DOCUMENT RESUME

```
AUTHOR
TITLE
Ross, Kenneth N.
Social Area Indicators of Educational Need. A Study of the Use of Census Descriptions of School Neighbourhoods in Guiding Decisions Concerning the Allocation of Resources to Educationally Disadvantaged Schools in Australia. ACER Research Monograph No. 20.
INSTITUTION Australian Council for Educational Research, Hawthorn.
REPORT NO
PUB DATE
NOTE
AVAILABTE HROM
PUB TYPE
EDRS PRICE
DESCRIPTORS
```


IDENTIFIERS

I SBN-0-85563-343-3
83
227p.
Australian Council for Educational Research, 9 Frederick St., Hawthorn, Victoria, Australia, 3122 (\$15.00) .
Reports - Research/Terhnical (143) -- Books (010)
MF01 Plus Postage. PC Not Available from EDRS.
*Census Figures; Comparative Education;
*Educationally Disadvantaged; Educational Needs;
Educational Research; Elementary Secondary Education; Ethnicity; Family Life; Foreign Countries; *Neighborhoods; *Social Indicators; Sociocultural Patterns; Socioeconomic Status *Australia

ABSTRACT

The purpose of this study was to develop, validate, and describe indicators of educational disadvantage to be used in Australia to identify schools and students most in need of assistance from the Disadvantaged Schools Program. Initially, a detailed review was prepared of the resource allocation responses which have been made in Australia to the changing. concept of equality of educational opportunity. Next a theoretical model was developed which was designed to quantify the optimal level of precision with which these responses could be used to allocate resources. The data obtained from a national study conducted during 1975 of the educational achievenents of Australian 10 -year-old and 14-year-old students in the areas of reading, writing, and numeration were ther used to develop criterion and validation measures for the construction of indicators of educational disadvantage. These data were combined with data from the 1971 Australian Census of Population and Housing which provided detailed descriptions of the students' neighborhoods. These combined data were divided according to age level and aggregated over schools. Following an analysis of indicator characteristics, the indicator with the best overall performence was examined with respect to the dimensions of residential differentiation associated with the Shevky-Belil model. It was demonstrated that neighborhoods associated, with educationally disadvantaged schools were characterized by an overlapping network of social features associated with the socioeconomic status, ethnicity, and family living arrangements of the community. (RM)


```
Published by
The Australian Council for Educational Research Limited
Radford Heuse, Frederick Street,, Hawthorn, Victoria }312
Printed and bound by
Allanby Press
1a Crescent Road, Camberwell, Victoila 3124
Cover design by Louise Coutts.
National Library Cataloguing-in-Publication data.
Ross, Kenneth N. (Kenneth Norman), '1947*.
    Social area indicators of educational need.
    Bibliography.
    ISBN 0 85563 343 3.
    1. Educational planning - Australia. 2. Social
    indicators = Australia. 3. Education-- Australia =
    Evaluntion, I. Australian Council for Educational
    Research. II. Title. (Series: ACER research
    monograph; no. 20)
379.1'54'0994
Copyright (c) ACER 1983
```


TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
acknolvedgenents
CIAPTER 1 INTRODUCTION
Page
ix
xii
xinii
\because Educational Means and Social Ends
1
The Use of Indicators to Allocate Educational. n Resources

The Purpose of This Study
6°

CHAPTIR 2
RESOURCE ALLOCATION RESPONSES TO THE CIANGING CONCEPT OF EQUALITY
Introduction
Stages in the Development of the Concept of Equality of Educational Opportunity in Australia
The Australian Schools Commission's View of Equality 12. of Educational Opportunity
The Australian Schools Comission's Resource 19 Allocatioñstrategy
The Australian Schoois Commission's Disadtantaged , 21 Schools Program
The Disadvantaged Schools Program: Indicators at : 23 the National Level.
The Disadvantaged Ṣchools Program: Indicatores at 26 the School System Level
Summary
CHAPTER 3 THE ACCURACY OF RESOURCE ALLOCATION STRATEGIES AIMED AT ALLEVIATING EDUCATIONAL DISADVANTAGE

Introduction
33

Definition of Terminology: Accuracy and Leakage 35

Relationships between Accuracy, Leakage, and 39 Student Variation Within and Between Schools
Accuracy Coefficient for Individual Schools 43
Lerkage Coefficient for Individual Schools. .. " 46
Average Accurasy and Leakage for Groups of Schools . 48
Application of the Model: An International Example
52

Page

ACKNOWLEDGEMENTS

A number of persons have holped me in various ways in conducting this study, li wish to express, my sincere thanks for their assistance.

* Dr John keeves; Directur of the Australiañ Council for Educational Researeh, provided guidanec and encouragement throughout the whole course of the ztudy. $\overline{\mathrm{I}}$ am particularly grateful to hin for allowing me to ise the resources of the Council: :
* Professor David Beswick, Dixectṓr of the Centre fộ the Study of Higher Equcation at Melbourie Iniversĩty, helped me a great deal \therefore during the initiol plannin! of this study and provided constructive, comments on the structure and preparation of the final report.
My colleagues at the Austral an Conncil for Educational Research assisted by reading and checking many of the theoretical aspects of the studys 1 would particuiarly like to thank Dr Trevor Wilinams, $\therefore \therefore$ Dr John Izard, Steve Earish, Mark Wilson; George Morgañ, and Chais Loknur =
\because Dr Peter Nevton and Dr Bruce Coe at the CSTRO Divishon of Built Hesearch helped me to solve a range of "mysteries" involved witi the use of Austrilian Census data tapes.
Edith Cooper assisted, me over many months wîth the extremely difficult and arduous task of trangforming thousands of student home addresses into Census Collector's District numbers.
\because Norman Sadier, Colin Scott, John Granger, Frank Waiter, Doug Livingstone, Ron kotly, and the members of the computer operations staff at ICI (Australia) provided invaluable moral support and technicai assistance with the problems associated with the management , -and analysis of large data files. :
$\therefore \quad{ }^{2}$
Steve Coloman and Phil Rodgersyof the Esso (Australia) Operations Research Department made many useful suggestions about the use of $\mathcal{*}$ electronic computer facilities.

Graeme Withers and Bronwyn llay generously gavo a great deal of : their, time to assist with tbe preparation of references and the checking of various drafts of the report.

- Margaret Findiay and Lula Psiliakos provided excellent library support.
- Yvonne Allen turned my handwriting into type with great speed and proficiency, and made many helpful suggestions on presentation and styie.
- Norman, Philis, Suzanne, William, Agnes, and Jessica shared the highs and lows with great skill and understanding.

INTRODUCTION

Educational Means and Social Ends

In recent times the concept of 'equality' has become a central issue in debates concerning the provision and distribution of resources in education. However the goal of equality of educational opportunity has onten not been treated as a goal in itself but as a means for obtaining certain long-range social goals. This instrumentalist interpretation appears to have emerged from the view that, in modern society, education has been seen as the 'social distributor of life chances' (Haisey; 1972:3):

Rather than taking direet action to rearrange 'life chancés', governments in Western countries have generally opted to use the education system as añ indicect and politicaly more defensible means of achieving socìal reforis. Confidence in this approach reached its zenith in the United States during the eariy 1960 's when President Lyndon Johnson launched his 'War on Poverty' with the following statement

This is going to be an education programme. We are going to eliminate poverty by education; and I don't want anybody to mention income distribution. This is not going to be a handout, this is going to be something where people are going to learn their way out of poverty, (Quoted from Ashline, 1976)

The educational attack on poverty in the United States was most strongly related to the passing of the Elementary and Secondary Education Act in 1965: This legislation resulted in the comencement of the "ritle f" programs which wero aimed specifically at children who were disadvantaged because of 'poverty'.

The urge to seek educational solutions to social problems has also emerged in the United Kingdom and Australia, and programs have been developed which have overtly been designed to assist students inving in 'deprived areas' or students attending 'disadvantaged schools'. Generally this has been expressed in a view of the school as a key agent for breaking the 'cycle of poverty'.

In the United Kingdom the Plowden Report recommended that the educational needs of students 1 iving in 'deprived areas' would best be satisfied by directing supplementary government funds to schools in inducational
Príority Aréas'. Schools in thése areas were described as being both agents and victims in the 'vicious cirele of deprivation,

Thus the vicious circle may turn from generation to generation and the schools play a central part in the process, both causing and suffering cumulative deprivation. (Plowden, 1967:50)

Similarly, the Karmel Report in Austraiia recommended that students who attended 'disadvantaged schools' should be assisted by providiug supplementary government funds for schools nominated to participate in the \qquad 'Disadvantaged Schools Program'. In this program schools were preferred to students' families as a point of attack on the 'cycle of poverty'.

The school provides a practical point of attack on the cycle of poverty, for it is a social institution more amenable to change than is the family, and an institution where deliberate social intervention is acceptable. (Karmel, 1973:94)

A report prepared by the Organization for Economic Co-operation and Development ($O E C D, 1979$) has suggested that, at a very general level, the arguments supporting the use of educational systems as instruments of social reform have proceeded in three main steps:

1. Poverty and school achievement appear to be very closely linked;
2. Economic and social mobility as well as life chances appear to be rather closely related to educational attainment;
3. Thus, concentrated effort, by way of increased funding for improved and/or increased sehooling for disadvantaged children, should break the poverty cycle. (OECD, 1979:11)

The validity of this line of argument has been strongly challenged by two major studies carried out in the United States by Coleman et al (1966a) and Jencks et al (1972). These reports presented analyses which have suggested that variations in school resources had a relatively small impact on variation in educational achievement and attainment. Similar findings have been reported by Little and Smith (1971) following a wide ranging review of educational programs for disadvantaged students in the United States, and also by the researchers involved in the cross-national studies of educational achievement carried out by the International Association for the Evaluation of Educational Achievement (for example, Comber and Keeves, 1973).

More recentily, hopes for educational solutions to social problens were further damaged following the publication of the report describing a large scale evaluation of the 'Follow Through' compensatory education program in the United States (Stebbins et al, 1977): This evaluation followed 20,000 students over a four year period in order to examine the effectiveness of seveñteen different models of compensatory action. The researchers
concluded that nonc : the seventeen models in the evaluation demonstrated that it could compensate consistently for the academic consequences of poverty' and that the overall follow Through strategy was 'not an effective tool for raising poor children's test scores' (Anderson et al, 1998:162).

All of these studies have been subjected to a great deal of discussion and criticism with respect to their methodologies (Mosteller and Moynihan, 1972; Levine and Bane, 1975; Hodges, 1978; House et al, 1978; Wisler et al, 1978). Much of this debate has been concentrated upon the technical problems in these studies which have occurred because they were carried out in 'naturalistic' settings rather than ws true experiments, and also upon the assertion that the educational outcome measures which were employed focussed too narrowly on an academic view of the purposes of schooling. A further problem associated with these studies has been that they have concentrated on short term effects - whereas an assessment of educational effects on social reforms requires the development of longitudinal studies. These studies would be able to consider the long term influences of educationjoreffects on the total 'life chances' of students in a more comprehensive fashion.

The Use of Indicators to Allocate Educational Resources
An important issue in the implementation of educational programs designed to achieve social goals has been the selection of procedures by which educational resources have been distributed among schools and students. The effectiveness of these programs would obviously be expected to have limited impact uies. these procedures were able to identify accurately the schools and students which the programs were designed to assist.

The three educational programs in the United States, United Kingdom and Australia, described in the previous section, have all relied upon the use of indicators constructed from objective data to identify appropriate 'targets' for the allocation of supplementary government assistance. The target groups for each of these programs have been described in different ways. In the United States the program was concerned with children living in 'poverty', in the United Kingdom the ain was to assist students attending schools in 'deprived areas'; while in Australia the focus was on students attending ${ }^{-}$ 'disadvantaged schools'.

The various definitions of target groups for these programs have been accompanied by a variety of approaches to the construction of indicators, to assist with the objective identification of the target groups.

In the United States the allocation of Title I funds has been based on purely economic criteria in order to provide assistance for 'the special needs of children of low-income families and the impact that concentrations of low-income families have on the ability of local educational agencies to support adequate educational programmes' (United States House of Representatives, 1978). The indicator used to operationalize this definition has been based on a 'count' of poor children derived from census data according to the following categories (United States Department of Health, Education and Welfare, 1976):

1. Children aged 5 to 17 years from families designated as
"poor" aecording to the Orshansky (1965) formula applied
to the 1970 census.
2. Two-thirds-of the children aged 5 to 17 years receiving payments under the Aid to Fanilies with Dependent Children (AFDC) programs.
3. Children aged sto 17 years being supported by public funds who live in foster homes or in institutions for neglected or delinquent children.
After 1980 the basic allocation formula will take account of 100 per cent of children from families receiving AFDC instead of only two-thirds, which has been the provision since 1965. Also, a further supplement will be made to the Title I basic funds according to the number of families in each State with incomes below the national median figure. (OECD, 1979)

This indicator has been used to allocate funds among States. Within States the allocations to school districts and then schools within school districts has been made by using a variety of indicators which have similarly been based on estimates of poverty 'counts' (Blackburn, 1979a).

The Plowden Report (Plowden, 1967) in the United Kingdom emphasized that the identification of schools in Educational Priority Areas should be based on objective data. The National Survey carried out for the Plowden Report had demonstrated that parental attitudes were of prime importance in explaining variation in the educational achievement of students. However, it was reasoned that there might be validity problems if a complete census of parental attitudes was undertaken when the purpose for collecting the data became public knowledge. Instead, the Plowden Report listed eight eriteria which were assessed as being suitable for identifying 'those places where educational handicaps are reinforced by social handicaps': occupation, size of family, social welfare payments, overcrowded living conditions; poor schooi attendance rates; proportions of handicapped persons, incomplete families, and children unable to speak Engilish: (Plowden, 1967:57-59). The responsibility for the construction of an appropriate indicator was given to the Local Education Authorities.

$$
\text { 1. } 47
$$

Various attempes were made by Local Education Authorities to use these eriteria to construct suitable indicators. However, anomalies arose betwe th and within ireas because of the types of criteria which were used and the keightings given to particular messures in the construction of the indicators (Halsey, 1972:46-47) = The most widely accepted attempt at indicator construction was carried out for the Inner London Authority by Little and Mabey (1971). This index consisted of ten measuress occupation, chíldren receiving free neals, overcrowded housing, lack of housing amenities, handi= capped children, immigrant children, teacher turnover, pupil turnover; absenteeism, and famiy size. The measures were standardized according to a formula based on the range of each measure and then added together with equal weights to form the indicator (Halsey, 1972:50).

The measures used in the construction of this indicator were derived = from various sources. The occupation, overcrowded housing, lack of house amenities, and family size measures were obtained from eensus data; the children receiving free meals; imigrant children, teacher tumover, pupil \qquad turnover, and absenteeism measures were derived from various government department records; and the hand ${ }^{\prime}$ capped children measure was based on the percentage of childien of le: ability at the $11+$ transfer to secondary schools.

The Karmel Report in Australia examined several appronches to the identification of schools for participation in the Disadvantaged Schools Program: subjective assessment based on information obtained fronn informed persons within Australian school systems, and objective assessment based on the construction of indicators from census data. The former approach was rejected because there would have been a lack of inter=system comparability in the information obtained from each education system.

The initial 1973 national indicator, derived from a range of census data describing occupations, ethnicity, education, famíy characteristics, religion, and housing, was intended to identify 'schools drawing a high proportion of enrolments from neíghbourhoods having certain characteristics known to be generally associated with a low capacity to take adrantage of educational facilities' (Karmel, 1973:92). More recently the 1980 nationai. indicator has only been used tó sivide funts between school systems who have then employed their own increators to allocste funds te schosls: The structure of the national and system-level indicators have been described iñ detain in a 1ater chapter.
'In the United.'States and the United Kingdom there has been criticism relating to the degree of precision with which resources allocated by the
indicators used in the Title I and Educational Priority Aress programs have reached those students who wore in most need of assistanca ciess
(1970) and Frriunc-4 1971) showed that an incone dichotomy for faminy incomes, as was used in the Title i program indicator was a very imprecise method
--- for ideritifying-students having reading and leaming difficulties. Similar concerns have been expressed about the lack of precision of the Educational Priority Area indicators following researeh studies carried cut by Acland (1971) and Barries and Lucas (1974) : In Australia there would appear to have been no research studies which have systematicaily examined the precision with which resources allocated by indicators used in the Disadvantaged Schools Program have reached stidents who were in most need of assistance.

The Purpose of This Study
The previous discussion has raised two important issies concerning the use of ${ }^{*}$ ducational programs to achieve social goals: the magnitude of the 'effects' of these programs on participating students, and the precision with which supplementary resources have been allocated by the use of indicators to those students who were in most need-of assistance. It was noted that the first issue has been subjected to consliderable research and debate mostly without satisfactory resolution at this point of time. The second issue has received relatively less attention by researchers - but the , available findings jin the United States and the United Kingdom have consistently suggested that the indicators used in the Titie $\overline{1}$ and Educational P-iority Areas programs have lacked precision in the delivery of respurces to those studentes who were in most need of pssistance.

In the absence of detailed research knowledge concerning the performance of indicators being used in Australia it was considered important to examine the inplications of the second issue for the conduct of the Disadvantaged Schools Program. At present there are nine different indicators being used for this one programs one at the national level, and eight others being employed by various school systems. Not one of thése indicators has evex been subjected to a detailed examination with respect to either the specific: definition of 'disadvantaged' (Karmel, 1973:92) which they purport to measuris, or the characteristics of the students which they idegtify as being educat:ionaily disadvantaged. Further, there would appear to be no published research available which would enable an assessment to be made of the precision with. which they may be used to identify students who are in most need of assictance.

The main aim of this study was to develop, validate, and describe the properties of a national indicator of educational disadvantage which was in hamony with the definition of 'disadvantaged' provided for the conduct of the Disadvantaged Schoois Program in Austailia.

Initially, a detailed review was prepared of the resource allocation responses which have been mada in Australia to the changing concept of equality of educational opportunity. This was followed by the development of a theoretical model which was desjened to quantify the optimal level of precision with which these responses could be used to allosate resources.

By drewing upon the resuits of these two tasks a program of researeh was designed to prepare several indieatoris of educational disadvritage which would avoid the inadequacies of the currently available indicators, and would also provide a quantitative assessment of the capacíty of these indicators to deliver resources to those students who were in most need of assistance.

There were threc main phases associated with the development of these indicators. First, a list of items describing important properties of indicators was prepared and a threestagestrategy was devised to develop the indicators in a fashion which would optimize overall satisfaction among the demands of this 1 ist of properties. Second, the characteristics of the indicators vere examined iñ a range of analyses which perintted the solection of 'an indicutor with the best overall performance. Third, this 'preferred' : indicator was eomparec with certain dimensions of iesidential hifferentiation in order to enable a meaningful social description to be mase of the cōnstruct assessed by the imdicator scores.

resource allocation responses to the changing CONCEPT OF EQUALITY

${ }^{\text {antroduction }}$

Over the past two decades in Australia the concept of equality of educational opportunity has been subjected to a great deal of attention and review. The focus of this discussion has moved since the publication of the first report of the Australian Schools Conmission (Karmél, 1973), from what Dyer (1972) has described as a 'means' debate to an 'ends' debate.

The notion of equality of 'means' referred to the aim of establishing equality of educational resource provision across schools. . This type of equality has often been measured by comparing schools with respect to their physical plants, staffing quality, location, etc. The 'means' approach has variously been described as a concern for equal treatments (Husen, 1972) or equal schools (Coleman, 1966b).

Alternatively, equality of 'ends' referred to equality in the end results of the educational process. This has commoniy-been-assessed by comparing students, or certain subgroups of students, on school achievement test scores or on final educational attainments. The 'ends' interpretation has also been referred to as a commitment to equal final goals (fusên, 1972) or equal students (Coleman, 1966b).

In the following pages the changing nature of the concept of equality of educational opportunity in Australia has been discussed. The framework for this discussion has been drawn from the lucid analysis presented by Husen (1972, 1975): Husen examined the changing nature of the concept by incorporating the 'means'/'ends' distinction into developmental stages which corresponded to three iistinct sozial philosophies: conservative, liberal, and redemptive.

Many other authors have employed a similar division of these develop= mental stages in their discussion of equality of educational opportunity. In Table 2.1 a list of authors and their terminology has been prèsented in (form which links the three=stage model proposed by Husen (1972, 1975) to approaches presented by the other authors. Most of these authors have used different styles of argument, and while the overlap of stages between authors was often lacge it was never exact. The examination of the concept of \because

$$
5821
$$

equality of educational opportunity by Crittenden (1978a, 1978b) and Keeves (1978) provided añ Australian perspective several years after the publication of the first report of the Schools Comission (Karmel, 1973): Halsey (1972); Husén (1972, 1975), and Neave (1979) Kave described European developments; the other authors, Bell (1977), Coleman (1968), Gordon (1972), Jencks et al (1972), and Mosteiler and Moynihan (1972), have centred their diseussion mostly on developments in the United States.

> Stages in the Development of the Concept of Equality of Educational Opportunity in Australia

1 Conservative

From the time of early settlement to around the end of the nineteenth century, the provision of education in Australia was mostly limited to schooling administered by religious or private organizations. The educational system was designed to provide educational opportunities which were appropriate to one's station in life. The private serondary schools and universities mostly catered for students from professional families who were 'destined' for professional vectapations. The tuition fees for these institutions were substantial and only a limited number of scholarships were made available in order to assist exceptional students whose efforts would bring erellit to the institutions.

By the early years of this century each of the Australian States had established public education systems, covering the elementary years-of schooling, which were designed to be free, secular and compulsory. The elementary schools provides training in the basic skills of reading, writing, and arithmetic for those who were to form the mass of manual, semi-skilled and clerical workers. Limited numbers of public secondary schools were also set up in each state. These schools were highly selective and in many cases, were not free.

The general structure of Australian education at this time was therefore centred around a verticaliy separated system in which educational provision was fairly. clearly divided along class lines. Husén (1972) has suggested that: one of the more conservative assumptions behind this type of approach had its origins in a religious view of the world:

God had given each individual the aptitudes that corresponded to the caste or social class in which he was born. . he had. not only to make optimal use of his capacity but be content with it; (Husen, 1972;28)

Table 2.1 Terainolog Used by Grious luthors in their Discussion of the Changing lature of the

Contept of Equality of Eduational Opporturity

Author
Equality of Educational Opporturity

Stage 1

Natural Aristocracy
Differentiated Opportunity
Critetenden (197883, 1978b)

Gordon (1972) \quad| [The Dichotony of the] |
| :--- |
| Educible/lUneductible |.

Halsey (1972)
Husén (197\%, 1975) Conservative
Jench of at al (1972)
Reves (1998) Conservative
Nosteller and
Noynihan (1972
Neave $(1979) \quad$ Predestinative
fir 23

Within this conservative framework Australian governments considered
that the purpose of educatisn was to nurture telent concept of equality of educational opportunity for all students was eonsequently not really rele rant R Reher, polieies were explicitly designed to produce what Coleman (1368) has described as differentiated educational opportunity'.

3 Eibegri
A gradual movement from a conservative to a more inberal vícw of equality of educational opportunity took place iñ dustralia during this century. This change was aceelerated with the massive growth in the secondary and tertiary education sectors after the Second World Wor. In public secondary* schoois fees were eliminated and distinctions-between curricula for students pleparing for professions and those preparing for sub-professional, commercial, and technical occupations had diminished. At both sesondary and tertiary levels there was a great expansion of scholarships for the more able students. Within each state netempes were made to ensure that there was a uniforinity: in standards of staffing and estential equipment for all schools.

This emphasis on uniformity of educational provision appeared te ${ }^{\text {n }}$ be hased on the assumption that individuals were born with eertain, relatively constant, abilities or inteliigence. Therefore the appropriate goverament response was tc remove those external material obstacles which would prevent students making best use of their abilities: schrag (ig\%o) has describec the iiberal approach as 'social Darwinism' in which everyone in the 'jungle' had the same facilities and therefore success was decided by the students capacity for fesourcefulness, amiviton, abiluty and strength. The move from a conservative so n libergl view carried the hope that the rewards of educational systems would pass from being lased on socio-economic baekground and rarsonal infiuence to being dependent upon both ability and indugtry.

A growing uncertainty about the validity off the expected outcomes from thé ijberal view began to be supported by a mange of educational research studies which described the achievement and attainment levels of different social groups. By. the late 1960's it had become common knowledge that the major Letsyminants of educational attainment were not school-masters but social situitions, not curriculum but motivation, not formal access to the sehool bu*'support in the family and the comunity' (Halsey, 1972:8).

3 Redemptive

- The publication of the report of the Interim Commitee of the Australiañ Schools Commission (Kamel, 1973) moved discussion in Australia from, a
liberal to a \quad 女demptive view of equality of educational opportunity $=$ This' report was prepared at a time when a flood of research evidence was demonstrating that the liberal view had failed. Achievement and attainment levels in Australian, even under condutions of comparable access ; uñínim curricula, and comparable material provision, still appeared to be fintuy linked to the socioeconomic circumstances of the student 's home envinonment:

The wain sources of oressure for a review of the liberal approack stemmed from the large-scals investigations which had been carried out in the United fingdom (Plowden; 1967) and the United States (Coleman et al; $=$.
 the debate from a cencern with equality of inputs, associated with access and materíal provision, to a concern with equality of oitputs, associated with final student rehievements and attainments.

Neave (1979) noted that the transition to a redemptive view was marked by the growth of the notion that the educational system should be able to adapt to the needs of individual students. * According to this interpretation, $=$ 'failure on the part of the individual is as much evidence of the inability of the education system to adapt to the individual's need as it is of the individual's inability to meet the exigencies of the education system' (Neave, $1979: 166$) .

Husen (1972) formulated the redemptive view of equality of educational opportunity in the following fashion:

It is not enough to establish formal equality of aceess to - education. ©ne has also to provide equality in the pre=school institutions or in the regular school for children of various social backgrounds to acquitre intelligenc̣es (Huseñ, 1972:38)

Husen (1974) warmed that a move to the redemptive view required a complete revision of baṣic pedagogical notions by the education system. The common element in, action taken bư schộis would be ininividualization' of the entire systen of instruction (Block, 1971). This type of learning environment would be a necessary step towarids being abie to 'provide equal ópportunity for unequal treatment so far as socialiy relevant differences are concerned' (Husen, $1974: 40$).

The Australian Schools Compission's View of
Equality of gducational Opportunity

1 Equality; As a 'Principal Value'.

In the second chapter of their report; umder the heading of values and Perspectives', the Interim Committee for the Australian Schools Commission.
listed the principal values from which its recommendations have been derived' (Karpel, 1975:10). The two values listed uncer the 'Equality' subheading were coupled with some general descriptions of the actions required .. to reinforce these values. These actions dealt with aspects of resource allocation whith have, cone to be known as forms of 'positive discrimination' in which 'the schocls must supply a compensating environment' (plowden, (1567*57).

- The first, value was concerned with 'the principle that the standard of schooling a child receives should not depend on what his parents are able or jilling to contribute directly to it, or whether he is enrolled in a government or non-government institution' (Karmel, 1973:11). This principle supported a liberal, view of equality of educational opportuity: That is, it affirmed students' rights to have equal access to schools of equal standards. However the action with respect to this value which wasrecominended included the notion of compensation through schooling ror unequal environmental conditions and therefore seemed to be taking a more redemptive view of equality of educational opportunity:

FThe Comittee believes that] there are grod reasons for ; ; attempting to compensate to some extent through schooling forv unequal out-of-school*situations in order to ensure that the child's overall condition of upbringing is as free of restriction due to the circumstances of his family as pubilic
\therefore action through the schools can make it. (Kaxmel, 1973:11)
The second value was associated with'the right of every child, within practicable limits, to be prepared through schooling for full participation . *in society, both for his own and for society's benerit' (Karmei, 19\%3:11). This value moved beyond the outcomes of schooling to a form of equal opportunity in the life of adult society, It was a somewhat tangled mixture .of iiberal and redemptive views because "the concept of 'full-participation in society' could mean either participation up to a level governed by individual ability, or equal level of participation, or both of these at the sane time. However the action required to reinforce this value again took $a_{\text {e }}$ redemptive view by suggesting 'conpensatory action through' making 'special

- : effortss' for a sub=group of students:
$\because \quad$ [The Comittee] accepts the obligation to make special efforts
(". to assist those whose pace of learning is 'slow.
(Karme 1, 1973:11)
-. In the final paragraph dealing with 'Equality', a cleariy redemptrive view of equality of educational opportunity was emphasized through proposals concerning the allocation of funds requived to support aspects of equality

> The Comittee believes that schools should attempt to provide a more equal. opportunity for all children to participate more fully in the societ as valued and respected members of it.
> (Karmel, $1975: 25$).

A close examination of this 'limited' goal revealed three main themes which have recurred throughout the Schools Commission Reports. The wording of the Interim Comittee's defintion has been broken into three pieces int the following paragraphs in order to highlight these themes:
(a) \ldots schools should attempt to provide. ..

The report of the Interim Comittee of the Australian Schools Comission was prepared at a time when several major reports (Coleman et al, 1966; Jencks et al, 1972) had emerged with a message that the contribution which schools made to explaining variation in school achievement or educational attoinment was small after the contribution made by the home environments of students was taken into account. The findings of these studies were similar to findings obtained in Australia from two large-scale evaluation studies in the areas of Mathematics (Keeves, 1968) and Science (Rosier, 1973).

Also, at that time, several reports which reviewed the effectiveness of compensatory education programs (Little and 5 mith, 1971) and the effectiveness of various educational resources (Averch et al, 1971) were pubished. These reviews provided little encouragement for the previously popular idea that manipulation of learning environments through increased expenditure on education would greatlyfaffect student achievement.

The discussion of 'Equality' in the Interim Conmittee's report acknowledged these findings by incorporating cautionary statements concerning the expected magnitude of 'school effects' in the pursuit of equality.
. : Attempts to make the school more effective in its contribution to developed ability are favoured by the Committee in full awareness. of the limitations of their potential power.
(Karme1, 1973:22)
It is almost certainly the case that schools alone cannot effect the degree of environmental change necessary to enable all groups of children to reach an equal average level of educational attainment. (Karme1, 1973:22) :

Similar expressions of caution were given in a later Schools Commission report during a discussion of the influence of education on social stratification in society:

Schools do not have the power to make society more equal.
(McKinnon, 1976:7)

The views expressed in the above quotations had inportant implications for the interpretation of the Schools Commission's 'limited' goal with. respect to outcomes. Rather than expecting schools to coñtribute to equality they were asked to 'attempt to provide' a contribution. This hesitance in emphasis turned the 'iimited' goal into something which resembled a hope for instead of an expectation of equal educatioñal outcomes:
(b) $=$. a more equal opportunity for all children \ldots

In a previous section a description of the schools Commission's rejection of a strict interpretation of equality of outcomes was presented. Thîs rejection applied to both the goal of equal average outcomes for social groups and the goal of equal outcomes for individuals.

By referring to 'ali children' in the 'limited' goal, the Schools Commission concentrated on the outcomes for individuals rather than social groups. However, in place of a strict interpretation of equal outcomes, the Schools Commission supported a somewhat toned-down interpretation, Instead of 'equal' opportunity, the '1imited' goal called for 'more equal' opportunity.

Statements in suppoit of a need for 'more equal' opportuñity have appeared in \mathfrak{a} number of forms in the reports prepared for the schools Cominission:

The Interín Comittee's report called for 'more equal basic achieve ment', 'more equal opportunities to partake in higher education', 'more equal outcomes from schooling's ${ }^{\prime \prime-}$ more-sequal = performance', 'more equal opportunity' and 'more equal chances for educational success.' (Karmel, $1973: 11,20,22,23,93,94$).

Similarly, the first and second reports of the Schools Commission supported policies which emphasized 'more equal outcomes' (Mckinnon, 1975:6) and 'more serious contributions to equalizing the opportimities of children' (MeKinnon, 1976:11).

These cautious approaches to the concept of equality of educational opportunity were in close harmony with the use of the word 'limitedi that had been employed to describe the Interim Committee's goal of equal educationnal outcomes:
(c) $\because=$ to participate more fully in the society as valued and respected members of it.

The final section of the Schools Gommission's definition of the 'limited' goal of equal educational outcomes described the outcomes which the schools were expected to 'attempt' to make 'more. equal' among students. This section provided iittle useful information about the specific activities or structures with which the schools might be concerned in order to achieve the ilimited' goal:

Some clues were given about the specific roles of the schōols in the sentences which followed the definition. The schools were expected to plovide:
(i) 'Basic skills' necessary to 'participate in the society', and to 're-enter formal education at a later stage'.
(ii) 'A comprehensive core curriculum'.
(iii) An introduction to a variety of-leisure-pursuits.
(Karme1, 197亏:23)
The second and third of these roles referred to the provision of certain curriculum content. The appropriate response by the schools would: have been to ensure that students had access to these activities. No attempt was made to suggest that students were to reach partimiar ievels of performance. In this sense, these two roles could be linked to a liberal view of equality of educational opportunity because the essential ${ }^{3}$ requírement was that.schools should guarantee exposure to, rather than mastery of, the curricuiluñ content.

In contrast the first role emphasized a redemptive view of equality because it implied that all students would be required to achieve gompetence in those tbasic skills' which were. necessary to participate in society or to re-enter formal education at a later stage.
$\therefore \quad \therefore$.
The responsibility of the schools for the developpinent of 'basic skillsi continued to be emphasized and presented in more detail in the first and second reports of the Schools Commission. These basic skilis tended to fall into two broad categoríes". basic cognitive skilis and basic personality añ sócial skil1s.

'reading ... the most bisic tool', 'the basic plateau of competence in schooling' (Mckinnon, 1975:6, 7, 5), 'basic learning skills', 'levels of competence', 'basie credentials', 'to read, use language and to figure to a level which secondary schooling assumes', 'access skills', 'reading and language competence' (McKinnon, 1976:8, 9, 10).

The basic personality and social skills were described in a somewhat nore abstract fashion:- The students were required to find an-identity as social beings', 'become full citizens', develop 'the capacity and gonfidence to forge meaningful links with others', 'organize and take personal responsibility', 'shape the character of their own lives and participate in shaping the character of the society' (MeKinnon, 1975:7), 'acquire a capacity for making choices through an understanding of the society', 'reflect on experience', 'act individually or in association with others to change arrangements they find unjust or humanely degrading' (Mckinnon, 1976:9, 12).

A striking difference between the two types of basic skills was associated with the time scale upon which suecessful mastery might be judged. The basic cognitive skills were concerned with the need for mastery of the fundamental skills, of literacy and numeracy. These skills could be assessed with criterion-referenced testing during or after the process of schooling. On the other hand, the basic personality and social skills referred to individual characteristics which would not. be able to be assessed until: later adult life.

3 " Sumnayy
The collation of quotations presented above would appear to indicate that the Schools Commission's perception of equality might be appropriately characterized as a 'limited liberal-redemptive hope'.

The word 'hope' emerged as a suitable sumary of the Schools Commission's response to those research findings which had demonstrated that schools had relatively small effects in explaining variation in student. achievement and attainment. This hope was expressed by asking the schools to 'attempt' to be more effective in 'full awareness of the limitations of their potential power' (Karmel, 1973:22)

The notion of 'limited' referred to a less-than-full commitment to equality of outcomes. The Schools Commission rejected a strict interpretation of equal outcomes for either groups or individuals. Instead a tentative version of 'more equal', rather than 'equal', outcomes was supported.

This limited approach, incorporated in an explicit definition of equality presented in the firse Schools Commission report, expressed the need to aim for 'more equal' outcomes from schooling and to 'mitigate' social group disparities (McKinnon, 1975:6).

