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Abstract

Mimicking human ability to forecast future positions or

interpret complex interactions in urban scenarios, such as

streets, shopping malls or squares, is essential to develop

socially compliant robots or self-driving cars. Autonomous

systems may gain advantage on anticipating human mo-

tion to avoid collisions or to naturally behave alongside

people. To foresee plausible trajectories, we construct an

LSTM (long short-term memory)-based model considering

three fundamental factors: people interactions, past obser-

vations in terms of previously crossed areas and seman-

tics of surrounding space. Our model encompasses sev-

eral pooling mechanisms to join the above elements defin-

ing multiple tensors, namely social, navigation and seman-

tic tensors. The network is tested in unstructured environ-

ments where complex paths emerge according to both in-

ternal (intentions) and external (other people, not accessi-

ble areas) motivations. As demonstrated, modeling paths

unaware of social interactions or context information, is in-

sufficient to correctly predict future positions. Experimental

results corroborate the effectiveness of the proposed frame-

work in comparison to LSTM-based models for human path

prediction.

1. Introduction

Human trajectory forecasting is a relevant topic in com-

puter vision due to numerous applications which could ben-

efit from it. Socially-aware robots need to anticipate hu-

man motion in order to optimize their paths and to better

comply with human motion. Delivery robots could reduce

energy consumption to get to their destinations avoiding

people and obstacles as well. Moreover, anomalous behav-

iors could be detected using fixed cameras in urban open

spaces (e.g., parks, streets, shopping malls, etc.) but also

in crowded areas (e.g., airports, railway stations). Despite

meaningful results attained using recurrent neural networks

for time-series prediction, many problems still remain. In

this context, data-driven approaches are usually unaware of

surrounding elements which represent one of the main rea-

Figure 1. Our goal is to predict future positions of pedestrians in

an urban scenario. Since human motion is guided by intentions,

experience and the surrounding environment, such elements are

encapsulated in our framework along with learned social rules to

forecast a social and semantic compliant motion in the crowd.

sons of direction changes in a urban scenario.

When approaching their destination, people tend to con-

form to observed patterns coming from experience and vi-

sual stimuli to avoid threats or select the shortest route.

Moreover, when walking in public spaces, they typically

take into account which kind of objects encounter in their

neighborhood. Several factors may also lead to velocity di-

rection changes in many situations. For example, when ap-

proaching roundabouts (see Fig. 1), people adjust their path

to avoid collisions. In some cases, they use different paces

according to weather conditions or crowded areas. In this

context, LSTM networks have been extensively used over

the last years due to their ability to learn, remember and for-

get dependencies through gates [11, 7]. Such characteristics

have made them one of the most suitable solution for solv-

ing sequence to sequence problems. To address the limita-

tions of previous works which mainly focuses on modelling

human-human interactions [1, 9, 8], we propose a compre-

hensive framework for predicting future positions which are

also locally-aware of surrounding space combining social

and semantic elements. Scene context information is crucial

to improve prediction of future positions adding physical

constraints and providing more realistic paths, as demon-

strated by early works focused on exploiting human-space

interactions [12, 13, 2].

In this paper, we propose a data-driven approach allow-

ing an LSTM-based architecture to extract social conven-

tions from observed trajectories and augment such data with

semantic information of the neighborhood. More specifi-



cally, our work is built upon the Social-LSTM model pro-

posed by Alahi et al. [1], in which the network is only aware

of nearby pedestrians, by embedding new factors encoding

also human-space interactions in order to attain more ac-

curate predictions. More specifically, we encompass prior

motion about the scene as a navigation map which embod-

ies most frequently crossed areas and scene context using

semantic segmentation to restrain motion to more plausible

paths.

The remainder of the paper is organized as follows. Sec-

tion 2 reviews main work related to human path prediction.

Section 3 describes the proposed model. Section 4 provides

our findings while conclusions and suggestions for future

work are summarized in Section 5.

2. Related Work

We briefly review main work on human path prediction

considering two main kinds of interactions, namely human-

human and human-human-space. The former only models

interactions among pedestrians; the latter, takes also into ac-

count interactions with surrounding elements, i.e. fixed ob-

stacles, which kind of area is crossed (e.g., sidewalk, road)

and nearby space.

Human-human interactions. Helbing and Molnár [10]

introduced the Social Force Model to describe social in-

teractions among people in crowded scenarios using hand-

crafted functions to form coupled Langevin equations.

