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1. INTRODUCTION 

 Sobolev, [4], proposed a numerical method for the solution of linear Fredholm 

integral equations. He recommended that the solution of the initial value problem for 

the resolvent, 

ky(t, x, y) = k(t, y, y) k(y, x, y), 

k(t,x,0) = f(t, x),                (1) 

0 ≤ t, x, y ≤ Y, 
can be established using Euler’s method (see [1]). In [2], Kagiwada and Kalaba have 

extended Solobev’s method to the case of Urysohn integral equations of the second 

kind. 

 In this paper, we apply the same method to the nonlinear integral equation of the 

second kind, namely 

∫ ≤≤φ+=φ
y

0
,Yy,t0,dx))x(,x(q)x,t(p)t(f)t(            (2) 

where Y is sufficiently small. Eq. (2) is known as the Hammerstein equation of the 

second kind (see [3]). 

 To show the dependence of the solution φ upon the upper limit of integration y, 

as well as upon t, we rewrite Eq. (2) in the form 

∫ ≤≤φ+=φ
y

0
.Yy,t0,dx))y,x(,x(q)x,t(p)t(f)y,t(             (3) 

 

2. METHOD OF SOLUTION 

 Assume that the functions φ, p, and q are differentiable. Differentiating both 
sides of Eq. (1.3) with respect to y, we obtain 

∫ φφ+φ=φ φ
y

0 yy ,dx)y,x())y,x(,x(q)x,t(p))y,y(,y(q)y,t(p)y,t(            (4) 

0 ≤ t, y ≤ Y, where the subscripts denotes partial differentiation. 
 Eq. (4 ) represents a linear Fredholm integral equation of the second kind for the 

unknown function φy(t, y) with kernel p(t, x) qφ(x, φ(x, y)). Assume that the linear 

Fredholm integral equation of the second kind 

∫ ≤≤ψφ+=ψ φ
y

0 y ,Yy,t0,dx)y,x())y,x(,x(q)x,t(p)y,t(F)y,t(            (5) 

possesses a unique solution, where φ is a solution of Eq. (3 ) and F is arbitrary. 
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 Then the solution of Eq. (4 ) can be expressed in terms of the resolvent kernel in 

the form, 

  ∫ ≤≤+=φ
y

0y ,Yy,t0,dx)y,x,t(k)y,x(F)y,t(F)y,t(          (6) 

where F(u, v) = p(u, v) q(v, φ(v, v)) is the forcing function and k(t, x, y) = p(t, x) q(x, 
φ(x, y)) is the resolvent kernel given by 

∫ φ+φ= φφ
y

0
,x~d)y,x,x~(k))y,x~(,x(q)x~,t(p))y,x(,x(q)x,t(p)y,x,t(k     (7) 

0 ≤ t, x, y ≤ Y. Let us denote the right-hand side of Eq. (6 ) by H,  

  ∫ ≤≤+=
y

0
,Yy,t0,dx)y,x,t(k)y,x(F)y,t(F)y,t(H           (8) 

then Eq. (6 ) takes the form 

  φy(t, y) = H(t, y),  0 ≤ t, y ≤ Y.              (9) 

Eq. (9 ) is a partial integro-differential equation for the unknown function φ(t, y). 
 Now, we are going to obtain a differential equation for the resolvent kernel k. 

For this, differentiating Eq. (7 ) with respect to y, making use of (9 ), leads to  

  

.x~d)y,x,x~(k))y,x~(,x~(q)x~,t(p

x~d)y,x,x~(k)y,x~(H))y,x~(,x~(q)x~,t(p

)y,x,y(k))y,y(,y(q)y,t(p

)y,x(H))y,x(,x(q)x,t(p)y,x,t(k

y

y

0

y

0

y

∫

∫

φ+

+φ+

+φ+

+φ=

φ

φφ

φφ

φφ

         (10) 