The 'liberal=redemptive' nature of the Schools Commission's 'limited hope' was expressed in the expected roles of the schools as agents for obtaining equality of educational opportunity. These roles combined liberal calls for uniformity of material provision: 'a comprehensive core currieulum' and 'an introduction to a wide variety of leisure pursuits' with redemptive views concerning the need for all students to master the basic skills necessary to 'participate in the society' and to 'resenter formal education at a later stage' (Kamel, 1973:23).

This liberal-redemptive mixture also surfaced in the Schools Cominsion's rationale-for resource allocation. The liberal value that the standard of schooling received by a student 'should not depend on what his parents are able or willing to contribute directly to it, or whether he is enrolled in a government or non-government institution', was to be established by the redemptive response of taking public action-toeompensate for unequal out=of-school situations' in order to ensure that a child's development was 'free of restriction due to the circumstances of his family' (Karmel, 1973:11).
= The Australian Schools Commission's Resource Allocation Strategy
The Australian Schools Commission pursued its 'limited liberal-redemptive hope' via a major review of the federal funding of Australian education. The focus of the range of funding prograns which energed from this review were described_as falling along two main 'dimensions'. These dimensions; which were labelled 'inputs of resources to schools and school systems' and 'degree of disadvantage of groups of pupils in particular schools' (Karmel, 1973:50), have closely paralieled resource allocation respoñses which would be respectively appropriate to the liberal and redemptive views of equality of educational opportunity:

The first dimension involved a strictly liberal interpretation of the 'néeds' of Australian schools and students. This dimension concentrated on inputs of material resources which, for example, were required to upgrade school buildings, expand library facilitiés, and improve the provision of teachers and buildings for special education. The largest single program in this area was concerned with equalizing recurrent expenditures across
all Australlin schools．A sehool＇s need for supplementary recurrent resources to cover the gemeral＇running costs＇of education wiss assessed． by comparing the school＇\equiv per pupil expenditure．with the national average for goveriment schools，The essential goal for the programs prepared for this dimension was to howere towards uniformity of material resource provision，af an acceptatsie standard，across all schools in Australia．

No attemp was made in the initial planning of these programs to ink expenditure with educaticonal outcomes．It was conceded by the schools．
Commission that thexe i三 no simple mins－end relationship ind ducation between resources enploy d and conseq̧iential outcomes，neither is there añ optimuñ combination of resources which will achieve a desiped objective in any circumstance＇（karme1，1973；50）．

The second dimension was redemptive in nature because it acknowledged that＇there are schooly fisn Aust，ilia which require greater than average $=$ resources if they are to be effective with the children they serve＇（Karmen， ＇1973：91）．This dimensioren led to the development of positivediscrimination in favour of＇disadvantaged schools＇．Theprimary aim of the resulting ．．．．．．．．．．．．．．inding program was concerned with facilitatiñg variation in sthool programs in ways which would enabl重e disadvantaged children to learn more successfully． Unlike the programs basect on the first dinension，＂the Disadvantaged Schools． Program was expected to beave specific educational outcomes．the emphasis was to be placed on＇redwacing differences in the educational performance of socially disadvantaged children and the rest of the school population over the traditional gammat of schooling＇（Karme1，1973：93）．

The identification cosf schools and students to receive assistance uñer． －the prograns developed foos the first dimension was based on simple account－ ancy procedures which courted expenditures per pupil．accommodition space， library resources，etc，That is，the information required for this dimension consisted of quantifiable material resources which could be dipecty and accurately，measured．

However，the identi巨三cation of schools and students for the seond dimension required the cononstruction of an indicator which would form añ appropriate measure of thate construct of＇disadvantage＇．Thāt fo，since the＝ construct of disadvantage was not a physical entity which eould be diretetly：－ and accurately measured，there was a need for the development of an indicator which would provide a sui table surrogate for the construct．

The Australisin Schools Comitession's Disatin vantaged Schools Programen
The Disadvantaged Schools Progpare Was introcuce ed to implement the recosemmendations presented in the Report of the Interin Comittee for the Austra Schools Comaission (Karmel, 1973) This probioam was a landmark for fe - deral intervention in Australian educat ion beckseg i tepresented the first iarge seale attempt to foster a redemptesve view os equality of educational opportunity. The Tedertptive-spin it-of the po-gram-was-captured-by-a-s-inglesentence in an early section of he krimel fep ort:

More equal outcomes Fresm schooing Fequire unequal treatment $=$ of ehildren. (Karmel, 1973:22)

The 'unequal treatment' feferred to the provision of 'greater thajan avenge resources' to disadvantaced schoolss a nd the 'more equal outcotemes' referred to an 'emphasis on fedueing differences in the educational pe-xforin= ance of socially disadvantaged ctaildren and the rest of the school popenilation (Kamel, 1973:91; 93).

In acknowledgenent of an eare iler admiseiomn that there was uncerta inty about the resource inputs = educetional outputs nexus, the Karmel pepo-re presented several liberal justif cations as af ditional support for the resource allocation measures intwoduced as pare of the Disadvantaged S = ehools Program. The supplementary assistance to Disa dvantaged schools was expepected to ensure greater equality in terns of regoute inputs for all schools because:

- Disadvantaged schools mere usualy among the worst providec for in terms of buildings, playing space, and other facilities,

2 Students in Disadvantaged schools enm joyed jess overall pubii: c support for their education becatse they typiceally did not continue to the publicly=subsidized higher loveles of school ing and tertiary education, and

3 . Students in Disadvantaged schools often were exposed to surr-ound= ing and a school community and Frogram which provented their schpolin $\equiv \underline{g}$ from belng 'enjoyable and fruiz flal in itsele'*

Choice of Indicator

The Australian Schools Comissiota examined cwo alternative approsches to the the ostablishment of a prioxity 垩 ist of disady antaged sehoolsi subjectetive $\therefore \quad$ assessment based on information esbtainedafrom informed persons within the the school systems; and objective assessment whiche required the constructionon of suitable objective indicators for sehools:

The s-ubjective assessment approach was rejectedbeatsse there would have been a lack of inter-system comparability in the information obtained from each school system. Instead, a limited anount of subs jective inform= ation was used as validation data for the objective procectures which were adopted (KEartel, 1973:166).

The uese of objective assessments required that decis立 ons be made as to whether $=$ the appropriate indicators would be concened with educational achievemert or social criteria. Blackburn (1979b) has presented several feasons whay social criteria were favouxed for the idenifi cation of dis advantage fil schools. These reasons may be divided into thi ee main areas.

First, there was a concern that indicators based on ehirevement measures $¢$ oncentrated too narrowly on one aspect oe dueat fonal disadvantage:
... educational achievement criteria bypass the broader aspec*s of support and development with. which we might expect the schools to be concerned. (Blackburn, 1979bil)

Secorad, there was a fear that the use of achievemt have inflleaenced the curricula of disadvantaged schools in ways which would have prevented attempts to adapt to the specific neds of the students. That is, xcessive attention given to test scores mivy have caused the schools to resort to the 'intensive application of methods wich lazave been unsuccessful in the past' (Blackburn, 1979b:2).

The hird reason described the need to avoid eettain 'educational. dangers' fin making achievement measures central to the sel ection of disadvantagece schools: the appearance of rewarding indipetence, and the diversion of attention from the 'Ifundamental school change' which was considerect to be an important feature of the progran.

The social criteria upon which the indicators of dis』dvantage were based were concerned with the charaeteristies of the niglabourhoods which surroundeceschools:

The Committee has chosen the terī 'disaduatage 3 ' in relation to schools drawing a high proportion of entimerats from neighbourhoods having certain characteristics mokn to be generally associated with a low capacity to take adyntage of educational facilities: (Karmel, 1973:92)
Censts data were used for the construction of the ingicators rather than data obtained from the families having childrenaterading the schools. These dat \leq were preferred because they were 'likely to be more accurate', and becausse, they avoided the 'invasion of privacy invive in seeking out informaticon which can be asseciated with particular fani ues by the people 35
using the data'. A further consideration was that the characteristics of the population surrounding the school were believed to be 'part of the total environment of țe child' (Blackbum, 1979b:4).

Units of Identification and Funding

The Austra ian Schools Commission decided to use schools; rather than individual students, as the unit of identification and funding. That is, the indicators of disadvantage were used to rank schools in order of 'disadvantage' and then all students who were members of schools below a participate in the Disadvantaged Schools Frogram.

In the early stages of the program an Australia=wide list of schools was prepared by the Australian Schools Commission as a guide to assist detailed examination of these schools by school system authorities. More recently each school system has taken greater control of preparing its own list of disadvantaged schools. Within each of the school systems, the school has remained the basic unit of identification and funding.

The Disadvantaged Schools Program: Indicators at the National Level

The 1973 Indicator

The first lists of disadvantaged schools were developed at a national level by the Interim Comaittee of the Australian Schools Commission. The lists were presented to school systems throughout Australia for considerafion during 1973 and were adopted for funding purposes after any major anomalies had been corrected.
s.s. The development of these lists employed a measure called the 'Socioeconomic Scale', which was derived from information obtained for the 1971 Census. The main components used in the scale were: socioeconomie status, ethnicity, extent of schooling, unemployment, residential mobility, certain aspects of the family, religious-adherence, number of Aborigines and housing conditions. " Details describing the 38 census-derived variables were briefly summarized in Appendix E, of the Interim Committee's report (Karme1, 1973:167).

The "Socioeconomic Scale" was produced ty using principal components analysis followed by factor rotation and then deletion of variables which did not assist in discriminating among districts' (Karmel, 1973:166). The weights obtained from these analyses were then applied to the component ${ }^{-}$ variables to obtain each school's measure on, the Socioeconomic Scale.

The Interim Comintife decided that bectrause of the markedy different social composition of mijor urban areas as coompared with non-major urban areas': a separate analyis wouid be conducted fry for each type of area (karmel, 1973:165). The Principalcomponeme analysis technique was applied to the correlation matrices which were developed sepparately for major urban and nonerajor urban areas. The principal componesent extracted for the major urban areas contained is varibles, and the principoal component extracted for the non=major urban areas contined 12 variables (Australia, Schools Commission, 1980a). The variables m their raw componen at weights from the principal component analyses hoven reported in appe endix A.

The graphically Gefind pupil catchment area of each school was converted to a numeric code repeaniting the Census Col 三lector's-Districts linked to each school. These codes wefled to obtain aver=age scores for each school on the census variables lustin the analyses des.acribed above. The weights obtained from the prihefal component analyse $:=s$ were then combined with these average scores to obtainchool scores on the $=$ 'Socioeconomic Scale'.

The schools. were rinted in ordẹ of theisis scores on the 'Socioeconomic Scale' and, beginning fro the most disadvants:aged schools, enroiments were counted until 15 per tenlof enrolments in márejor urban schools and 10 per cent of enrolments in rinkijor urban schools $=$ were reached. The schools on the lists below thesfutoff points rome $=d$ the first list of Disadvant agad Schools.

It was important thate that the princijepal component analyses and subsequent component tolations were carried oreut by using Coliector's
: Districts as the units of analysis and not scifhools. Therefore, the properties of these techniques whinthe Schosls Commissinion considered to be important: 'to ascertain which vardoles were the most ef-fficient discriminators', to provide 'appropriate welghing for the variablies which were ultimately retained', to present inobjective bass for - actually determining the extent to which a limited number of factors are laterant in a given set of measurements!, and to calculatone factor which was "interpreted as relating to socioeconomic class' (kimi, 1973:165, 166), were all properties which: applied only to Collectir'sistricts: The fact that the schools were scored on the outcomes of thespalyses according tcso their catchnent area charact= eristics in no way guaritled that the properties listed above were trans=4. Ferrable to statements alout "populations"of sexhools.

One can only speculate about the logic of the Schools Commission's methodology in deriving the component scores. Since each school was ident $=$ ified in terms of the Coliector's Districts associated with its catchment area it would seem to have required no greater degree of computational effort or resources to conduct the analyses by using the school as the unit of analysis. It is quite feasible that a totally different set of components would have emerged if schools had been used as the unit of analysis. This may then have resulted in a different rearrangement of the Socioeconomic Scale scores for schools.

The 1980 Indicator

In 1979 the Schools Commission decided to revise the 1973 'Socioeconomic Scale' by conducting'a new set of analyses with the 1976 Census data. Due to time and resource consiraints it was not possible to either update or repeat the school catchment mapping exercise which had taken place during 1973. Also, while the 1976 Census did contain information which would have permitted a link to be made between each school and its community, the Australian Bureau of Statistics considered that disclosure of data at the school aggregation level could lead tō problems of confidentiality. These difficulties prevented the-preparation of index scores associated with particular schools and consequently the Schools Comission-was-unable to prepare a revised priority list of schools for the Disadvantaged Schools Program. The 1980 Indicator provided scores only for Census Collector's Districts and was therefore restricted in its use to assisting with decisions concerning the division of funds between school syrtems. The nomination of particular schools for participation in the Disadvantaged Schools Program has subsequently become completely dependent on indicators developed within each school system.

The indicator developed in 1980, krown as the 'Socioeconomic Index' was designed 'to determine the relative number of school children living in areas of concentrated disadvantage in each State', (Linacre et al, 1980:4). The 'areas' referred to the Collector's Districts used during the 1976 Population Census. A final list of 32 census-derived variables was selected for the construction of the indicator after consultation with the author of 'this report'. These variables were selected because preliminary analyses conducted by the author showed that many of these variables were highly : correlated with school mean scores on tests of educationai achievement. The variables selected for the construction of the indicator covered similar

topics to those used in the 1973 index: occupation, education, incona, family structure, dwellings, and ethnicity, Detilis of the construethon and selection of these variables have been described by Linacre et al (1980:35-58) .

The principal components analysis technique used for the 1973 bnder. was again used for the 1980 analyses: However, following añ iñ rest fation of añalyses carríled out separately for major urbañ, other urban, ruyd iociality and rural balance areas, it was demonstrated that a siñ overall principle component analysis would provide appropríate indicatot scores for each of the four regional classifications finacre, et ay, indi: 9-10): The weignts derived from the Australia-overall principal cotmpanits analysis were applied to the 32 variables to obtain a score for each Collector": District on the 'Socioeconomic Index'. The variables athe thir standardized somponent weights from the principal component analyses havi been reporied in Appendix $A=\cdots$

In order to carry out the distribution of funds between sehool systers, the 'Socioeconomic Index' scores were transformed in a fashion which asmed that (1) the funds required tọ overcone disadvantage increased monotonially \therefore..... with scores on the transformed index, and (2) the marginal increase of fund required to cope with disadvantage was díminished as scores on the trans: formed index increased. These transformed scores were used to create 'weighted enrolment' figures which were used to make decisions concemin the division of funds between school systems. Details of the ealculakions 'required to prepare the transformed indieator scores: and the use of 'weighted enrolment' figures have been presented by finacre et al (lago).

Following the preperation of the 1980 'Socioeconomic Index', the tok of developing methods for the selection of lists of 'disadvantiaged kchools' $\because=$: becane, by default, the responsibility of the school systems.
$\frac{\text { The Disadvantaged Schools Program: Indicators at the School }}{\text { System Level }}$.
In the years following the publication of the Report of the intering comittee for the Australian Schools Commission (Karmel, 1973) the school systemsif each. Australian State/Territory began to take an interest in the developint of their own lists of 'disadyantaged schools'. fnitially this interestmis. $=$ associated with minor anomalies which had appeared on the first 1 ist of disaduantaged schools prepared by the Schools Commission. Interest lazit turned to necessity when the Schools Commission, through lack of resoures
and infornation, was unable either to revise or refine its methods for the identification of disadvantaged schools. The following discussion of the responses of the Australian school systems to this situation has been drawn from a dollection of papers and seminar presentations prepared during 197980 for the Australian Schools Gommission Working Party on Disadyantaged Schools (de Silva, 1980; New South Wales Department óf Education, 1980; Ross, 1979a, 1980; South Austradia Educatioñ Department, 1979; Tasmania Education Department, 1979; Western Auscralia EducationsDepartment, 1979).

The ferm "noñ-gōvernment" has been used in this chapter to refer to
 Sclobols Commission, (See, for example, Austrailan Schools Commission (1980)):"
${ }^{\circ}$
Whitreas all government school systems have developed theity own indicators of educational disadvantage, only in the. Vietorian and south Australian noñ-government school systems_have indicators been prepared. In : other \bar{n} non-government school systems a wide range of variables were , considered but no attempt has been made to combine these into indreators. - The Queensland non=government system does not gather data on any variables.

The variables used for the construction of indicators by Australian school systems have been described in detail in Appendix A. A summary of the typis of variables used by the school systems has been presented in Table 2.2. It is important to remember that only the types of variables have been described and therefore this table does not disting 'sh between either the different metrics which were used to measure these variables or the variable recoding techniques which were unique to each school system.

The 'most popular' variables across the systems were 'Occupational. Status of Father/Breadwinner' and 'Migrancy'. These variables were used by six school systems. The occupational status variables were all based on the scaling procedures developed at the Australian National University (Broom et al, 1965 ; 1977). The variable describing the degree of migrancy was generaliy based on the percentage of students from non=English speaking homes: No attempt appeared to have been made to distinguish between different subsets of languages. The next 'most popular' variables were 'Aboriginal Students', 'Single Pa'rents' and 'Student Tumover', each being used by three school systems. These three variables were each measured in a consistent fashion across the school systems.

The 'Isolation' variable was used by the Victorian and Queensland government school systems. In the Victorian government school system the degree of 'Isolation' was based on the distance in kilometres between the school and the next stage of education to which most students move. The Queensland government system assessment of isolation reflected a mote detailed investigation of the concept of isolation. The measurement of the 'Isolation' variable was based on a 32 -item sçale developed by the Queensland Education Department. This scale focused on three main facets . of the concept of isolation: cultural (with items concerning proximity of educational facilities, theatres, etc.), social (with items concerning proximity to health facilities, students usinghoarding facilities, etc.) and geographical (with items concerning the distance in kilometres from a range of major cities).

The 'Social Welfare' variable was used by the Western Australian and Tasmanian govermment school systems. The measure used in Western Australia was based on Department of Social Security records, whereas in Tasmania this information was obtained from the census data gathered by the Australian Bureau of Statistics.

The 'Income Measures variabie was ilso employed by two school systems. The Tasmanian government system measurer, this variable by using income levels obtained during the 1976 censús. In New Soutn Wales a detailed examination of the occupational structure of family breadwinners was used in conjunction with estimates of mean income levels for certain occupational classifications to obtain an estimate of average family income per child for each school.

4 Several variables were used only by individual school sx́stems: 'Family. Size', 'Achievement/IQ 'Tests', and 'Other Vaziables Based On Estimates Provided by Education Department Staff'.

Each of the school systems avoided the issue of ind eator validation and the development of measurabie external yalidation criteria. The inclusion of many variables was generally supported with appeals to face validity by suggesting that thése variables were linked to concepts such as socioeconomic class, student needs; and student achievement. Other variables have been included following consultation with speci/ilist committees and various specialist schṑl system staff members.

The lack of widely accepted rules for the inclusion of variables was evidenced by the lack of uniformity with respect/to the selection of types

of variables and the numbers of variables which were used in the indicators. Consequently, an examination of the information in Table 2.2 revealed a range of anomilies which was difficult to reconcile with a school funding program which was supposedly aimed at a particular subgroup of Australian schools and students:

1 There was no single variable which was employed by all systems.
2 One State developed separate indicators for Primary and Secondary schools while the other systems prepared one indicator for all schools.
3 The numbers of variables used in the development of indicators varied between systems from a minimum of one to a maximum of six.
4 Whereas some systems used similar variables, the méasurement of these variables was sometimes undertaken in different ways. These differ ences were centred around explicit differences in operatiónal definitions, the application of a variety of recoding rules, or the use of different types of data to measure the same variables.
5 Achievement/IQ tests were incorporated into the indicators for one system: $\overline{1} n$ the other systems these varìnbles were not included in their indicators however; the selection of particular variabies was often justified by reference to the high degree of interrelationships between these variables and the educational achievement of students.

The weighting schemes used to combine the variables into indicators have been described in Appendix A. In each school system the signs of the weights were adjusted so that a high score on the indicators referred to a high level of educational disadvantage.

No information was available from the school systems concerning the rationale employed in establishing the weights. However, from simple observation of the magnitudes of the variable weights for the government systems, it could be seen that only integer weights were used. This suggested that the weights were probably. assigned on the basis of 'expert opinion' rather than by the application of quantitative statistical techniques. The South Australian non-government system was the oniy system' to use non=integer weights, However, as for the other systems, no explanation was available to describe how these were selected.

The sources rof the data which were used to measure each variable employed in the development of the indicators have been described in Appendix A. In. Table 2,3 these sources have been summarized for each school 1 system.

Table 2.2 The Variables Used by Australian School Systems During 1980 for the Preparation of Indicators of Educational Disadvantage

Variables	Government						Non-Government ${ }^{\text {b }}$	
	NSW	Vic	Q1d	SA	WA	Tas ${ }^{\text {a }}$	Vic	SA
Occupational Status of Father/Breadwinner	*	*	*		*	* ${ }^{\text {P }}$)	*	*
Migrancy		*.	*	*	*		*	*
Aboriginal Students		*	*	\cdots	*			
Isolation	=	*	*					
Social Welfare					*	* (5)		
Single Parents		*					*	*
Family Size	ase					* (S)		
Free Book Recipients	$=$,	\cdots	*				*
Incoine Measures	*					* (S)		
Student Tumover		*					*	*
Working Parents							:	*
Achievement/IQ Tests						* $(\mathrm{P} / \mathrm{S})$		
Other Variables Based On Estimates Provided by Educatione Department Staff						* (P)		,

a In Tasnania separate indices were prepared for Primary (P) and Secondary (S) Schools.
b Variables used by New South Wales, wostern Australian and Tasmanian non-government systems have not been used to construct indicators. These variables have been listed in Appendix A. The Queensland nongovernment system does not gather data on any variables.

Source: Ross (1980).

Table 2.3 The Sources of the Data Used to Construct Indicators for Australian School Systems During 1980

Da Source	Government						Nōn-Government	
	NSW	Vic	Q1d	SA	WA	Tas	Vic	SA
: 01	- *	*	*	*	*	*	*	*

Education Department .

Australian Bureau of Statistics

Department of Social Security

The number of data sources ranged from a maximum of three in the Western Australian government system to a minimum of one in the New South Wales and Queensland government systems, and the Victorian and South Australian non=government systems.

The Western Australian and Tasmanian government systems were the only systems to obtain information from outside agencies. Both of these systems used information obtained from the Australian Bureau of Statistics. The , Western Australian government system supplemented these data with information obtained from the Department of Social Security.

The importance of the indicators in the final selection of schools varied markedy across the school systems. At one extreme, the Victorian government system placed almost complete dependence on the rank order of schools developed from its indicator. A cutting score on the indicator was selected by cumulating the student enrolments of the schools which were most disadvantaged until the cumulative tally of enrolments reached the total number of students which were permitted by the Schools Comisision to participate in the Victorian Disadvantaged School Program. All schools above this cutting score were then included in the Program with the exception of schools either slightly above or silightiy below the cutting score. The decision to include these schools was taken following a review of their characteristics by a committee that was responsible for the administration of the Program in Victoria. There was no attempt to rearrange the balance of participating schools between, for example, primary and secondary schools, or metropolitan and non=metropolitan schools.

In contrast, the Queensland government school system determined a list of disadvantaged schools through a series of reviews carried out by the members of a special task force who possessed a detalided knowledge of Queensland government schools, A list of schools was initially constructed by making use of information obtained from regional disectors of education, inspectors and school principals. Whenever some doubt arose concerning a particular school, the indicator score of that school was consulted only as a supplementary piece of information. This list was then repeatedly refined by the task force by obtaining further information from inforned persons, or by the menbers of the task force making visits to the schools. This review continued until the cumulative tally of enrolments of the remaining schools reached the total number of students that were pemitted to participate in the Queensland program.

In this chapter a review has been presented of the resource alloeation responses which have been made in Australia to the changing concept of equality of educationai opportunity;

The changing nature of the concept of equality was discussed within a framework; developed by Husen (1972, 1975), that was innked to three distinct social philosophies玄 conservative, liberal; and redemptive: A detailed examination of the interpretation of the concept of equality presented in reports prepared for the Australian Sehools Commission showed that federal assistance provided to educationaliy disadvantaged schools in Austraita has been guided by a mixture of iiberal and redemptive philosophies.

The federal assistance to educationally disadvantaged schools has been channelled through the Disadvantaged Schools Program.since 1974. "Initially,*: schools were selected to participate in this program by means of a national. indicator of educational disadvantage based on census data. However, in recent years, responsibility for the identification of disadvantaged schools has been assumed by the school systems.

In 1980 there were eight different indicators being used to identify disadvantaged schools in Australiá one for each of the six State government school systems, and one each for the non-government (Catholic) school systems in Victoria and South Australia. In most of the other non-government school systems a wide range of objective data has been gathered but no * attempts have been made to, combine these into indicators:

A review of the techniques which had been used by Austrai ian schooi systems to construct indicators of educational disadvantage showed that there was little consistency across school systems with respect to the types of data used to construct these indirators. Further, the school systems had gencrally ignored the issues of indicator validation and the development of measurable external validation critería: The construction of the school system indicators had mostly been based on appeals to ingee validity and had been guided by the opinions of comittees of 'experts':

```
45
32*
```


THE ACCURACY GF RESOURCE ALLOCATION STRATEGIES
 AIMED AT ALLEVIATING EDUCATIONAL DISADVANTAGE

Introduction

- The history of programs aimed at alleviating educational disadvantage has featured a commoñ concern with respect to the accuracy associated with the delivery of supplementary educational resources and services to those students who were most in need of assistance.

In the United Kingdom the precision of the procedures employed to identify disadvantaged Educational Priority Area schoolis was subjected to heavy criticism by Acland (1971) following a reañalysis of the data collected for the Plowden Comittee. Acland concluded that there is some concentration of 'slower' children in the E.P.A. [Educational Priority Area] schools. But the difference is not educationally exceptional' (Acland, $1971-450$) in London schools presented a similar conclusion

It seems likely that the majority of disadvantaged children are not in disadvantaged areas and the majority of children in disadvantaged areas are not disadvantaged.
\Rightarrow
(Barnes and Lucas, 1974:56)
Criticism of the accuracy of resource distribution has also been directed at the selection procedure for disadvantaged Title I schools in the United States. Glass (1970) and Fortuñ (1971) showed that an income - dichotomy for family incomes, as was used in the Title i program, was a very imprecise method for identifying studentis having reading and learning difficulties: Later research and criticism led to attempts to change the distribution of resources from the selection of schools on the basis of social criteria to the selection on the basis of perforinance on criterioñ= referenced tests (Emrick, 1974; Quie, 1974). Feldmesser (1975) has presented a comprehensive review of the dangers associated with the use of test scores to guide resource alloeation strategies for programs deglgned. to assist edueationally disadvantaged students. In particular he emphasized the problems of a 'disincentive effect - in which schools may be tempted to-m manipulate student test scores to give the appearance of low performance and thereby guąrantee continuity of supplementary assistance.

if3 $\quad 40$

The problem of obtaining accuracy in the delivery of resources to those students attending educationally disadvantaged schools who are in most need of assistañce is not solely a question of choosing the 'correct' indicator: Consideration must also be given to the approach of selecting schools, rather than individual students, as the units of fuc.ding =

Siñe there will generally be some degere of fiet in gtudent characteristics (abilities, home envirinments, etc, both between schools and between students within schools; the : nination of certain schools or groups of schools to be the recipients of supplementary resourcee will always lead to some needy st udents being unable to receive assistance because their schobol or group of schools was not solected to participate in the program. For example, if the distribution of the criterion measure of disadvantage was associated only with variation between students within schools then all. schools would contain approximately the same proportion of disadvantaged students. Īn this situation resource allocation based on the selection of schools or groups of schools would be extremely inaccurate. Conversely, if the distribution of the criterion measure was associated only with variation between schools then the selection of schools or groups of schools with the lowest mean scores on the criterion would result in completely accurate resource allocation.

The two extreme examples described above specify the boundariés for a consideration of the accuracy of resource allocation programs associated with the funding of disadvantaged schools in Australia. The unit of identification and funding for all Australian school systems has beeñ the school because the definition of 'disadvantaged' prepared by the Australian Schools Comisision at the commencement of the Disadvantaged schools Program incorporated this notion.

In the following sections of this chapter the implications of the choice of the school as the unit of identification and funding have been examined. In particular; consideration has been given to developing quantitative estimates of the accuracy with which resources may be delivered to individual students when a 'school-based' funding program is adopted in in . order to assist educationaliy-disadvañaged--students:

hetinition of Terminology: Accuracy and Leakage

In the following discussion the precision with which educational resources may be delivered through a school-based procedure to those students who most need them has been described in terms of two statisties: Accuracy and Leakage. The term 'school=based' has been used as a summary description of the procedure used both by the Australian Schools Commission in its initial 1975 allocation of resources to disadvantaged schools. and by Australian school systems in the years following this initial allocation. In brief, this procedure has been based on the developnent of an ordered advantage followed by the allocation of resources to a group of schools who are lowest on this list. 'The cutoff points for selecting the lowest group of schools have been obtained by limiting the number of participating students to a percentage within the range of 10 to 20 per cent of total enrolments.

The Accuracy coefficient for an individual school describes the degree to which a school at a given percentile on the distribution of school indieator scores contains students whechawcteristics which are associated with educational disadvantage.

For example, consider a school at the 20th percentile on the cumulative distribution of indicator scores for schools. The Accuracy coefficient for this school, $\mathrm{A}(10,20)$, with respect to student scores on a measure known to be associated with educational disadvantage refers to the percentage of students in this school who are below the loth percentile for the overall cumulative distribution of student scores on this measure.

The Leakage coofficient borrows its name from the concept of 'resource leakage' used by Bensoñ et al (1974:85) to describe a situation when 'too much money leaks to students who are doing well enough by ordinary standards'

In this chapter, students have been considered to be doing 'well enough ", by ordinary standards' when they have obtained scores on a measure known to be associated with educational disadvantage which are above the median (50th percentile) for the ovorall cumulative distribution of student scores on -

* For example, consider a school at the 20th percentile on the cumulative distribution of indicator scores for schools. The Leakage coefficient, L(20), with respect to student scores on measure known to be associated with educational disadvantage refers- to the percentage of students in this school

Who are above the median for the overall cumulative distribution of student scores on this measure.

Factors Influencing Precision in Resource Allocation

The values of the Accuracy and Leakage coefficients for particular sehools depend on the nature of the allocation of students among schools. This may be demonstrated by considering the following simple hypothetical example in which two different arrangements of the same population of students among ten schṑls have been compared. These two arrangements have been presentea in diagrimmatic form in figure 3.1.

The ranges of student scores within each school fori each arrangement : have been represented by vertical 1 ines, in figure 3.1 . The school mean scores were represented by dots in the middle of each of these vertical lines. The ranges of school mean scores for each arrangement may be examined by considering the distance between the highest and lowest school mean seores within each arrangement

In order to faciliate comparisons between the arrangemonts the follow ing simplifying ascumptions have been made:

1 Assume that the overall distribution of student scores, the distributions of student scores within schools, and the distributions of schoóol meañ scores are ali nṓmal dístríbutions.
2^{\prime}. Assume that, within each arrangement, the distributions of student scores within schools are identical.

The total variance of student scores was the same for both arrangements because the same population of students was being considered in each arrangement. However the variance of school means and the variance of studentes within schools differed widely between arrangements.

In arrangement I there was a large degree of variation intween shool means and a smali degree of variation between students within schools. Iñ arrangement II the relative magnitudes of these two sources of variation have been reversed. To sumarize these characteristics we could say that arrangement i showed a high level of student homogeneity within schools, : and arrangement II showed a high level of student heterogeneity within schools.

Since the same population of students was being considered in each arrangement, the raw score equivalents of student percentile ranks was the same for both arrangements. Añ inspection of Figure 3.1 showed that this was not the case when school mean percentile ranks were compared across
arrangements. For cxample, the raw score equivalent of the 20 th percentile for school means was much lower in arrangement 1 than it was in arrangement II.

The xth percentile for students, which had the same raw score equivalent in buth arrangenents, has been shown.ir Figure 3.1. The 'school locations' af students below this, percentile differed markediy across the two urrangenents. In arrangement I the students below the Xth percentile for students were located in the lowest three schools, whereas in arrangement if these sume students were located in all schools. From Figure 3.1 it could therefore be seen that in arrangements where there was a high level of homogeneity of students within schools, the students below a particular percentile value for students would generally be located in fewer schools than for arrangements where there was a high level of heterogeneity of students within sehools.

The above discusision may be used to examine the ímplications for precision in resource allocation programs when school mean scores are used to select students who are to benefit from these programs.
\therefore Consider a resource allocation program in wilt the selection of students to receive the benefits of supplementary funding was based on the school mean scores of a student derived measure. The student derived measure could, for example, be test scores on an instrument designed to measure basic literacy skills, or it could be a composite measure of indicators which were designed to assess the educational environment of each student's hone circumstances. Also consider that the student derived measure was an adequate measure of educational disadvantage for individual students, and that a low score indicated high disadvantage.

- If there was high level of homogeneity of students within schools, as for arrangement I, then the lowest scoring students would be located within a relatively small number of schools. The schools whose mean scores fell below the given percentile cutoff, for example the 20 th percentile for schools, would generally have relatively high values for the Accuracy coefficient and relatively low values for the Leakage coefficient. Conversely, where there was a high level of heterogeneity of students within schools, as for arrangement $\overline{I I}$, then the schools below the given percentile cutoff would generally have relatively low values for thê. Accuracy coefficient and relatively high values for the Leakage coefficient.

These results indicated that, where the school was used as the unit of fyriding, the precision with which the benefits of a program of supplementary funding for educational disadvantage reached those students who were in most nesd of assistance depended upon the nature of the variation in student characteristics within and between schools.

Relationships between Accuracy, Leakage, and Student Variation Within and Between Schools:

In the following sections of this chapter a quantitative measure, the coeffieient of intraclass correlation, has been employed as a means of examining the components of student variation within and between schools: This statistic provides a measure of the 'homogeneity' of student seores within schools.

This statistic has been initially defined in terms of the data available for this study and then examined with respect to certain limiting cases. Relationships between the coefficient of intraclass correlation and the Accuracy and Leakage coefficients have subsequently been developed.

Notation

The following discussion describes the notation used in later sections of this chapter. The arguments which have been presented have drawn upon the theoretical analysis of intraclass correlation given by Kish (1965:166-178).

Consider a population of A schools each having B students. Also consider a student measure $Y_{\alpha \beta}$ obtained for student B in school a of this population. Let the mean score for school α be $\overline{\mathrm{Y}}_{\alpha}$ and the overall population mean score be \bar{Y}. The variance of student scores for the population (σ^{2}) may be broken down into the sum of two components: the variance of the school means around the population-mean ($\bar{\sigma}_{a}{ }^{2}$), and the mean of the variances of student scores-around their own schòol means ($\sigma_{b}{ }^{2}$).

In Y notation this summation of variance components ($\sigma^{2} \equiv \sigma a^{2}+\sigma^{2}$) may be written as:

$$
\frac{1}{A B} \sum_{\alpha B}^{A B}\left(Y_{\alpha B}-\bar{Y}\right)^{2} \equiv \frac{1}{A} \sum_{\alpha}^{A}\left(\bar{Y}_{\alpha}-\overline{Y_{V}}\right)^{2}+\frac{1}{\bar{A}} \sum_{\alpha}^{A} \frac{1}{B} \sum_{B}^{B}\left(Y_{\alpha \beta}-\bar{Y}_{\alpha}\right)^{2}
$$

The coefficient of intraclass correlation, Rho, which measures the homogencity of student scores within schools. is defined as the productmoment correlation between each of the $\frac{B(B-1)}{2}$ different pairs of student scores within each of the A schools:

$$
\text { Kho }=\frac{1}{\alpha^{2}}\left[\frac{1}{A} \frac{A}{\alpha} \frac{2}{B(B-1)} \sum_{\bar{B}<\gamma}^{B}\left(Y_{\alpha \beta}=\bar{Y}\right)\left(Y_{\alpha Y}-\bar{Y}\right)\right]
$$

* When student scores within the same school tend, on the average, to deviate in the same direction from the population mean, the average of the products and hence. Rho, tend to be positive. .

