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SOBOLEV-TYPE LOWER BOUNDS ON ||Wj|2 FOR ARBITRARY
REGIONS IN TWO-DIMENSIONAL EUCLIDEAN SPACE*

By GERALD ROSEN (Drexel University)

Abstract. This note reports the derivation of lower bounds of the Sobolev type
on ||V^||2 = JR (d^/dxi)2 + /dx2)2)dxi dx2 for generic real scalar \p = \fr(xi , x2) of
function class C° piecevvise C2 which vanish over the boundary of the (bounded or
unbounded) region R in Euclidean 2-space.

1. Introduction. It has been shown [1] that for all continuous real scalar functions
4> = <t>(xi , x2 , x3) with piecewise continuous second-derivatives we have the Sobolev
inequality

/ jV<»|2 d3x > 3(|)4 3[/ <t>" d3x (1)

satisfied if 4> is such that the integral on the right side of (1) is finite. The proof of (1)
was given in [1] for unbounded Euclidean 3-space, but it is obvious that this Sobolev
inequality is also valid if the domain of definition for <f> and for the 3-dimensional inte-
grations in (1) is any prescribed (bounded or unbounded) region, provided that <f> is
required to vanish over the boundary of the region.1 It is shown in the present note that
useful lower bounds of the Sobolev type can also be established on

||V^||2 = f |Vi\2 d2x = [ ((dt/dx,)2 + (d^/dx2)2) dx, dx2 (2)
J R J R

for generic real scalar \p = \p(xx , x2) of function class C° piecewise C2 which vanish over
the boundary of the (bounded or unbounded) region R in Euclidean 2-space.

2. Primary result. Let us consider an unbounded cylindrical region in 3-space
that intersects the xt — x2 plane in the 2-dimensional region R and has a boundary surface
generator parallel to the x3 — axis. Then for <f> = \p exP ( — ̂  |a?31) with = \p(xi , x2)
and X a disposable positive constant, we have <f> = 0 on the boundary of the cylindrical
region if \p = 0 on the boundary of R. If we introduce the notation

Nm = f |d2x, v= 1,2,3, ••• , (3)
J R

the Sobolev inequality (1) applies to <t> = i exp ( —X |a:3|) through the unbounded cylin-
drical region and yields

/ \4/3
7(2) v. oi^l r*r(#> /o\ii/^X"1 IIWII2 + XA^(2) > 3(Jj [iV<6,/3X],/:! (4)

* Received September 28, 1974. This work was supported in part by N.A.S.A. grant NSG 3090.
1 To prove this, one simply makes an extension of the domain of definition of 0 to all 3-space with

0 = 0 outside the region and applies the original result for unbounded Euclidean 3-space.
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or equivalently

X"2/:1 ||V^||2 + X4/3A"2> > (^|^)4/3[A'<6>]i/3. (5)

The left side of (5) is minimized by putting X = || V^||/[2iV(2,]1/2, and thus we obtain2

||V^||2 > 2~/s [Nw/Nw]>/2 (6)

for \p — ^(-ci , x2) with the specified properties.
It is of interest to compare the primary Sobolev-tvpe lower bound on ||V^||2 given

by (6) with the linear-theoretic result for a bounded region R of finite area A = J/e (fx,
namely

MV^II2 > ^-Nw (7)

where a0 = .76557r is the first zero of the zero-order Bessel function, J0(a0) = 0. Because
the smallest ground-state eigenvalue is obtained for fixed area A if R is a circle of
radius {A/irY'2, the numerical coefficient on the right side of (7) follows from the Helm-
holtz equation eigenvalue problem associated with minK [min^ j ||V<p\\2/N(" j] for
\p = \p(xi , x2) of function class C° piecewise C2 in R and zero on the boundary of R (see,
for example [2]). Our Sobolev-type result (6) is sharper than (7) for ^ and A such that
[iV(6,]1/J > (2\/3 a02/irA)[iV<2>]3/2; moreover, (6) applies for unbounded R (i.e., A = °°)
if \p is such that the three integrals in (6) exist as finite quantities.

3. Alternative lower bound. Excluding from consideration a trivial \p which vanishes
identically in R, the functional

*[*] = Nll,[NmV ||W|| (8)

is stationary about solutions to the inhomogeneous Helmholtz equation

VV + A;V = [iV'T1 ||W||2 sgn (i) (9)
where the positive quantity fc2 = 2[A^<2)]"1 j | V>A| |2- In terms of the variable

(4> - P(,riiv<!) sgn m,
Eq. (9) reduces presque partout3 to the homogeneous Helmholtz equation, and thus the
established linear theory for proper vibrations of membranes [2] provides the solution
to minB [min^ {$[£])] for bounded regions R of fixed area A. The minimum value of (8)
obtains for \p of function class C° piecewise C2 in R and zero on the boundary with R a
circle of radius rA = (A/t)u2 and \p proportional to the nonnegative (nodeless) function

i = J0(kr) - J„(a,) ~ Jo(fcr) + (.4026) (10)

2 The somewhat sharper numerical coefficient 7r3/2/2"231/4 ̂  2.992 is obtained in place of x2/2\/3" ~
2.849 in (6) if one puts <t> = t e~ Xl32 in place of the form </> = \p e~ used here. One is tempted to
conjecture that min^ 1||V^|]2 [Nm/Nw]'l2\ equals either 3 or tt, but the author has not, been able to
solve the associated nonlinear eigenvalue problem which yields the maximum value for the numerical
coefficient in (6).

3 Along the nodal lines \fr = 0 the quantityV2 sgn (ip) is not defined, and continuity of the solution
must be evoked.
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in which krA = <*, = 1.21977r is the first positive zero of the first-order Bessel function,
Ji(a,) = 0. By making use of the definite integrals (for example, [3] /0' J0{a.lx)x dx = 0
and Jo1 J0(ciix)2x dx = J0' Ji(aix)2xdx = \J2(alY = %J0(a,)2), one obtains the quantities
associated with (10)

Nn\i) = TrrA2 \ Jo(«!)| , Nm(4>) = 21rrx2[J0(aI)]2, (11)

verifies that (10) satisfies (9) with k = al/rA , and evaluates $[£] = \y/ira, . Hence,
from (8) and <£[£] > we get the alternative Sobolev-tvpe lower bound

IIWIP > |a12[iV<27Ar<1,r. (12)

Since the area of the region does not appear on the right side of (12), this result also
applies for unbounded i? if ^ is such that the three integrals in (12) exist as finite quan-
tities. The equality sign in (12) holds only for a circle of finite radius and \p proportional
to ^ given by (10), thus for a <p which also has its normal derivative equal to zero over
the boundary: (dj//dr)\r.rA = 0. Finally, it should be observed that (12) is sharper than
(6) if [jV<6)]i;2 < (v/3a12/2ir)[iV<,T2[iV<2)]5/2 ^ (4.07)[iV(1)]-2[iV<2,]5/2, a circumstance not
precluded by the general Holder inequality for all ip, [A^<6)]1/2 > [iV<ll]-2[iV<",]5/'!.
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