� Koskela
and Lu� ����� proved that if u is a solution to the equation divA�x�Xu� � � in a John
domain with respect to the Carnot	Carath
eodory metric� then u satis�es a Sobolev	
Poincar
e inequality for any � � p � s� where s is given by condition �����

As we will see� one of the results of the paper� Theorem ���� which states that for
any � � p � s� a p�Poincar
e inequality implies a Sobolev	Poincar
e inequality� can be
regarded as an abstract version of the above result� In particular this gives a new proof
of the result of Buckley� Koskela and Lu�

More precisely� assume that X � �X�� � � � � Xm� are locally Lipschitz vector �elds in
IRn� Assume that the associated Carnot	Carath
eodory metric satis�es condition �����

��



the Lebesgue measure is doubling with respect to the Carnot	Carath
eodory distance
i�e� j� eBj � Cdj eBj for all metric balls eB � IRn� and that condition ���� is satis�ed�

In addition we assume that the ��Poincar
e inequality is satis�ed i�e� there is C � �
and � � � such that Z

eB ju� ueBj dx � CPr
Z
� eB jXuj dx �

for all metric balls eB � IRn and all u � C��� eB��

Let A � IRn � IRm � IRm be a Carath
eodory function such that

jA�x� ��j � C�j�jq��� A�x� �� 	 � � C�j�jq �

where � � q � � is given� �Observe that in contrast with the previous section we do
not allow the weight ���

The following result is a variant of the result of Buckley� Koskela and Lu� �����

Theorem ���� Let � � IRn be a John domain with respect to the Carnot�
Carath�eodory metric� Then for any � � p � s there is a constant C � � such that
if u is a solution to equation divA�x�Xu� � �� in �� then

inf
c�IR

�Z
�
ju� cjp� dx

���p�
� Cdiam�

�Z
�
jXujp

���p
�

The constant C depends on n� p� s� Cb� Cd� C�� C�� CP � and CJ only�

Proof� Let u be a solution to divA�x�Xu� � � in �� The �rst fact we need is that the
gradient jXuj of the solution u satis�es a weak reverse H
older inequality� This is well
known� However� for the sake of completeness� we provide a proof�

Given a metric ball eB� let �R be a cut�o� function such that � � �R � �� �RjeB � ��

�R � � outside � eB and jX�Rj � ��R� Using the distance function with respect to � we
easily construct a cut�o� function with the metric Lipschitz constant ��R� Then the
estimate jX�Rj � ��R follows from Corollary �����

Now taking a test function �u � u
�eB��R� where � eB � � is any metric ball and

�R is the associated cut�o� function� we conclude from a standard computation the
Caccioppoli estimate Z

eB jXujq � C

Rq

Z
�eB ju� u

�eBjq �
Then we estimate the right hand side by the Sobolev	Poincar
e inequality and conclude
that there is p � q such that for all metric balls eB with � eB �� �

�Z
B
jXujq dx

���q
� C

�Z
�eB jXujp dx

���p
� ����

��



This inequality is known under the name weak reverse H�older inequality�

It is well known that the weak reverse H
older inequality has the self�improving
property� if inequality ���� holds for some � � p � q and all eB with � eB � �� then for
any � � p � q there is a new constant C such that ���� holds for any eB with � eB � ��
see ���� Lemma ����� This together with the ��Poincar
e inequality shows that the pair
u� g satis�es a p�Poincar
e inequality in � for any p � �� Hence the claim follows from
Theorem ���� The proof is complete�

�� Appendix

Here we collect the results in the measure theory that are needed in the paper� All
the material is standard� Since we could not �nd a single reference that would cover
the material we need� we have made all the statements precise and sometimes we have
even given proofs� Good references are Federer� ����� Mattila� ������ and Simon� ������

In the appendix we do not assume that the measure � is doubling�

���� Measures�

Throughout the paper by a measure we mean an outer measure� and by a Borel measure�
an outer� Borel�regular measure i�e�� such a measure � on a metric space �X� d� that all
Borel sets are ��measurable and for every set A there exists a Borel set B such that
A � B and ��A� � ��B�� In the case of a Borel measure we also assume that the
measure of each ball is strictly positive and X �

S�
j�� Uj� where Uj are open sets with

��Uj� ���

Note that if the space X is locally compact� separable and ��K� � � for every
compact set K� then X can be written as a union of a countable family of open sets
with �nite measure�

Theorem ���� Suppose that � is a Borel measure on �X� d�� Then

��A� � inf
U�A

U�open

��U�

for all subsets A � X� and
��A� � sup

C�A
C�closed

��C�

for all measurable sets A � X�

For the proof� see ���� Theorem ������ and Section ������� ����� Theorem ����� or �����
Theorem �����
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If the space is locally compact and separable� the supremum over closed sets in the
above theorem equals to the supremum over compact sets�

As a corollary to the above theorem we obtain the following well known result�

Theorem ���� If � is a Borel measure on a metric space �X� d�� then for every � �
p ��� continuous functions are dense in Lp�X� ���

Proof� Simple functions are dense in Lp�X� ��� see ����� Theorem ������ so it su�ces to
prove that characteristic functions can be approximated by continuous functions� Fix

 � �� If A � X is measurable� ��A� � �� then there exists a closed set C and an
open set U such that C � A � U � ��U n C� � 
� Now by Urysohn�s lemma� there
exists a continuous function �� on X such that � � �� � �� ��jC � � and ��jXnU � ��
Then obviously k�A � ��kp � � as 
� �� This completes the proof�

In order to have a variaty of Borel measures one usually assumes that the space
be locally compact� In the de�nition of the doubling measure one does not assume
anything about the metric space� However� as we will see� the existence of a doubling
measure is such a strong condition that the space is  almost! locally compact�

We say that a subset A of a metric space �X� d� is an 
�net if for every x � X there
is y � A with d�x� y� � 
� A metric space �X� d� is called totally bounded if for each

 � � there exists a �nite 
�net�

The following two lemmas are well known�

Lemma ���� A metric space �X� d� is compact if and only if it is complete and totally
bounded�

Lemma ���� Every metric space is isometric to a dense subset of a complete metric
space�

The �rst lemma follows from a direct generalization of the proof that every bounded
sequence of real numbers contains a convergent subsequence� while the second lemma
follows by adding the  abstract limits! of Cauchy sequences to the space�

Theorem ���� If a metric space �X� d� admits a Borel measure � which is locally
uniformly positive in the sense that for every bounded set A � X and every 
 � �

inf
x�A

��B�x� 
�� � �� ����

then �X� d� is isometric to a dense subset of a locally compact separable metric space�

��



Proof� The fact that X is a union of countably many open sets of �nite measure and
���� imply that X can be covered by balls X �

S�
j��Bj with ���Bj� ���

According to Lemma ���� and Lemma ���� it su�ces to prove that for every j �
�� �� � � � and every 
 � � there is a �nite 
�net in Bj� This� however� easily follows from
���� and the condition ���Bj� ��� The proof is complete�

It is of fundamental importance to note that the doubling condition implies local
uniform positivity of the measure� as follows from the following result�

Lemma ���	 Let � be a Borel measure on a metric space X� Assume that � is dou�
bling� in the following sense� on a bounded subset Y � X� there is a constant Cd � �
such that

��B�x� �r�� � Cd��B�x� r���

whenever x � Y � and r � diamY � Then

��B�x� r�� � �� diamY ��s��Y �rs�

for s � log�Cd� x � Y and r � diamY �

The above lemma together with Theorem ���� shows that doubling spaces are isometric
to dense subsets of locally compact separable metric spaces� The anologous result holds
also when the measure is doubling on some open set only� Note that a doubling measure
is �nite on bounded sets�

The above remark together with the following result shows that a doubling measure
can be extended to a doubling measure on the larger locally compact space�

Proposition ���
 Let Y � X be a dense subset of a metric space �X� d�� Let � be
a Borel measure on �Y� d�� �nite on bounded sets� Then there exists a unique Borel
measure *� on �X� d� such that

*��U� � ��U � Y �

for every open set U � X� Moreover� if � is doubling on �Y� d�� then *� is doubling on
�X� d� with the same doubling constant�

Proof� Set *��A� � infB�A� B�Borel ��B � Y � for an arbitrary set A � X� One easily
veri�es that *� is a Borel measure on �X� d�� This proves the existence of the measure�
The uniqueness follows form Theorem �����

Assume now that � is doubling� Then obviously *� is doubling with the same
doubling constant on all balls centered at Y � Since any ball inX can be  approximated!
by balls centered at Y � the result follows�
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Remark� If we removed the assumption that � be �nite on bounded sets� Y would
still have the property Y �

S�
j�� Uj� where the sets Uj are open with ��Uj� � ��

However then this property would not necessarily be true for *�� For example� let Y be
the complement of a Cantor set in ��� ��� and X � ��� ��� Then Y consists of countable
many intervals� Equip Y with a measure so that the measure of each of the intervals
is �� Then X cannot be decomposed into a countable number of open sets with �nite
*��measure�

���� Uniform integrability�

In this section � is an arbitrary measure on a set X�

Assume that ��X� � �� We say that a family fu�g��I of ��measurable functions
on X is uniformly integrable if

lim
	�A���

sup
��I

Z
A
ju�j d� � ��

The following theorem is due to Vall
ee Poussin� For a proof� see Dellacherie and Meyer�
����� or Rao and Ren� ������

Theorem ���� Let � be a measure on a set X with ��X� � � and let fu�g��I be a
family of ��measurable functions� Then the following two conditions are equivalent�


� The family fu�g��I is uniformly integrable�

	� There exists a convex smooth function F � ����� � ����� such that F ��� � ��
F �x��x�� as x�� and

sup
��I

Z
X
F �ju�j� d� ���

The following well known result is a very useful criteria for convergence in L��

Proposition ���
 Let ��X� � �� If un are uniformly integrable on X and un � u
a�e�� then

R
X jun � uj d�� ��

Proof� It follows directly from Egorov�s theorem and the de�nition of uniform inte�
grability that the sequence un is a Cauchy sequence in the L� norm� and hence un
converges to u in L�� The proof is complete�
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���� Lp and Lp
w
spaces�

In the following two theorems � is an arbitrary ���nite measure on X� The �rst result
is known as Cavalieri�s principle�

Theorem ����� If p � � and u is measurable� thenZ
X
jujp d� � p

Z �

�
tp����juj � t� dt�

The claim follows from Fubini�s theorem applied to X � ������

We say that a measurable function u belongs to the Marcinkiewicz space Lp
w�X� if

there is m � � such that

��juj � t� � mt�p for all t � �� ����

If u � Lp�X�� then ���� with m �
R
X jujp d� is known as Chebyschev�s inequality� so

Lp�X� � Lp
w�X�� The converse inclusion does not hold� However� the following� well

known result holds�

Theorem ����� If ��X� � � then Lp
w�X� � Lq�X� for all � � q � p� Moreover� if

u satis�es ��
�� then

kukLq�X� � ���q
	

qm

p� q


��p
��X���q���p� ����

Proof� Fix t� � �� Using Theorem ����� and the estimates ��juj � t� � ��X� for
t � t� and ��juj � t� � mt�p for t � t� we getZ

X
jujq d� � q

�Z t�

�
tq����X� dt�m

Z �

t�
tq�p�� dt

�
� tq���X� �

qm

p� q
tq�p� �

Then inequality ���� follows by choosing t� � �qm��p� q����p��X����p�

���� Covering lemma�

Theorem ����� ��r�covering lemma�� Let B be a family of balls in a metric space
�X� d� with supfdiamB � B � Bg ��� Then there is a pairwise disjoint subcollection
B� � B such that �

B�B

B � �
B�B�

�B

If �X� d� is separable� then B� is countable and we can represent B� as a sequence
B� � fBig�i��� and so �

B�B

B �
��
i��

�Bi�

��



See Federer� ���� ��������� Simon� ����� Theorem ����� or Ziemer� ����� Theorem ������
for a clever proof�

���� Maximal function�

Assume that the measure � is doubling on an open set � � X� The following theorem
is a version of the well known maximal theorem of Hardy� Littlewood and Wiener�

Theorem ����� �Maximal theorem�� If X� � and � are as above� and the maximal
function M�u is de�ned as in the introduction� then


� ��fx � � � M�u�x� � tg� � Ct��
R
� juj d� for t � � and

	� kM�ukLp��� � CkukLp��� for � � p � ��

In the �rst inequality the constant C depends on Cd only� while in the second one it
depends on Cd and p�

For a proof in the case of Lebesgue measure� see Stein� ����� Chapter ��� We assume that
the reader is familiar with that proof and we show how to modify the argument in order
to cover our setting� It su�ces to prove ��� one then proceeds as in ������ Inequality ��
would follow from this inequality for the restricted maximal function M��Ru provided
we prove it with a constant C that does not depend on R� To this end� note �rst
that the doubling condition implies that � is separable and hence the second part of
Theorem ����� applies� Then the argument from the case of the Lebesgue measure
works without any changes� We had to work with the restricted maximal function in
order to know that obtain a suitable covering consisting of balls with radii less than R
�if we did not have the upper bound for the radii� we could not apply Theorem �������

We will also need a more general result� For c � � and x � � de�ne Fc�x� as the
family of all measurable sets E � � such that E � B�x� r� and ��B�x� r�� � c��E� for
some r � �� Then we de�ne a new maximal function as follows

Mc
�u�x� � sup

E�Fc�x�

Z
E
juj d��

Obviously Mc
�u � cM�u� and thus we obtain as a corollary to Theorem ����� the

following result�

Corollary ����� Theorem 
��
� holds with M� replaced by Mc
�� The only di�erence

is that now the constants C in Theorem 
��
� depend also on c�

��



���� Lebesgue di
erentiation theorem�

We say that a sequence of nonempty sets fEig�i�� converges to x if there exists a
sequence of radii ri � � such that Ei � B�x� ri� and ri � � as i���

Theorem ����� Let � be doubling on � � X and u � L�loc��� ��� Then for ��a�e�
x � � we have

lim
r��

Z
B�x�r�

u�y� d��y� � u�x�� ����

Moreover� if we �x c � �� then for ��a�e� x � � and every sequence of sets Ei � Fc�x��
i � �� �� � � � that converges to x we have

lim
i��

Z
Ei

u�y� d��y� � u�x�� ����

See ����� Chappter �� for a proof in the case of the Lebesgue measure in IRn� The
same argument works also in our setting as it only relies on two facts� the weak type
inequality for the maximal function �see Theorem ����� and Corollary ������ and the
density of continuous functions in L� �see Theorem ������

Let � be doubling on � � X� Given u � L�loc��� �� it is often convenient to identify
u with the representative given everywhere by the formula

u�x� �� lim sup
r��

Z
B�x�r�

u�y� d��y� � ����

Theorem ����� shows that the taking the limit above only modi�es u on a set of
measure zero� We say that x � � is a Lebesgue point of u if

lim
r��

Z
B�x�r�

ju�y�� u�x�j d��y� � ��

where u�x� is given by ����� It follows from Theorem ����� that almost all points of �
are Lebesgue points of u� Observe that if x � � is a Lebesgue point of u� then both
���� and ���� are true�
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