It may be shown (kish, $1965^{*}: 171$) that the above expression for Rho is equivalent to:

$$
\text { Rho }=\frac{\sigma a^{2}=\sigma b^{2} /(B-1)}{\sigma^{2}}
$$

There are three special cases of tho which describe particular arrangements bf students among schools:

1 Complete homogeneity of student scores within schools occurs when $\sigma \mathrm{b}^{2} \equiv 0$ and $\sigma_{\mathrm{a}}^{2}=\sigma^{2}$. In this case Rho $\equiv 1$.

2 Extreme heterogencity of student scores within schools occurs" when" $\sigma_{a}^{2} \equiv 0$ and $\sigma_{B}{ }^{2} \equiv \sigma^{2}$. In this case Rho $\equiv \frac{-1}{(B-1)}$.

3 Random sorting of student scores among schools occurs when the relationship between $\sigma_{\mathrm{a}}{ }^{2}$, and $\sigma \mathrm{b}^{2}$ is as if each school was composed of a random selection of B students. In this instance the relationship between $\bar{a} a^{2}$ and σb^{2} is obtained from the expression for the variance of the sample mean under the assumptions of simple random sampling (Kish, 1965:63, 0_{167}):

$$
\sigma_{\mathrm{A}}{ }^{2}=c^{1}-\frac{\mathrm{B}}{\mathrm{AB}} \cdot\left(\frac{\mathrm{~B}^{2}}{\mathrm{~B}-1}\right) \quad \frac{1}{\mathrm{~B}}
$$

The resulting value of tho is $\frac{-1}{A B-1}$. This value tends to zero for large populations.

Wichin-School Deviation Scores and Percentile Ranks.
By, using the assumptions described in a previous section concerning a population of students and schools, the relationship between a student's within-school deviation score or percentile may be linked to his/her overall * deviation score or percentile in a functional form which depends on the coefficient of intraclass correlation.

In the following discussion the overalledistribution of student scores ? . has boen assumed to be scaled so that the overali mean, \bar{Y}, is equal to zero. From the previous assumptions concerning the distributions of student and

Figure 3.2. A Possible Arrangement of Student, School Mean, and Overall Mean Scores.
school scores, the mean of the school scores will also be zero zand the . variances of student scores within schools will be equal ($0_{b}{ }^{2}$) for ail schools.

Consider a student with a score of k_{1}, σ units, where' k_{1} is a constant, This, student's score would be situated at k_{i} student standard'deviation units from the overall mean of student (and school) scores.

Let the mean score of the school which this student attends be $\mathrm{k}_{2} \mathrm{o}_{\mathrm{a}}$ units, where k_{2} is a constant. This school's mean score would be' $\mathrm{k}_{2^{*}}$. schon mean standard deviation units from the overall mean of student (and school) scores.

Figure 3.2 shows one possible arrangement of the distribution of scores within a particular scfiool. In this example the school mean score is below the overall mean. Aiso, the particular student's score is below both of these scores.

The deviation score, y, of this student with respect to his own "school

The standard score, \bar{B}, of this studept with respect to the distribution of student scores within his own school is:
z $=$ Student Score - School Mean Score
Standard Deviation of Scores Within School
$\begin{array}{ll} & \text { Student Score in } \\ = & \text { Sithin-School Standard Meañ Score iñ } \\ & \text { Deviation Units } \quad \text { Within-School Standard } \\ & \text { Deviation Units }\end{array}$
$=\frac{k_{1} \dot{\sigma}}{\sigma_{b}}=\frac{k_{\overline{2}} \bar{\sigma}_{\mathbf{a}}}{{ }_{\sigma_{b}}}$

Since the distribution of student scoreg within schooly is assumed to be normal, the proportion of students in this school who score at or below the score of this particular student is:

Proporition of studénts at or below in this school

$$
=\int^{\frac{\pi}{n}} \underset{\sqrt{2 \bar{\pi}}}{\frac{1}{\sqrt{\pi}}} e^{-\frac{z^{2}}{2}} \mathrm{dz}
$$

$=$ Area of. the shaded region in Figure 3.2.

From previous discussion of the equations which relate $a^{2}, \sigma_{a}{ }^{2}, \sigma_{b}{ }^{2}$ and Rho, the values of σ^{2} and $\sigma_{a}{ }^{2}$ may be expressed in terms of $\sigma_{b}{ }^{2}$ and Rho

$$
\sigma^{2}=\frac{B \sigma_{b}{ }^{2}}{\overline{(B-1)(1-R h o)}} \text { and } \sigma_{a}{ }^{2}{ }^{(1+R h o(B-1)] \sigma_{b}{ }^{2}}
$$

Further substitution of these expressions into the equation which defines \mathfrak{z} gives an expressíon for ${ }^{\text {f }}$ which eliminates the variance terms:

$$
\bar{z}=k_{1}\left[\frac{B}{(B-1)(1-R h o)}\right]^{\frac{1}{2}}-k_{2}\left[\frac{1+R h o(B-1)}{(B-1)(1-R h o)}\right]^{\frac{1}{2}}
$$

42.

$$
55
$$

When this value of a is used as an uper limit in the above integral of the normal distribution, the value of the 'proportion of students at or below in this school' becomes a function of k_{1}, k_{2}, B and Rho. Further, by multiplying both sides of the integral by 100 it is possible to restate the expression in terms of percentiles:

Within-sehool percentile
rank corresponding to a $=100 f\left(k_{1}, k_{2}, B\right.$, Rho $)$ within-school standard
score of z
where f the area under the unit normal curve between the limits of $-\infty$ and the value of z described above.

Accuracy Coefficient for Individual Schools
Consider a student whose score is at the p_{1} th percentile in the overall distribution of students scores. Let this student be a member of a school with mean score at the p_{2} th percentile in the distribution of school mean seores.

The value of the Accuracy coefficient, $A\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$, for a school with mean score at the p_{2} th percentile for schools is the percentage of students in this school whose scores are below the p_{1} th percentile for student scores.

From previous discussion the Accuracy coefficient may be expressed as:
$\mathrm{A}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=100 \mathrm{f}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{~B}, \mathrm{Rho}\right)$
where $h_{1} \equiv$ the standard score equivalent of p_{1}.
where $\mathrm{K}_{2}=$ the standard score equivalent of P_{2}.
For example, $A(10,20)$ is the percentage of students in a school, with mean score at the 20 th percentile for schools, whose scores are below the loth percentile:for students.

Assume a Rho value of 0.2 and a value of B squal to 23.6 . This value of B was selected for this example because it was equal to the number of students per school in the samples which were employed in later chapters of this study.

Use of these values and substitution in the formulae presented in provious discussion gives the following:

```
Student Score in
```



```
    = -1.28 [\frac{23.6}{(23.6-1)(1-0.2)}\mp@subsup{]}{}{\frac{1/2}{2}}=0,
= -1.46
School Mean Score in
Within-School Standard
Deviation Units at
20th Percentile
= k2}[\frac{1 (Rho(B-1)}{(B-1)(1-Rho)}\mp@subsup{]}{}{\frac{1}{2}
```

$=-0.84\left[\frac{1+0.2(23.6-1)}{(23.6-1)(1=0.2)}\right]^{1 / 2}$
$=-0.46$
Within-School Standard $=-1.00$ Score

```
\(=k_{1} \cdot\left[\frac{B}{(B-1)\left(1-R_{h} \sigma\right)}\right]^{k_{2}}\)
\(=-1.28\left[\frac{23.6}{(23.6-1)(1-0.2)}\right]^{\frac{1}{2}}\)
\(=-1.46\)
\(=\mathrm{k}_{2}\left[\frac{\mathrm{p}+\mathrm{Rho}(\mathrm{B}-1)}{(\mathrm{B}-1)(1-\mathrm{Rho})}\right]^{\mathrm{s}_{2}}\)
and \(A\left(\mathrm{p}_{1}, \mathrm{P}_{2}\right)=1 \overline{0} \overline{\mathrm{f}}\left(\mathrm{k}_{1}, \mathrm{k}_{2}, \overline{\mathrm{~B}}, \mathrm{Rho}\right)\)
\(\therefore \Lambda(10,20) \equiv 100 \int_{-\infty}^{-1,00} \frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}} d \bar{z}\)
\(=15.9\)
```

That is, given the values of B and Rho described above, there are 15.9 per cent of students below the loth percentile for students in a school with a-mean-score at-the-20th percentile-for schools.

The above set of calculations was repeated for the four possible Accuracy coefficients which arise when p_{1} and p_{2} take values equal to either the 10 th or 20 th percentiles. The results of these calculations have been sümarized in Table 3.1. For each value of Rho, student scores and school. meañ scores in within-school standard deviation units have been presented for the 10th and $20 t h$ percentiles.

In Table $\overline{3} .1$ values of the four Accuracy coefficients have been listed according to Rho values which range from 'extreme heterogeneity' to 'complete homogeneity'.

Table il Accuracy Coefficient for Individual Schools at the loth/ioth Percentile e for Schools, and Students
Below the loth/20th Percentiles for Students

Notes: a The value of the coefficient of intraclass correlation (Rho) for 'extriew heterogeneity' of student scores Within schools is $=1 / 22,6$; for radon sorting' of student scopes anon g schools it is 0,$00 ;$ and for 'complete homogeneity of student scores within schools it is 1.0 (for infinitely large populations of schools), Note that the value t af h ho for 'extreme heterogeneity' and 'complete homogeneity' are limiting eases.
b The limiting values for these scores have been discussed in Appendix B.
© The Accuracy values were calculated by using PRograM NoDAL. (See Appendices © and D),

For example, when Rho $=0.2$, the coefficients $\mathrm{A}(10,10)$, $\mathrm{A}(10,20)$, $\mathrm{A}(20,10)$, and $\mathrm{A}(20,20)$ took the values $22.5,15.9,40.0$, and 31.0 respect ively. These values may be interpreted in the following fashion: A school with mean.score at the loth percentile for schools has. 22.5 per cent of its students below the loth percentile for students and 40.0 per cent of its students below the 20th percentile for students; whereas a schonl with mean score at the 20 th percentile for schools has 15.9 per cent of its students below the loth percentile for students and 31 per cent of its students below the 20th percentile for students.

The values of tho which represent 'extreme heterogeneity' and 'complete homogeneity' are limiting cases. In fact it would be impossible to calculate values of Accuracy or Leakage coofficients if Rho took either of these values. 'Extreme heterogeneity'. Would result iñ all school's having the same mean score which would prevent the calculation of percentiles for schools; 'complete homogeneity' would result in all students within a particular school having the same score which would prevent the calculation of withinschool percentiles. These limiting values of Rho and the resulting values of the Accuracy and leakage coefficients have been discussed in detail in Appendix B.

A computer program, PROGRAM NORMAL, was prepared to calculate Accuracy and Leakage values for schools at each percentile from the 0th to the 20 th percentiles. This program has been iisted in Appendix C. Some examples demonstrating the output from this program for a range of Rho values have been presented in Appendix D.

The Leakage Coefficient for Individual Schools:
The Leakage coefficient may be considered as a special case of the Accuracy. coefficient.

Consider a student whose score is equal to the median of the overall distribution of student scores. From previous assumptions, this student's score would also be equal to the mean of the distribution of school mean scores. Let this student be a member of a school with mean score at the p_{2} th percentile in the distribution of school mean scores.

The value of the Leakage coefficient, $L\left(p_{2}\right)$) for a school with a mean score at the p_{2} th percentile for schools is the percentage of students in this school with scores above the overall median for student scores.

The leahage cofficient is related to the Accuracy coefficient by the following expression:
$\mathrm{L}\left(\mathrm{p}_{2}\right)=100-\mathrm{A}\left(50, \mathrm{p}_{2}\right)$
The value of p_{1} in the Accuracy coefficient is fixed at 50 because this is the percentile equivalent of the median of student scores.

Then, from previous discussion
$\mathrm{L}(\mathrm{pz})=100\left(1-\mathrm{f}\left(\mathrm{o}, \mathrm{k}_{2}, \mathrm{~B}\right.\right.$, Rho $\left.)\right)$
The value of k_{1} in the function f has been fixed at zero because, from earlier assumptions, this is the standard score equivalent of the 50th percentile.

For example, $L(20)$ is the percentage of students in a school, with mean score at the 20th porcentile for schools, whose scores are above the 50 th percentile for students. Assume a Rho value of 0.2 and a value of B equal to 23.6 . This value of B was selected for this example because it was equal to the number, of students per school in the samples which were *employed in later chapters of this study.

Using these values and substituting in the formulae presented in previous discussion gives the following:

```
Student score in
Within-School Standard
Deviation Units at
50th Percentile
#}\mp@subsup{k}{1}{}[\frac{B}{(B-1)(1-Rho)}\mp@subsup{]}{}{2
=0 for all values of B and Rho
                                    because ki=0 for the 50th
                                    percentile,
School Mean Score in
#
20th Percentile
                                    =0.84 [\frac{1+0.2(23.6-1)}{(23.6-1)(1-0.2)}\mp@subsup{]}{}{\frac{1/2}{2}}\mathrm{ (})=0,
    = -0.46.
```

 : 60

That is, given the values of B and Rho described above, there are 32. per cent of students above the 50th percentile for students in a school with a mean score at the 20 th percentile for schools.

The above set of calculations was repeated for Leakage coeffieients at the 10 th percentile and the $20 t h$ percentile. For each value of Rho, the school mean scores in within-school standard deviation units have been \cdot presented for the loth and 20th percentiles in Table 3.2 . The two Leakage coefficients have been listed according to Rho values which range from 'extreme heterogeneity' to 'complete homogeneity'.

For example, when R ho $\equiv 0.2$, the coefficients $L(10)$ and $L(20)$ were 23.9 and 32.1 respectively. These values nay be interpreted in the following fashion: A school with mean score at the loth percentile for schools has 23.9 per cent of its students above the 50 ph percentile for students; whereas a school with mean score at the 20th percentile for schools has 32.1 per cent of its students above the 50th percentile for students.

Average Accuracy and Leakage for Groups of Schools.
The previous discussion was concerned with the calculation of Accuracy and Leakage coefficients for individual schools. The average of the Accuracy and Leakage coefficients over groups of schools may be used to provide information about the precision with which indicators may be employed to identify groups of schools having students with certain ranges of educational achievement.

Table 3.2 Ledkage Coefficients for individal Sclools At the luth/2oth Porcentiles for Schools

咀	Student Score at 50th Percentile for Students (9 , unity	School Nean score (ibinits)		Ladage Coofficient$\mathrm{l}(\mathrm{p})$	
		Iuth lemontile for scluols	2uth ierentio for Sclionls	L(10)	L(20)
-1/22, $6^{\text {² }}$	0,00	0.00	0,00	50.0	50.0
0.00^{4}	0.00	-1.27	41.18	39,4	43.0
0.1	0.00	-10.5]	0.0 .34	50.4	36.8
0,2	0.00	-0.71	-0.47	23.9	32.1
0,3	0.00	-1,90	-1. 5.5	18.4	27.7
0.4	0.00	-1.10	0.0 .75	$\therefore 13.5$	23.4
0,5	0,00	-1,34	-1. 88	9.1	19.0
0.6	0.10	-1.63	-1,07	¢,2	14,5
0.7	0,00	-2,03	01.43	2.2	9,2
0.8	0.00	$-2,65$	4.73	0.4	4.2
0.9	0.00	\% 3.94	2. 2.59	0.0	0,5
$1.0{ }^{2}$	b	b	b	0.0	0.0

Note: 1 The value of the coefficient of intraclass correlation (Roo) for 'extreme heterogencity' of: student scores within schools is - $1 / 22$.6; for 'random sorting' of studety scores among schools it is 0.00 ; ind for 'complete hanogeneity' of student scores within sehools it is 1.0 (for infinitely large populations of school3), Note that the values of tho for 'extreme heteropaneity' and 'complete homogeneity' are limiting cases.
b The limiting values for these scores have been discussed in Appendix b:
6 The Lekage values were calculated br using Procim vowal. (See Appendices C and d),

For example, consider the average value of $\mathrm{A}\left(20, \mathrm{p}_{2}\right)$ over the group of schools from the school at the zoth percentile down to the lowest school. This statistic estimates the average school percentage of aill students who are in schools below the 20 th percentile for schools and who are also below the 20th percentile for students overall.

Similarly, consider the average value of $\mathrm{L}\left(\mathrm{p}_{2}\right)$ over the yroup of schools from the school at the 20 th percentile down to the lowest school. This statistic estimates the average school percentage of all students who are in schocis below the 20 percentile for schools and who are also above the $50: \mathrm{h}$ percentile for students overall.

Estimates of the average Accuracy and average Leakage coefficients have been presented in Table 3.3 accarding to a range of values for the coefficient of intraclass correlation. These values were obtained by taking the mean of the relevant Accuracy and Leakage coefficients for schools situated at one percentile intervals. That is, the estimate of the average value of $A\left(20, p_{2}\right)$ for schools below the 20 th percentile was obtained by evaluating the Accuracy coefficient for an individual school at the 20 th percentile, 19 th percentile, 18 ch percentile, and so on. A similar approach was employed to estimate the average values of the Leakage coeffiefent - The 10 th and 20 th percentiles for schools were chosen as appropriate 'cut=off' points for calculating the average coeff̣: icients because these percentiles represented approximate upper and lower bounds for the percentages. of students who have participated in the Disadvantaged Schools Program in Australia.

The average coefficients in Table 3.3 may be used to examine the precision in resource allocation which would be associated with programs which use schools as the unit of funding.

For example; consider a school system in which Rho $\overline{=} 0.8$ for a measure derived from students which was designed to assess educational disadvantage. This school system would be described as having a high level of student homogeneity within schools. Now consider a funding program which was directed at the lowest 10 per cent of schools with respect to the school mean scores on the same measure of educational disadvantage: From rable 3.3 it can be seen that, for this resource allocation program; there would be about 90 per cent of students within funded schools who would be below the 20 th percentile for students. Also, about 70 per cent of the students, within funded schools would be below the loth percentile, and less than one per cent would be above the median score for the whole, population of

$$
=50
$$

Table 3.3 Avoruge Acuracy and Leakage Coefficients for Schools At or Below the 10th/20th Percentile for Schools, and Students Below the $10 t h / 20$ th Percentiles for Students

Rho	Average Coefficients for Schools At. or Below loth percentile			Average Coefficients for Schools$\frac{\text { At or Below }}{\mathrm{A}\left(10, \mathrm{p}_{2}\right)} \frac{20 \mathrm{th}, \text { Percentile }}{\mathrm{A}(20, \mathrm{P} 2)}$		
	A(10.12)	$\cdots\left(20, \mathrm{p}_{2}\right)$	L. p_{2})			
$-1 / 22.6^{6}$	10.0	20.0	50.0	10.0	20.0	50.0
$0.0{ }^{3}$	24.5	36.9	33.0	19.4	31.7	37.0
0.1	30.9	46.1	$=23.0$	24.4	38.9	28.3
0.2	36.1	53.2	16.5	7.7	44.3	22.3
0.3	40.9	59.6	11.5	30.9	49.2	17.3
0.4	45.7	65.7	7.5	33.9	53.9	13.0
0.5	50.7	71.9	4.4	36.9	58.6	9.2
0.6	56.0	78.1	2.1	39.9	63.5	5.9
0.7	61.9	84.4	0.7	43.0	68.8	3.1
0.8	68.7	90.9	0.1	46.1	74.7	1.0
0.9	77.4	97.1	0.0	48.9	82.0	0.1
$1.0{ }^{\text {a }}$	100.0	100.0	0.0	50.0	100.0	0.0

Note: a The value of the coefficient of intraclass correlation (Rho) for 'extrome heterogeneity' of student scores within schools is $=1 / 22.6$; for 'random sorting' of student scores among schools it is 0.00 ; and for 'complete homogeneity' of student scores within schools it is 1.0 (for infinitely large populations of schools). Note that the values of Rho for 'extreme heterogeneity' and 'complete homogeneity' are limiting cases.
b The limiting values for these scores have been discussed in Appendix B.
c The Leakage values were calculated by using program normal. (See Appendices C and D) .
students. These results could be sumarized by saying that. the use of schools as the unit of funding for this population of students and schoois would provide a relatively accurate delivery of resources to those students who were in most need of assistance.

If the population described above was compared with another population in which Rho is equal to 0.1 , then the use of schools as funding units leads to a much less accurate delivery of resources to the individuals who would be in most need of assistance. In this population there would be a high level of student heterogeneity within schools: if. resources were
directed to the lowest 10 per cent of schools in this population, then it than one half of the students in funded schools would be below the 20th percentile for students. Further, less than one third of the studentes within funded schools would be below the loth percentile, and almost one quarter would be above the median score for the population.

Application of the Model: An Tnternational Example

In the following discussion the theoretical model described above has been applied to an international example in order to compare the precision of a hypothetical resource allocation scheme based on the funding of schools with low mean test scores. Test scores on a test of Word Knowledge have been used in this example because their statistical characteristics were readily available for a group of countries from the reports of studies carried out by the International Association for the Evaluation of Educational Achievement (Thorndike, 1973; Peaker, 1975). If data had been readily available to permit the calculation of the coefficient of intraclass correlation for some other variable, for example, a measure of the socioeconomic level of a student's home environment, then the same principles outlined in earlier sections could have been applied to compare different countries. The procedures employed to calculate estimates of the coefficient of intraclass correlation from sample data have been deseribed in Appendix F .

The comparison of average Accuracy and Leakage coefficients for the ten countries examined in this example assumed that the aim of the 'school- . based funding program would be to assist those students in most need of assistance as measured by their Word Knowledge test scores, For example, if the lowest 10 per cent of schools were funded then the 'optimal' level of precision would require average Accuracy and Leakage coefficients of 100 and zero, respectively. This situation would occur when-all students in the lowest 10 per. cent of schools were also in the lowest 10 per cent of students and none of these students were performing above the national median score. From previous diseussion we would only expect this situation when the coefficient of intraclass correlation was equal to unity signifying complete homogeneity of students within schools.

From information presented by Thorndike (1973:142) it was possible to calculate estimates of the coefficient of intraclass correlation associated with the same test of Word Knowledge applied to nine countries at the lo-year-old level and the 14 =yeareold level. The tests which were used in
the study descibed by thorndike consisted of the same tests at each age level after having been translated into mother-tongue languages for each country.

The information for Australia was obtained from a study of linteracy and Numeracy carried out in Anstialian sehools in 1975 (Keeves and Bourke, 1976). In all ten countries similar target population definitions were used at each age level. The values of the estimates of the coefficients of intraclass correlation have been reported in Table 3.4 . Values of the Accuracy and Leakage coefficients have, also been listed in this table.

Por Nustralia, the coeffietent of intraclass correlation was 0.14 at both age levels. Since the value of roh was the same at each age level, the corresponding average Accuracy and Leakage coefficients were also the sime. For Australia; in the lowest 10 per cent of schools the average Accuracy estimate showed that 33.1 per cent of these students waid be in the lowest 10 per cont of students overall. The average Leakaga estimate showed that 20.2 per cent of students in the $10 w e s t 10$ per cent of schools would have scores above the national median score.

The values of the coefficients of intraclass coriciation were low for both age levels'in oniy three countities: Australia, Hungary and Sweden. Tonsequently each of these countries also had relatively low ayerage Accuracy coefticients and relatively high average leakage coefficients. These results demonstrate that; compared to the other countries insted in Table 3.4 , these three countries would have comparatively low precision in resource allocation schemes which used schools as the unit of funding.

In Comparison Italy; Scotland and the United Gtates had relatively high values of roh at both age levels and therefore had high values for the average accuracy coefficient and low values for the average Leakage coefficient. These three countries would therefore be more appropriate settings for funding programs based on the selection of schools with low mean scores,

Some anomalies appeared between age levels for England, Finland, Israel and the Netherlands. In these countries the values of roh were substantially higher for the 14 -yeari $=01 d$ level than for the $10-y e a r=0 l d$ level. These results implied that, for these countries, a resource allocation program which used schools as the unit of funding would be more appropriate at the secondary school level than at the primary school level.

Table j.4 Coefficients of Intraclass Correlation and Averige Accuracy/Leakage Coefficients

Over the Lowest 10 Fer Cent of Schools for Ten Countries

Country	10-year-0id					14-year-0id				
	?		Yoin	Averale Coefficient.		$\frac{\mathrm{s}_{\mathrm{s}^{2}}^{\mathrm{s}^{2}}}{}$	b		$\frac{\text { Average Coefficient }}{L\left(10, p_{2}\right)\left(p_{2}\right)}$	
				A $\left(10, T_{1} \mathrm{~T}_{\underline{\underline{2}}}\right)$	$L\left(p_{2}\right)$					
Australia ${ }^{\text {b }}$	0.17	${ }^{2} 4$	0.14	35.1	20.2	0.18	240	0.14.	53.1	20.2
England	0.20	32	0.16	34.1	18.9	0.30	220	0:27	39.5	12.9
Finland	0.20	15	0.13	32,5	20.9	0,29	$30 \quad 0$	0.27	59.5 . ${ }^{\text {b }}$	12.9
Hungary	0.19	32	0.16	34.1	18.9	0.16	$33^{\circ} 0$	0.13:	32.5	20,9
Istal	0.22	17	0.17°	34,6	18.3	0. 0.36	160	0.32	41.9	10.6.
Italy	0.40	15	0.36	45.8	9.0	0.47	220	0.44	47,7	6.1
Netherlands	0.16	$\stackrel{37}{4}$	0.13	38.5	20.9	0,40.		0, 38	44, 7	8.2
Scotiand	$\bigcirc 0.24$	21	0.20	36.1	16.5	0.34	28.0	0.52	41.9	10,6
Syeden	0.14	21	0.10	[il ${ }^{\text {9 }}$ 9	23,0	0.07	260	0,03	26.7	29.3
United States	0.97	21	0.23	37,6	14.9	0.28	44	6.25	38.5	113.8
							1			
Nean	0.22	21	0.18	34,9	18.2	0.29	250	0.26	38.0	14.6

 (1975:142) 'For the Word frowledge Test which was enployed cross-nationally as'part of a series of studies. carried out by the International Association for the Evaluation of edicational Achievenient. The average cluster sizes (b) were repurted for the smime strdy) by Peaker ($1975: 120$).
b The calculations for Austrulia were based on the Hord Finollodeg Test sores gathored for this study.
© The average Accuracy and Leakage values were calculated by using procrim vornal. (See Appendices Cand D),
d. The statistic 'roh' is a sample estimute of the popilition value of 'Mho'. (See Appendix \%).

Sumary
In this chapter the problems associated with obtaining precision in the delivery of resourees to students attonding educationally dísadvantaged sehools were examined. It was denonstrated that the approach of using schools is the unit of funding required acknowledgement of the influence of etudent variationivithin and between schools on the precision wín which educational refourees could be delivered to those gitidents who were
in most need of assitance. In most need of assity tance

A theoretical model was introduced for the purposes of estimating the prefision in the delivery of odueational resonices to students when schools were used as the unit of funding. This model quantified the degree of procision in terms. \varnothing f Accuracy and leakage coefficients. A = test of this model against cmpirical data has been presented in Appendix E

This theoretical model was applied to an international example in order to show that the use of schools as the unit of funding may result in substantial differences in the precision of resource allocation across difterent types of school systems. For example, Scotland, Italy, and the
: United States appeared to be more appropuite settings for school-based

* funding than were the seveñ other countion which were consídered. This : oceurred because the homogeneity of studenfs within schools was
: relatiyely high for these three countries at both the primary and seconfiry levels of schooling:

CHAPTER 4

THE DFSIGN OF THE STUDY

Int roduction

The previous chapters have examined eduçational resource allocation
 opportunlty, and also the implications of using schools as the units of identifieation and funding when these responges have been aimed at assisting students who attend educationally disadvantaged schools: This discussion has shown that the quest for accuracy in the delivery of resourees to those students who are most in need of nssistance must taka into consideration that the performance of an indicator of eilueationel disadvantage may be strongly influenced by the nature of the scnool nopulation to which it is applied.

In Australia; the many indieators of educational disadvantage which have been used to distribute resources worth milions of dollars as patt of the Disadvantaged Schools Program have not been examined in terms of the accuracy with which they deliver resources to these students who are most in need of assistañe. These indicators have been developed on the basis of the 'expert' opinions of school systen comittees without ever having been subjected to a comprehensive assessment with respect to either the construct which tney purport to measure or the characteristics of the schools and students which they identify as being educationaliy disadvantaged.

In this chapter a program of research has been outilned which aimed to overcome the deficiencies of the available indicatoris of eduçazional disadvantage, in Australia. This prograp involvod a review of the features of the indicatoris of educational disadvantage furrently being used by Australian school systems followed by a plan fox-the fevelopment, validation; and intensive examination of the properties of a nationglimicator which was desighea to be consistent wifh the definition of disadvantaged " employed by the Australian Shool; Comission to establish the Disadvantaged Schools Program.

The Hetinition of ibisudvantaged
The emergence of a redemptive interpretation of equality in Australia was nost strongly mirked by the proposa: put forward by the Interim committeo tof the Australian schools Commission to establish the Disadvantaged Sehools Progrim (Karmel, 1975). This program aimed'to provide 'greater than average resources to disidwataged schools with the intention of 'redueing differences in the edneational performances of socially dis= aduantaged ehildren and the rest of the school population' (Karmel;

At the beginning of the Di sidvantalged Sehools Program the Australian Sehools Connission provided a definition of the concept of 'disaduantaged' $=$ in the following termis:

The Committec has ehosen the term 'disadyantaged' in relation to. schools drawing a/high pioportion of entolments from nifuhourhoods having certain characteristies known to be generally assoeiated with a low capacity to take advantage of educationtil foilities: (k nomel; 1973 :92)

The first key idea in this definition was that the term idisadvantaged' was to be assoeineed with schools: and not individual students. Thus, a disfivantaged student whs defined by heing a student at a disadvantaged school. The second idea was that the definition. was not concerned with the characteristics of the famitios of students - but rather the 'neighbourhoods' "fyom which schools obtained their students. The thitid key idea was that/those neighbourhoods should display characteristics which were 'associated with' conditionswhich wore adverse to making the best . use of educational fueilities.

Thd pioliferation of Indtcators of Educetional Disadvantage *

$\therefore \quad \ldots \ldots=$ Australia

The initint ints of disadvantaged shools were developed by the Australian Schools Commission at a netional level in 1973 by employing a single

- Indicator cilled the Socioeconomic Sqale': These instsiwere presented to the school system in c. \quad in n "or comment and thenadoption following the vorrection of any rims 'Since that time groat efforts have
 systems to uphate, m: ; : : : : set a wide range of indicators of

Hy lish there weri nine sepmrate indicatore of educational disadvant-
 six state Government school systemis and one each for the Non-Government school systems in Vietoria and South Australia. Further, data describing a runge of soefoedonomic varinbles were belng eollected to assist with decisions coneeming the identification of disiuvantaged schools by the New South halus , Western Australian, and Tismanian Non=Government school syetems.

There appears to have been no published evidence to explain in detail why the sehool syetoms rejected the notion of a national index of educat= fonal disadvantage and instead set about the expensive and time consuming task of developing their own indientors. The reasons which have been expressed in official documentation have, in a tangential fashion, suggested that there was a need for a 'local' indicator because the original nationtindicator was not able to identify disadvantaged schools with sufficient precision (see references listed in Ross (1980)) . This reason was the most onthusinstically ondorsed expinnation presented during the atithor's attendance ft a series of conferences on educational disatvantage attended by representatives of all school systens (Australian Sthools Commission; 19sob).

The Inadequacies of the Currently Available Indicators of Educational Disadvantage

The proliferation of a diversity of indicators of educational disadvantage in Australia has not been aceompanied by substantial efforts to assess the validity of the information provided by the indicator scores. There appears to have been no systematic studies which have examined the 'meaning' of the rank order of schools which these indicators have provided. In general, the validity of the indicators developed by school systems has depended solely upon opinions, provided by expert committees, conceming the face validity of the component variables employed in the construstion of the indicatory (Ross, 1980).

The consequences of a reliance on opinion, rather than objective procedures, has been that many indicators developed by the school systems have. both departed substantially from the definition of 'disadvantaged' which was ecntral to the Disadvantaged Schools Program, and also have no known relasionships with other mensures which could be considered to be symptomatic of educationally disadvantaged schools:

$$
\stackrel{H}{i}
$$

58

,)

1 An inspector bi :x review of the indicators used by school systems presented in a previous ehanter and in Appendix A showed that none of the indicators developed by the school systems closely satisfied the definition of 'disadvantaged!' quoted in an earlier section, which whs central to the Disudvantaged schools Program. The major point of departure between this definition and the school system indicators was that the definition emphasized that degrees of disadvantage were to be assessed through an examination of the nelghbourhood of the school whereas the school systems developed indicators which were mostly based on the thataceristies ot the families associated with chidiren attending the school: The latter approach to the identification of disadvantaged schools was considered to be less desirable by the Australian Schools fonimiston becatise it would 'ignore the importance of the neighbourhoods, as an exteñsion of the fanily, on children' (Karmel; 197亏ं98).

3 A Eccond important point of departure between the definition and the school system indicators was concerned with the reapurement that the information used to bissess disadvantage should be restricted to. chnracteristics ussociated with 'a low capacity to take advantage of educational facilities'. "The construction procedures for all of these indicaters were devoid of either the use of cifterion variables or other information suitable for checking that the indicator components had been selected and combined according to this restriction.

An excellent example of the dangers of expert opinion was evident in the construction of the Victorian Government system's indicator of educat= ional dişadvantage, In this indicator the variabie measuring isolation' was included with the intention that a high level of isolation was to be considered as evidence of a high degree of educational disadvantage. However, in a later investigation of the properties of this indicator, this variable was shown to have a correlation with the indicator scores which was opposite in sign to the direction which had been expected (Ross; 1979a).

3 The construction of the school system indicators has not been accompanied by any evaluations of the properties of the indicator scores. For example, there appeared to be no published evidence concerning the . eapacity of these indicators to identify schools which have high concentrations of students who had either a low capacity to master the basic skills of literacy and numeracy, or a low eapacity to overcome behavioural and social handicaps which would inhibit personal developpeñe añ

591
opportuntites for further learning. The lack of this cype of information made it impossible to know exactly what the indicators were measuring or or if the approach of using the same indicator at both primary and secondary levels of schooling, which had been adopted by most school gyscems, was appropriate, Further, since there was no information avaliable with respect to the capacity of these indicators to identify students who were in most need of assistance, it was not possible to assess the pre= cision with which the indicators could be used to allocate resources aimed at aileviating educational disadvantage.

4 In addition to probloms associated with the lack of congruence between the school systems' indicators and the Disadvantaged Schools Program's definition of 'disadvantaged', and problems concerning the lack of validity information about the nature of the indicator scores, there were certain questions of administrative efficiency, pubiic accountability, and invasion of personal privacy which surrounded the use, of separate indicators by the school systems.
(a) The development of separate indicators has required that considerable amounts of money; time, and research expertise be expended by each school system on the development of their indicators; These replications of effort actoss Australia have to date been totally independent activities with iittle or no sharing of experience, facilitiés and resources - even between government and non-government systems within the same state. Several non-government school systems were not able to develop their own indicators because they lacked access to the research expertise required to gather and process the required data,

The independence of these activities has been reflected in the variety of approaches to indicator construction. For example, there was nō single variable employed by all school systems in the constriction of their indicators. While this characteristic may be seen by some as an interest= ing feature of the uiversity of the Australian education scene, it also exhibited a questionable approach to a prograni funded from federal sources and having a national set of aims covering all school systems.
(b) The use of separate indicators by the school systems has raised questions of public accountability for the conduct of the Disadvantaged

Schools Program. The program was funded from federal source: with the specific intention of assisting the most disadvantaged Australian schoōjs $=$. .- irrespective of the State or school system to which they belonged.