More recent works based on LSTM networks mainly rely on

the model proposed in [1] where a “social” pooling mech-

anism allows pedestrians to share their hidden representa-

tions. The key idea is to merge hidden states of nearby

pedestrians to make each trajectory aware of its neighbour-

hood. Nevertheless, pedestrians are unaware of nearby el-

ements, such as benches or trees, which could be primary

reasons for direction changing when they do not interact

with each others. [5] detects groups of people moving

coherently in a given direction which are excluded from

the pooling mechanism. [8] uses a Generative Adversarial

Network (GAN) to discriminate between multiple plausi-

ble paths due to the inherently multi-modal nature of tra-

jectory forecasting task. The pooling mechanism relies

on relative positions between two pedestrians. The model

captures different styles of navigation but does not make

any differences between structured and unstructured envi-

ronments. [21] handles prediction using a spatio-temporal

graph which models both position evolution and interac-

tion between pedestrians. [9] embodies vislet information

within the social-pooling mechanism also relying on mu-

tual faces orientation to augment space perception.

Human-human-space interactions. Sadeghian et al.

[18] adopt a similar approach to ours, by taking into ac-

count both past crossed areas and semantic context to pre-

dict social and context-aware positions using a GAN. [3] in-

troduces attractions towards static objects, such as artworks,

which deflect straight paths in several scenarios (e.g., muse-

ums, galleries) but the approach is limited to a reduced num-

ber of static objects. [2] proposes a Bayesian framework

based on previously observed motions to infer unobserved

paths and for transferring learned motions to unobserved

scenes. Similarly, in [6] circular distributions model dy-

namics and semantics for long-term trajectory predictions.

[19] uses past observations along with bird’s eye view im-

ages based on a two-levels attention mechanism. The work

mainly focuses on scene cues partially addressing agents’

interactions.

Some relevant approaches do not fall into the above two

categories. For example, [20] focuses on transfer learn-

ing for pedestrian motion at intersections using Inverse Re-

inforcement Learning (IRL) where paths are inferred ex-

ploiting goal locations. [4] attains best performance on

the challenging Stanford Drone Dataset (SDD) [17] using

a recurrent-encoder and a dense layer. [22] predicts future

positions in order to satisfy specific needs and to reach la-

tent sources.

3. Our model

Pedestrian dynamics in urban scenarios are highly influ-

enced by static and dynamic factors which guide people to-

wards their destinations. For example, grass is typically less

likely to be crossed than sidewalks or streets for pedestri-

ans. Benches are turned around by people walking with

accelerated paces. Moreover, only doors are used to enter

buildings. Hence, to forecast realistic paths, it is important

to allow human dynamics to be influenced by surrounding

space, not only in terms of other people in their neighbor-

hood, but also considering semantics of crossed areas as

well as past observations which can represent our experi-

ence. To this aim, we extend the Social-LSTM model pro-

posed in [1], as schematized in Fig. 2. More specifically, our

framework models each pedestrian as an LSTM network

interacting with the surrounding space using three pool-

ing mechanisms, namely Social, Navigation and Semantic

pooling. Social pooling mechanism takes into account the

neighborhood in terms of other people, merging their hid-

den states. Navigation pooling mechanism exploits past ob-

servations to discriminate between equally likely predicted

positions using previous information about the scene. Fi-

nally, Semantic pooling uses semantic scene segmentation

to recognize not crossable areas.

Given the ith pedestrian, his/her complete tra-

jectory is represented by the 2-D sequence T i =



Figure 2. Overview of the proposed model. Trajectories, navigation map and semantic image are fed to the LSTM network and combined

using three pooling mechanisms, namely social, navigation and semantic pooling. Future positions are obtained using linear layers to

extract key parameters of a Gaussian distribution.
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where f
i
t , iit, o

i
t are the forget, input and output gates, re-

spectively; cit is the cell state and h
i
t is the hidden state. ⊙

indicates the element-wise product.

The above model, named Vanilla LSTM, is unaware of

what happens nearby the monitored agent, such as the pres-

ence of other people, encountered obstacles and most fre-

quently crossed areas. In fact, such a network could only

learn motion patterns and dependencies potentially present

in the training set’s trajectories. To consider a more rich in-

put representation, Vanilla LSTM is enhanced concatenat-

ing the following tensors:

Social Tensor. As proposed in [1], we firstly exploit a so-

cial pooling mechanism in order to make people aware of

their neighbors. More specifically, hidden states of peo-

ple in the neighborhood are taken into account using an

No ×No ×D social tensor:

Hi
t(m,n, :) =

∑

j∈Ni

1mn[x
j
t − xi

t, y
j
t − yit]h

j
t−1 (2)

where No is neighborhood size and D is the dimension of

the hidden state. The indicator function 1mn(x, y) checks

if (x,y) is inside the (m,n) cell.