The last equation is considered to be a linear Fredholm integral equation of the second 

kind for the unknown function Ky with kernel as in equation (6 ). The forcing function 

is given by the first three terms on the right hand side. We introduce, for simplicity, the 

auxiliary function A(t, x, y) to be the sum of these forcing terms, then Eq. (10 ) takes 

the form 

.Yy,x,t0,x~d)y,x,x~(k))y,x~(,x(q)x~,t(p)y,x,t(A)y,x,t(k
y

0 yy ≤≤φ+= ∫ φ   

                    (11) 

Therefore, the solution of Eq. (10 ) may be written in the form 

.Yy,x,t0,x~d)y,x,x~(A)y,x~,t(k)y,x,t(A)y,x,t(k
y

0y ≤≤+= ∫        (12) 

 Now, we summarize what we have proved in this section. The solution of the 

Hammerstain integral equation, (3 ), satisfies the initial value problem consisting of 

Eqs. (9 ) and (12 ) and the initial conditions 

  φ(t, 0) = f(t)               (13) 

and 

  k(t, x, 0) = p(t, x) qφ(x, φ(x)),             (14) 

which follow from Eqs. (3) and (7 ), respectively. 
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3. VERIFICATION 

 In this section, we shall show that a solution of the initial value system in Eqs. 

(9), (12), (13) and (14 ) provides a solution of the Hammerstain equation (3 ). 

 Firstly, we show that k, as determined by the initial value system, satisfies Eq. 

(7). We define B(t, x, y) to be the right-hand side of (7 ), i.e., 

∫ φ+φ= φφ
y

0
,x~d)y,x,x~(k))y,x~(,x(q)x~,t(p))y,x(,,x(q)x,t(p)y,x,t(B            (15) 

0 ≤ t, x, y ≤ Y. Differentiating both sides of the last equation with respect to y, we 
obtain 

.x~d)y,x,x~(k))y,x~(,x(q)x~,t(p)y,x,t(A)y,x,t(B
y

0 yy ∫ φ+= φ            (16 ) 

From Eqs. (11 ) and (16 ), we have 

∫

∫

∫

=

φ+

+φ+=

φ

φ

y

0

y

0

y

0

y

,x~d)y,x,x~(A)y,x~,t(B

x~d)y,x,x~(A]x̂d)y,x~,x̂(k))y,x̂(,x̂(q)x̂,t(p

))y,x~(,x~(q)x~,t(p[)y,x,t(A)y,x,t(B

           (17) 

which is a linear integro-differential equation for the function B(t, x, y). The initial 

condition is 

  B(t, x, 0) = p(t, x) qφ(x, φ(x)).               (18) 

By comparing Eqs. (17) and (18) with Eqs. (12) and (14), and assuming uniqueness of 

the solution, we obtain 

  B(t, x, y) = k(t, x, y).                (19) 

Thus the integral equation (1.3) is satisfied by k. 

 Secondly, we prove that the function φ(t, y) satisfies Eq. (3). We introduce the 

function C to be 

  ∫ ≤≤φ+=
y

0
.Yy,t0,dx))y,x(,x(q)x,t(p)t(f)y,t(C            (20) 

We shall show that φ ≡ C. Differentiating (20) with respect to y and making use of Eqs. 

(6) and (7), we obtain  

  ∫ ≤≤+=
y

0x .Yy,t0,dx)y,x(F)y,x,t(k)y,t(F)y,t(C          (21) 

Furthermore, the function C satisfies the initial condition 

  C(t, 0) = f(t).                 (22) 

Comparing Eqs. (21) and (22) with Eqs. (9) and (13), and assuming uniqueness of the 

solution, we obtain 

   C(t, y) = φ(t, y).                (23) 

Therefore, the function φ(t, y) satisfies the integral equation (3). 
 

Remark . One may use Euler's method to solve the initial value system of equations (9), 

(12), (13) and (14), see [1, 2]. 
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