Ater lusu, the lith bi a national indicator has made it impossible to sompare degrevs of cducational disadvantage for schools in different systems even ift they are in the same State. The Schools Cominission bas mide an attempt overcome whis difficulty by estimating degrees of educational disadvantage st the school system level, and then allocating funds aceording to differences between systems. However, it appears that this approach has simply moved more elosely toward a per capita division of funds between seh sol systems (Schools Gommission, 1980b:14).

The indicators which hare been developed by the school systems have generally driwn uph \quad :fa fra individual stucents, school records, and Edutizion departhent files. Thes. data have then been subjected to an extensive series of calculations involving recoding, aggregation, and weighting, before they have entered the appropriate indicator. The complexity of the data gathering and data manipulation activities required to build these indicators have made it virtually impossible for persons outside the data processing sections in education departments to eheck or compare or comment upon the indicator scores associated with even a few schools.

This approach to indicator construction has automaticaliy removed any possibility of public discussion concerning the suitability of the data collection and indicator construction procedures. However, in future; the pressures which are increasingly being exerted on the public funding of education will inevitably result in calls for indicators which are based on readily available data; and which are combined into indicators in a fashion that will permit members of the public to check calculations and discuss the appropriateness of various types of indicators.
(c) The data used by school systems to construct their indicators has often relied heavily on the use of personal information gathered from e students. This, information has usualiy been obtained directly from students or from personal files and records kept by schools and school * systems. In some cases the information has covered such extremely sensitive areas as the maritil circumstances of a student's parents, the student's race or ethnic origins, and the employment status of a student's = father.

In Australia there is currently a great deal of concern being expressed about the potential for invasion of personal privacy througl
the storige mil manipulation of personal data with sophisticated computer equipment: These concerns muy in future prevent the school systems from using data deseribing students and thotr fanilios in the construction of indicators of educational disadvantage. One solution to the problem of personal privacy would appear to involve the use of census data because these data are widely available, provide a complete coverage of all Australian school nelghbourhoods, and yet are aggregated to a level which is sufficient to prevent diselosure of personal information about individuals.

The General and Specific Aims of the Study
The general aim of this study was to develop, validate, and describe the properties of a national indicator of educational disadvantage which was in harmony with the definition off 'disadvantaged' provided for the conducte of the Disadvantaged Schools Program in Australia.

In order to develop this indicator several decisions were initially made with respect to the quantification of concepts contained in this definition:

1 The definition was constructed in terms of schools and not students, Therefore schools were used as the unit of analysis in the construction of the indicator.

2 The definition emphasized that neighbourhoods were to be used to describe the characteristies of disadvantaged schools rather than the families of students' which attended digadvantaged schools. Therefore only information describing the neighbourhoóds from which schools obtained their students was used to describe the schools. The description of school neighbourhoods was undertaken by obtaining school average profiles from the census characteristics of the neighbourhoods in which students lived. : No information dérived from the chāacteristics of individual students or their families was permitted to enter the indicator,

3 The definition required that only school neighbourhood information which was associated with a low capacity to take advantage of educational facilities should be included in the indicator: Therefore a criterion measure was required to be selected which would enable the selection of appropriate consus deseriptions of school neighbourhoods. The criterion Variable which was selected was the school mean score on a test of Word Knowledge which had been de reloped by the International Association for the Evaluation of Educational Achievenent (Thorndike, 1973): This measure was considered appropriate because it assessed the most central skili
required to take munatige of educational facilities - the ability to understand the meaning of wofds used as part of the langugge of ingtruction in Australian edueational institutions.

The incorporation of these decisions into the general aim described above enabled the following more specific statement to be made with respect to the major concern of this study:

To derelop, validate and describe the properties of national indicator to be used for listing schools aceording to a measure of their school neighbourhood characteristics (based on census deseriptions of school catchment arens) which is optimaliy correlated with a measure of the capacity to take zdvantage of educationnl fncilities (based on school mean scores oña test of Word Knowledgej.

The planning of the development of this indicator had to take account of the previous discussion of the inadequacies of currently available indicators in Australia. In particular it was considered important that: (1) the indicator should be able to be used nationally in order to identify the most disadvantaged schools in. Australia, (2) the indicator should have known properties in terms of its correlates with other measures considered to be symptomatic of educationally disadvantaged schools, (3) the indicator should be checked in terms of the precision with which it can be used to alloeate resources to those students who are in most need of assistance, (4) the indicator should be construeted from data in a fashion which ensured the maintenance of personal privacy, and which avoided the lack of public discussion associated with the widely used 'black=box' approach to indicator construction; (5) the indicator should be constructed separately for primary/secondary schools in order to take into consideration the : possibility that the performance of an indicator may be influenced by tho nature of the population to which it is applied. .

The Units of Sampling and Analysis

The data employed in this study were partially drawn from a national study conducted duTing 1975 of the educational achievements of Australian $10=y e a r-$ old and 14 -year-old students in the areas of reading, writing; and numeration (Keeves and Bourke, 1976). . The author was responsible for the design of the student questionnaire, data preparation and analysis, and the sample design evaluation for this study. The information obtained from this national study was used to develop eriterion and vaidation measures with which to guide the construction of indicators of educational disadvantage.

bata wote alsu ohtained from the 1971 Australian Census of Population and Housing (CBCs, ly7l). These data permitted the development of detailed descriptions of the neighbourhoods surrounding Australian schools and were therefore used as the basic compenents in the construction of the indicators.

The two hodies of data were combined together by linking each student's data to the datia associated with the census Collector's District in which the student ifved. These combined data were divided according to age level and then aggregated over schools to obtain data files which would be appropriate for the between-school level of analysis: Detailed descriptions of the sample of schools and students, and the procedures involved in the preparation of the data files prior to the construction of the indicators have been presented in Chapters 5 and 6 .

The appropriate unit of analysis for the development of the indicator was the school, because this unit had been employed within the definition of 'disadvantaged'. Therefore, discussion and interpretation of the results of these analyses has also remained at the between-school level.

In order to avoid problems associated with the 'ecoldgical fallacy' (Robinson, 195e) it was not possible to infer that relationships between variables establishet at the between-school level would also apply at the between-student level. However, the impact of the development of the indicators at the between-school level on the precision with which they could be used to allocete resources to individual students was examined in detail.

The Three Phases of Indicator Preparation

There were three main phases associated with the preparation of the iridicators of educational disadvantage: the development of the indicators, the investigation of indicator characteristics, and the investigation of the 'menning' of the indicators. These three phases have been sumarized in the following paragraphs.

The Development of the Indicators
In order to guide decisions concerning the development of the indicators, a list of items describing important properties of the indicators was prepared unit of analysis, nature of the criterion variables, statistical constraints, stability, parsimony, and face validity. Following an examination of these properties a three-stage strategy was designed which aimed - to optimize satisfaction among the often competing requirements of the list
ot important prometies of indicators. The three-stage strategy involved the preparation of $\because 2$ groups of census percentage variables which deseribed various aspects of the school neighbourhood environment, the use of stepwise regression analysis within each of these groups to form $2 \boldsymbol{y}$ linear composites of census percentige variables which were optimally correlated with the criterion variable, the use of stepwise regression and prineipal components analysis to combine the 1 inear composites into the indicators, and the validation of the final set of indicators. The results of these analyses have been reported in Chapter 7 .

The Investigation of Indicator Charicteristics

Following the development of the indicators, thoy were employed in a range of analyses which were defigned to provide a detailed investigation of their properties, These analyses examined the nature of the dimensions assessed by the indicators, the predictive power of the ind ith respect to school mean ichicvement scores and school behaviour: . imate, the precision with which the indicators could be used for resource allocation, the properties of school mean achievement scores following residualization by the indicators; and the theoretical and 'cross-age' stability of the indicators. From the results of these analyses a 'preferred' indicator was selected for each age level. The results of these analyses have been reported in Chapter 8.

The Investigation of the 'Meaning' of the Indicators

The development of the indicators was primarily guided by the aim to optimize the predictive power of the indicator seores with respect to school mean achievenent scores on the tests of Word Knowledge. The 'preferred'. indicator was therefore based on a' wide range of school neighbourhood characteristics. This wíde spectrum made it difficult; if not impossible, to readily deduce a descriptive name for this indicator by inspection of its census percentage variable correlates. In order to ciarify the nature of the social dimension assessed by the preferred indicator, the 'meaning' - of the mdicator wis investigated with respect to the Shevky=Bell model of residential differentiation. This model enabled a description of the indicator to be made in a more parsimonious and more readily interpretable form based on three dinensions of school neighbourhood residential differentiatioñ. The results of these analyses have been described in detail in Chapters 9 and 10.

65

THE DESIGN OF THE SAMPLES

Introduction

The tarset populations in this study were designed for a national study af the educational achievements of Australian students in the areas of reading, writing land numeration. Prior to the execution of this study there had been no other investigations at the national level which had attempted to examine the educational performance of students in both primary and secondary schools: Previous studies (Radford (1950), Keeves (1968), Rosief (1973)), had undertaken large-scale evaluations of Australian education - however, these studies did not attempt to cover both levels of schooling, nor did they consider a coverage of all Australian States and Territories.

An initial decision was concerned with whether to focus the target population definitions on age or grade samples. Sampling by grade was known to be considerably less complex thān sampling by age since grade. statistics for Australian schools were more readily available, and also the sonduct of studies based on intact classes would subject the participating schools to less disruption during the data gathering operations. fowever, because of the different school entry and grade promotion policies in different parts of Australia and in different school systems, it was therefore considered that'grade=based information would not be meaningful when attempting to obtain an overall picture of the performance of Australian students.

It was further considered important that the use of sampling by age: should represent, as accurately as possible, thé total age cohort involved in normal schooling. At the primary school level this was not a major problem because the whole of primary schooling in Australia falls within the years of compulsory schooling. However, at the secondary school level, the age cohort was selected to be as close as possible to the end of the period of compulsory schooling.

The selection of the age cohort at the primary school lével was governed by the researchers' aim to focus on an age group in primary schooling which could be expected to have at least mastered the fundamental skills which were to be assessed. The selection of this age cohort

$$
66
$$

 study would be eentrod around group testing sessions rather than individuitited testing. The type of testing environment which was to be used therefore presluded the use of age cohorts in the early yents of primary sebowling :- ...

The nife levels selreted for study were:
Age 10 :00 to $10: 11$ vears, during the middle primary sehool feriod where the basie skills of ilteracy and numetacy, which influence to a major extent all further learning, should have Geen aequired; and

Age it 00 to 14 : 11 years, during the middle secondary schōol period at level immediately prior to the end of the period of compulsory schooling; where all students were still at school. (Keeves and Bourke, $1976: 13$)

The above the descriptions represented the desired target population definitions.for the study. Some furthex refinement of these descriptions whs undertaken to ohtain the defined target population definitions. These tefined target population definitions were then later used to assemble the sampling frames for the: studys

The excluded populations for the study were those students who were attending special schools which operated independentiy of the normal schooling system in each State and Territory. These schools were generally designed to cater for the déaf, blind and educationally sub-normal. A detailed description of the excluded populatioñ has been presented by Keeves (1977) : At the 10 -year=old level the exciuded population represented 1.1 per cent of the desired target population and at the $14-$ ygar=old level the excluded population represented 1,0 per eent of the desired target population

- It was important to remember that the defined target populations Werf concerncd with those students attending normal schools. Therefore, those students who attended special classes which were held within nomal schools were, also included in the defined target population.

The Sampling Frame:
After having decided upon-specific definitions of the defined target populations, the next stage in the sample design procedure was to construct sampling frames for each of the populations. The first step was to compile a list of primary and secondary schools for each school system together with the numbers of 10 -year-old and 14 -year-oid students in each school on 1 August 1974.

These lists were then seratified within each State and Territory aceording to the following nine classifications:
1 Government metropolitan schools
2 Govemment non-metropolitan composite primary/secondary schools
3 Government non-metropelitan schools
4 Gatholic Systemic metropolitan schools
5 Catholic systemic non-metropolitan schools
6 Independent Catholie metropolitan schools
7 Independent Non-Catholic metropolitan schools

- Independent Catholic non-metropolitan schools

9 Independent Non=Catholic non-metropolitan schools
Within each stratum of the two sampling frames the schools were listed in postcode order. The use of this extra element of implicit stratification ensured that when systematic sampling technique was used across each stratum, schools which were geographically adjacent would not be drawn. The resulting samples would therefore represent a balanced geographic coverage of each stratum = without disturbing the basic probabilities of school and student selection.

The reference date for the sampling frame was set at il August 1974 since this was the date of the most recent school census. The reference date for identifying students wi/thin schools for testing purposes was defined to be 1 October 1975 , sfince testing was planned to take place during the week of $6=10$ octobet 1975. This discrepancy in dates meant that the estimates of the numbers of students in each school falling within the target population definitions were approximately a year out of date.

In a study-of-this magnitude it would never be possible to obtain exact figures for each school in the country for the precise time of testing. . The decision was therefore taken to employ 'measure of size'. figures (Kish, $1965: 222$) as exact sizes. This assumption was made quite'. confidently because it wás known that large variations in cohort enrolment figures wore unlikely to occur in the space of one year. . Further; if proportionately large (or small) enrolments occurred across all sehoós then this would in no way alter the basic probabilities of selection for schools and students."

The Sumple Design

$>$ The sample design thethis stidy followed the procedures employed in Australia during 1970 tor the IEA Science Project (Rosiev and Willians, - $19^{*} \mathbf{5}^{\prime}$: This stomple design employed a twostage stratified design, 'seldeting shools at the first stage and then students from the selected schóols.
\rightarrow The schools were sampled with a probability proportional to the Thimber of students in each school within the target population. The selection of schools was undertiken separately within each State and

- Territory A sample of 25 students from each selected school was then randomly drawn from the students within the target population description. *- . The decistion to sample clusters of 25 students from schools was undertaken to maximize the validity of, the data. It was reasoned that a group of this size cotad be tested in one testing session in a single classioom, This would minimize the possibility of the contamination of results when, for example, larger numbers of students tested in schools may have required testing sessions at different times or days. A further consideration, which was also aimed at maximising the validity of the results, was that the schools would be more co-operative in terms of the - if standardized conditions required for testing if the testing program was not overy disruptive of the faily school program.

The level of gampling precision. followed the constraints employed in
f the iEA Science Project; that the standard error of a mean for each State should be approximately six per cent of a student standard deviation. \#

If we were to select a simple random sample of $n *$ students from a State then the standard error of the sample mean could be written as (iloss, 1978:113);
$=\quad=\quad \operatorname{SE}(\bar{x})=\sqrt{\left[\frac{N-n^{*}}{N} \cdot=\frac{S^{2}}{n^{*}}\right]}$
where $\quad S E(\bar{x})$ is the standard error of the sample mean, N . is the population size,
n^{*} is the size of the simple ranḍom sample,
and S is the standyrd deviation of student scores. samplos)", we may wite:

That is, in order to satisfy the error requirement a simple random = sample of at least 278 students was required.

Unfortunately, the use of a simple random sample of this size may have required testing in as many as 278 schools in each state. This would have been beyond the resourees of the study.

Further, since some * sween=schools analyses were planned for the gtudy, such a sample desigh would not have provided sufficientiy stable estimaces of school mean scores.

The docisioñ to sample elusters of 25 students per selected school which was described ibove required an thpropriate decision concerning the number of schools, which must be selected at the first stage iñ order to obtain an equivalent degree of precision as for a simple random sample of 278 students, Recent research (Ross; 1976) has shown that an equivalenc degred pf precision cimot sinply be obtained by sampling $\frac{278}{25}$ il schōols followed by the selection of 25 students per school.

Instead, we must appeal to the 'planning equation' described by Ross (1978:159) which presents a functional relationship between the number of schools required in a two-stage sample design and the size of the simple random sample which has equivalent piecision:

 extmate ot wh $=0,1$ wis a suitable figure for Australian secondaty =sthous, Se fomilar evidence was avilable for an estimate of roh to be Whe for the ifllam primary schools and consequently the sume value for then pupulation was astumed.
 we ohtain:

That is, we would require at least 35 schools at the firse stage of sampling an oter to sutisfy the orror constraint that the standard error of the mesn should be no more than six per cent of the standard deviation of student scores.

For the purposes of this study it was deeided that a sample of 40 sehonls per state would provide a suitable degree of precisione

- In the Australiah Gapital Tertitory and the Northern Territory a slinilar sampling procedure was followed except that only 20 schools were selceted at the first stage of sampling. The errors for the estimates of means were expected to be silghtiy higher than for the states (approximately ten per cent, (Keeves and Bourke, 1976:17)) : However, in the overnil Nuttrilian estimates these inereases would be expected to have only a smill effect due to the welghting adjustments which were used to correct ror the disproportionate sampling from the States and. Territores.

For the Australia overall estimates the samples were designed to obtalija miximum of 7000 students at each age level. With samples of this size it was expected that the errors of estimates for means would bebetween three per cent and six per cent of the standard deviation of student "soores (keeves and Bourke, $1976=1 \frac{1}{7}$). "

The Sampling of Students within School's

The sample design required the seloction at randon of 25 students from each selected schoo': In oider to achieve this, each selected school was asked to subnit a list of all students faling within the defined target population. These insts were checked to ensure that they contained no Efudents whose date of birth placed them outside the defined target

When the shhol lists had heen checked, S0 students $=25$ students for the simple and five reserves - were selected ising the followng proeedures:

1 Choose all students with birth dates on the loth day of uny valid month (within the defined age bands for the $10=y e a r=o l d$ and $14=$ year-old population).
2 Choose all students born on the 11 th, 12 th ete days of any month - until the 25 students required have been selected;
$\overline{3}$ If there are more than the regulred number of gtudents with birthdays on the 11 th, 17 th ete. day of the month than are needed to yield a group of $2 \bar{s}$ students, choose the-students required to complete the sample of size 35 at rindom from those students with birthdays on the terminal day
4 Pive additional students were chosen by continuing to apply the above iiiethod. Those gtudents were the reserves. The reserve students were used to replace students who had beon selected for the study but were missing on the day of testing for reasons such as: transfer. to other schools between the selection and testing dates, illness on the day of testing, ete.

The Designed and Achieved Samples
From the previous discussion it was demonstiated that, in ordet to obtain the required levols of sampling precision, it would be necessary to select samples of 40 schools followed by the selection of 25 students per school in each State, and to select 20 schools followed by the selection of 25 students per school in each Territory,

If it was possible to have full participation of all selected schools. and to obtain complete data. for all selected students then we would refer to these samples as the 'designed samples'. In practice, for studies of this magnitude, there has often been some loss of data due to reasons such as: the refusal of some selected schools to participate, and the absence of some selceted students on the day of testing: The resulting body of data which eventually was availabte for analysis was referred to as the 'achieved samples'.

In Table 5.1 the information summarizing the execution of the sample design. for each state or Territory, and for each age gitpup has been prosented.

Weyerrend sumb								
Wew South hales	2115	4565	110	1000	40	967	100	97
Nictoria	215		411	1000	410	988	100	9
Quemstind	1496	$3{ }^{3} 7$	411	1000	\%	91	8	94
South iustralia	688	33558	40	1000	dit	95	100	9
Western Austalat	6.37	21518	40	1000	40	9.7	100	94
Tosmanta	3.3	8186	410	1000	3	898	98	919
Australian Capital Tertitory	66	3605	20	500	18	407	90	81
Wortheri Tersitory	3	1985	20	500	16	369	80	74
lotal	7524	251464	280	7000	372	6416	97	92
HeYedreold sample								
Nein South Welos	59.	81894	40	1000	38	918	95	92
Victoria	980	66550	40	1000	$3{ }^{3}$	915	98	92
Queenslond	286	88106	40	1000	37	889	93	88
South dustril in	182	2415	40	1000	97	916	$9{ }^{5}$	92
hetern hustralia	184	39648	40	1000	38	917	98	92
Tasmania	91	8990	40	1000	$3{ }^{3}$	921.	98	95
Australan Capital Teritory	22	3	20	500	17	887	85	77
Northern Territory	11	1275	30	500	10	187	50.	37
Total	1950	247411	280	7000	256	6045	91	86

The revinam pation ion ench of the states were highly sitisfactory,
 Territories, the response rates were below this desired value in partfeuler, there were considerable dita 1 osses in the Northern ferritory = especially at the ll-gear-old level. This low response rate in the
 ness and postal dificulties, and becouse of the dispuption that had bevirced to the duentional system of the Northern leribitory duc to the byelone in late 197.

We ighting the sample besign
The sumple designs in this study employed disproportionate sample allocation amonk the explisitstrata. This techitye was employed in order to permit the cillenlation ol statefTerritory estimates with approximately equal sampling biror. ln order to compensate for this disproportionate alloe= ation it was neceshiy to calculate weighting factore, both at the betweenstudents ind betwemeschools level of anmlysis, before estimates of Anstrilia=overall parimeters could he made.

The keighting factors had to take into aceount the possibility of data loss due to non-reponse fron both students and schools. This required that egrain assumptions be made about the nature of the non=response. These assumptions, which have been deseribed in detail in Appendix \bar{G}, may be summiri=ed as:

1 The sumpling frames prepared for the study were accurate : representation of the defined target population.
3 Tho acheved mumbers of schools and students within schools for each stratum were planned constants. That is, any data loss from schools or students could be consídered to be 'missing at random'.

Since the samiling frames had been prepared from offieial school evisus informution, and since (with the exception of the Northern Territory) s the response rateshid been extremely high for a study of this kind, it was considered that there two key assumptions would foin an acceptable basis for the use of weinting factors to idjust for non=response; The low response rate in the Northem Territory did not present a challenge to these assumptions because it was known that the Northern Territory results would have 1 iftle influence on Ausw ralian overall estimates after adjustment for the disproportionate allocition of the sample between strata had been mato.

In Aperndila shoretial diseussion has been presented which deseribes the prepra tion of the weighting factors.

At the betheres- tudents level of analysis the weighting facstor (wf) for stuacat i in sho-ol j of stratum k was:
$\mathrm{nt}^{2}($ students $) \equiv=\frac{11 \times n^{1}}{a^{1} \times \mathrm{B}^{1} \times N}$
where $B ;=$ tot $=a 1$ number of students in stratum k,
$n^{\prime}=$ achz ieved total sample size (sţudents),
${ }_{4}$ ' a acherieved total number of schools sefected fromes stratum k,
' \quad ' M ieved tutal number of students selected fiesm school j, and S ㅎote al number of students in the population.

Mt the nethein chool lewel of analysis the weighting factor for school j in stratur k was:

" where $\sum_{k} a^{\prime} \equiv$ chieved number of schools in the total sample.
The use of these weighting factors for the between-student and betweenschool analyses had the following effects:

1 The widited number of students per school within eacteg stratum was a conitint. For example, in Victoria at the 10 -year=0 gat level the weighted infaber of students per school was 43.5 for ales schools in Victorit, the igures for other States/Territories at bottse age levels have been listece in the second column of Table, 5.2 .

The equility of the weighted number of students per sechool within strata occured because, where data loss occurred for a parteicular student withti particular school, the loss of data for th at student wal compensated for by increasing the weight for the other students in that school. It is important to note that thiss effect was produçed by halizng unequal weighting factors for schools wey thin each stratum. lor example, in Victoria at the 10 -year-old ieviete the response rates for stivol s of $25,24,23$, and 22 were associated wituh weighting factors of $1.74,1.81 ; 1.89$, and 1.98 respectively. The fengures for otherstates or Territorios at both age levels have been les sted in Table G. 2 of dp صendix G .
 Hould liave Deviered for Proportionte Sampling

Proportionate Distribution of Siniples
Student Level

Students
per School Levol

10. 埌

	? 2189,3	54.6	92.8	2185.5	54.6	92.7
Netersia	1739.9	43.5	73.6	1739.8	43.5	75, 8
Queerrs and $^{\text {a }}$	985,9	95	41.7	988.2	25.3	41.9
Goutt Fautalidy	600.1	15.0	4.6	601.9	15:0	25,5
Wester	54.5	13.9	23.2	549.0	13.7	23.3
famminil	205.5	5.3	9.0	207.6	5.3	8.8
	94,8	5.	4.0	' 94.3	5.2	4.0
Nothersiterioty	51.5	31:	2.1	${ }^{50.6}$	\%.2	2.1
lotal	6, 616.3	$=$	271.9	6416.0	-	272,0

1d. veds ondyle

	2017 , 2	54.6	87.8	2074.2	54.6	87.8
Victorres,	$\underline{1627.5}$	41.7	69.0	1626,0	41.7	68:9
	932.6	25.2	: 39.6	931.0	25.2	39.4
gouth mitplis	590.8	15,	25.2	590.1	15.9	' 25.0
Westera Mutrain	50.4	15:1	21.5	509.8	13.1	21,6
Tuman	204.9	5.2	8.6	202.5	5.2	8.6
	81.5	4.8	3.4	80,8	4;8	3.4
Worthen Mouteme	31.0	3.1	1.3	51.2	3.1	1.3
Total	6046,8	*	956	6045.0	$\stackrel{\prime}{ }$	256;0

WERIC a detalL ed derfiption of the calculation of weighting factors has been presented in Appendix G.
$=$ The weightod number of students for each stratum was equal (except for rounding error) to the number of students which would have been selected from each stratum if a true proportionate sample desigñ had benn used, For eximple, a proportionate allocation of the total achieved sumple of 6416 loyear-old students would have resulted in the selection ot 1740 (actually $17 \overline{3 g}, 8$) students from Victoria. The weighted number of students in Victoria at this age level was 1739.7 which was equal (except for rounding error) to the proporitionate allocation sample size. The weighted numbers of students for each Statefteritory and the proportionate allocation numbers have been presented in eolumns one and four of Table 5.2.

In columns two and five of Table 5,2 the weighted numbers of students per school and the numbers per school which would have been seleeted by using proportionate sampling have been presented. At both age levels these sets of figures were equal for each State/ Territory.

3 The weighted number of schools for each stratum was equal (except fois rounding error) to the number of schools which would have been selected from each stratum if a true proportionate sample design had been used. For cxample, a proportionate alloeation of the total uchieved sumple of 272 primary schools would have resulted in the selection of 74 (actually 73.8) schools from Vietoria. The weighted number of schools in Victoria at this age level was 73.6 which was equal (except for rounding error) to the proportionate allocation sample sife. The weighted numbers of schools for each State/Teriitory and the proportionate allocation numbers have been listed in columns three and six of Table $5: 2$. The weighting factors for the between= school analyses have been listed in Table $G .3$ of Appendix G.

Tho Estimation of Sampling Error
The sample designs used in this study were not based on the well=known model of 'simple random sampling' . Instead they incorporated the complexities of stratification, the selection of students in clusters, and also the use of unequal prohabilities of selection which required the use of weighting in order to minimize bias in the sample estimates. When hese comploxities hove been introduced into a sample design it is not possible to use established, formine. The computational formulne required for estimating the
 from eomplex sample designs ire either enomously complieated or, ultimately, they prove resistant to mathematical analysis (rankel, 1971).

In this study the technique of 'Jackknifing' (Quenouille, 1956 ; Tuhey, 1958) was used to caleulate sampling errors. A review of this technique. has been presented in Appendix G. The caleulations required to apply the Jackknife have been described in Appendix G and Tables GA to G13.

From the Jackknife calculations two statistics were obtained for means and correlations: the average of the square root of the 'design effect' and the 'effective sample size' (Kish, 1965:162) , These statistics have ren presented for the betweentstudent and between-school levels of analysis in rable 5. 3 . These statisties. were not calculated for errrelation. coefficients at the between-student level of analysis because no correlat= ional analyses were earried out by using students as the units of analysis.

A detailed description of the 'design effect' and the 'effective sample size' has been given in Appendix G.

The values of the average of the square roof of the design effect, average $\sqrt{\text { Deff. }}$, may be used to estimate sampling errors in the following fashion (Ross, 1979b;139):
$\operatorname{se}\left(v_{c}\right)=$ average $\sqrt{D e f \bar{f}}, \operatorname{se}\left(v_{s r s}\right)$
Where $v=$ the statistic being examined,
se $\left(v_{c}\right) \equiv$ the standard error of the statistic for the complex: sample design,
and se($\left.v_{s r s}\right)^{\prime=}$ the standard error of the statistic under the assumption of simple random sampling.

The values of th: effective sample size described the size of a simple random sumple which would give the same sampling error for the statistic as for the complex design (Ross, 1978:138).

Summary
In this chapter the sample designs which were used to gather data from Australian students and schools have becn described. At the io-jeat-old level the sample consisted of 6416 students in 272 schools, and at the 14 -year-old level the sample consisted of 6045 students in 256 schools.

 tor Means and Correlations

Statistic	Level of Analysis			
	Butheen-Student		Between=School	
	10	14	10	14
Average. Detif				
Means	2.0 .4	2.15	1.04	1.19
Correlations	1	a	0.76	0.89
Effective sample sizelalues				
Means	15.42	1308	251	181
Correlations	a	\square	471	323
Total suaple si=e	6416	6045	272	256

Note a Values of average beff and the effective sample siae were not calculated for the between=student level of analyses betane no correlational analyses were condueted by using students as the unit of analysis.

A weighting scheme was devised in order to simultaneously adjust for (1) disproportionate sampling among the explicit strata of the sampling frame and (2) loss of stucent data within schools selected into the sample. This welghting scheme ensured that the weighted number of students per school was constant within each stratum, and thit the weighted number of. students and schools across strata was equivalent to a proportionate allocation of the sample.

The Jackknife technique was used to calculate the sampling errors of means and correlation coefficients for the between-school level of analysis, and for means at the between-student level of analysis. At the betwoon-gchool level, the 'design effects' for means were close to unity whereas for correlations they wore slightly less than unity At the between=student level the design effects for means were substantigly. greator than unity.

Introduction

The data employed in this study were derived from two sources: data gathered for the Australian Council for Educational Research (ACER) study concerning the 1 iteracy and numeracy skills of Australian $10=y e a r=o l d s$ and 14-yeir oblds (Keeves and bourke; 1976), and data gathered for the 1971 Australiari census of population thd lousing (CBCS, 197l): The ACER gtudy, known as the Australian Studies in School Performance (ASSP) project, corfied ont its data collection during October 1975. Data were collected tor a national somplo of $10=y e a r-o l d s$ in 27% schools, and a national sample of $14=$ testrolus in 256 schools. As part of the terting program forkthis study, each student was required to provide a full home address. With the assistance of maps, street and telephone directories and the official. Australinn ensus maps, these addresses were transformed into Census Gollector's Uistrict numbers. The Collector's District numbers were then used to link the computer stored ASSP data with the 1971 dustralian census datat.

In the following discussion the preparation of the computer-stored data files which were appropriate for the between=student level of analysis has been described in detail. These data files weré subsequently aggregated ${ }^{\circ}$ to obtain data files appropriate for the betweon=shool level of analysis.

Thé Australim Studies in School Performance (ASSP) Project Data

The data gathered for the ASSP project foeldsed on Australian 10 -year-old and 14 -yenr-old students; The students provided informationtapmeans off $\quad=$ specially designed mastery tests in reading, witing and, numeration. They also completed tiost of word knowledge and a questiograire which was concersed with decilled information about the studenfs and their home backgrounde. Further information was gathered from teqehers describing - the incidence of any physlcal, physiological and behaviohral handicaps which the students may have"exhibited.

The Reading, Writing and Numeration Tests
The procedures involved in the development of the ASSP tests of reading, writing and runeration, have been described in detail by Keeves and Bourke (1976). In brief, the development of these tests consisted of four separate
$\because \quad \therefore \quad \therefore \quad \therefore \quad \therefore 0 \quad 9$
 secondly, ifst of tisks and subtisks regarded as essential learning in eath area was prepared. : Thirdly, items were consiructed which were consistur with the stated objectives and which assessed performance on the detined subtusks. Finally, items were selected according to their validity in assessing stukent performance on the subtasks, and according to in appropriate diftienlty fevel for the two age groups.

All students in the study were required to complete the tests of reading and numeration. However, the Writing Test was despged as three diferent torms in order to completely cover the specified objectives and was used as a rotated forms test. Three Forms were randomly rotated among the members of the samples and consequentiy only a third of the simils ut ench ane level eompleted the sume form of the test. The resultant reduction in the sample size which occurred for each form ef the writing Test led to a greatly redueed level of sampling accuracy (Ross, 1976) and therefore performance levels on these writing tests were not intluded in this study.

The Reading Tests at eich age level covered four areas of ability: to apply word attack'skilis, to use conventions employed in written languige as an aid to understanding, to comprehend what is read; and using a variety of approaches to obtain infrmation (ACER, 1976a). The test for $10-y$ ear=olds (referred to as test 10 R) consisted of 29 items and the test for 14 -year-olds (referred to as test 14 R) consisted of $3 \overline{3}$ items: The time limit allowed for completion of the tests was 30 minutes at both age levels.

The Numeration rests at each age level were initialiy included to cover four main areas of ability: to recall definitions añ notations; to manipulate and calculate rapidly and accurately, to interpret symbolic Jata, and to ipply mathematical concepts. These four areas were later collapsed into two broad afeas of ability recali/manipulation; and inter= protation/application (ACER 1976 b) : The tests for 10 -year=olds (referred
 of $\overline{3} \boldsymbol{j}$ itemblifithe time limit. allowed for the completion of the tests was " 30 minutcse at both age levels.

The Word Knowledge Test

The word knowledge Test for each level consisted of 40 word=pairs. The students kere required to choose whether the words in each pair hed gimilar

or oppotite maning forhrat these tests were developed by R.L. Thorndike for studies earried out by the International Association for Educational. Achievenent: *Thorndike (1973) has indicated that these tests, were * designed as brief tests of yerbal ability father than as instruments for the measurement of reading somprehension.

The Student Questionnaire
This, questionnaire was designed to obtain general infogmation about the * ૬tudent and also some information aboit the student's home environment.
The questions concerned with general information included questions about the student's home uddress, age; sex, the number of schools attended and the number of years the student had lived in Australia. The questions concerned with. the student's home enviromment included questions about the : ' ethine bathground of memhers of the student: family: languages spoken in thy home, family site, and whether nowspapers, were read in the home.
The Teacher Luestionnaire
A teachef who knew each. Student well was asked to complete a questionnairé. ' which described the incidence of any physical, physiologicai and behavioural handieaps which the student may have exhibitod: =

* The questions associated with physical and physiological handicaps included qucstions covering visual impaiment, hearing impairment, speech mpairment, dexterty, lethargy, hyperactivity and hemth condition (for. $=$: example, diabetic, epileptit, asthmatic) "The questions associated with behaviourai, handicaps inciuded questions covering attention seeking, inability to co-operate with peors, self=isolation, timidity, and marked" - rejection by other students.