Navigation Tensor. People tend to reach building en-

trances or opposite sidewalks using a limited number of

paths. Some areas would, indeed, be more likely to be

crossed than others. On the contrary, areas corresponding

to obstacles or buildings would not (or less likely to) be

crossed making them not eligible for generating new posi-

tion candidates. To measure such crossing probability, we

define the Navigation Map N which counts the crossing fre-

quency of squared patches. A smoothing linear filter (i.e.,

average pooling) is then used to reduce “sharp” frequency

transitions. An example of such map in shown in Fig. 3.

Given the Navigation Map N , we define the rank-2 Navi-

gation tensor N i
t ∈ Nn ×Nn as follows:

N i
t (m,n) = Nmn, (3)

which extracts the neighborhood’s frequency of the ith

pedestrian for the (m,n) cell considering all the past ob-

servations for such cell.

Semantic Tensor. People may also manifest direction

changes due to a number of reasons; for example, they



Figure 3. Semantic map is generated from the reference image

while the Navigation map is obtained from observed data. The

image shows an example of such maps for ETH dataset.

could be approaching a fixed obstacle which must be cir-

cled or could avoid streets preferring sidewalks. The aim

of the Semantic tensor is to capture why specific dynam-

ics emerge related to the semantics of surrounding space.

Since our datasets do not provide any semantic annotations

to model human-space interactions, we define the follow-

ing semantic classes C = {grass, building, obstacle, bench,

car, road, sidewalk}. A one-hot encoding is used to repre-

sent semantic of pixels image. For example, assuming that

a pixel represents grass, a location j is represented by a vec-

tor vj ∈ R
7 = [1 0 ... 0] according to C.

Given a neighborhood size of Ns, we define a Ns×Ns×L

tensor Si
t for the ith pedestrian as follows:

Si
t(m,n, :) =

1

|Smn|

∑

j∈Smn

vj (4)

where vj represents the semantic vector of location j and

Smn represents the locations within the (m,n) cell of ith

pedestrian. |Smn| is the number of locations within the

(m,n) cell. In other words, for each cell, we extract the

occurring frequency of each semantic class.

The above tensors are embedded into three vectors,

namely ait, n
i
t, s

i
t while the spatial coordinates into eit. The

embedded vectors are concatenated and used as input to the

LSTM cell as follows:

eit = Φ(xi
t, y

i
t;We)

ait = Φ(Hi
t ;Wa)

ni
t = Φ(N i

t ;Wn)

sit = Φ(Si
t ;Ws)

git = Φ(concat(ait, n
i
t, s

i
t);Wg)

hi
t = LSTM(hi

t−1, concat(e
i
t, g

i
t);Wh) (5)

where Φ represents the ReLU activation function and Wh

are the LSTM weights. Fig. 4 depicts our pooling mecha-

nisms.
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Figure 4. Overview of the pooling mechanisms. Three tensors take

into account social neighborhood, past observations and seman-

tics of surrounding space, respectively. Tensors are finally con-

catenated, processed by ReLU layers and fed to LSTM networks

along with embedded positions. Figure also highlights dimensions

of each introduced tensor.

Loss Function. Positions are predicted using a bi-variate

Gaussian distribution whose parameters are obtained using

a D × 5 linear layer as follows:

[µi
t, σ

i
t, ρ

i
t] = Wlh

i
t−1, (6)

(x̂i
t, ŷ

i
t) ∼ N ((x, y);µi

t, σ
i
t, ρ

i
t). (7)

Finally, the parameters of the network are obtained min-

imizing the negative log-Likelihood loss Li for the ith

pedestrian as follows:

Li(We,Wa,Wn,Ws,Wg,Wh,Wl) =

−

Tpred
∑

t=Tobs+1

log(P(xi
t, y

i
t|µ

i
t, σ

i
t, ρ

i
t)). (8)

The above loss is minimized for all the trajectories in our

training sets.

4. Experiments

In this section, we describe the used datasets along with

the evaluation protocol. Next, we present a quantitative

analysis to show the effectiveness of our model. Finally,

we show some qualitative results of predicted trajectories

for challenging situations.

