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SOBOLEV-TYPE LOWER BOUNDS ON ||Vy||> FOR ARBITRARY
REGIONS IN TWO-DIMENSIONAL EUCLIDEAN SPACE*

By GERALD ROSEN (Drexel University)

Abstract. This note reports the derivation of lower bounds of the Sobolev type
on ||Vy||° = [z 8y/0x))° + (3¢/0x,)")dx, du, for generic real scalar ¢ = ¥(z, , 2,) of
function class C° piecewise C* which vanish over the boundary of the (bounded or
unbounded) region R in Euclidean 2-space.

1. Introduction. It has been shown [1] that for all continuous real sealar functions
¢ = ¢(x, , v, x;) with plecewise continuous second-derivatives we have the Sobolev

inequality
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f [Vo|* d&r > 3(%) [[ ¢’ dax] (1)

satisfied if ¢ is such that the integral on the right side of (1) is finite. The proof of (1)
was given in [1] for unbounded Euclidean 3-space, but it is obvious that this Sobolev
inequality is also valid if the domain of definition for ¢ and for the 3-dimensional inte-
grations in (1) is any prescribed (bounded or unbounded) region, provided that ¢ is
required to vanish over the boundary of the region." It is shown in the present note that
useful lower bounds of the Sobolev type can also be established on

VYl = f VY[ &'z = f (@y/02))" + (9¥/0x2)") da, dr &)

for generic real scalar ¢ = ¥(x, , x») of function class C° piecewise C* which vanish over
the boundary of the (bounded or unbounded) region R in Euclidean 2-space.

2. Primary result. Let us consider an unbounded cylindrical region in 3-space
that intersects the x, — z, plane in the 2-dimensional region R and has a boundary surface
generator parallel to the x; — axis. Then for ¢ = ¢ exp (—\ |za]) with ¥ = ¥(z, , z2)
and \ a disposable positive constant, we have ¢ = 0 on the boundary of the cylindrical
region if ¢ = 0 on the boundary of R. If we introduce the notation

NO = [rdn v =123, 3)

the Sobolev inequality (1) applies to ¢ = ¥ exp (—X\ |zs]) through the unbounded cylin-
drical region and yields
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* Received September 28, 1974. This work was supported in part by N.A.S.A. grant NSG 3090.
1 To prove this, one simply makes an extension of the domain of definition of ¢ to a1l 3-space with
¢ = 0 outside the region and applies the original result for unbounded Euclidean 3-space.
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or equivalently

-2/3 2 4/337(2) 1/3 “">‘/3 7(8)71/3
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The left side of (5) is minimized by putting A = ||V y||/[2N®])"*, and thus we obtain®
2
2 T (A8 /A7 (2)q1/2
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for ¢ = yY(x, , x,) with the specified properties.

It is of interest to compare the primary Sobolev-type lower bound on ||V¢||* given
by (6) with the linear-theoretic result for a bounded region R of finite area 4 = [, d’r,
namely

vyl > 5N @)

where o, = .7655 is the first zero of the zero-order Bessel function, J,(a,) = 0. Because
the smallest ground-state eigenvalue is obtained for fixed area A if R is a circle of
radius (A /7)"?, the numerical coefficient on the right side of (7) follows from the Helm-
holtz equation eigenvalue problem associated with ming [min, {||V¢|*’/N®}] for
¥ = ¥(2,, 2,) of function class C° piecewise C* in R and zero on the boundary of R (see,
for example [2]). Our Sobolev-type result (6) is sharper than (7) for ¢ and A such that
N1 > (24/3 a,’/wA)[N ®1*%; moreover, (6) applies for unbounded R (i.e., 4 = «)
if ¢ is such that the three integrals in (6) exist as finite quantities.

3. Alternative lower bound. Excluding from consideration a trivial ¢ which vanishes
identically in R, the functional

By] = NOINDT |Vl ®
is stationary about solutions to the inhomogeneous Helmholtz equation
VY + k'Y = [NVT ||Vl sgn (¥) )]

where the positive quantity k> = 2[N‘®]"' ||V ¢/||>. In terms of the variable
(¥ — I{NT'N® sgn (¥)),

Eq. (9) reduces presque partout’ to the homogeneous Helmholtz equation, and thus the
established linear theory for proper vibrations of membranes [2] provides the solution
to ming [min, {®[¢]}] for bounded regions R of fixed area A. The minimum value of (8)
obtains for ¥ of function class C° piecewise C* in R and zero on the boundary with R a
circle of radius r, = (4/7)'* and ¢ proportional to the nonnegative (nodeless) function

¥ = Jolkr) — Jola) = Jo(kr) + (.4026) (10)

2 The somewhat sharper numerical coefficient #%2/21/231/4 ~ 2.992 is obtained in place of 1r2/2\/‘5 ~
2.849 in (6) if one puts ¢ = ¥ e~ *+:? in place of the form ¢ = y e~ *'=;' used here. One is tempted to
conjecture that min, {||V¢||2 [N®/N®]1/2} equals either 3 or x, but the author has not been able to
solve the associated nonlinear eigenvalue problem which yields the maximum value for the numerical
coefficient in (6).

3 Along the nodal lines ¢ = 0 the quantity /2 sgn (¢) is not defined, and continuity of the solution
must be evoked.
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in which kr, = o, = 1.2197x is the first positive zero of the first-order Bessel function,
J1(a;) = 0. By making use of the definite integrals (for example, [3] [, Jo(a,x)x dx = 0
and [o' Jo(az)’z dz = [o' Ji(ewx)’x de = 3J5(ay)” = 3Jo(ay)?), one obtains the quantities
associated with (10)

NV@) = 74" [Jola)l , NP W) = 20r o)), (11)

verifies that (10) satisfies (9) with & = a,/r, , and evaluates &{y] = 1 +/7a, . Hence,
from (8) and #[y] > @[] we get the alternative Sobolev-type lower bound

|IV¢”2 Z zanle(Z)/Nm]2~ (12)

Since the area of the region does not appear on the right side of (12), this result also
applies for unbounded R if ¢ is such that the three integrals in (12) exist as finite quan-
tities. The equality sign in (12) holds only for a circle of finite radius and ¥ proportional
to ¥ given by (10), thus for a ¢ which also has its normal derivative equal to zero over
the boundary: (dy/dr)|,.,, = 0. Finally, it should be observed that (12) is sharper than
(6) if [N1"* < (v/3a,”/2m)[N V1[N ®)** ~ (4.07)[N V] *[N ®]*”*, a circumstance not
precluded by the general Hoélder inequality for all ¢, [N‘®]"* > [N‘V]7% N ¥1>%,
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