The Merging of the Dita Files ,
Wiring the testing program carried out for the ASSP project, the sample members werb required to provide their completex home addresses: With the issistance pf maps, street and telephone directorites and fhe official Australian tensus maps; fhese addresses kere coded iñō folltctor's, District (

A set for punched eards was then prepared. These cíards contained each \therefore student's inlentificution number from the ASSp study and the appropriate GD number nssopiated with the student's home'address; A computerfstored data file was constructed from these cards and th an this file was merged with

The Censusit Dtat
\checkmark The ennsus data empoyed in this study was defived from the 1971 Australian fensus of ropulation and housing (CBCS, 1971). The data from this census 'was athered hout Eater yeme prior to the Assp data. In Australia, a census is now normally conducted every five-years, and therefore the 1976 Cepsus of population and housing (ABS, 1976) would have provided census

- dita which was nearer in time to the ASSP data collection. The decision to employ 1971 eensus data rather than 4976 census data was based on the ${ }^{*}$. following reatons:
$!$
-1 At the time of the commement of data preparation for this study, complete 19% census data for all Australian States and Territorios were not available. This constraint, in addition to the uncertainty assoflated with the date when complete 1976 data would bēcome available. limited the choice of census data to the 1971 Census:-
. Mue to unusual, economice circumstances in dustralia at the time of the 19 census it was decided by the Australian Government that only so peredt on cotsus schedules would be processed from private duclings in all states and the Australian Capital ferritory. This fample was selected at the CD revel by randomly selecting either the first or second private dwelifg in ench co and then systematieany taking every second priyate dwelling after that. The use of a sample of private digelings in the 1976 . censum rather that, the usual complete

coverago resulted in the introduction of sampling errors into the census data. While these errors may have been small for ostimates "derived at the national level, the possibility of large errors for rarely occurring population characteristics at the CD level was greatly increased. Since this study was concerned with the linkage of students' characteristics, to the characteristics of their communities it was decided that these sampling errors might lead to the overlooking of important relationships between student character.istics and certain rarely occurring population chayacteristics. The preparation of census data by the Australian Bureau of Statistics required a great deal of time. The time gap between the data collect: ion and the release of complete and detailed national data for general use may often take from one to two years. \because Therefore it was unrealistic to expect that the use of census data to make large-scale adminis trative decisions about education could be undertaken prior to periods of up to two years following the actual collection of the data. Inevitably, because of this time lapse, questions may be raised about the suitability of using 'old' 'data to make 'current' decisions.

It was considered important in this study to use the consus data in a realistic fashion and gonsequentiy it was decided to choose consus data which provided the largest possible time gap between data collections. Any generalizations which could be made concerning the inter= relatiens je ween the two sets of data would therefore be strengthened because after Pour years the census data was in its most 'out-of-date'. condition.

The Preparation of the Census Data

* The 1971 census data was distributed by the Australian Bureau of Statistics in a form which was not appropriate for immediate use in the file preparation stage of the study. A major re-organization of the original census data was required in the following areas:

1 For this study only census information at the lowest level of aggregation, the Collector's District, was required. However, the census data tapes distributed by the Australian Bureau of Statistics contained different levels of data aggregation: CD (Collector's District) records containing data for individual CD's; LGA Part (Local Government Area Part) records with data totalled over all CD's in each LḠA Fart; LGA records with data totalled over the LGA Parts comprising the LGA;
and a Stato total record containing data totalled over all CD's forming the State or Teriftory. As a first step in preparing the census data files it wns nececsary to rewrite the census data tapes to ensure that they contained only CD records.

The OSIRIS software package (developed at the Institute for Social. - Rescarch, University of Michigan) which was to be used in the data management phase of the study led to a further constraint on the re= writing of the census tapes; The version of the OSIRIS software packige which was available for the study would only accept data records which were iess than or equal to 3,600 characters in length (1 SR, 1973:171). After some investigation of the available CD information it was possible to reduce the original CD records from 1,068 count variables to 710 count variables. The reduced list of variables were reformatted so as to require a field width of five characters per g. count variable. The resulting CD records were thereby reduced to 3,500 characters which satisfied the record length constraints of the software. The final list of census count variables used in this study has been described in Table 6.1.

4 The CD records were originally stored on tape in order of the CD Serial Number. These serial numbers were asgigned to, CD's beginning at 1 in New South Wales and ending at 21,536 in the Australian Capital Territory (CBCS, 1971:2). However, from the census maps; it was only possible to link each studentis address with a CD identification $\therefore \therefore$ number based oñ the LGA code; LGA ज̄art code, añ CD number within LGA Part code. Therefōre a new CD identification number waṣ required to be constructed from these three elements before the morging oporation could begin.

The three elements required to construct this merge number were:
(a) LGA code: This was the major tabulation unit code used in the publication of census results. "This code corresponded in ail but a few cases tn legal local government areas and ranged from 1 to 400 withiñ each State.

Table 6.1 Census Count Variables Derived from the 1971 Censas of Population and llousing

Census Table Number	Number of Variabies	Table Description
0	13	Indicative information
1	2	Total pop x sex
2	3	Total dwell x status
4	1	Total usual residents (persons)
5	1	Total born overseas (persons)
7	70	Sex x Age (total pop)
10	12	Sex \times Marital status (total pop)
11	6	Sex \times Marital status (labour force)
14.	40	Sex x "Birth place (overseas born)
17	18	Sex x Period of residence (residents)
18	12	Sex x Usual major activity (total pop)
20	18	Sex \times Qualifications (studying)
21	18	Sex x Qualifications (obtained)
22	44	Sex \times Religion (total pop)
24	- 28	Sex \times Highest level school (total pop)
$\cdots 25$	16	Sex $\times 1966$ Residence (usual residents)
26	14	Sex x Occupational status (total pop)
27	26	Sex x Industry (empioyed)
28	146	Sex ${ }^{\text {x }}$ Occupation (employed) ${ }^{0}$,
30	10	Household class x (population, dweilings)
31	10	Dwelling class x No. dwellinos (occupied) .
32	3	Dwelling class x Population (occupied)
33	24	Dwelling ciass x-Inmates (0 ccupied)
34	21	Dwelling class x Rooms (occupied)
35	21	Dwelling class x Bedrooms (occupied)
37	24	Dwelling class x Date built (occupied)
38	48	Dwelling class \times Kitchen/Bathroom (occupied)
39	18	Dwelling class x Facil/TV (occupied)
40	12	Dwelling class x Sever (occupied)
41	15	Dwelling elass x No. vehicles (occupied)
42	12	Dwelling class x Nature of occupancy
	4	Size of block \times pop. flats (flats)

(b) LGA lart codés This was a phosical partition of an LGA such that each LGA part contained about 10 CD ${ }^{\circ} 5$. This partition faciiitated : the LGA Firts being supervised with roughly the same workload per* supervisor. This code could take values from to 33 within bGA's.
(c) CD code: This code referred to the basic element of the, census data collection. There ares $21,536 \mathrm{CD}$'s in Australia. The CD code had values rangingreroil to 25 within LGA Parts.
On the revised census data files the LGA code was stured in a five character width field, and the LGA Part and CD codes wiste stored as a composite also in a five character width field. These two fields
*. Were combined to form a single teñ=digit merge number. It was not necessary to include a gtate code within the merge number because the merging process was carried out ${ }^{\delta}$ sepacately for each State. Prior to the merging of data the eensus data was sorited, separately by state and Territory on this tentigit number.

5 The census data tapes provided variables in the form of 'count' data (for example, the number of $20=y e a r=o l d$ males in the particular CD). Although many Co's were designed to contain the sane number of dwellings (approximatelytizoo dwelings), they generally contained variable population numbers. Therefore, in order to adjust for variations in population size, dwelling numbers, ete between CD's, it was necessary to create percentages. from the count variables, for example, the percentage of the total population in the CD who were $20=y$ ear $=01 d$ males).

The Preparation of Census Percentage Variables
The census oderived variables used in thíg study were percentages which employed direct count variables as denominators. For example, when the percentage variables which described the workforce characteristics of the male and femaie population were prepared, the denominators employed $:$: were the total numbers of males and females who were participating in the workforce.

Wh the following discussion the calculation of the percentage variables from the data in the sensus tables 1 isted in Table 6.1 has been degeribed. : These percentage variables provided information covering ten man areas: workforce characteristics, industry type, matital status, religion, educational qualifications, nature of dwelings; ethnic compositioñ, age et

distribution, general facilities, and living arrangements. A detailed listing of cach of the 148 percentage variables which were prepared has been given in tables 1.1 to 17.22 in Appendix I.

Workforce Characteristics

The workforce characteristacs percentage variables wereoderived from

- Census Tables 26 and 28 (CBCS, $1971: 15$). These two tables described the oceupational status of the workforce and the type of oecupation in which members of the workforce were enployed.

1 Workforco Charncteristics: Occupational Status. The census table describing the occupational status of the workforee, used the categories: emplo,er, self=employed, wage-earner and unemployed. This information was presented separately for males and females. The denominators fised to calculate the percentage variables were the total number of males in the workforce and the total number of females in the workforce: In Table 1,1 the percentage variables for the members of the workforce inthe four occupational status, groups have been listed separately for males and females.
2. Workforce Characteristics "Occupational Type. The census table concerned with the occupational type of the workforce in terms of: the numbers of employed moles and females used 73 occupational categories (CBCS, undated b). These 73 categorics were recoded separately for males and females into the 12 broad groupings emploved by the Australian Burcau of Statistics. (ABS, $1976: 34$). The 12 percentage variables derived from the occupation groupings have been listed in Table H. 2 . The oecupations were, grouped into the headings professional, administrative/executive/ managerial, clerical, sales, farming/fishing/hunting, miners; transport/ communication, process/manual/labour, trade/building, service/sport/ recredtion, armed services, and not adequately described. : The denominators omployed in the calculation of percentages for males/females were the fotal number of males/females in occupation canegories l-73.
Indistry Type
The industry type percentage variables were derived from Census Table 27 (CBCS, 1971:13). This tabie described the type of industry in which the workforce has employed. The elessification of itudustries was based on a 13 group elassification scheme.. The 13 percentage variables obtained from the classification of industries have been listed in Table H. z_{y}.

\qquad \therefore \qquad
This elassification scheme allocated members of the workforce to industries which had similar productive activities: agriculture (including forestry and fishing), mining, manufacturing, ete. The denominator used to calculate the percentage variables was the total number of persons in occupation eategories 1-7,3 for Census Table 28.

Marital Status
The marital status percentage variables were derived from Census Table io (CBCS, 1971:9). This table described the marital status of males and "females who were evtr married. The marital status of the population i: reported in terms of tio number of persons who were maried, separated: divorced or widowed. The percentage variables calculated from this cenco table have been listed in Table H:4. The denominators formales/females were the total number of ever married males/females who were 15 yoars if age or older.

Religion

The relígion percentage variables were derived from Census Table 22 (CBCS, 1971;11). The original ABS classification of religions employed 22 categories. This detailed list was reclassified into six main groups: Atheist, Hebrew, Protestant, Church of England, Catholic, and Other Religion. This reclassification attempted to sort the detailed list of religions in : the census data files into groups which were homogenieous with respect to the educational background of the adherents

The information concerning the educational background of the adherents was based on data prepared by Mol (1971). In Table•H.5, which was derived from Mol's data, the main fustralian religious groups and the number of graduates per religion for eạch 1,000 male adherents have been listed. The revised six-group classification is given in the final column of the table.

Following the reclassification of religions, into six broad groups, the groups were converted into percentage variable? according to the descriptions in Table 14.6. The denominator used to obtain these percentage variables was the total population.

Edecational Qualifications
The educational qualifications percentage variables were derived from three. separate census tablës: Census Tables 20,21 and 24 (CBCS, 1971: 10, 12).

These three tables deseribed the total numbers of persons in the population who had obtained, or who were studying for cortain levels of qualifications, and the levels of schooling which had been completed by the population:
(a) Educational Qualifications: Qualifications (Obtained and Studying)

The census tables which examined the qualifications of the population were centred around educational qualifications which would be undertaken after leaving secondary school. There were four dategories of qualification: trade er technician study, tertiary non-degree study, and two categories of degree study: bachelors and higher degree study. The denominator used to calculate the percentage variables was the total population who were 15 years of age or older: In Tobles 11.7 and 11.8 the percentage variables for persons who had obtained, or who were studying for, the stated level of qualifications have been listed.
(b) Educational Qualifications:. Qualifications (Level of Schooling) .

The census table concerned with level of schooling presented the numbers of persons in the population who had completed levels of education which ranged from never having attended school to having completed level 10 of schooling. In this study two classifications were selected for examin= ation: never having attended school, and having completed level 9 of schooling or higher (CBCS, undated a) . The denominator used to calculate , the percentage variables was the total population who hat completed their schooling. These variabies have been listed in Table H. .
Nature of Dwellings
\therefore The nature of dwellings-pencentage variables were based on threc-sepazate census tables: Census Tables 31 , 54 and 37 (CBCS, 1971:10, 16). These chree tables described the nature of the dwelings in which the population livisd. Table 31 described the type of dwellipg separate house, semi-
: detached house, etc. Table 34 provided information about the size of :these dwellings in terms of the number of rooms per dwelling, while Table 37 provided information about the gge of these dwellings.
(a) Nature of Dwellings: Typer of Dwelling. The census categorization of the type of dwellings in which the population lived covered four., main dwelling types': houses, flats/units; non-permanent dwellings, and non-private dwellings. the houses subgroup was further broken into four types of house: separate, semi=detached, attached, and terrace houses. The flats/units subgroup was divided into villa units, self=contained flats

and non-self-contained flats. Non-permanent dwellings were categorized as either improvised dwellings or caravans. The percentage vatiobles obtained from this census information have been listed in Table 1 H .10 . The denominator used to calculate the percentage varialies was the number of occupied dwellings.
(b) Nature of Dwellings: Size of Dwelling. The census description of the size of dwellings was presented by describing the number of roons per dwelling. The çategorization of dwellings ranged from dwellings having only ône room tó dwelings, with seven or nore rooms: The denominator used to calculate the percentage variables was the total nuber of occupied dwellings. These variables have been described in Table H.11.
(c) Nature of Dwellings: Age of Dwelling. The census classifi. cation of the age of dweliings was linked to the time of the collection of the census data in 1971. The classification ranged from newer dwellings built during 1971 to older dwellings built prior to 1966 . This range of five years was designed by the ABS because information has been gathered at five-year intervals for each population and housing census: The detailed information concerning dwellings built prior to 1966 was therefore only. available from the data gathered during earlier censuses. The denominator used to calculate the percentage variables was the total number of occupied dweliings. These variables have been described in Tabiq II. 12 .

Ethnic Composition

The ethnic composition percentage variables were based on Census Tables 14 and 17 (CBCS, 1971:9, 10).*. These two tables described the country of birth -and the period of residence-for overseas-born residents
(a) Ethnie Composition: Country of Birth. The census table describing the country of birth of the overseas-born population consisted of 4 19country and continent elassification scheme with an extra classification denoted 'other' which referred to categories other than those listed." The denominator used to calculate the percentage variables was the total population. The percentage variabies derived from the country of birth elassification have been ilisted in Table H.13:
(b) Ethnic Composition: Period of Residence. The census table describing the period of residence of the overseas=born population fonsisted of eight categories describing the number of years of residence, There were five categories which cofered from one to five years of residence; the other categories described the ranges $5=9$ years, $10-16$ years and 17 or more
\square

Years of residence. Since this table focused on residents who were born " overseas, the denominator used to calculate the percentage variables wrs the total population of overseas-born residents. This denominator excluded those overseas-born persons who were not permanent residents of Australia. The percentage variables describing period of residence have been listed in Tuble H. 14 .

Age Distribution
The age distribution percentage variables were obtained from information in Census Table 7 (CBCS, 1971:8). The information presented in the census table describes the age distribution of the population in one-year increments from 0 to 24 years, and then five-year increments from 25 to '69. The final census classification was denoted 70 years of age or older: Thesc 35 categories were recoded into eight categories as described in Table H.15, The denominator used to calculate the'percentage variables was the total population.

General Facilities
'The general facilities percentage variables were based on Consus Tables 38 , 39, 40 and 41 (CBCS, 1971:17). These four tables presented information about certain facilities and services which were available in dwellings. Table 38 gave a detailed analysis of the availability of bathroom and
\because : kitchen facilities in each dweling. Tables 39 and 40 described the numbers. of dwellings, which had access to the services"of sewerage, electricity and television f Table 41 was concerned with the numbors of vehicles which were associated with dwellings. ${ }^{\text {a }}$:
(a) Generai facilities: Bathroom and kitehen. The information in -the census table describing bathroom and kitchen facilitios was in the form of a highly detailed classification scheme. For each facility a dwelling was' classified as having sole use, shared use, not shared use, and none available. These fowr elassifications were combined for bathroom and kitchen facilities into a 16 -point classification scheme. This detailed list was reclassified into six new categories accorfing to the recoding scheme presented in Table H.16". The six new catsegories, which were labelied 1 to 6 , have been described in".the Note at the bottom of this figure.

Following the reclassification of access to bathroom and kitchen facilities, the resulting six classifications were converted into percent= sge variables according to the descriptions presented in Tabig H.i7.

The denominator used to obtain these percentage variables wars the total nưber of occupied private dwellings.
(b) General Facilities: Sewerage, Electricity and Television.

Three percentage variables associated with the services of sewerage, electricity and television were prepared from the census information. The electricity and television facilities were assessed by a simple counting of dwellings which had these services in use at the time of the census. The sowerage facility was dofined as dwellings with a flush toilet connected to a public sewer. Dwellings in which other forms of fiush toilet were operating (for examplo, a fiush toilet connected to a septic system) were not considered to have access to the sewerage fatility. The denominator
\therefore which was used to calculate the percentage variables was the total number of occupied private dwelilings. The percentage variables describing these three fac̣ilities have been listed in Table, H. $18, \quad:-$
(c) General Facilities: Vehicles. The percentage variables associated with the vehicles facility were derived from a census classification scheme which gave the number of vehicles per dweliing from none to three or more vehicles. The percentage variables which have been calculated from this information have been listed in Table $\dot{H} .19$: The denominator used in these calculations was the number of private dwellings.

Living Arrangements

The living arrangements percentage variables were based on Census Tables 30, 33 and 42 (CBCS, 1971:15, 17). These three tables presented inform= ation describing certain living arrangements of the populations, Table 30 provided a classification of houschelds into living arrangements associated with family structure. Table 33 described the living 'density' of persons per dwelling. The nature of dwelling occupancy was summarised in Table 42.
(a) Liviñg Arrangements: 'Household Class. "The census table describing houschold class provided a detailed classification of the types of households in dwellings. The census definition of a household was a 'persion or group' of persons living and eating together'. .The first major elass of houschold was classified as 'single-family households'. Other : n, types of hoúseholds were 'separate family units' such as 'primary family units' in which the head of the family is also the head of the household, and ' 'secondary family units' which consisted of all other family units within the household In this study, only the major classification of single=family households was used to create the percent-ge variable.

The edenomintolused in this calculation was the total population. The percentage varibles do $=$ cribing, houschold class have been listed in' L Tablee 1.20.
(b) Livingrangements: Densicy. The census table describing the dens三ity of living arancements claspified dwellings in terms of the number of imates resling. in hese dwellings: The classification schome ranged from one innatiper dwe telling to six or more inmates per dwelling. The \because © deneminator ust to calculate the percentage variables was the total number of occupd priveate dwellings. These percentage variables have been listed, in mablo H.E1.A
(c) Li vin' Arrangements: occupañcy. The census table describing dwelzing oceupacy clas』ified occupied private dwellings into 'owner. occueied', which Included purchaser occupied, and 'tenant. occupicd', which was toron into two eat gories" of tenancy: stato authority and other. In theis study tho two su-ibgroups of tenancy wero combined to form one ciass ificeation callod tenart-occupied dwellings. The reclassification provided two Eercentage viriabié listed in Table H.22. The denominator uspd to calcequlate thes viriabless was the total number of occupied private dwollings:

Botweer-S-Student and Betwech-School Data Files *... : \quad.
The \Rightarrow ata, file morging pocedures and the percentage variable proparation . methCds described above were carried out at the between-student level of añalersis.* Aftorthese asks hạd been comploted, the between-student data filess were aggragted t \triangle obtain files appropriate for the between-school
 \qquad
The weigiting factor information derived in Chapter s and the filter varieables enployd to cecate subsamples for the Jackknife error estimation techrique-(seolpendix G) were then added to the data files at the appropriate 1 vol's of armalysis.
$g \quad$ In total thore were four computgr-stored data files prepared for 1 ator analyses. At the 10 -yeatar-old level the between-student file was based on . : 6416 students, nd the \Rightarrow etween-school file was based on 272 schools. At the 4 -year-oldevel the between-student file was based on 6045 students, and he betwedn-sthooi $i l e$ was based on 256 schools.

Summary
This chapter has describsed the stages associated with, the preparation of the computer-stof datere files used in this study.

107

The datilnero derivet fiom two sources; dita gathered for the Austral hin Studies ín School Performance (ASSP) project (Keeves and Bourke, 1976), and data gathered for the Austritian Census of Population and Housing (CBCS, 1971): The data from these sources wore inked together for each student by matching stuitent home addresses obtained in the ASSl project with the appropiate Colicetor's District numbers associated with the 1971 Australian census.

The raw census data provided information in the form of 'count' data, These dita were transformed into percentage variables in order to adjust for variations in population size, numbers of dwellings, etc, between Collector 's Districts. The percentage variables provided information sovering ton main areas: workforce characterigtics, industry typo, maritaly status, religion, educational qualifications, nature of dwellings; ethnic composition, age distribution, geñeral facilities, and living arrangements. - Four separate computer-stored data files were prepared for 1 ater annlyses. The two files propared for the between-student level of analysis described national samples of 6416 10-year-old students and 6045 14-year=old students: The betweeñ-student data filestwere aggregated to obtain betweenschool data files which described national samples of 272 10 =yedryold schools and 25614 ryear $=01 d$ schools :

CHAPTER $\overline{7}$

THE DEVELOPMENT OF THE INDICATORS

Ineroduceion

The ain in preparing the indicators was to produce useful tools for the identification of educationally disadvantaged schools and students While some efforts were made to design the indicatoŕs to have an 'appearance of reasonableness', there was no attempt during ' e development of the indicators to derive constructs which had k : searshed origgins in the education or social science literature. The hit. at priority was placed on the development of indicators which would maximize the preciston with which resources allocated on the basis of these indicators reached the students who were in most need of assistance.

Separate analyses were conducted to prepare the indicators at each age level because it was expected that variations in the arrangement of school catchment areas between age levels would be refiected in the inter = relationships between the pieces of census information which described the communities surrounding sample schools.

Important $\overline{\text { Properties or }}$ the Indicators $=$ =
In order to guide decisions about the development of the indicators, a list of six items describing important properties of the indicators was ' prepared: unit of analysis, nature of the criterion variabie, statistical constraints, stability, parsimony and face validity, Following an examin= ation of these items; a threestage strategy was developed for the construction of the indicators.

1 Unit of Analysis. In Australia the units which have been employed by the National and State Governments to identify and assist educationally disadvantaged students have been schools. The identification of particulaŕ-schools, rather than particular students, for participation in the Dīsadvantaged-Schools Program was adopted as a funding strategy for three main reasons. First, the identification of disadvantaged schools prevented the possibility of 'streaming' which may have occurred if only certain students within schools received supplementary assistance. Second, - it was decided that the best way to combat the non-supportive home environment of educationally disadvantaged students was to change the total school-........

environment. In urdes to achieve this change it was considered essential that all students within disadvantaged schools should participate with parents, teachers, and school administration in the design and implementation of appropriate sehool programs. Third, there was belidef that the 'eoncentration' in schools of students who cañe from non-supportive home environments resulted in handicaps which were 'additional' to those ascociated with the backgiounds of individual students (Blackburn; 1979b; 3).

Siñe the school has been used both as the unit of identification and funding of educational disadvantage in Australia, the unit of analysis for the development of the indicators in this study was also taken zo be the school. That is, the multivariate analyses required to eonstruct the indicators from census informatioñ were based on school mean scores which were prepared by aggregating student informaticn over schools.
2. Nature of the Criterion Variable. In this study various pieces of census information were combined in order to form single constructs which were highly correlated with educational achievement: The combination of a number of measures, oach of which may be an imperfect measure of the construct, into a more reliable combination is generally known as iscaling" (Lansing and Morgan, $1971 ; 279$) .

In order to conduct the gcaling procedure in an objective fashion it was necessary to select a eriterion variable which had suitable character= istics with respect to reliability and validity. At both age levels data were àvailable for a test of verbal ability, cailed the Word Kiowledge Test, which had been designed for large scale surveys conducted by the inter= nationdi. Association for the Evaluation of Educational Achievement (Thomdike, 1973).

The development of basic verbal ability hás long been considered tó be a prerequisite for successful learning in the classroom:

It has always been clear that ability to read with under standing depends upon knowledge of the meanings of the words in which a fnessage is expressed. (Thorndike, 1973:61)

An important recurring feature of measures of verbal ability has been their strong intercorrelation with other measures of school achievement. This property has often led researchers to employ verbal ability measures as useful surrogates for the assessment of other types of lefarning :

... Ferbal ability is basic to most forms of achievenent in school and in a symbolooriented society like ours a It is piramount among the so ealled basic skilis; and it correlates so highly with measures of achievement in reading, mathematics, ind factual information that it serves is a useful surrogate for the measurement of these other forms of learning, (Dyer, 1972:516)

The Word Knowledge Tests used int this study were found to have reasonably high correlation with school achievement in the subject areas examinec by the international Association for the Evaluation of Educational Achievement (IEA) F Fot example, in the English-speaking countrios which participated in the lha studies of Reading Comprehension and Scienee; the mean eorrelations between the Word Knowledge Test and Reading were
 (Thorndike, 1973:62). In addition the mean correlations between the word Knowledge, Test and Science were 0.76 and 0.60 at the $10=y e a r=o l d$ and $14-$ year=old levels respectively (Comber and Keeves, 1973:249, 259).

The mean reliability coeffieients across the English speaking countries were 0.85 and 0.80 for the $10-y e a r=01 d$ and $14-y e a r-o l d$ levels respectively (Thorndike, 1973:58) =

The relationship of the Nord Knowledge Tests to a range of school achievement scores and also the satisfactory reliability coefficients for . each age level which were established by the IEA studies provided support for the use of these tests as eriterion variables for the sealing procedures required in the building of the indicaters from census information.

3 Statistical Constraints. The units of analysis for the construction of the indicators were schools: Dita were avilable for 272 schools at the 10 -year-old level and 256 schools at the 14 -year-old level $=$ There $=$ fore, in terms of the between-school analyses, any correlational añaytic techniques which were employed had to acknowiedge that there were limit $=$ ations on the numbers of variables which could be used in order to avoid problems of instability which often occur when large numbers of variablos are employed compared with the number of observations.

There are no commonly accepted precise rules which describe the ratio of the numbers of observations to numbers of variables for multivariate analyses. However, several authors have suggosted rules for particular analytic techniques which have been intended to provide approximations to a lower butnd for the ratio. Cattell (1952) recommended at least four cases for each variable when using factor analytic methods; Kerlinger and

Pedhuzur (149) s. sested that between 100 and 200 cases were required for regression analyses which did not involve large numbers of variables. Tatsuok (19.0) stated that the sample size should preferably be at least three times the number of variables used in discriminant function analyses.

Thorndike (197s) has presented a method for estimating the 'lower limit' for the ratio of numbers of observations to numbers of variables for a range of correlational procedures in social science research. This rule generally leads to more stringent requirements for the numbers of observations by eomparison with the suggestions provided by the authors listed above. Thorndike's. rule, which was accepted as a guiding principle for this study, described the ratio in terms of an inequality statement:

$$
N \geqslant 10(\mathrm{P}+\mathrm{C})+50
$$

where $N \equiv$ the number of observations,
$P \equiv$ the number of predictor variables,
and $C=$ the number of criterion variables.
Applying the inequality statement to the numbers of observations atailable for the between-school analyses gave upper limits of around 21 to 22 for the combined number of predictor and eriterion variables.

4 Stability: The indicators in this study were built from census data. Since the Australian Census of Population and Housing has been conducted only once every five years, the preparation of the indicators had to ensure that the possibility of fluctuations in particular pieces of census inforination over this time period would have minimal impact on the stability of indicator scores.

For example, if the indicators were based solely on the workforce
\therefore characteristics of the population then changes in industrial activity for particular commities between each census might lead to erroneous measures on the indicator scores: Similarly, if only information concerning the ethnic composition of communities was used then an influx of migrants in particular commitics would also result in inaccurate scores.

In order to avoid these problems it was decided that the indicators should incorporate a wide range of different types of census-information The use of information across a broad spectrum of population characteristics would then minimize the opportunity for changes in a small number of areas to influence the stability of the indicators between each census. :

99
112

5 Parsimony. A key aim for the development of the indicators was to seek a parsimonious solution without loss of accuracy. That is, while being simple with respect to structure and application, the indicators were required to provide scores which accurately identified disadvantaged schools. and students.

Simplicity in structure and application was considered to be important because it would minimise the errors, effort, and resources required to prepare indicator scores. The indicators which have previously been developed at National and State level in Australia have remained a mystery to all but those who have constructed them. This has occurred because the techniques for the construction of these indicators have rarely been published, or because the data required for the calculations have not been made freely available to the public, or because the complexity of the construction (for example, the use of various variable recoding schemes) has been too difficult to duplicate without access to sophisticated research knowledge and computing equipment.

In order to obtain the most accurate indicators with the simplest structure it was decided to employ the technique of forward stepwise ilnear regression (Kerlinger and Pedhazur, 1973). The forward stepwise linear regression technique is generally employed when the researcher's primary interest is to obtain the most accurate degree of prediction possible with the smallest set of predictor variables. The technique proceeds in the following manner: the predictor variable with the highest zero-order correlation is entered into the analysis; the next variable to enter is the predictor variable that produces the greatest increment to the squared multiple correlation coefficient; this procedure is continued until the criterion for termination of the analysis has been satisfied.

The termination criterion may consist of a statistical significance test or a 'criterion of meaningfulness' (Kerilinger and Pedhazur, 1973: 286). The use of a criterion of meaningfulness involves a decision by the researcher as to whether an increment in explanatory power is substantively meaningful in the context of the research application-- In this study the-criterion-of-meaningfulness-adopted=was-linked-to-the-amount-of additional variance required to be explained before a variable was added to the indicator being constructed. The details of this decision have * been described in a later section.

6 Face lalidity: A desirable feature of all types of indicators is that they should appear to be reasonable in terme of the censtruct which is méasured by the indicator scores. Thorndike and Hagen (1977:60) have deseribed this 'appearance of reasonableness' as 'face validity'.

It was extremely diffieult to ensure that the indicators developed in this study had a high degree of face validity because of the units of analysis which were used. Theories and research which support relationships between environments and educational achievement at the betweenstudent level of analysis have been widely established. However; these theories and relationships may not apply wheñ data are aggregated to the between=school level of analysis.

For example, the well established correlation between the sociocconomic status of a student's home and his/her performance on teste of educ-ational achīovement may; or may not, be applicable at the betweensschool level. This may occur because the relationship at the between-school level will be influenced by the allocation of students to schools. If students were allocated to schools in such a way as to ensure that the school mean scores on the achievement variable were exactly equal, then the correlation between the two variables would be Eero when examined á the between-school invel because of a iack of variance between schools with respect to school metn scores on the achievement variable.

A further difficulty in estádishing face validity occurred because

 the indicators were constructed from census information witich described the communities surrounding each school. Thís information did not deseribe the characteristics of the families of students attending the sample schools except in go fur as they represented a small part of the nézighbourhood. Thus there may be certain census information which provided very useful predictors of schóol mean scores = however at the betweentistudent ievel of analysis there might berneither correlational nor causal connection between these variables iftheytobre derived from the particular family and school environments of the gitudents.are centrat-to-a-set-of-mernodological issues
which have generalis' oeen placed under the heading of 'ecological effects' (Robinson, 1950; Logant and Rokkan, 1969). These effects pose few probleñe in the analysis of data. However, difficulties may arise when relation= ships established at one level of analysis are assumed to apply at another level of analysis.

114

The accuracy of the indicators as predictors of educational dis= advantage was of paramount concern. That is, the performance of the inditators as tools for fecise allocation of resources was fiven a higher priority than was a concern for the face validity of the pieces of census information which were combined to form the indicaiors.

The actions which were taken to improve face validity were restricted to a careful watch for technical inconsistencies such as suppressor relationships in the maltiple regression analyses and certain checks which wero carried out during the data analyses in order to enamine any results which were dramatically different between age levels.

The Three-Stage Strategy' Used to Develop the Indicators
The six areas listed above were used to guide the formation of a four-stage man strategy for the development of the-indicators. The strategy which evolved had to recognize that desirable solutions for the six areas were inter= related and, in some instances, contradictory. For example, the 'stability' requirement denanded that the indicators should be based on as many types of consus information as possible, while 'parsimony' inferred that only a small subset of the large body of consus information should be used.

Because of the impossibility of satisfying the needs of all six areas simultaneously with any one indicator, it was decided to develop four indicators at each age level. These four indicators were developed to \because present a range of possible solutions to the problem of attenpting to optimize performance across the often campting requirements of the seven areas.

The three stages in the strategy have been presented diagramatically in Figure 7.1. The following discússion has presented a detailed account of each stage.

The first stage in the development of the indicators commenced with the reduction of the 710 census direct-count variables to 148 percentage variables: This process was described in detail in the previous chapter. The percentage variables were then arranged into 22 groups which closely followed the structure and names of the source Eensus tables from whic the percentage variables $/$ re derived.

The second stage, involved the application of stepwise regression analysis to select a subset of percentage variables from within each of 102115

Figure 7.1 The Three-Stage Strategy Used to Develop the Indicators

the groups. The information contained within the groups was then replaced by 22 'new variables' which were based on linear coaposites of subsets of percentage variables in each group.

The third stage required the combintion of the 22 linear composites into the indicators. This stage employed stepwise regression analysis and principal components analysis to combine the linear composites.

Stage 1: The Construction and Grouping of the Porcentage Variables
The original census information which was avallable for the study consisted of 710 direct-count census variables. In order to adjust for variation in communty size, and to reorganize the highly detailed infomation available for some variables into more manageable form, a list of 148 percentage variables was constructed. The preparation of these percentage variables has been deseribed in Chapter 6.

The total 1 ist of 148 percentage variables consisted of 22 groups of variables, each of which could be grouped and named in a fashion which closely followed the original table names and structure of the source census tabulations. These 22 groups have been listed in Tatic 7.1. The table has also listed the number of the source census table from which the percentage variables were derived, the number of the table in Appendix If which described the direct count variables which were. used as denominators and numerators in the construction of percentages, and the number of percentage variables in each group.

The 22 groups of percentage variables have been listed under two broad headings: Social Environment and Built Environment. The groups of percentage variables associated with the Socipl Environment were based oñ, descriptions of the characteristics of persons (for example. Occupational . Type, Country of Birth and Marital Status): The groups of percentage variables associated with the Built Environment are based on descriptions of dwellings and the populatior interaction with dwellings (for example, Type of Dwetling, Bathroom/Kitchen Facilities and Density). For each'of these two broad headings, the groups of percentage variables have sen listed under sub-headings which describe particular aspects of either the Social or Built Environments with which the groups of percentage variables were associated.

Table $\overrightarrow{\text { F }} 1$ The Grouping of Consus Percentage Variables

Stape I. The Develoment of Linear Composites hithin the Groups of Persentage Variables

After Stage 1 had been completed the originai $\overline{7} 10$ direct count census variables had been formes into 14 S percentage variables, and these pereentage variables had been grouped into sets which followed the names and structure of the original source consus tables.

The next task was to combine these percentige variables into indicators of educational disudvantape. The census information which was to be used to form the indieators was available at the individual leyel. That is, each of the sampla members had been linked to a set of percentage variables which described the Collector's District in which the sample menber iived. Since the 'unit of analysis' wis required to be the sehool, the percontage variable data and the associated data for each sample member drivn from the ASSP study were aggregated over schools to obtain filles of data covering 273 schools at the 10 -yeax-old level and 256 schools at the $14=y$ ear-old level.

- One method of producing the indicators would have been to conduct regression analyses to combine the whole 148 percentage variables into a linear composite which was optimaly courelated with a suiteable criterion variable. llowever, the use of the whole 145 percentage variables would have violated the 'statistical constraints' which required that a maximun of 23 variables be used in any one correlational analysis.