Datasets. For our experiments, we use two datasets:

ETH [15] and UCY [14]. ETH contains two scenes (ETH

and HOTEL) while UCY contains three scenes (UNIV/UCY,

ZARA-01, ZARA-02). They are captured from a bird’s-eye

view and involve numerous challenging situations, such as

interacting pedestrians, standing people and highly non-

linear trajectories. We use a leave-one-out-cross-validation



Metric Scene Vanilla LSTM Social-LSTM [1] SN-LSTM SS-LSTM SNS-LSTM

ADE

ETH [15] 0.52 0.51 0.47 0.48 0.58
HOTEL [15] 0.33 0.31 0.44 0.24 0.30
UNIV [14] 0.52 0.55 0.39 0.43 0.37

ZARA-01 [14] 0.41 0.36 0.29 0.33 0.28

ZARA-02 [14] 0.27 0.25 0.28 0.31 0.26
Average 0.41± 0.11 0.40± 0.13 0.37± 0.09 0.36± 0.10 0.36± 0.13

FDE

ETH [15] 2.84 2.82 2.55 2.57 2.43

HOTEL [15] 1.90 1.67 2.25 1.38 1.58
UNIV [14] 2.92 3.04 2.10 2.54 2.08

ZARA-01 [14] 2.35 2.05 1.56 1.81 1.53

ZARA-02 [14] 1.48 1.42 1.59 1.63 1.44
Average 2.30± 0.61 2.20± 0.71 2.01± 0.43 1.99± 0.54 1.81 ± 0.43

Table 1. Quantitative results of our architecture compared to baseline models for ETH and UCY datasets. The errors are reported in meters.

Our models attain on average best performance due to the combination of learned social rules, past observations and acquired information

of the surrounding space. For the ADE metric our two models, namely SS-LSTM and SNS-LSTM, show comparable results. By contrast,

the best FDE value is attained considering the combination of all factors.

approach training the models on N-1 scenes and testing on

the remaining one. We average the results over the five

datasets.

Evaluation Protocol. To perform an ablation study, we

separately test the effect of navigation and semantic factors

both along with social interactions, defining two different

models, namely SN-LSTM and SS-LSTM, respectively. Fi-

nally, we combine all the above effects defining the SNS-

LSTM model. As proposed in [15], a pedestrian trajectory

is observed for 3.2s in order to predict the next 4.8s. At

frame level, we train the network on 8 frames and predict

the next 12 frames. As error metrics, we report the Aver-

age Displacement Error (ADE) and the Final Displace-

ment Error (FDE). ADE represents the average Euclidean

distance between the predicted and ground-truth positions,

while FDE consists in the average Euclidean distance be-

tween the final predicted and ground-truth position. The

above metrics are defined as follows:

ADE =

∑

i∈P

∑Tpred

t=Tobs+1

√

((x̂i
t, ŷ

i
t)− (xi

t, y
i
t))

2

|P| · Tpred

, (9)

FDE =

∑

i∈P

√

((x̂i
Tpred

, ŷiTpred
)− (xTpred

i, yTpred
i))2

|P|
,

(10)

where P is the set of pedestrians and |P| its cardinality,

(x̂i
t, ŷ

i
t) are the predicted coordinates at time t and (xi

t, y
i
t)

are the groud-truth coordinates at time t.

We compare our models against two LSTM-based methods,

i.e., Vanilla LSTM and Social-LSTM [1].

Implementation Details. The number of hidden units for

each LSTM cell and the embedding dimension of spatial

coordinates are set to 128 and 64, respectively. The model

is trained on a single GPU using TensorFlow library1 . The

learning rate is set to 0.003 and we use RMS-prop as op-

timizer with a decay of 0.95. Models are trained for 50

epochs. No, Nn, and Ns are set to 8, 32 and 20, respec-

tively.

4.1. Quantitative Results

Table 1 shows quantitative results for ETH and UCY

datasets. As expected, the worst model is the one which

does not take into account any internal/external factor,

namely Vanilla-LSTM. The lack of any kind of interac-

tions does not allow the model to reproduce realistic paths.

We also notice that SN-LSTM model improves the perfor-

mance compared to S-LSTM model due to the introduction

of discriminative regions especially when two or more path

are plausible. A significant improvement is also obtained

when semantics is introduced with SS-LSTM, especially

for HOTEL scene. Interestingly, S-LSTM performs better

on ZARA-02 scene, where results are slightly better com-

pared to SNS-LSTM. The main reason could be ascribed to

a number of non-moving pedestrians of such dataset where

navigation and semantic factors may not much influence the

prediction. Navigation map allows better predicted trajec-

tories on ETH dataset compared to HOTEL dataset. For

the latter, the effect of only semantic pooling mechanism

reduces the error metrics of ∼ 50%. However, the com-

bination of our proposed factor seems to confirm the im-

portance of introducing navigation and semantic factors to

achieve more robust predictions.

1The code is released at https://github.com/Oghma/

sns-lstm/.