Ain aiternative method would have been to initinlig: select an subst of the percentige variables which was small enough to satisfy the 'statise tical constraints' : These variables could then have been used as independent variabl ss in. the regression analyses. This procedure would have presented difficulties in making dectsions about which percentage variables to include in the analyses. For example, 'parsimony' required that the variables, be selected so as to produce the most accurate indicators; and the need for 'stability' encouraged the use of as wide as possible range of different types of census information.

The method employed in this study was to draw information initially from as many groups of porcentage variables as possible so as to maximize * the 'stability' of the derived indicators. 'Also, it was docided that the stability of the indicators would be enhanced by using as many variables from within these groups as possible. The 'statistical constraintsi. on
the use of correlational procedures required that no more than 22 variables b. used in any one analysis, therefore this constraint could be setisfied by ereating linear composites from each of the 22 groups and then using these linear composites as individual variahies iñ further correlational anilys.s to create the indicators. The 'parsimony' characteristic could be satisfied by employing stepwise regression analyses within each group to create linear composites which were optimally correlated with the eriterion variable. Those percentage variables whith did not add substantially to the explanatory power of the linear composites would then be discarded.

Stepwise linear regression rather than simple linear regression was employed to create the linear composites of percentago variables within each group. This technique was used because of the need to extract a high degree of explanatory power from the information available within each group of percentage variables without inciuding percentage variables which did not substantially add to this explanatory power. Within each group of percentage variables there was often a high degree of inter-correlation. For example, there wore correlations of 0.74 and 0.83 , between the percent $=$ ages of male occupations which were 'professional' and the percentages of male occupations which were 'administrative/executive/managerial', for the 10 -year=old and 14 -year-old schools respectively. Because of this high degree of correlayion between percentage variables within groups it was likely that the use of many variables from any one group would not add to the predictive power of the indicators.

When stepwise regression is being used the researcher is required to make a decision concerning how many predictor variables will be allowed to enter the aniyses before the procedure is terminated. The termination decision for these analyses was associated with the incroments to explained variance in the criterion variable at each step of the analyses. The formation of the linear coiposites was teminated when the increment in the amount of variance explained did not exceed one per cent. That is, when the change in the squared multiple correlation coefficient, R^{2}, after adding an additional percentage variabie did not reach one per cent then the linear composite at that stage was aceepted.

For certain analyses the restriction on the contribution to R^{2} was. relaxed to 0.25 per cent. This occurred for particular groups where only one or two percentage variables were permitted to be inciuded in the
analyses. It was considered that relaxation of the restiviction would not contravene the desirable characteristic of 'parsimony' when such small numberf of variables were involved in any one stepwise regression analysis. During the construction of the lincar composites this alternative restriction occurred only at the $14-y e a r=o l d$ level for two groups of percentage variables: Occupational Status (Femaies) and Period of \Rightarrow Rẹsidence.

Prior to the percentage variables being permitted to enter the stepwise regression analyses an initial 'siftiag' of the percentage variables * was carried out. This sifting procedure was employed to minimize the opportunity for suppressor relationships to arise by removing percentage variables exhibiting correlation coefficients with the criterion variable where the magnitudes of these coefficients were within the bounds of sampling error at both age levels.
\boldsymbol{f}^{2} An approximation to the standard error of a zero-order correlation coefficient was employed to estimate the magnitude of two standard errors (Guilford and Fruchtex, 1973:145):

$$
\operatorname{se}(r)=1 / \sqrt{\pi}
$$

where se(r) is the standard error of the zero-order correlation coefficient, and n is the sample size under the assunptions of simple random sampling.

The sample design for schools in this study was a disproportionate systematic stratified sample design. However, since the sifting procedure was to be used as a rough sęrting device, it was considered that the approximation provided by the above formula would be sufficiently accurate. Therefore, in order to enter the stepwise regression analyses, a percentage variable had to exhibit a zero-order correlation coefficient with the criterion variable which exceeded two standard errors in magnitude.

Results of Stage 2

The second stage of the strategy required the combination of the percentage variables within each of the 22 groups of percentage variable groups to form linear composites. Since there vore 22 groups of percentage variables for each of the two age levels, there were 44 separate stepwise regression analyses required to create the linear composites. A detailed description of each of these has been reported in Appendix 1 .

A summary of these 44 stepwise regression analyses has been reported in Table 7.2. For each group of percentage variables the number of percentage variables which entered the linear composites has been presented.

$$
\therefore 108
$$

Overall there was a tual of 50 perctintage variables reg̨uired to create the finear composites at the 10 -year-old level and 49 at the $14-y e a r=01 d$ - leyel. The reduction, from an original list of $14^{*} \mathrm{~s}^{\circ}$ percentage variables. répresented a considerablé gain in 'parsimon'' without loss in 'stability' because 21 of the total $2 \overline{2}$ groups were represented, "The opmitted group, 'ave of Dwelline', was not used to create Iinear composites because all peremtage variables in this group failed to pass the 'sifting' process wh both age levels. That is, all percentage variables in this group did not have correlations with the criterion variables which were in excess of that expected for normal sampling fluctuations.

There was a total of 63 difforent lpercentage variables enployed in the analyses of the 63 there were 36 percentage variables employed at both age levels, and 14 which were unique to the 10 -year-old level, while 15 wero unique to the 14 -year-old level.

In the final four columns of Table 7.2 the percentage of the criterion variable variance explained by the 'stepuise solution' and the 'full. solution' have been presented. Tho percentage of criterion variable variance explained by the stepwise solution referred to the variance. explained by the linear composite which was accepted to represent the appropriate group of percentage variables. The percentage of criterion variable variance explained by the 'full solution' referred to the variance explained by allowing all eligible variabies within group to enter the analyses without making use of the termination decision described in the previous section? in many cases the full solution contained suppressor 'relationships = with porsentage variables having differences in sign between correlation coefficients tund regression cóefficients'. An inspection of fhe porcentage of variance explained by each solution showed that - . * generally the reduction in the number of variables included in a regression oquation by the use of stepwise regression analysis caused little loss in explanatofy power while gaining greatly in trins of 'face validity' and also 'parsimony'.
Stage 3: The Development of the Indicators from the Linear Composites. The third stage in the strategy was the combination of the linear composites which had been formed at the second stage into indicators. After the second stage had been completed there were 21 inear composites available from the total of 22 percentage variable groups. Since this number was within the

Table 7.2: The Results of the Stepwise Regression Anlyses whe ch were Used to Develop Linear Composites from thefroups Ef Percentage Variables

a. A.linear composite was not extracted from the 'Age of Dwellisig' proup because all percentage variables in this group faile to haves, suff: iciently large zero
limit by the etatistical constraints' it was possible to employ correlational proeedures on the whole set of linear composites in order to forf the Indic =ors. Two correlational procedures were selected to be usd in the $t a \equiv k$ of combining the linear composites: regression amalyis and prifte ipal components analysis.
luy use of regression analysis for the total set of 21 linear composites was ce $=$ sidered desirable because it would perinit the construction of a linear combization of the composites which had optimal correlation with the criterioze varíable. However, initial regression analyses at each age leval using tie full set of 21 linear composites showed that the resulting Indicat $\wp \mathbf{r} s$ displayed suppressor relationships for some of the linear composites - That is, although all 21 linear composites had been eonstricted to haze positive zero=order correlations with the criterion (see dipendix.I), several linear composites in the full regression equation had negtive regression weights. These regression weights had occurred as a ratult of the high degree of collinearity between certain pairs of linear composites _ Since this occurrence would have been incongruent-with-man the ned for 'face validity' it was necessary to abandon the use of a full regression soluti $\wp \pi$.

Therefore, $i=-s t e a d$ of employing all 21 lifiear composites in a regression añalysis it was decided to use stepwise regression to select a subset of the linir compos tes which would avoid the difficulties of suppressor relationhips. Tze 把mination decision for the entry of linear composites into the analyses was to end the stepwise procedure before any suppressor relationhips eme ged. That is, the linear composites would be allowed to enter the stepwis regression until the addition of an extra composite resulted in one ós more linear composites receiving negative regression weights. This temination wecision aimed to achieve maximum 'stability' (by including as many linear composites as possible) without loss of 'face validity' (by not- allowing suppressor relationships to emerge in the indictors). A comparison of the proportion of variance explained by the full set of linea土 composites, R^{2} (full model), with the proportion of varian explainec by the subset of linear composites from the stepwise regrossion analyses; R^{2}, demonstrated that there was little loss in predictive accuracy by using the stepwise solution. - -. - dividing them-into twe groups associated with the soe ciar Environment and the Built environment =

The use of the $\mathrm{S} 日$ cial fnvironment groll of line-ar composites was more likely to result in indicators wish higher 'face val dity' because this group contained varias les with well researded relat Enships to educat= ional achievement at toth between-student, ind betwee-ñ-school levels of analysis. For examply, the Occupational status, Ocesupational Type, Country --of Birth, and Quilifi Entions linear composites all have well established correlational linksw th educational achiement.

The Built Envirozment group of lineartomposite s was less likely to contribute to 'face vilidity' because linar composi= tes such as Bathroom and Kitchen Facilitics, Vehicles, ete. do not in thesmselves appear to have well researched links with student educatimil perfo-xmance. Where, the Built Environment types of measures have ented the research literature they have been used as indicators of unmesired cons-tructs such as 'socioeconomic class'. However, this gioup of linar compessites might be considered more 1 ikely- to add to 'stability' because changes in the percentage variables essociated with the filt Enviremnment would be less likely to occur between census data collections than for the percentage variables deseribing Ehe Social Environment. That is, during the five year period separating the Australian Census of popu nitation and Housing, variations in percentege variables such as gize of prevelling, Type of Dwelling, etc. would be less likely to be lirge even if changes in the nature of population characteristics such ns occupatim onal Status, Country of Birth, etc. did occur.-Further, since the Census was carriod out at one point of time, the variables associated with the BuiEz Environment would be less likely to be"subject to time-relatedvariatiesns in the social structure of communities which occur due tosesonal variations in work patterns, or social vaxiations which may arise in consumunities which depend upon the travel/leisure industry.

The other correlational technique whid was empl oyed to combine linear composites into the indicators was principal componen: ts analysis. This technique was adopted Decause it provided amans of obtaining high
 validity' (by avoiding supprossor relationships). Th ee principal components
technique was used to extruet a 1 near cominaticon from all 21 linear composites which had maximum variation between thee units of analysis on
$=-$ the derited indicators. This analytic procedure lincar combination with maximum predictive pover regression technique, Therefore it waspected that the correlation between the indicators derived from primipal components analysis and the citerion variable would be somewhat less than trat obtained fron full regression analyses using the same set of linear composites. However, since the linear composites were constructed to Fave a high correlation with the critcrion variable, it was expected that the first principal component (wich extracts the strongest single d mension from the relationt ships among all the linear composites) wuld have a reasonably high degree of predictive power.

Results for Stage 3

'lhe thitid stage of the strutegy was copichied wi foh the combination of the linear composites to form the indicators. Thee sets of suppwise regression analyses-were-erried-out at-cachigedevi - the first set employed all 21 linear composites, the second set usd only tifose linear composites associated with the Social Environment (Groups 1 to 13), and the third set used only those linear composites associated wit the Buile Environment (Groups 14 to 22). The principal components ana 3 ysis was carried out at each age level on all linear composites, in Tab 7 Ie 7,3 the results of both the stepwise regression and principal component analyses at each age level have been summarized.

The entries in Table 7.3 have listed the meric regression coefficients for each lincar composite which would be requires to produce the indicators. The metric regression coefficients for the indicators derived from the stepwise regression analyses for all varibles, SR(ÁLL), have been reported. in the first two columns of Table 7.3 . At edch-age level nine linear composites were used to create the indictors. Elowever, only four of these were common to both age levels: decupational Type (Females), Country of Birth, Bathroom and Kitchen, and Density. At each age level the SR(ALL) Indicator contained six 'linear composites descri Fining the Social Environment and three describing the Built Environment.

The metric regression coefficients for the $\overline{3}$ ndicators derived from the Social Envirorment subset of linear composites, $\leq R(S O C I A L)$, and for the

Table 7.3. The Coefficients which were Used to Combine the linear Composites
into the Indicators

Note: a Decimal points have been omitted from coefficients and R^{*} / R^{2} values.
b All calculations were carried out using four decimal places., This, linear composite had a regression weight of 0.0020 (See Appendix .J.)
c The R values refer to the value of the correlation coefficient between the indicator and the criterion variable.
d Groups marked with an asterisk (*) refer to linear composites which did \qquad not enter the stepwise regression analyses. Groups marked with two asterisks (**) refer to groups for which no linear composite was prepared.

114127

Indicators devived from the Built Environment subset of innear composites, SR(BUILT), have been reported in the second and third pairs of columns in Table 7.3.

The SR(BUILT) Indicators contained four linear composites. Three of these were common to each age level. The SR(SOCIAL) Indicators featured different numbers of linear composites at each age levelt ten for the 10 -year-old level and six for the 14-year-old level. The five commoh linear composites for the SR (SOCIAL) Indicators were ${ }^{3}$ Occupational Status (Males), Oceupational Type (Females), Marital Status, Country of Birth; $=-$ and Age.

- The entries-in-the last two column of Table 7.3 have recorded the metric regression coefficients for the principal components analyses. These entries were the coefficients which would be required to create the first principal component from the linear composites. The indicators derived from these malyses, $\overline{P C}(A L L)$, employed the whole 21 linear composites at both age levels.

The correlation between the indicatorg and the criterion variable have been recorded for each age level in the lower section of Table 7.3. These correlations ranged between 0.64 and 0.73 . The highest values occurred for the $\overline{S R}(A L L)$ indicators with correlations of 0.72 and 0.73 for the $10=$ year-old and 14 -year-old levels respectively. The lowest values occurred for the SR(BUILT) indicators with correlations of 0.64 and 0.66 .

Sumaray
This chapter has presented a detailed description of the procedures employed to develop the indicators of educational disadvantage, In order to guide decisions about the development of these indicators a list of six items describing important properties of the indicators was prepared. Following an examination of these items, a three-stage strategy was prepared for the -..... construction of the indicators.

The first stage of indicator construction involved the grouping of the 148 percentage variables, described in Chapter 6°, into 22 groups which described various aspects of the neighbourhoods surrounding the schools in the simple. At the second stage, stepwise regression analysis was used to combine the percentage variables within each group into a linear composite by using school mean Word Knowledge scores. as the criterion variable: The resulting 21 linear composites at each age level were employed in analyses

to construct four indicators of educational disadvantage at the third stage. The third stage involved the preparation of three indicators based on step= wise regression analyses which also used school mean Word Knowledge as the criterion variable: the SR(ALL) indicator employed all innear composites as candidates for entry into the stepwise regression analjses; the SR(SOCIAL)
indicator used only those iinear composites with aspects of the social environment, and thé SR(BUILT) indicator used only those linear composites associated with the built environment. A further indieator; PC(ALL), was also developed by employing all inear composites in a principal component analysis.

THE INVESTIGATION OF indicator Characteristics

Introduction

In the previous chapter the three=stage strategy used to develop the indicators was described. In this chapter the indicators were examined with respect to a range of analyses which were designed to provide a detailed investigation of their properties. These analyses examined the nature of the dimensions assessed by the indicators; the predictive power of the indicators with respect to school mean achievement and school 'behavioural climate, the precision with which the indicators could be used for resource allocation, the properties of school mean achievement scores following residualization by the indicators, and the theoretical and 'cross-age' stability of the indicators as predictors of school mean achievement.

Relationships Between Indicators

The degree of similarity in the dimensions assessed by the indicators was examined by calculating the product moment correlations between the indicators both within and across age levels. These correlations have been presented in Table 8.1.

Within Age-Level Correlations. In the upper left-hand corner and lower right-hand corner of Table 8.1 the correlations between the indicators within each age group have been listed; For example, for 10 -year-old schools the correlations between the PC(ALL) indicator developed at the 10 -yeargold level and the SR(ALL), SR(SOCIAL), and SR(BUILT) indicators developed at the 10 -year-old level were $0.96,0.95$, and 0.90 respectively; the corresponding values for 14 -year-old schools were $0.96,0.94$, and 0,94 respectively.

The correlations for each age group of schools were all high and" positive between 0.80 and 0.97 which supported the previous assertion that, within age levels,.. the indicators were aligned along a common dimension. In. fact, except for the two intercorrelations between $S R(S O C \bar{I} A \bar{L})$ and SR(BUILT), 0.80 and 0.83 , the intercorrelations were all in the range 0.88 to 0.97. .The slightly lower intercorrelations for SR(SOCIAL) and SR(BUILT) were due to the fact that ea rh contained relatively few percentage. variables and none of these were common to either indicator.

Table wis $\frac{\text { Cortelations Between the indicators Developed at Ecci Age Level (Within and Acro5s }}{\text { i0-Year-0id and } 14 \text { Year-vid Schools) }}$

a Decinal points have been onitted from correlation coefficients.
b Nutber of schools at 10 -year-old $/ 14$-yeir-0idd levels (wighted) $=271 / 256$.

The rC(ALL) indicator had consistently high intercorrelations with other incicators at both age levels: averaging 0.94 for the io-year-old schools and 0.95 for 14 -year-old schools. This reflected the larger nunber of percentage variables which were common between the FC(ALL) indicator and the other three indicators.

Across Age-Level Correlations. In the upper right hand corner and lower . right-hand corner of Table 8.1 the across age-level correlations between indicators have been listed.
-............... most interesting feature of these two matrices of correlations was their diagonal elements. These elements represented the intercorrelations between the same indicators developed at different age levels. For example, for $10=y e a r-o l d$ schools, the SR(ALL) indicator developed at the 10 -year-old level had a correlation of 0.87 with the SR(ALL) indicator developed at the 14 -year-old level. These same two indicators had a correlation of 0.92 when applied to the 14 -year-old schools.

The diagonal elements were all high and positive in the range 0.85 to 0.97 which demonstrated that, dẹpite the structural differences in any one indicator developed for the two age levels, each indicator was aligned along a commen dimension no matter to which sample of schools it was applied. This characteristic was particularly noticeable for the $\mathrm{PC}(A L L)$ indicators because the intercorrelation between the two forms of this indicator was 0.97 for both 10 -year-old and 14 -year-old schools.

School Neighbourhood Correlates

In the following discussion, a brief review has been presented of the relationships between the four indicators and the percentage variables which formed the basic building blocks in the construction of these indicators. The percentage variables prōided concêptually simple descrip= tive information and were therefore suitable for an exploration of the nature of the dimensions assessed by the indicators.

From the large list of 148 percentage variables a subset of 26 was selected in order to cover a range of important characteristics of school neighbourhoods: occupation, education, housing, family structure, facil:= ities; and ethnicity. These 26 percentage variables and their correlations with each of the four indieators have been listed for the $10=y e a r=01 d$ and 14 -year=old sample schools in Table 8.2. For example, the percentage
variable describing the percentap of the male workfore in professional occupations, "OCC FROF(M), hadorrelations at the 10 -yes ar-old level of $0.30,0.82,0.67,0.78$; and cormations at the 14 yeaterold level of
 PC(ALL), respectively.

The general pattern of cormation coefficients prossented in Tible 8.2 was similar across age levcls, lligh positive or higen negative cooff $=$ icients between particular. perentage variables and an indicator at one age level were generally associted with similar coeffic ients at the other age level. This Eonsistaiy suggested that; despit te the structural differences in a particulix indicator betwcen age levels z any one indicator was aligned along a comon dimension for botb =age ievels. \because For all indicators erfere was airly even level of the magnitude of correlation coefficients aeross the main areas descxibed.. by the percentage variables. That is, there wheparticular area of tbe description of school neighbourhoods which had dominated the constructionn of the , indicators at either age level. for example, the sk(Aul D indicator was highly correlated, both positively and negatively, wity Epercentage variables describing the arets of occupation, कducation, housing, fanily. structure, facilities, and ot

The complex nature of thedmensions which were azsessed by the indicators can be seen from aninspection of the overall pattern of correl - : ation coefficients across the min areas assessed by the percentage variables. .

A high degree of educatonial disadvantage, which woterild be evidenced by low scores on the indicators would tend to be associeated with schools whose neighbourhoods had the following characteristacs: high percentages of persons in the workfore with low status occupations teprocess/manial/ labour, unemployed) and low perentages with high status occupations (professional, administrative/mecutive/managerial; clernical); high percentages of persons who had fiever attended school aty low percentages of persons with high educational atainment (schooling greater than level 9, bachelors degree); high percentiges of dwellings which were rented, over=crowded (6 or more personi per dwelling), substanda in structure -(improvised house) and low percentages. which were owned and large in. structure (7 or mure roong); highercentages' of pergons with 'broken'.

Table $\mathrm{s} . \mathrm{z}^{-}$Correlations Between the Indicators and a Subset of Percentage Yariables ($10=$ Year=01d Schools'and 14 -Year=01d Schools)

Fercentage Variable	Indicator							
	SR(ALL)		SR(SOCIAL)		SR(BUILT)		FC(ALL)	
	10	14	10	14	10	14	10	14
\therefore OCC ADM/EXEC/MLN (M)	84	72	86	76	72	70	84	78
\% OCC PROF (M)	80	73	82	78	67	62.	78	76
9 DWEL: 3 Vehicles	58	70	59	74	63	74	71	82
- BACH D OBT (15+)	70	67	73	72	56	55	67.	68
\% DNEL: 7+ ROOMS	55	62	62	67	63	60	62	65
© SCHL GT LEVEL 9	61	59	64	62	52	51	63	64
OCC PROF ${ }^{\text {CRM }}$	61	59	68	68	49	45	59	57
\% DNEL: SL ($\mathrm{B}+\mathrm{K}$)	39.	63	21.	47	50	77	41	66
- DKEL: OWNER OCCUPIED	35	55	37	53	52	61	48	63
\% POPN: SINGLE FAM HSHOLD	33	58	20	51	40	66	40	+66
- OCC Clerical (fM)	53	45	48	42	49	44	49	50
\square OCC Clerical (M)	53	39	50	38	47	34	47	41
O OCC ADM/EXEC/MAN (FM)	51	39	54	43	39	34	48	38
\% WKF UNEMP (FM)	-21	-27	- 24	-51	-26	-24	-27	-28
\% DWELS IMPROVISED HOUSE	-25	-40	-08	-26	-39	-57	-24	-41
\% WEF UNEMP (M)	-21	-44	-24	=41	-27.	-46	-31	-44
\% NEVER ATTND SCHL	$=33$	-44	-17	-31	-44	-59	- 35	-48
\% POPN: STH EUROPE BN	-40	-48	-42	-49	-7	-38	-38	-48
\% DNEL: SHARE ($\mathrm{B}+\mathrm{K}$)	-35	$=60$	-27	-54	--26	-59		-61
\% DNEL: TENANT OCCUPIED	-30	-48	-34	-48	-48	-53	-44	-55
\% SEP (EVER MAR M 15+)	-32	-55	- 30	$=55$	- -34	-55	-43	-62
\% SEP (EVER MAR FM, 15*)	- 32	-55	$=36$	-55	-42	-51	-45.	-58
$\%$ DWEL : NO VEHICLES	-36	-59	-31.	-56	-38	-64	-47	-69
. $\%$ DNEL: $6+$ INMATES	-58	-50	-50	-39	-65	-55.	-48	-38
- OCC PROC/MAN/LAB (FM)	-58	-49	-64	-53	-44	-38	-57	-45
\% OCC PROC/MAN/LAB (M)	-77	-74	-81	-76	-66	-68	$=81$.	-78

Note:- Decimal points have been omitted for correlation coefficients.
b Number of schools at 10-year-old/14-year-old levels (weighted) $\equiv 271 / 256$.
c Confidence limits for correlation coefficients based on two standard errors were 0.07 for 10 -year-old schools, and $\pm 0,08$ for $14=y$ ear-old schools. (See Table 8.5, footnote c.)
d The 26 percentage variables were isted according to their mean correlation-across all four indicators.
marriages (persons once maricland 15 years of age or oldertho were séparated) and low percentages of persons living in single fally house = holds: high percentages of dwellings with limited factivies linged uste of kitchen and bathroom, no velicless) and low percentages of dellings
 percentages of the population born 三n southern European countries :

The above profile of the type of school neighbourpood mishiated with schools having low seoreson the indicators provided apictive of a communty in which there was ancentration of a range of golial and Fnysical concitions which havemmoniy been described tritus of 'disadvantage', 'deprivation', and * poverty'. Therefore, while a preme an
 बetsracy in terms of school han acEaievement, the fingl indintors exh in bited the highly desirable property of having balanced corre watomassociatsions across a number of environachtal cosaditions which both indivdualdy ancs in combination have often been propesed as important baryigr pochicvines the goal of equality of educational opportunity.
schoollai evement Correlates
In Table 8.3 the correlation cufficients for the relationships betweos the indicators and school meansores on the word knowledge, literacy, and Numeracy tests have peen presen Fed separately for lojempod anf 14-year-old schools:

The correlations betwo the inidicators and schoot mesiffores wexe mostly in the range of 0.60 to 0.70 - Generally higher cofytations werce associated with the Word knowledge tests. This was to be epfeted because school mean scores o_{h} these tests had been used at galing criteria in the development of the indicators.

Correlation coefficients loss than 0.60 were obtained for the, $S \mathrm{AR}(\leftrightarrows O C I A L)$ indicator with school megh setoes on the Numeracy test at bohage leveis, "
 on the Numeracy test at the 10 -har-obldilever. Desple therlower individual correlations, the min correlations for indicator across a 11 school mean scores exceeded 0.00 ark d were mostly in the fayp 0.65 to: to .70 for both age levels.

In order to evaluate the magnitude of the correlations presented ing Table 8.3 it was necessary to examine some other studies which had developed indicators of educational achiowement. Wn/particular, two puints of comparison were considered to be of great importance. Firsts were the magnitudes of these corvelations comparable with those from orher large-scale studies in which indicators of school neighbourhood environment have been constructed from census information? And second, were the magnitudes of these correlations comparable with those from othex large-scale studies in which indicators of schoriz neighbourhood envirohment have been construeted by obtaining detailed information from individual students about their own home environments?

The first question was examined following a review of the studies carried out during 1973-1977 by Levine and coworkers at the University of Missouri; and the second question was examined following a review of the findings of cross-national studies conducted during the early 1970 's by the international Association for the Evaluation of Educational Achieve ment (IEA).

These two sets of studies, were selected because they had certain features which were important for the valid evaluation of the two questins: Both sets of studies had:
1: reported analyses which were carricd out at the between-school leved of analysis.
2. designed their analyses to optimize the correlation between indicatox of the school neighbourhood environment and school mean achievement seores. -3. omployed sufficiently large numbers of schools in their analyses to ensure stability in the obtained correlation coefficients.
4. conducted replicated analyses across different groups of sample schools. (Across big-city school systems in the Unjversity of Missouri studias; and across school systems in different countries in the IEA studies.)

The IEA studies had two further important sharacteristics. First; results had been reported for Australia on the same target population as was employed for the $14=y e a r-o l d$ schools in thifs study, and secondy schopl mean achievenent scores had beeñ calculated by using the same Word Knowledg test as was used in this study.

The University of Missouri studies lacked precise comparability in these two important areas. The target populations for these studies wert associated with a group of big=city school systems in the United Statos,

Table 8.3 Correlations Between the Indicators and School Mean Scores on the Tests of Word Knowledge, Literacy and Numeracy
(10-Year-01d and 14-Year-01d Schools).

10-Year-01d Indicators Applied to 100 -Year-01d Schools
. 10 -Year-01f Test

14-Year-01d Indicatôrs Applied to 14-Year-01d Schools
14-Year-01d Test
Word. Knowledge .

Nóté: a Decimal points have been o itted from correlation coefficients.

- b Number of schools at 10-ynar-old/14-ynar-old leve1s. (weighted)
$=271 / 256$.
and the school mean"test scores were mostly based on standardized achieve= ment tests: However; this set studies was selected because it appeared to reprosent the only research carried out to date which has employed soth the same detgiled linkage of schogis to their census described catchment qureas, and the same stepwise multiple regression approach to the preparation of census-based eomposite-predictors of school mean test scopes as was employedin this study.

In: the following discussion a short review of the relevant/procedures and results associated with the University of Missouri and IEA/studies has been presented. Thẹ two questions listed above have then beept addressed; following a comparison of the magnitudes of the appropriate dorrelation coefficients with the results obtained in, this study.

The University ot Missouri Studies: Review and Comparison

= In a series of studies carried out at the University of Missouri, Levine and his co-workers investigated the utility of census deścriptions of school catchment areas for predicting school mean achíevement scores (Levine et al, 1973; Levine et al, 1974; Meyer and Levine, 1976; Levine et al, 1977; Meyer and Levine, 1977).

This series of studies commenced with an investigation (Levine et al, 1973) which aimed to assess whether independent variables based on census, information for school catchment areas could be used to predict school mean scores on achievenent tests. Levine et al reasoned that if the predictive power of the census information was sufficiently accurate then easily retrievable data from the census could be used in the preparation and revision of formulae used to allocate resources to schools.

A sample of 122 elementary schools in Chicago was selected for the study. Fach school's catchment area was linked to its census 'block' boundaries thereby permitting the preparation of census descriptions of the neighbourhoods from which each school obtained its students. Data describing the mean reading achievement scores of sixth grade students in each school were obtained from the official testing programs carried out by the Chícago Board of Education.

Levine et al demonstrated that a muitiple correlation coefficient of 0.87 could be cbtained when only four census variables, Percentage of Females Separated, Percentage of Families Which Lack One or More Plumbing Facilities, Percentage of Dwellings which are Owner Occupied, and Percentage of Dwellings with 6 Persons or More, were used as independent variables; The composite census measure was shown to have predictive power which compared favourably with composites' which had eariier been constructed from data describing the particular fanily circumstances of individual students.

Further results from this study, which were published in a separate report (Levine et al, 1974), considered the predictive power of census composites for both fourth and sixth grade levols over a number of years. In these analyses three census variables, and several product terms created from these three variabless, were used to construct the composites. The variable-Pcrcentage of Families Which Lack One or More Plunbing Facilities was excluded from the analyses. Multiple correlation coefficients in the range of 0,80 to 0,90 -were obtained when school mean reading achievement was used as the eriterion.

A supplementary set of analyses presented in this report used census 'tracts' rather than 'blocks' as the unit with which to describe school' catchment areas. The tracts covered a larger geographical area - each being composed of many blocks. The composites resuiting from these analyses employed logarithmic, square root, and quadratic transformations of the independent variables. The predictive power of these 'tract-level' composites were generally of similar order to those created from='block= level' information.

Meyer and Levine (1976) employed similar methodology for the preparation of block-level data in a study of 48 elementary schools in Kansas City. However the construction of composite predictor variables included both, census descriptions of school catchment areas and a set of variables denoting neíghbourhood typology classiffcations which had been derived from a variety of factor añalytic and clustering techniques. The multiple correlations for the resulting composite measures were again generally in the range 0.80 to 0.90 when school mean scores on standardized achievement tests; the Iowa Test of Basic Skills and the Stanford Achìevenent Test; were used as criterion measures for samples of fourth, fifth, and sixth grade students.

Levine et al (1977) and Meyer and Levine (1977) extended their exam= ination of the association between school catchment area social characteristics and school mean achievement seores by conducting analyses which were replicated in five big-city school districts: Chicago, Cleveland, Cincinattis Kansas City, and St Louis. The census-based descriptions of school neighbourhoods were supplemented with data obtained from local government agencies and school district offices. The unit of census information selected to describe school catchment areas was the census tract. In each of the five cities reading achievement data were gathered respectively from 275, 105, 69, 55, and 65 elementary schools. Certain transformations of the independent variables (logarithmic, reciprocal, gudratic; and square root) were tested in order to explore whether predict. Ts of school-level achievement obtained from stepwise multiple regression : alysis could be improved by taking curvilinearity into account.

The stepwise regression procedure. reported by Meyer and Levine selected from five to nine independent variables across the five cities and obtained multiple correlation coefficients at the sixth grade lever across several years averaged $0.88,0.77,0.91,0.85$, and 0.84 respectively for the five
eities. The selected indepondent viriables were mostly logarithmic transe formations; fery few 'untrunsfomed' virinbles entered the finnl regression cquations. Across the five cities there was a large range of different types of viriables solected however the researehers concluded that the high intercorrelation among these virinbles demongtrated that they were reflecting differing aspects of a complex situation involving disorganiz= ation in bíseity social Eystems (Meyer and levine, 1977:18).
ihe multiple eorrelations between the composites describing school neighbourhood environments and school mean achievement critería were generally In the ringe of 0.80 to 0.90 across all of the University of Miseouri studies. These values were consistentiy higher than the multiple correlations of mostiy around $0 . \overline{7} 0$ whon school mean achievement scores on tests fif Word knowiedge were used as criterin in this study.

The differences in the prodictive power of the composites most probably have their origing in differences between the naturo of the target popuLations which were examinod. From tho egtimates of the coefficients of intyounss correlation given in Table 3.4 , it may be seen that the between= schōl component of variance in Word knowlodge scores in the United States is almost tuice the size of the Australian value at both the 10 year-old and $14=y e a r=01 d$ levels $=$ Consequenty; inalyses condacted-at-the-betwenschool level for similar critería could be expected to have a larger amount of eriterion variance available for 'explanation' in the United States, Further, since the University of Missouri studies considered only school systems in large cities it could be expected that the well-known high * degree of residentinl segregation in cities like Chicago would result in consus percontage variables exhibiting a greater degree of variation betweer school neighbourhoods when compared to school neighbourhoods for Australia overall. "Inspection of the reported standard deviations for some consus percentage variables in fact confirmed this speculation. For, example, the percentage variables in the Chicago studies (Levine et al ; 1975:18) which described the percentage of females who were separated and the percentage of dwellings with six or more inmates had standard deviations.: which were around five times and two times larger respectively than for the same variables describing Australian school neighbourhoods at both age. levels.

While-it-was-possible-that the ltue' correlations between the census composites and school mean achievement scores were quite different between

countries, it would appear reasonable to suggest that the comparatively large 'restriction in range' in both the independent and eriterion variables was in part responsible for the relative 'attenuntion' of the magnitude of the multiple correlation coefficients in the results for Australia (Nunnally, 1967:126; Allen and Yen, 1979:34).

The IEA Studies: Reviev and Comparison
As part of an international study of educational achievement conducted by the International Association for the Evaluation of Educational Achievement (IEA), Comber and Keeves (1973) developed a composite measure which was intended to assess the educational climate of the homes of students attending their sample schools. This measure was conceptualized as being partly associated with the 'socioeconomic level' of the students' parents, and partly associated with the 'cultural.level' of the students' home environments. A single indicator, called 'The School Hanjicap Score', was developed for each school by combining information describing these two areas. This indicator was prepared in order to assess the effectiveness of the education provided by the school after allowance had been made for the nature of the comminity in which the school was operating.

Following an inspection of both between-student and between-school correlation matrices, six-variabies-were selected to form the School Handi-cap Score; Father's Oecupation, Father's Education, Mother's Education, Use of Dictionary, Number of Books in the Home, and Family size. The Father's Occupation variable was prepared by the application of eriterion scaing (Beaton, 1969) to a 9 -point óccupation classification system.

The rescarchers used regression analyses to determine the weights required to combine the six variables into the School Handicap Score: For each country the six variables were included in separate between-school analyses with school mean test scores for Reading, Science and Word Knowledge as criteria. The averages of the regression weights wore calculated and rounded to form the weights for combining the six variables into the composite measure. Since Australia did not gather Reading scores the rounded regression coefficients were taken from analyses using Science and Word Knowledge as criteria.

The correlations between the School Handicap, Score and school mean achicyement scores on the tests of Word Knowledge, Reading, and Science have been presented for 12 countries in Table 8.4. Australia participated

Country	$\underline{\text { Lege Leva }}$						Mupler of gchopls	
	101ear-01d			- 16 -Yeirdid			10-104x-0]	14, 10ar=0
	$\begin{aligned} & \text { hond } \\ & \text { Rnowledge } \end{aligned}$	Renuills,	Silute	find hiow elge	Reduline	Scimber		
Austrilia	$=$	$=$	=	78	*	5	=	221
England	80	77	8	8	8	80	16%	144
Finlind	4	50	36	8	87	78	97	77
Cermany (FRO)	42	$=$	H	86	*	68	68	$8{ }^{\text {\% }}$
Hungary	76	68°	3	6	76	45	159	210
Italy	48	41	26	69	67.	37	264	337
- Japin	=	-	61	=	*	65	250	196
Nethertunds	55	6	61	71	70	56	60	49
Now 2 Lealand	$=$	$=$	=	71	79	66	=	74
Scothund	80	84	81	81	87	90	10.1	7.0
Swedetil	4	47	- 48	19	27	29	97	95
United States	80	79	81	81	82	78.	- 25.	137
Nean Correlation	61	64	5	74	75	63		

Note: A Decimal points have been onitted frori correlntion coofficients,
 correlations for Reding and Word knowledge were various computer printonts which described the betwein-school analyeges carried out during the IEA six-Subject Studies (IPA, 1972),
c. Adash in the table ($=$) metas that the country did not gather data which would allon the calculation of a corralation cofficient,
in only the seicuce phase of the IFA studies at the 14 -year-old level. Therefore no correlations were avialable at the 10 -year-old level or at the 14 -year-old level for Reading.

Since both the Hord Knowledge Tests and the sample drigns used at the 14 -year-old level in the Australian IFA studies we the same as was used in this study it was possible to mise rome "itw somparisons between the predictive powers of the School Janalleap Scure and the census based indieators.

The correlation listed in Table 8.4 between the IEA School Handicap Score and school mean achievement in Word Knowledge at the 14-year-old level was 0.73 . The correlations listed in Table 8.3 for the census based indicators (SR(ALL), SR(SOCIAL), SR(BUILT), and PC(ALL) were $0.73,0.71$, 0.66 , and 0.69 respectively. That is, at the 14 -year-old level SR(ALL) had equivalent predictive power to the School Handicap Score with respect to school mean Word Knowledge scores and the other census based indicators had slightly lower predictive power. Further, while there were no other common measures of school mean achicvement used in either study; it was important to note that the correlations between the census based indicators and school mean achievement scores in Literacy and Numeracy all, except for one correlation of $0.5 \overline{7}$, considerably exceeded the correlation of 0.59 between the IEA School Handicap Score and school mean achievement in Science.
\because No data were collected at the 10 -year=old level for Australia in the IEA studies. Therefore it was not possible to make direct comparisons between the predictive power of the School Handicap Score and the census based indicators. However, the proximity of the correlations for Australia at the 14 -year-old level to the mean correlations for the IEA countries listed at the bottom of Table 8.4, suggested that the mean correlations at the 10 -year=old level might be a fair estimate of the results which would have been obtained if data had been gathered at the 10 -year-old level , in Australia. Following; the pattern for most other countries we would expect that, if data were available, the correlations for Australia at the 10 -year=old level would be slightly lower than the values established during the IEA studies at the 14 -year-old level.

If these assumptions were accepted as being reasonably accurate, then inspection of the correlations for centus-based-indicators in Table 8.3 showed again that the predictive pover of the census based indicators.

would compare favourably with the predictive power of the School Handicap Score at the 10 -year-old level in the IEA studies.

Social and Learning Handicap Correlates

The examination of the properties of the indicators was extended beyond their educational achicvement correlates by considering information, provided by classroom teachers, which described the students in terms of certain social and learning handicaps. It was important to note that the validity of this infornation depended on classroom teachers' perceptions rather than, for example, the skilled diagnosis of a psychologist, However, it was argued that the daily contact of classroon teachers with their students would enable the teachers to provide sufficiently accurate information because the social and learning handicaps considered were based on overt student behaviour rather than more abstract constructs such as attitudes and aptitudes.

- The responses provided by teachers about the 25 students in each sample school were scored dichotomously and then averaged to obtain a school mean score on each response. For example, the item which considered the 'social acceptance' of students required the teachers to state whether each sample student was 'Rejected or avoided by other students', 'Tolerated by other studentst, iliked by other students:, Well liked by othex students', or 'Very popular, sought out by other students's The first two responses to this item were scored ' 1 ' and the other- responses were scored ' 0 '. Thus, when averaged for a sample school, this item. referred to the proporticn of students in assample school who were 'Tolerated or Rejected by student's'. This school mean characteristic has been listed as the first item under the 'Social Handicaps' heading in Table 8.5 . A similar scoring procedure was adopted for all other items in Table.8.5. Detailed descriptions of these items have been presented in Keevest and Bourke (1976) ; In general a high score for a school on an item showed *.-.that the school had a high proportion of students with that-particularhandicap.

The correlations between the indicators and each of the school mean characteristics have been listed in Table 8.5 for schools at each age level. For example the item describing the proportion of students in a school who had 'Difficulty in Using Pen/Pencil' had correlations of $-0.14,-0.11$, -0.16 , and -0.12 at the 10 -year-old level and correlations of -0.26 , $-0.24,=0.23$, and -0.22 at the 14 -year-old level with the indicators SR (ALL), ". SR(SOCIAL), SR(BUILT), and PC(ALL) respectively.

Table 8.5 Correlations Between the Census=Based Indicators and School Mean Scores for the Descriptions of Student Characteristics (lo-Yearold Schools and 14-Year-01d Schools.

School Mean Characteristics	Indicator						
	SR(ALL)	SR(IAL)	SR(BUILT)		$\overline{\mathrm{PC}}(\mathrm{ALL})$	
: :	$10 \quad 14$	10	14	10.	14	10	14

Social Handicaps
Tolerated/Rejected
Unable to Co-operate
Shy/Timid

| Abnormal Level Activity | -29 -08 -27 -08 -23 -12 -28 $*$
 Isolates Self -11 -10 -09 -08 -10 -11 -11 -09
 Mean Correlation -19 -11 -17 -10 -15 -13 -17 -10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Learning Handicaps
Using Pen/Pencil
Following Instructions

-14^{2}	-26	-11	-24	-16	-23	-12	-22^{*}
-30	-23	-22	-23	-29	-23	-29	-23
-23	-27	-19	-27	-23	-27	-21	-27
-29	-30	-24	-27	-29	-32	-27	-31
-29	-16	-20	-12	-30	-19	-28	-15
-19	-10	-10	-08	-18	-13	-18	-08
-24	-22	-18	-20	-24	-23	-20	-16

Note: a Decimal points have been omitted from correlation foefficients.
*b Number of schools at 10 -year-old/14-year-old levels (weighted) $=271 / 256$.
c The standard error for correlation coefficients at the between-school level of analysis was estimated by using the Jackknife technique. The results of these añalyses have been reported in Appendix G. The average standard error for correlations was 0.035 and 0.042 at the 10 -year-old and 14 -year-oid levels respectively. This gave confidence limits, based on two standard errors of $\ddagger 0.07$ for 10 -year-old schools and ± 0.08 for 14 -year-old schools. . Correlation coefficients which did not exceed two standard errors in magnitude have been marked with an. asterisk (*) asterisk (*).

All correlations between the indicators and the items describing social and learming handicaps in Table 8.5 were negative. At the 10 -year= old level all correlations exceeded two standard errors in magnitude, and at the lifyear-old level this also occurred for the majority of the correlations. A low score on any of the four indicators would tend to identify a school having relatively high proportions of students both with social handicaps (associated with being tolerated/rejected, unable to cooperate, shy/timid, isolated, and abnormaliy active) and learning handicaps. (associated with dificulties in using pen/pencil, following instructions, copying written work, spelling simple words, understanding classroom English, and eahibiting reading reversals).
. The pattern of correlations in Table 8.5 enhanced the confidence. which could be attributed to the use of the indicators as indicators of oducational disadyantage. Although the development of the indicators had emphasized the need for high correlations with school mean achievement scores; these correlations showed that the indicators were also signifi= : cantly related to a range of school mean behavioural characteristics which in themselves have been accepted by classroom teachers as both symptoms and causes of the inability to engage in effective learning.

Precision in Resource Allocation

The precision with which the indicators may be used to make resource allocation decisions was compared by constructing a table of average Accuracy and average Leakage coefficients for the Literacy and Numeracy tests at each age level. The Word Knowledge tests were not used in these comparisons because they had been used as the key scaling' measures during the development of the indicators and hence evidence concerning these tests would have lacked generalizability.

In Tables 8.6 and 8.7 the values of average Accuracy coefficients and average leakage coefficients, based on the theoretical model developed in Chapter 3 , have been compared with coefficionts calculated from smple data for the census-based indicators.

The coefficients of intraclass correlation for the literacy and Nuneracy tests were applied to the theoretical model in order to:obtain the 'toptimal' average Accuracy and Leakage values. The corresponding Accuracy and Leakage coefficients for the indicators were calculated from -somple data by using the twoway table describedin figure 8-1

$\frac{\text { Lovest lol of Schols }}{\text { Accuray }}$
Lowest 10 Lowest 200°
Students Students

Hann Ditepence beween
$\frac{\text { Indicator and hdel }}{\text { heduraty }}$ Losies

Losses

Literacy (Tegt lois: roh \equiv (1.150)

15. Number of schools/students at 14 yerreold levol (weingted) \# 356/6046.

Test 10 R at the $10=y$ ear-old level: : The value of 33.9 estimated the percentage of students at the 10 -ycar-old level in schools with mean scores on Test loR below the 10 th percentile for schools who had Test 10 R scores which were below the 10 th percentile for students. The 'loss' in accuracy for this examy le was $21.4-53.9 \geqslant=12.5$.

Similarly, the average Leakage coefficient for the-SR(ALL) indicator applied to Literacy scores at the 10 -year-old levei was 25.6 which repres* *ented a 'loss' of $25.6-19.2 \equiv+6.4$ conpared to the theoretical model estimate.

Since the theoretical model average Accuracy values were the 'optimal'. highest average Accuracy: values and the theoretical model average Leakage values were the 'optimal' lowest average Leakage values, the 'losses' = for Accuracy and Leakage were less than or equal to zero, and greater than or equal to zero, respectively. The indicators could therefore be judged -in terms of their precision for identifying low performing students by comparing the magnitudes of the losses in Accuracy and Leakage. The most desirable indicator'had 'losses' which approached zero (from below) for average Accuracy values and which approached zero (from above) for average Leakage values.

- The first three columin of Tables 8.6 and 8.7 have listed the estifnates of $\mathrm{A}\left(10, \mathrm{p}_{2}\right), \overline{\mathrm{A}}\left(20, \mathrm{P}_{2}\right)$, and $\mathrm{L}\left(\mathrm{p}_{2}\right)$ taken over the lowest 10 per cent of schools. The second three columns in this table have iisted the same coefficients taken over the lowest 20 per cent of schools. The final two . colums were obtained by calculating the mean losses separately for the four estimates of average Accuracy coefficients and the two estimates of average Leakage coefficients which were associated with each indicator:
- For Literacy scores at the 10 -year-old Fevel the $\overline{S k}(A L L D)$ indicator has the lowest average Accuracy loss, 9.3, and also the lowest average beakage loss; 6.0. The lowest average losses for both Accuracy and Leakage also occurred for the $\overline{S R}(A L L)$ with respect to Numeracy at the 10 -year-old level and Literacy at the 14 -year-old level. At the 14 -year-old level the SR(BUILT) indicator had sightly lower average losses for Numeracy than the SR(ALL), indicator. The SR(SOCIAL) indicator had the highest average losses in Accuracy for Literacy and Numeracy at both age levels.

Literev (Tost 14 R: roh $\equiv 0.104)$

Literdey 1006	-	:						
ŞR(ALL)	33.7	[${ }_{2}$, 4	16, ${ }^{5}$	20.8	等: 2	32, 5	*, 3	
(1)		47.7	30.6	21.3	7. ${ }^{7}$	$3{ }^{2} .5$	-6.7	+6
S(EOCLL	28.9	41.1			05.4	50.9		$+\bar{i}$
ŞCULIT)	31.0	48.6	20.2	21	$\rho^{3.4}$	23:		
PCP(IL)	29.8	49.9	21.1	21.11	55.5	3.7	,	+7
	$55^{5} .8$	52.8	16.8	27.5	44.0	32.6		
Theoretich model	3.4	52,						
Sumericy (Tow 14, roh $=0.150)$								
SR(ALL)	$2 i .3$	H. 7	26.6	18	2.4	36.4	9.0	
	23.4	30.7	27.8	18.1	$\underline{15}$	37,4	± 9.5	
SR(BULLT')	27.5	$44.0{ }^{\circ}$	$2 \mathrm{i}, 1$	20,0	$3{ }^{3} .8$	34.7	$=6,5$	
	25.4	$40: 9$	37.7	1545	31.8		. 8.4	
$\mathrm{PC}(\mathrm{ALL})$	2.4		10.5	26.11	41.7	25.1		
Theoretical Modol	33.6	49.8	19.5	. $0^{\text {a }}$				

Note: a. Nimber of schools/students at 10 -vetionld level (ucighted) $\equiv 271 / 6416$.

The school neighbourhood information which was used to construct the indicators was based solely on census percentage variqbles. However two other variables, Type of School (Government, Gatholic, Independent) and School Location (Metropolitan, Non-Metropolitan), were available from the data used to construct the sampling frames. While these variables did not give specific information about the nature of school communities, they could be seen as surrogate measures for certain community characteristics which have been shown to be correlated with educational achievement. For example, communities having many students who attend non-government rather than government schools may differ a great deal in terms of income, attitudes, and aspirations. Also, communities having many students who attend non=metropolitan rather than metropolitan schools may differ in terme of physical and social isolation.

Inspection of the means on the Literacy and Numeracy tests for the categories of the Type of School and School Location variables revealed a consistent pattern across both age levels: The Type of School variabie categories showed that the means for Independent schools were higher than for Catholic schools which in turn were higher than for Government schocis: Also, the School Location variable categories showed that the means for Metropolitan schools were higher than for Non-Metropolitan schools. This general pattern of achievenent across different types of schools in Australia has aiso been docunented in studies carried out by the International Assoctation for the Evaluation of Educational Achíevement (Keeves, : 1978).

These two variables therefore provided an opportunity to examine the nature of the residual variation assuciated with the use of the indicators as predictors of school mean achiovement in the basic skills of literacy and Numeracy. Accordingly, a between-school stagewise regression technique was used to assess whether the Type of School variable and the School Location variable could be used to explain differences in school mean achievement scores 'over and above' the differences explained by the indicators. For each age ievel each of the indicators was initially intros. duced into a regression analysis using, in turn, şchool mean Literacy scores and school mean Numeracy scores as criterion variables. . At a second stage of the analyses two duminy variables (Independent School, Catholic School) created from the three categories: of the Type of School
variable and one dumy variuble (Non=Metropolitan School) created from the two categories of the School Location variable were entered into the regression analysis.

The results of these analyses have been summarized in Tables 8.8 and 8.9. For each regression equation the correlation coefficients between - predictor and criterion variables (r) and the multiple correlation coefficient for the two stages of the regression analyses (R) have been listed.

The correlation coefficients displayed a similar pattern for all predictor variables. Large positive correlations were obtained for the indicators and correlations smaller in magnitude were obtained for the dumpy variables. The correlations between the dumy variables and the xchool mean scores for Literacy and Numeracy followed a pattern which had been expected after examination of the means of the categories of the Type of School and School Location variables: positive corzelations were associated with the Independent School and Catholic School dumm variables

- and negative correlations were associated with the Non-Metropolitan School
\therefore dummy variable. The correlations presented for school mean scores in Literacy, at both age levels, all had magnitudes in excess of two standard errors after adjustment for the sample design. However, for school mean scores in Numeracy, the correlation with the Non-Metropolitan School dummy variable was slightly within these limits at the 14 -year-old. level and the correlation with the Independent School dummy variable was well within these limits at the 10 -year-old level.

Statistical tests were conducted to assess whether the contributions
\square differcat from zero, A statistically significant contribution at the 95 per cent level has been denoted by an asterisk beside the multiple correlation coefficient at the second stage. "There were no statistically significant contributions obtained for any of the analyses conducted at the 10 -year-old level. However at the 14 -year-old level six of the eight stepwise regression analyses showed statistically significant contributions.

The statistically significant contributions found for certain of the 14 -year-old analyses inferred that the hypothesis that the second stage contributions to predictive power weresero was rejected at the 95 per cent confidence level. An inspection of these significant contributions demonstrated however that the 'practical' contributions to predictive power were virtually negligible, This negligible practical contribution
\square

	Regression Equation with Literacy Critorion							
		ALL)	SR	CIAL)	SR	(LT)		C(ALL)
	$\overline{\mathrm{T}}$	R	r	R	T	R	T	. R
10-Year-01d Schools								
1 Indicator	71	71	62	62	69	69	67	467
2 Independent School	09	71	09	63	09	69	09	67
Catholic School	11		11		11		11	
Non-Metro School	$=13$		-13		-13		-13	
14-Year-01d Schools								
1 Indicator	70	70	64	64	68	68	67	67
2 Independent School	30	71*	30	65*	30	72*	30	70*
Catholic School	20		20		20		20	
Non-Metro School	-09		-09		$=09$		$=09$	

Note: a Decimal points have been omitted from correlation coefficients.
b Number of schools at 10-year-old/14-year-old levels (weighted) = 271/256.
c Confidence limits for correlation coefficients based on two standard errors were ± 0.07 for 10 -year-old schools, and $\pm 0: 08$ for 14-year-old schools: (See Table 8.5, footnote c.)
d Confidence limits for multiple correlation coefficients were taken to be equal to those for correlation coefficients. This followed results presented by Ross (1978) concerning the similarity of design effects for these two statistics for stratified sample designs:
e The statistical tesst for the significance of the contribution of the second stage variables to variance explanation was based on the formula for the F statistic given by Thorndike (1978:162). An asterisk (*) has been placed beside the R value for the second stage of the stepwise regression analysis to denote that the contribution to explained variancé at the second stage was significantly different from zero at the 95 per cent confidence - level.
may be seen by comparing the very small changes between the multiple correlation coefficients for each stage of the stepwise regression analyses.

Further, at the 14 -year-old level, the relatively high zero order correlations between the Independent School and Catholic School dummy variables and school mean scores on the Literacy and Numeracy tésts had

Stage Variable	Regression Equation with Numeracy Criterion							
	\underline{r}	?	r	R	T	R	T	R
10-Year-Old Schools								
1 Indicator	59	59	51.	51	62	62	58	58
2 Independent School	04	60	04	52	04	62	04	58
Catholic School	13		13		13		13	
Non-Metro School	$=08$		-08		-08		-08	'
14-Year-Old Schools								
1 Indicator	66	66	57	57	69	69	63	63
2 Independent School	29	67	29	59	29	71*	29	65*
Catholic School	14		14		14		14	
Non-Metro School	-08		$=08$		-08		$=08$	

Note: a Decimal points have been omitted from correlation coefficients.
b Number. of schools at 10-year-old/14-year-old levels (weighted) $=271 / 256$.
c Confidence limits for correlation-coefficients based on two standard errors were ${ }^{2} 0.07$ for 10 -year-old schools, and ± 0.08 for 14-year-old schools. (See Table 8.5, footnote c.)
d Confidence limits for multiple correlation coefficients were taken to be equal to those for correlation coefficients. This followed results presented by Ross (1978) concerning the similarity of design effects for these two statistics for stratified sample designs:
e The statistical test for the significance of the contribution of the second stage variables to variance explanation was based on the formula for the F statistic given by Thorndike (1978:162). An-asterisk (*)-has-been-placed beside the R value for the second stage of the stepwise regression analysis to denote that the contribution to explained variance at the second stage was significantly different from zero at the 95 per cent confidence level.
minimal impact on the difference between the multiple correlations coefficients and standard crror of estimates at each stage. In general the . changes in mulsiple correlation coefficients between stages for all analyses were well within the bounds of two standard errors at the 10 -year-old level ($\ddagger 0.07$) and the 14 -year-old \bar{l} evel (± 0.08). That is, the differences between
multiple correlation coofficients between stages were well within the limits which could be expected to cover the random sampling fluctuations associated with the estimate of any one multiple correlation coefficient.

These results demonstrated that the Type of School and School Location variables were able to add little, or nothing, to the explanation of variation in school mean achicvement scores 'over and above' the explanatory power of the indicator scores. That is, the information contained within these two variables was rendered mostiy redundant because it was already incorporated in the structure of the indicators.

This was an important property of the indicators because it demonstrated that, if they were to be used in Australia-wide resource alloc= ation programs, then schools from different school systems and in different locations could be compared directly by examination of their indicator scores.

Indicator Stability: Theoretical and Cross Age
The preparation of the indicators was based on a least squares procedure which used certain combinations of census percentage variables to predict school mean Word Knowledge scores. However, it was known that least squares procedures, tended to capitalize on relationships that exist within particular samples of data. This characteristic has often limited the predictive power of composites arising from regression analysis when they have been applied to new samples of data because successive random samples from the same population may differ in the nature and extent of the relationships among the variables being studied. Thorndike has described the tendency for differences to exist between relationships in random samples from the same population as 'sample-specific covariation'. (Thorndike, 1978:162).

McNemar (1969-205) has provided a-formula-which-may be-used-to-
ostimate the degree of 'shrinkage', in multiple correlation coefficients when a regression equation has been applied to new random samples from the sane population:
$\therefore \hat{R}^{2}=1-\left(1-R^{2}\right) \frac{N-1}{N-n}$

$142 \quad 150$

When this equation was applied to the indicators the resulting estimates of shrinkage in the multiple correlation coefficients were around 0.01 for all indicators. For example, the SR (ALL) indicator at the 10 -year=old level was based on ten linear composites (see Table 7.3). Aso, the sample size was 271 and the observed multiple correlation coefficient was 0.71.

Thus $\quad \hat{R}^{2} \equiv 1-\left(1-(0.71)^{2}\right) \frac{271-1}{271-11}$
$\equiv 0.49$
That is, the theoretical estimate of the correlation between the SR(ALL) indicator and school mean Word Knowledge scores for a new sample from the same population of 10 -year-old schools was 0.70 .

The estimate of shrinkage in the above formula was derived under the assumption of ideal random samples. Under less-than-perfect sampling conditions this formula provides an estimate of the minimum amount of shrinkage whith could be expected. Thorndike (1978) has suggested that a more realistic method for establishing the stability of the predictive power of a regression equation is to divide the available data into two parts and then conduct a 'cross-validation' in which the regression equation is developed for the first purt of the data and then tested or validated on the second part.

Due to. the limited number of observations available it was not possible to divide the data into 'development' and 'holdout' samples. Rather; it was decided to conduct a cross-validation by testing the indicators across age levels. The indicators developed at the 10 -yearold level were tested with the 14 =year-old ievel data and vice-versa. This 'cross-age' validation provided a more demanding test of the stability of the indicators as predictors of school mean achievement than the assessmient based on the theoretical formulat "Further, since the instruments used to measure school mean achievement were different. between age levels, this cross age validation extended the evaluation of the stability of the indicators to an even more exacting situation by combining a test of the indicators in a sample from a different population with a test of the indicators with respect to different instruments used to measure school mean achievement.

The results of the cross=age validation have been presented in Table 8.10. The differences between the correlations in this table and the correlations presented in Table 8.3 provided an assessment of the shrinkage

Table 8.10 Luss-Age Correlations Between School Mean Scores at One Age Level and Indicators Developed at the Other Age Level

School Mean Scores	Indicator			
	SR(ALL)	SR (SOCIAL)	SR(BUILT)	$\overline{\mathrm{PC}}(\mathrm{ALL})$
10-Year-01d Indicators Applied to 14-Year-01d Schools				
Word Knowledge (14 -Year-Old)	65	61	66	66
Literacy (Test 14R)	61	54	64	62
Numeracy (Tese ldN).	56	46	64	57
Mean Correlatión	61	54	65	62

14-Year-01d Indicators Applied to 10-Year-01d Schools

Mord Knowledge (10-Year-01d)	61	57	58	64
Literacy (Test lop)	60	50	67	65
Numeracy (Test 10N)	54	46	61	59
Mean Correlation	58	51	62	63

associated with the application of the indicators to different age samples. The correlations were, as expected, somewhat lower when the indicators developed at one age level were applied to the sample from the other age level. The only exception to this was the $S R(B U L I T)$ indicator developed at the 10 -year-old level. This indicator had highor correlations when applied to the 14 -year-old sample for both school mean Word Knowledge'. and Numeracy scores.

The $\operatorname{SR}(A L L)$ and the $\operatorname{SR}(S O C I A L)$ indicators suffered the greatest degree of shrinkage for indicators developed at both age levels. This was particularly noticeable for these two indicators developed at the 14 -vear=old level because the, mean correlations 'shrunk' from 0.70 to 0.58 , and from 0.64 to 0.51 for the $\mathrm{SR}(A L L)$ and $\mathrm{SR}(\mathrm{SCCIAL})$ indicators respectively. The $S R(B U I L T)$ and the $P C(A L L)$ indicators exhibited a low degree of shrinkage for indicators developed at both age levels. The SR(BUILT) indicator developed at the 10 -year-old level was the most robust of all the indicators. This indicator had the same mean correlations when applied to either the 10 -year-oid or 14 -year-old samples.

Lompirison of Indicator Performance

In order to make an overall comparison of the performance of the indicators a list of seven eriteria was prepared. Five of these deseribed correlat= ional properties of the indicators and the remaining two were concerned with assessments of the precision with which the indicators could be used for resource allocation. At each age lovel the indicators were given a ranking according to their performance with respect to the seven eriteria. These rankings have been presented iñ Table $8: 11$.

In the following discussion each of the criteria and the procedures used to rank the indicators have been described.

Achievenent Variables. The development of the indicators aimed to provide composites based on census percentage variables which were highly correlated with school mean achievement scores. Therefore, for this criterion, the indicators were compired according-to the average of the correlations between the indicators and the three measures of school mean achievenent in Tuble 8.3.

The average correlations were highest at both age levels for the SR(ALL) indicator. At both age levels the average correlations then decreased in magnitude for the SP(BUILT), $\overline{P C}(A L L)$, and $\overline{S R}(S O C I A L)$ indicators. The rankings for this criterion have been presented for each age level in the first row of Table 8.11.

Social and Learning Handicaps. Although the indicators were developed to haye high correlations with school mean achievenent scores, it was considered desirable that they should also be significantly correlated with certain schoō behavioural characteristics. The Social and 'Learning' handicaps in Tabie 8.5 represented a ifst of behavioural charicteristics which; if found in high concentrations in sertain schools, would limit the capacity of these schools to proceed with most aspects - of the educational process. The indicators were therefore ranked separately $=$ for the Social and Learning handicaps according to the average correlations between the indicators and the handicaps listed in Table 8.5 .

The average correlations were very similar for all indicators at each age ievel. For example, at both age leveis the iverage correlations for the $S R(S O C I A L)$ and $R C(A L L)$ indicators with Social handicaps were equal to
$=$ the second decimal place. Calculations to the third decimal place were thereforo carried out in order to obtais. the rankings. This similarity

$$
\because
$$

Table 8.11 tomprison of Indicator Performance According to Seven Criteria (10 -Year-0ld Schools and 14 -Year-0ld Schools)

Criterion	Indicator							
	SR(ALL)		SR(SOCIAL)		SR(BUILT)		PC(ALL)	
	10	14	10	14	10	14	10	14
Achievement Variables	1	1	4	4	2	2	3	3
Social Handicaps	1	2	3	4	4	1	2	3
Learning Handicaps	2	2	4	$\overline{3}$	1	1	3	4
Cross=Age Stability	3	3	4	4	1	- 2	2.	1
Residuals	2	1	4	2	1	4	3	3
Accuracy	1	1	4	4	2	2	3	3
Leakage	1	1	3	4.	4	2	2	3
Mean Rank	1.61 .6		3.7	3.6	$2.1 \quad 200$		2.6-2.9	

in indicator performance was evident throughout many of the calculations carried out to compare the indicators on the seven criteria.

Cross-Age Stability. In order for the indicators to be useful for application to schools in general, it was essential that the strength of the relationships between the indicators and school mean achievement scores obtained for the 'development' samples be maintained for different samples of schools and different measures of school mean achievement. The indicators were compared by considering the average correlations between the indicators and school mean Word Knowledge, Literacy and Numeracy scores for the 'cross-age' analyses described in Table 8,10 . The rankings of the indicators were constructed from these average correlations.

There wais a great deal of similarity in the average correlations for the $\operatorname{SR}(A L L), S R(B U T L T)$ and $P C(A L L)$ indicators at both age levels. The predictive power of the $\mathrm{SR}(\mathrm{SOCIAL})$ indicator was considerably less than.... the other three indicators at both age levels.

Residuals. An-important characteristic of the indicators was that they should be able to be applied to schools in general without recourse to \because. the use of additional information concerning special subgroups of schoois. The investigation of residual variation described in Tables 8.8 and 8.9 demonstrated that negligible gains in predictive power were associated with the Type of School and School Location variables:

The rankings for the 'Resideruals' criterion were based on the average of the additional contributions to variance explanation in Literacy and Numeracy school mean scores whichin occurred when the Type of School and School location information was if included in a stepwise regression model following the inclusion of ench indicator. The indicator having the smallest mean additional contribu-utions was ranked highest and so on for the other indieators. Calculatio ons to the level of 0.1 per cent of variance were required to discrig_minate between the performances of the indicators on chis criterion. Thorefore; while the rankings of the indicators differed between igg E levels it was important to remember that, again, the degree of difference $\&$ between indicator performance was very small.

Accuracy and leakige. The rankitings of-the-indicators for these two criteria were obtained by calculterating the average of the indicator estimates derived from the theoreetical model for Literacy and Numeracy school mean seores presented $\mathrm{ir}^{2}{ }^{-1}$ Tables.8.6 and 8.7.

The rankings were the same for the Accuracy eriterion at both age levels, but different for the heseakage criterion. The differences betweoh the indicators on these two cryt. \#eria were also very small. Within age levels the maximun difference fin m Accuracy Losses and Leakage Losses for both Literacy and Numeracy was 4 eround 2 per cent, and the maximum difference in the average of these los esses across the Literacy and Numeracy citeria was around 1.5 per cent x.

Overall Performance

The means of the performance rahrmkings of the indicators with respect to the seven criteria have been presented in Table 8.11. At both age levels the high mean rankings of the gRGR (ALL) indicator showed that it had the best overall performance on thestese criteria. In addition it was important
to note that thesR(ALL) indicator had ciearly better performance on the most critical areas of these crifiteria = the Accuracy and Leakage associated with precision in resoupfege allocation to those students who would be in most need of assistance. This indicator was therefore selected as the 'preferred' indicator of edturucational disadvantage among the four which had been developed for the identrification of educationally disadvantaged schools in Australia.

Summary

In this chapter the four indicators of educational disadvantage, SR (ALL) SR (SOCIAL), SR(BUILT), and PC(ALL), were subjected to a range of analyses which were designed to provide a detailed investigation of their properties. The performance of the indicators was examined in terms of their capacity to (1) predict school mean achievement scores (Word Knowledge, Literacy, and Numeracy) and school mean behavioural climate scoress (Social and Learning Handicaps), (2) maintain predictive power with respect to school mean achievement scores when applied to different samplees of schools and students, (ड) be able to be applied to schools in general without recourse to the use of additional information concerning special subgroups of schools (Type of School and School Location), and (4) dịplazay high levels of precision (Accuracy añ Leakage) associated with the identification of students who would be in most need of assistance.

The overall performance of the indicators across these criteria was compared by ranking the indicators for each criterion and then calcalatin -g the mean of these rankings. At both age levels the mean ranks of the indicators suggested that, with respect to the criteria considered, the SR(ALL) indicator provided the best overall performance. Therefore, this indicator emerged as the 'preferred' indicator anong the four which had been developed for the identification of educationally disadvantaged schools in Australia.

THE 'MEANING' OF THE INDICATORS: REVIEW OF MODELS OF RESIDENTIAL DIFFERENTIATION

Introduction

The indicators which were prepared and examined in the previous caplers were based on school neighbourhood infomation. Thêi \bar{T} succes \dot{s} pisp dictors of both school mean achievement scores and the incidence of learning and social handicaps in schools depended, in part, upor th situation that Australian school neighbourhoods do.vary in termg of census-based information. If all Australian school neìghbourhoodshd exhibited the same profile of census characteristics then the indictors would have had zero correlation with any other variable. In ract, if this had occurred, then it would have been impossible to construet the indicators because the basic census percentage variables which vexused in their construction would have had zero correlation with the exiterion variable used in the scaling procedures.

The tendency for communities to exhibit differences in geographleal space has received considerable attention by social science reseaxth workers during this century because of the growing availability of chisus information and high=speed computers in many countries. This resenth has mainly been concerned with attempts to develop models of residitial differentiation which describe the patterns and social dimensions isfocs iated with observed variations in comminity characteristies. In ths - chapter a review of these approaches has been presented with ain of selecting a model of residential differentiation which would enatifi discussion of the meaning of the dimensions assessed by the indicators to be placed within a theoretical framework:

The review initially summarized features of the 'elassical' podls of residential differentiation which were developed in the United states during the first half of this century. This section of the review wh relatively brief for the reason that detailed descriptions of thestrolels and critiques of their performance have been discussed at length int the literature (for example, Robson, 1969; Timms; 1971; Murdie, 1976). Amore detailed review of the Shevky-Bell Social Area Analysis model was then undertaken because this model provided an opportunity to evaluate the
$\$$
meaning of the indicators in terms $\Longrightarrow f$ three dimensions of residential differentiation which have been shom-in to exhibit a high degree of . generality across a range of studied and settings

M Minn Ecology Models
The word 'ecology' was orig pithy us ed by botanists and zoologists to describe the study of the rilationstrexps of plants and animals to the in physical environment, Around the energy part of this century a group of sociologists, led by R, E path at theme University of Chicago, applied some of the theories and procedures of biological ecology to the study of the growth of cities and thereby established the field of human ecology' (Par kph Burgess and Mckenzie=, 1925).

Certain processes whit had been $=n$ proposed by Darwin and accepted by botanists were translated by the Chi - cage school into human terms. For example, they discussed cornptition between different population groups in terms of areal 'invasion' venture $11 y$ leading to' succession' (Burgess, 1925).

At the centre of the hum ecol * ogy model was the assumption that the urban environment was not a randanom collection of buildings and people but rather 'a mosaic of social, i worlds' (Firth, 1938:2); The pieces in this mosaic were described as 'natural areas' each of which represented 'a territorial unit whosers distinctive characteristics' physical; economic and cultural - prese the result of the unplanned operatimon of ecological and social processes' (Burgess, 1964:458).

In later empirical studio (rev =iewet by Robson (1969:17-18)) researchers began toff question whether the natural area was an acceptable unit with which to describe the structure of human communities. These studies demonstrated that thidenti medication of natural areas was dependent upon the type of dat hick was examined, and also that the ecological forces which had been proposed to be instrumental in the formation of natural areas hd taken no account of the importance of an , individual's sentimental andsyooli $=$ attachments to a residential area.

Burgese!'Concentreic Zone Model

The investigations of the Chicago ecologists associated with the natural areas of the city were extended by becirgess (1925) in order to explain
$1-5 d G$

certain spatial putterns, in the development and community structure of urban areas in the United States: The ecological concepts of invasion andesuecession were combined into a theory which portrayed urban growth as a series of concentric circles surrounding the central business areaz*:

Burgess (1925) presented two charts which, showed five concentric circles describing the zoneş of development in an idealized city and the city of Chicago. These zones were defined according to principal land usage: (1) 'loop' = the centrai business district, (2) zone in transition' - an originally residential zone which was being subjected to invasion by business and industry, (3) 'zone of workingmen's homes' = a sone inhabited by workers in industries who have 'escaped' from the inner zones but who desired to live within easy reach of their work, (4) residential zone' - a zone of high class apartment buildings or of exclusive districts of single family dwellings, and (5) 'commuters zone' = a zone of suburban areas or satellite cities which were within thirty to sixty minutes of travel time from the central business district.