4.2. Qualitative Results

To perform a qualitative study, we firstly show static

comparisons between our models and baselines for some

trajectories and then show several predicted trajectories

over time evaluating predictions at successive timestamps.

Static visualization. Fig. 5 shows some examples of pre-

dicted trajectories drawn from HOTEL dataset. More

specifically, the first column shows cases when our mod-

els are able to correctly predict the ground-truth both when

people move through the crowd or when they approach

the tram. The predicted paths of our models appear able

to better capture complex dynamics showing more natu-

ral motions without continuously adjusting moving direc-

tions. We also note that our models are closer to the ground-

truth while the baselines end first. Since SN-LSTM and

SNS-LSTM are typically similar, our models rely on the

navigation map when multiple trajectories can be consid-

ered. On the contrary, second column shows cases where

SNS-LSTM model appears unable to capture the correct

path reaching different destinations. A challenging situa-

tion where a standing pedestrian is captured is also shown.

In such case, most of the models do not move from the ini-

tial position.

Temporal visualization. To temporally evaluate our pre-

dictions, we firstly visualize the observed path (e.g., 8
frames) and then select four successive frames, namely

9th, 13th, 17th and 19th frame, of each trajectory. For the

sake of simplicity, we only report results for SNS-LSTM

and S-LSTM models, and ground-truths. More specifically,

Fig. 6 shows observed paths and multiple predicted posi-

tions at successive timestamps for trajectories drawn from

both HOTEL and ETH datasets, respectively. First column

demonstrates the effect of the navigation pooling mecha-

nism which avoids deviations from common paths and, at

the same time, social pooling mechanism avoids collisions

with nearby pedestrians. Second column shows an exam-

ple of anomaly trajectories which do not frequently occur

in the dataset, such as people suddenly stopping after accel-

erating. Such cases are not properly modelled by both mod-

els since predictions tend to move away from the ground-

truths. Third column reports the effect of the semantic pool-

ing mechanism which avoids the collision with an object

(obstacle surrounded by snow) and predicts more realistic

positions. In the last column, our SNS-LSTM model pre-

dicts more accurate positions than the S-LSTM model due

to the combined effect of navigation and semantic pooling

mechanisms.

The above temporal visualization confirms the effective-

ness of the introduced elements to better capture complex

human behaviors in crowded scenarios where also static ob-

Ground-truth SS-LSTM

SNS-LSTM Vanilla LSTM

S-LSTM

SN-LSTM

Figure 5. Some examples of predicted trajectories for HOTEL

dataset. Ground-truths are shown as solid lines, while predicted

trajectories as dashed lines. First column shows cases where pre-

dicted positions are very close to the real paths. Second column

shows cases where the SNS-LSTM appears not able to correctly

predict future positions.

jects contribute to the path generation process.

5. Conclusion

We proposed a comprehensive framework to model

human-human and human-space interactions for trajectory

forecasting in challenging scenarios. The SNS-LSTM

merges past observations about the scene and semantics of

crossed areas using Navigation and Semantic pooling mech-

anisms. Such an approach favours more reliable predicted

paths when multiple choices are simultaneously possible to

reach desired destinations. Previously observed paths and

semantic labels of nearby cells allow a pedestrian to be

aware of surrounding space and change his/her direction ac-

cordingly.

Experimental results show better performance than state-

of-the-art methods which do not use context information.

Our method, indeed, significantly reduce the error for com-

mon metrics and, from qualitative point of view, shows di-

rection changes even when a pedestrian is not influenced

by other humans in its neighborhood. Our future work

will investigate different datasets (e.g., Stanford Drone



Figure 6. Temporal sequences visualization for different tracks drawn from both HOTEL and ETH dataset. The circles represent ground-

truth (green), SNS-LSTM model (blue) and S-LSTM model (red), respectively. For each column, the first image shows the observed path

(in green) which corresponds to 8 frames (the three circles are superimposed), while the remaining ones show the 9th, 13th, 17th and 20
th

predicted frames, respectively. In case of significant accelerations (1st column) our SNS-LSTM model remains close to the ground-truth

compared to S-LSTM baseline avoiding obstacles and other pedestrians. By contrast, anomaly behaviors, i.e.. stopping after accelerating,

(2nd column) are not correctly predicted by both models. Semantic pooling mechanism avoids our model to collide with obstacles (3th

column). Relying mainly on both social and navigation pooling mechanisms, our model predicts better positions than the S-LSTM model

(4th column). Images are cropped to focus on monitored pedestrians’ neighborhood.



Dataset [16]) where more complex dynamics are captured

as well as multiple agents settings since several elements,

such as cars, cyclists or skateboarders, typically share the

same environment.
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