Since the publication of the Burgess model a range of critiques and empirical studies (reviewed by Timms ($1971: 218-223$) have been carried out to assess the theoretical foundations and generalizability of the model. The most severe criticisms emerging from these investigations have been that Burgess' zones were merely arbitrary classificutions rather than 'real' divisions describing distinct social units, and that the model was not applicable to smail non-industrial cities.

- Hoyt's Sector Model

Hoyt (1939) suggested that the distribution of city neighbourhoods according to their social prestige ratings was characterized by a tendency to follow sectoral patterns energing from the dity centre: The sector model accordingly proposed that different types of residential areas grew out ward along distinct radii, and that new growth on the axe of a given sector tended to take on the character of the initial growth in that. sector.

The sector model was based on Hoyt's examination of average rent levels in a large number of cities in the United States. Hoyt presented maps of the average rent levels in the cities in order to demonstrate that high and low rent neighbourhoods were not diagned concentrically, as the Burgess model would have predicted, but rather in a sectoral fashion. Giving prime importance to the high rent sector, Hoyt suggested

```
\therefore4:
    151 .... 164
```

that the point of orifin of this sector focussed on the. location of the retail and office centres where members of the population with high incomes tended to work. The growth of this sector dominated all others ats it moved outward from the centre along inines of fravel or towards another building or trading centre and away from areas of current or potential industríal growth. Intermediate level rental areas tended to surround the high rental areas on each side: The low rental areas either filled in the guilable sectoral gaps or were located in what wros once high or intermedinted level areas before the previous residents moved utwards in a sectoral fashion.

Criticisin of the Hoyt model (reviewed by Timms (1971:227-229) has contrad on the use of rent as an operational measure of social prestige, and ilso on the vague definition and fositioning of sectors within the model. This fatter probleñ has limited the usefulnesa of isny zubsequent attempts to test the generalisability of the model because researchers have, in the absence of a detailed and objective definition of a 'sectori, often rosorted to the use of arbitrary geometric sectoral divisions of the city area.

Harris añ Ullman's Multiple Nucleí Model
Harris and Uliman (1945) rejected the concept ot a single centre of urban development which had been a feature of both the zonal and sectoral models. The number and type of centres or nuclei were considered to vary from city to city. However the development of separate nuclei was believed to be associated with four common factors: (1) the need for specialined areas, for example large scale transportation by rail, water, etc., (2) the clustering together of industries for mutual benefit, (3) the incompat= ability of certaiñ areas, for example high status residential areas and industrial estates, (4) the need, for storiage and distribution centres outgide the high-cost central business areas:

The multiple nuclei model described a much more complex pattern of urban development than the zonal or sectoral módels, It was not a radic= $=$ ally different approach put rather an attempt to introduce ań extra feature into the explanation of the nature of urban development which would account for the observed deviation of many cities from these two models: \because Timms ($197 \underline{1}: 211$) has described this modol as in caveat to the more general zonal and sectoral models',

- A great deal of the initial enipirical investigations of the zonal and sectoral models of urban structure were concerned with separate tests of the utility of each model and each of the models was shown to have limited generaliability. Rventually Berry (1965) proposed a multidimensional approach to the problem by"suggesting that the zonal and sectoral models were independent, aduitive contributors to the total socio-economic structuring of city neighbourhoods. Berry suggested that residential structure could be characterized by axial/variation of neighbourhoods according to socloecononic rank, and concentric variation of neighbourhoods: according to fomily structure.

The evidence for Berry's proposal/seems to have rested on research studies which had employed analysis of variance techniques to assess the separate effects of zones and sectory in the distribution of social characteristics; The earliest of these studies appears to have been Anderson and Egeland's (1961) analysis of the spatial variance of a number of socloeconomie measures within four cities in the United States. Anderison and Egeland used a two-ffetor andysis of variance design to assess the spatial variation off an index of 'social rank', composed of occupation and education measures, and an index of 'urbanization', composed of measures of family characteristics. The results of the analyses demonstrated that social rank váried principally by sector, and urbanization by concentric ring Lator studies which had employed similar statistical designs obtained similar results. A range of these studies has been reviewed by Murdie ($1976: 247=258$).

Shevky and Bell's Social Area Analysis Model
In the 1950 's interest in the theories of the Chicago school of human ecologists began fo wane as sociologists on the West Coast of the United States commenced to question the assumption that the spatial arrangement of one city, chicago, could be considered to be typical of urban society. The most important challmes this assumption energed following invest $=$ igations of social it and residential differentiation in the :
 1953; Shevky and :

the heg soelin dinensions which described residential patterns in geographical space, Rather than attempt to describe residential structure in terns of ecological processes, Shevky and his colleagues sought to relate the niture and extent of residential differentiation to the social forces which were characteristic of society as a whole.

We conceive of the city is a product of the complex whole of modern society; thus the social forms of urban ife are to be. understood within the context of the changing character of the larger containing society. (Shevky and Bell, 1955:3)

The theoretical rationale for the social area analysis approach was described in detail by Shevky and Boll (1955). The cornerstone for the rationale was the concept of societal 'scale', a term. which had eariler been employed by social anthropologists to describe the number of people. in relation and the intensity of these relations' (vilson and Wison; luts: 5^{5}). By combining this concept with Clark's (1951) research into the division of labour in socioty; Shevky and Bell suggested that an increase in societal sẹle was synonymous with the emergence of modern urbanindustrial societý

It is our contention that the postulate of increasing scale in - modern society gains in analytic utility when we are able to specify that in all technologically advanced modern societies the most important conconitant of changes in productivity, and changes in economic organization with the consequent alterations of social relations, has been the movement of working population from agriculture to manufacture, and from manufacture to commeree, communication, transport, and service. (Shevky and Bell, 1955:8-9)

The effects of increasing societal scale were linked by Shevky and Bell to Wirth's (1938) sociological definition of the city in relation to population size; population density, and heterogencity ín the socíal composition of the population. However they challenged his assumption that it was the, city which was the underlying 'prime mover' in the recent transformation in the scale of Western society. Rather, the lnecessities of economie expansion' were considered more important because the focus fō an increase in scale was on the 'total society' as well as on eities within that society.

The essential features of the social area model have been presented in diagramatic form in Figure 9.1. An increase in socíetal scale was assumed to be reflected in three sets of trends: changes in the distrib= ution of skills, changes in the structure of productive activity; and changes in the composition of the population. These three trends were
${ }^{15} 16$;

Eonsideres tor le, th 'rhere stiuctural reflections of change which can be used is factors for the stav of socind differentiation ind stratification at a parejeulay time in moderr society' (Shevky and Bell, 1955:4-5). The final step wis to select measures which could be used to assess the factors (or eonstructs) labelled 'social rank'. 'urbanization', and 'soprevation'. The construct labels in brackets in Figure 9.1 refer to Bell's (liss) revised formulation of the original Shevky and willams (19+9) labels.

The first comstruct 'social rank', or 'economic status', was measured by 'occupation' (based on 'the total number of craftsmen, operatives and labourers per 1,000 employed persons' (Shevky and Bell, 1955:54)), and 'schooling' (based on 'the number of persons who have completed no more than grade wehool per 1,000 persons 25 years old and overi (Shevky and Bell, 1955555) ; 'Rent' was later renoved from the measurement of the soeial rank construct because it was considered thet the rental controls introduced by the United States government during the Second World War might have affected the validity of rent as an index of social rank.

The second construct 'urbanization', or 'family status', was measured by 'fertilify' (based on 'the number of children under's years peri 1,000 females aged 15 through 4 ' ' ' (Shevky and Bell, 1955:55)); 'women at work' $^{\prime}$ (based on "the number of females in the labour force per 1,000 females 14.ycars' old and over' (Shevky and Bell, 1955:55) , and 'single-family. dwelling units' (based on 'the number of single-fanily dwelling units per 1,000 dwelling units of al1'types! (Shevky and Beli, 1955:56).

The third construct 'segregation', or 'ethnic status', was measured by 'racial and national groups in isolation' (based on the number of non- white minority persons, for example Negroes, Mexicans, Cubans, ete, and the number of foreign-born whites, for example Poles, Czechoslovakiañ; Hungerians, ete. (Shovky and Bell, 1955:56-57).

For each of the three constructs two alternative names were presented by. Shevky and Bell. The first referred to the name preferfed by shevky and the second to the-name preferred by Bell. In an appendix to Shevky and Beli's (1955:68) description of how to construct the three indices; each author provided a brief statement in support of his position.

* Bell emphasized that his preferonce for the word 'status' did not refer to a prestige connotation. Rather, the word status deseribed 'each sub-population's position with respect to each dimension or factop' (Shevky
and Bell, 195r:08). The main point of disagreement between the authors appears to have been associated with the labeling of the second construct as either 'urbanization' or 'family status'. Bell considered 'family status' to be a more limited concept than 'urbanization' and was both closer to the variables which were used in its measurement and more easily interpretable.

In a later publication Bell (1965) made further modifications to the names of the constructs by replacing 'economic status' with 'socioeconomic status', 'family status' with 'familism', and 'ethnic status' with 'ethnicity'. These names appeared to be more congruent with the measures which were used to construct the indices. In particular, the removal of the word 'status' from the names of the second and third constructs sutisfied the enrlier concern expressed by Bell that there should be no connotation of prestige associated with these constructs. These later lahels have been used in the discussion which follows in this ehapter.

Debate and Evaluation Associated with Shevky and Beil's

Social Area Analysis Model.
Since the initial publication of the Shevky-Bell social area analysis model there has been considerable debate concerning both the theoretical foundations of the model and the generality of the three dimensions of residential differentiation.

Theoretical Foundations. The debate in this area has mostly centred on Shevky and Bell's reliance on the concept of 'scale' and their proposition that a causal sequence could be established which began with a theory of social change, evidenced by changes in 'scale', and ended with a theory' of residential differentiation, evidenced by the emergeñee of the 'socioeconomic status', 'familism', and 'ethnicity' dimensions.

Shevky and Bell's use of the concept of 'scale' borrowed heavily from the work of Wilson and Wilson (1945) and was defined as the scope of social interaction and dependency' (Shevky and Beli, 1955;7). However; as Timms (1971) has noted, the presentetion of the steps in the formation of constructs and indices inqluded this meaning as only one of the 'aspects of increasing scaler:

156
163

hpatt of hereaing	Treids	Clange in the	Conitructs	Derived Masures
Scale		Structure of is		
		Sochild fivtem		

What is elsuwhere treated as providing the definition of changes in scale is here treated as but one aspect of them. It is unclear whether the concept of increasing scale is intended to reference an independent set of phenomena, concerned with social interaction, or whether it is merely intended as a general term to describe all those historical trends which reflect the change-from traditional agrarian forms of social organization to those characteristic of modern industrial society, (Timms, 1971:159)

While Timms noted some lack of clarity in the way in which societal scale was defined and then applied, Nadel (1953) and later Jones (1969) pointed out that difficultios of interpretation were also associated with the interpretation of this concept provided by the originators of the term 'scale'. Therefore there seems to have been some degree of inevit ability in the criticism which has been levelled at Shevky and Bell's. use of the concept.

Axtensive consideration of the nexus between the issues of definition and application of the concept of 'scale' has generally been avoided by the proponents of social area analysis. It would appear that most authors have been content to accept the notion of increasing societal scale as 'a shorthand equivalent for the processes of urbanization, industrialization, and modemization' (Jones, 1969:17).

The second aspect of the theoretical development of the Shevky=Bell model which received a great deal of criticism was concerned with the proposed linkage between increasing societal scale and the dimensions of residential differentiation:" Shevky and Bell provided limited evidence to support any meaningful linkages between these two societal characteristics. For example, they provided no substantial evidence to explain why 'a.changing distribution of skills' should necessarily result in the construct of social rank being 'a significant differentiating factor among individuals and subpopulations in modern society' (Shevky and Bell, 1955:17).

Critiques by llawley and Duncan (1957) and Udry (1964) highlighted this deficiency in the social area analysis model. Udry extended his analysis of the model to suggest that Shevky and Bell's 'theory of increasing scale' and their 'theory of subarea differentiation' should be considered as separate theorios (Udry, 1964:408=409).. An'attempt by Bel1 and Moskos (1964) to answer these issues was presented in the form of a simple analogy - but this has generally been considered by experienced sociologists to be an inadequate justification (Jones, 1969:18; Timms, 1971:141).

Uimensions of kesidentinf bifferentiation. The debate in this area has been concerned with a group of empirical studies. which were carried out to test the Shevk-Beil hypothesis concerning the dimensions of residential differentiation. These studies may be classified into two broad groupings: studies which have examined the dimensionality of the variables which were used by Shevky and Bell, and studies which have examined the dimensionality of these variables in addition to a broader sot of variables derived from eensus infonation.
(a) Dimensions Associated with the Shevky-Bell Variables. The first systematic examination of the dimensions associated with the Shevky-Bell variables was carried out by Bell (1955). This study employed factor analysis to examine the intercorrelations among these variables for los Angoles and San Francisco. The centroid technique of factor analysis was used to extract three factors which were then rotated to an oblique solution.

The three factors which emerged from these analyses confirmed the Shevky=Bell hypothesis that sociocconomic status (with high loadings on 'occupation', 'education', and 'rent'), familism (with high loadings' on 'fertility', 'women in the labour force', and 'single-family Jwelling units'), and cthnicity (with high loadings on 'subordinate ethnic groups') each represented a idiscrete social factor which was necessary to account for the differences between urban subpopulations with respect to social characteristics' (Bell, 1955:46).

Inspection of the item-factor correlations provided strong support for the Shevky-Bell postulate that the indexes selected to measure the socioeconomic status and familism constructs formed unidimensional measurement instruments.

Vin Arsdol et al (1958a) used similar nethodology to test the Shevky= Bell model for a group of cities in the United States. The results confirmed the existence of the three Shevky-Bell dimensions in six out of the ten cities which were examined. The four cities which did not exactly fit the model displayed relatively high item-factor correlations with the sociocconomic status factor. These cities were found to be located in the South of the United States and had high proportions of Negro populations. Van Arsdol et al proposed that these findings indiented that the range of family forms in these [four] cities, as deseribed by the fertility measure,
hats not becone disaswociated fron social rank' (Van Arsdol et al. 1958a: 2s2). Tims later hinted that these 'deviant' cities might well reflect variations in societal scale within the United States and therefore it ${ }^{--}$ was Elearly untalistic to ignore regional differences in mojernization that may oceur within national boundaries' (Timms; 1971:156).

In a second investigation Van Aredol et al (195sb) tested the Shevky= Bell model by applying factor analysiss to a correlation matrix obtained by combining the census information from the ten cities which had been ' examined separately in their first study. The three factors which emerged were closely in agreement with the model and the results previously obtained by Bell (1955).
(b) Dimensions Associated with a Wider Set of Variables. Tryon (1955) was the first researcher to employ a wider list o inhles than those proposod by Shevky and Bell in order to identify , 1 areas. He applied a cluster analysis technique to $\overline{3} 3$ consus variablus to obtain clusters of related measures. Lixamination of the intercorrelations suggested that three dimensions were sufficient to account for the relationships between the variables: 'socioeconomic independence', 'family life', and 'assimilation'. Tryon noted that there was considerable similarity between these empirically derived elusters and the three constructs proposed by Shevky and Bell.

Later reviews (Robson, 1969; Rees, 1972) have suggested that there was a high degree of subjectivity associated with Tryon's clustering decisions and that for this reason his technique has"had limited further application.

Anderson and Bean (1961) also employed a wider group of variabies to test the generality of the Shevky=Bell dimensions. The study was designed to assess whether similar factorial structures to those obtained by Van Arsdol ot al (1958a) would emerge if a range of variables in addition to the Shevky-Bell variables were included in the analyses.

The matrix of factor loadings which emerged showed that the socioeconomic status and ethicity factors were reproduced but the familism factor split into two separate factors: Anderson and Bean labelled these two factors as 'urbanization' (which tended to discriminate between apartment house areas and single family dwelling unit areas) and 'family status' (which tended to discriminate botween areas with different fertility levels),

$$
17 \pi
$$

The pittem of lodings hetween these two factors suggested that 'urban ization' was mostly describing variations in housing characteristics while 'fanily status' was mostly deseribing variations in the social character= istice of the family.

Schnid and Tagashira (1964) demonstrated that the baṣic factors of sociocconomic status, fanilism, and ethnicity were invariant under the condi: ions of change in the numbers of variables which were employed to represent the same commity. The three basic factors emerged from factor $⿻$ f anslyses of sets of $42.21,12$ and 10 variables which had been used to describe the residential structure of the city of seatile. Further analyses earried out by Sweetser (1965) in Helsinki validated this finding. and prompted the conclusion that 'ecological factors are invariant under substitution, uddition, and subtraction of variables' (Sweetser, 1965:379).

Following the initial use of factor analysis for wider sets of vartables by Anderson and Bean there has been a virtual avalanche of studies which have applied the same methodology to ever-growing numbers of social settings and variables. An excellent systematic review of these studies has been presented by Rees (1972). Anong the studies carried out in the United States; Rees found that most identified one socioeconomic factor and at least one ethnicity factor (depending on whether ethnic groups were assessed by one or more variables describing-minority groups). Most studies also showed some form of familism factor, however there was a substantial number of studios in which two factors bearing some eonnection with this theoretical construct emerged,

In addition to the emergence of the traditional Shevky-Bell factors, many studies obtained factors related to the mobility of the population, - to the degree of recent migration, and to areas of recent population growth. While some suggestions were made that a factor describing these processes should be introduced into the 'triad of Shevky and Bell constructs', Rees commented that these mobility/migration processes were dynamic in nature and would confuse the generally 'static nature' of the social characteristics of residential structure (Rees, 1972:287).

Rees attempted to extend his comparative analysis to similar studies carried out in places outside, the United States. However certain difficulties were experienced with the classification of variables into the same sets used to describe the United States Studies. These reviews, which covered studies carried out in Europe, Canada, Egypt, and India will

161

```
175
```

not be further diseussed becuse the techical diffieulties of comparison led Rees to consider this section of his summiry analysis as 'tentative in the extreme' (Rees, 1972:288).

A more receent review of 'factorial ecollogy' studies by Johnston (19F6) Eme to a sinilar contusion as Rees with respect to the consistency of the Shevky and bell dimensions

By fur the major finding, comion to a majority of studies, irrespective of location and cultural context of the relevant eft,is the generality of Sheviy and Bell's three-dimensional model of the bases to residential area differentiation, (Johnston, 1976:217)

Johnston also commented that the accessibility of high speed computer facilities mith had allowed researchers to employ increasingly larger numbers of variables had not negated the Shevky and Bell model: Rather, these larger scale investigations had added to the model by 'developing aspectswhich were either overlooked by those authors in their search for high-level generalizations or were not relevint to their data gets and study areas' (Johnston, 1976:217).
\because In Australia the first substantial investigation of the social dimensions of residential differentiation was carried out by Jones (1969). This study focussed on the city of Melbourne and employed principal component analysis to investigate the factor structure of 24 census variables describing residential characteristics. Three principal components emerged from these analyses: 'SES-Ethnicity', 'Familism' and. 'Northyestern European Settlers'. These three dimensions provided a reasonaply similar structure to the Shevky-Bell model, however the coalescence of Socioeconomic Status and Ethnicity on the first principal component could well have been associated with the orthogonality and rotation restrictions placed on the factor structure, Jones (1969) rejection of rotational procedures was 'by design, not ignorance' because he had structured the analyses on the basis of a priori expectation rather than notions of data exploration:

A later large-scale investigation of the structure of residential differentiation in Australia was carried out by Logan et al (1975). Principal component analysis followed by Varimax rotation of factors was employed to separately examine a set of 22 census variables which described the Australian State capital eities and the non-motropolitan regions of Australia.

162
170

The tistor stueture of residential difforentiation of the capital sties elosely followed the shovky=Bell, model - although some city-- specifie factors also emerged from the analyses. The strongest factors tit therge in all eities were 'Socioeconomie Status'; 'A Factor Identifying Wifferences in Uweling rypes' (which wis elosely 1 inked to the Familism sonstruet) . logen et il (190^{-5}) noted that in most cities fumilism was divided into two or three separate dimensions, one which identified dwelling type viriation, one which identified the very recent, high : artility, suburban areas, and, in some cases, another which separated out the proportion of femoles in the workforee.

The factor analyses carried out for the non=metropolitan regions cmployed a different inst of census variables and therefore it was not possible to compare these results with those obtained for the eities. This i ist of variables kas narrowly defined co be 'inds gative of standard of libing' at 'fiality of life measures' (Logant et al, 1975:61). The fictore which emerged from the analyses were, not surprisingly, somewhat diferent from the analyees for eities = and they lacked simplicity of structure and interpretarion,

Gertain aspects of the thegretical foundations of Shevky and Bell's sociat rrea analyis model have received considerable criticism. In particular; many authors have, disputed the validity of the implied causal link: between sogiotal seale and residential differentiation. Some eritics (Johnston; $1971: 5 \bar{s} ;$ Robson, $1969: 52$) have even hinted that thexe was a high degree of ex post facto rationalization in the theoretical exposition which Shevky and Rell provided as justification for the variables and indices which they selected as the key measures of social structure. Nevertheless, the incidence of their three basic dimensions of residential differentiation in studies carried out for different socíal settings and employing a wide range of variables has been consistentiy established.

$$
163 . \quad \therefore 77
$$

The researcher faced with the evidence of this debate is therefore left with a 'theory' which has questionable logical structure and yet reasonably firm predictive properties with respect to the nature of residential difierentiation. The most useful resolution of this difficult situation has been presented by Jones (1969):

> mi propose to accept shevky and Bell's discussion of the major trends in recent social chang not as a formal theory dictaing the lines of subsequent analysis of urban residential differentiation, but rather as a set of sensitizing concepts directing attention to basic forms of social. differentiation in modernindustrial society, a view which seems quite consonant . With their original intentions. Sen in this way, postulates about increasing societal scale constitute a conceptual scheme within which changes in social differentiation and stratification can be analysed. (Jones, $1969: 21$)

The majority of the studies which have investigated the generaliz= ability of the Shevky-Bell dimensions appear to have concentrated upon the use of census dita to examine aspects of residential differentiation in urban areas. This focus of researchers' efforts on urban environments probably has its origins in Shevky and Bell's original use of the cities of Saf Francisco and Los Angeles to present detailed descriptions of applications of their theory (Shevky and Bell, 1955) and to provide validatory evidence for the existence of their three dimensions of resigential differentiation (Bell, 1955).

A concentration on urban settings was, in Shevky and Bell is view, an unnecessary constraint on the situations in which their theory could be applied;

To date all the published work utilizing this method has dealt with the census tract as the unit of analysis.. and the major focus of interest is the internal differentiation of a particular urban area. There is no reason, however, why a typology based on the three social dimensions = social rank, urbanization, and segregation - could not be utilized, with different specific measures in the indexes if necessary, for the study of cities with the city as the unit of analysis, for the study of regions, or even for the study of countries. .
(Shevky, and, Bell, 1955:20)
In this study the 'preferred'. indicator of eduçational disadvantage, $S R(A L L)$, was developed from census data descriptions of the characteristics of neighbourhoods surrounding Australian. schools. Therefore, in keeping with Shevky and Bell's proposal that their țhree social dimensions were applicable to ${ }_{s}$ units of study beyond cenisus descriptions of urban settings, •
it was decided to investinate the utility of these dimensions for examining the 'meaning' of the rank order of schools obtained from the SR(ALL) Indieator scores. fh is investigation, has been discussed in detail in the followine shapter.

'the 'mining' of the indicators': comparison of t indicators with the dinensions of school netghbouniood res ldential differentiation

The sR(ALL) indieator was selected as the 'preferred' indicator of educat $=$ ional disadvantage in chapter 8 bocouse of its better all-round performance on seven important eriteria, In this chapter consideration has been given to an-investigation of the meaning of the scores obtained from this indicator.

The development of the SR(ALL) indicator was centred around a series of stepwise regression analyses which selected subsets of census percentage provide an indicator which was maximally correlated with school mean achievement scores. This procedure was primarily guided by the aim to optimize the predictive power of the indicator scores: Some minor inter= vention was taken during this procedure to avoid technical problems of face validity issociated with the appearance of suppressor reflationships in the regression analyses However the overall development strategy was not concerned with the fashioning of indicators whose face validity would fit some current or past sociological model of causation to the educational envirohments of Australian students.

By way of example, the inclusion of the linear composite describing bathroom and kitchen facilities in the $S R(A L L)$ indicator at both age levels occurred because this linear composite added to predictive power. It was nsc added because the linear composite fitted some causal model of oducational achievement concerned with either the effects of washing and cooking facilities, or the effects of adequate housing, for which this linear composite míght have provided a surrogate measyre. -

Consequertly, when the question what is the meaning of the $\operatorname{SR}(A L L)$ indicator scores?' was posed, there was some temptation to retreat to a response couched, in terms of the technical procedures used in the strategies of andieator construction rather than attempt to answer in terms of a description of those social characteristics of school neighbourhoods
 variables to fom linear composites and then combined these in order to -_:
\qquad

\author{

Introduction

}

* which mere aranintud with the indicitor seores. The diffictities involved in froviding st simple and fintelligible inswer of the later kind mot he reatily demonstrated by an inspection of the correlation coeff= isionts butheen the indicator seores and the complete set of linear composites which were fandidntes for inclusion in the sR(ALL) indicator. Ihese eorrelation ewelficients hive heen i isted for both age levels in Table 10.1.

Although, only nine 1 iñen composites entered the SR (ALL) indicator; four being eominin to both ige levels, the correlation coefficients ranged trom moderate to high positive values for all linear composites. It was interesting to note that, die to the intercorrelition among the inoar onnpustes themselves, thore were mamy ineari conposites not included in the filsul inticutor wheh hut higher correlationg than those which were inclubed.

The pattern of imoterate to large positive correlation coefficients for the linear conpositos included in the sh(AlL) indicitor showed that the sk(All) ifuleator was a complex dimension related to a wide spectrum of school neighbourhood charicteristice: occupation, education, industry type, country of birth, period of residence, age, type and size of Uwelling, bathroom and kitchen facilities, and density of living arrangements. This wide spectrum of charicteristics made it difficult, if not impossible, to reauliy deduce a descriptive name for the SR(ALL) indicator from the pattern of correlations in rable 10.1 which would 'capsulize the substantive nature of the factor añ enable others to grasp its meaning' (Ruminel, 1970:474):

While sinete ingpection of the pattern of correlations between the SR (ALL) indicator and the 1 inear composites used in its construction provided little assistance in describing the 'meaning' of the indicator, in examintion of the groupings of innear composites hinted at the exist-** ence of three subdimensions within the overall indicator scores which paralleled the three Shevky-Béli dimeñions. For example, linear composites 1. $\bar{x}^{3}, 4,5,8$ and 9 were concerned with the occupational and educational Gharacteristice of school neighbourhoods and thus could be linked to the Socioeconomic Status dimension; iinear composites 11^{*} and 12 described the country of birth and the period of riesidence. of the overseas born population and could be approprintely linked to the lithicity dimension; Linear eomposites 6 and $1 \boldsymbol{z}$ described family (maritai) stability and age, distribution and wore thorefore associated with the familism dimensions
 Lomposites of fercentage yuriables (lo-Year-0id Schools and 11 - $\mathrm{Year}=01 \mathrm{~d}$ Schools)

Note: a Number of schools*at $10=y c a r=o l d / 14$-ycar-old levels (weighted) \equiv 271/256.
b Decimal points have been omitted from correlation coefficients.
e There was no lincar composite prepared for the Age of Dwelling group (See Appendix 1). This group was therefore excluded.from: the analyses.
d The eorrelations for all indicators have been presented in Appendix k.
 ittes of the dhellimes and the mander af inates per dwelling = this latter sroup of linear constructs also appeared to be linked to the lamilis dimension herase they were concerned with aspects of the homsthe enviroment which were of central importance to living arrange-ment:- in familylife.

The observation of these hroad froupings led to the postulate that, while the SR(ALL) indicator was based on a complex series of maigamations of mang. census percentage variables combined to form linear composites wheh in fum hat heou combined to form indicitor skores, the meaning of the degree of school neighbourhood residential differentiation reflected be the indieator seores could be deseribed in terms of relatively more simple dimensions associated with the shevky-Bell model.
the anif ain of the analyses described in this chapter was, theretore, to investigate whether the scores on the SR(ALL) indicator were anenable to a more parsimonious and more readily interpretable description in terns of the social characteristios of school neighbourhoods described by the shevky-Bell dimensions than could be ascertained by simple inspection of the indicatoris component parts or census correlates.

The Shevky=Bell Model Applied to Mustralian School Neighbourhoods
The shevky-Bell Model:' The 'Scale' of Australian Society
The relevance of the Shevky-Bell model to the patteri of residential differ= entiation in Austrilian society required an examination of those factors which were considered to be measures of societal scale. At the core of a wide ranging diseussion under the heading of 'the primitive idea of scale', Shevky and Bell presented the notion of increasing scale as being synonymous with the emergence of modern urban=industrial society. It was of some interest that Shovky and Bell grouped Australia with the United States and Britain as examples of countries which have experienced the type of transformation in the nature of productive activity which they considered to be typical of increasing societal seale. The transformation was described as a movement of working population from the primary sector (agriculture) to the secondary sector (manufacture) and then to the tertiary sector (comerce, communication, transport and service).

The percontages of the Anstralian workforce engaged in these three scctors during this century has been presented in Table 10.2 . The general
lable w. 2 bercuite listrihution of the Australian hork force by Oecupation broup for the Censuses 1901-1971.

mbustry	Consus Year								
	Tす1	141	191	19.35	1947	1954	-1961	1966	1971
Primary	3.	30	26	$\underline{=1}$	18	15	12°	11	9
Scondary	17	30	21	19	25	28	28	28	25
Iertiary	50	50	53	957	55	57	60	61	66
Note: a	uree	logat	$\underline{1} 1$	1975:					

matern of the distribution of oecupations between 1901 and 1971 was -hatererised by a dramatie fall in the proportion engaged in the primary sestor and corresponding increases in the secondary and tertiagy sectors. By 19 ? 1 the tertiary sector had emerged as the overwhelmingly dominant sector by encompasing two-thirds of the Australian workforce.

In parallel with the movement of the workforce between sectors, Australian soeiety has experienced substantial growth in the percentage of the population living in urban settings. This growth has been particularly noticeable since the close of the Second World War. In 1947 Australia's urban population was around 65 per cent of the total pcpulation, however by 1971 this percentage had increased to around 85 per.cent (Kilmartin and Thorns, 1978:16)

The urban predominance of Australian society may be further emphasized by an examination of the population of Mustrilia's ton largest eities listed in Table 10.3 . More than 40 per cent of the Australian population in 1978 was located in two cities: Sydney and Melbourne. Further, around 70 per ceņt of the population in 1978 was located in these ten citios. In recent yours the emergence of such high g. swth urban areas as the Gold Coast and Albury=hodonga will inevitably contribute substantially to the . already large percentage of Australian population living in urban environments.

The structure of productive activity, as described by the allocation of the workforce among three sectors, and the dominance of the urban mode of living provided firm support that Australian society closely fitted Shevky and Bell's conception of a,society which is in an adranced position on the spectrum of 'societal scale'. This ovidence therefore suggested
lable lo, 3 bipulatiminthe Ten Largest Cities in Australia

State	City	City Population $(' 000)$	Percentage of Australian Population (8)
New South wales	sydnoy	3, 155: 2	22.1
	Newcistle	375.5	2.6
\because	Wollongong	222.0	1.6
Victoria	Melboume.	2,717,6	19.1
	Geelong	139.8	1.0
Queensland	Brisbane	1;004.5	7.0
Fouth mutralia	Nelaide	930.5	6.5
Western Australia	Perth	864.9	6.1 .
Thismania	. Hobart	166.5	1.2
Australidncopital Territory	Canberra	234.7	1.6 ,
Total for Ali Cities		9,811.0	68.9

Note: a Source Austrailian Bureau of Statistics (1980),
b Figures refer to egtimates for 30 June. 1978 . The total population of Australia waş given as $14,248,600$.
thit the interrelated tronds which they have postulated as being chatacter $=$ istie of 'organizationai complexity' (changes in the distribution of skills, productive activity and composition of population) should also give rise to their three dimensions of residential differentiation (socioocongmic gtatus, familism, and ethnicity). In the following sections of this ehapter the emergence of these three dimensions has been explored with respect to the nature of residential differentiation among sehool ne 1 ghbourhoods.

The shevky = bel Model Cholce of Variables
The threc Shevky-Bell dimensions of residential differentiation have emeryed as stable constructs across a range of social environments. llowever the viriables ined to mensure these constructs have often varied coneiferably between research studies, Different variables from those used by Shevky and Bell have been selected often because researchers have been limited in v, riable choice due to the census data which was available, or because of a desire to improve and/or extend the list of variables whit were to be used as measures of the construets.
$.171 . \quad 15=$

Shevky ind Hell themsulves often seemed to be uncertain as to the appropriate choide of variables. In the 1955 monograph which described the "theory, iliustrative application and computationil procedures' of soeial area malysis. Shevky and Bell devoted a whole chapter to ravisions assoetated with the choice and measurement of variables. For exaiple, the 'rent' variable which had been considered in appropriate measure of the Socioeconomic status construct in 1940 was rejected in 1950 becaus ol the rent controls which were instituted in the United states in the yers during and following the Second World War. Also, initially the Ethicity construet had been based on ethnic groups which were residentialiy concentrated at a certain level defined by an index of isolation'. Lator applications rejected the selection of groups according to isolationand instond based the measurement on a count of popilation associated nith a list of specific national and racial groups.

In Goble 10.4 the thrue construets and the revised' variabion when were aecepted by Shevky and Bell as suitable monsurements have beelisted, ln order to test the utility of the model for describing the dimensions of residential iffferentiation among school neighbourhoods it was considered important to attempt to closely follow the measurement procedures gugested by these 'revised' variables. An examination of the data which was maliable for the description of school neighbourhoods suggested however that. certain improvements could be made to the selection and measurement of variables which would result in closer links between the constructs, as described by Bell's 'groupings' in column 2 of Table 10.4, and the felected variables.
*The decisions which were made concerning voriable selection hive been listed in column 5 of Table 10.4 . These decisions have been deseribdin detail in the following paragraphs.

1 Socioccononic Status. It was decided to extend the measurement of the Education and Occupation varinbles in order to more ciosely reflect the 'distribution of societal characteristics inferred by the use of the
word 'gtatus' in the namo of the construct. Accordingly; rathor thin follow Shevky and Bell by creating simple proportion measures based on single classifications of education and oceupation groups, two clutters each based on five proportion (percentage) measures were selected in order to represent a spectrum of classifications describiñ education and oqupetion levels. Two linear combinations of these measures werethen construeted in order to maximaliy summarije the variation between genool nelghbourhoods with respect to the five measures within each cluster,

0

The 1 encen fombinithons within the education and oceupation lusters were obtaitaed by using prine ipal component analysis (Rummel, 19 pibis). the firse for the principal components represents a single dimenswith abomts for the mont viame anong the variables and therefore mis selcuted th- form the linear combintions. The results of these malyses have been foresented for each age level in Table 10.5.

For boch clusters of variables the variance explained by the first principal component was quite large and no other components had digh values prezater than one. In the occupation cluster the first frinipul compone zeweounted for 6 and ot per cent of the variance for ioveroh and $14=$ year=old schools respectively, While in the educationduster th firsterincipal component accounted for 77 and 82 per cent of the variance

The femetor loudings listed in Tuble 10.5 represented the epplations hetheen the percentage variables and the first principal components, The nexpition variable represented by the first principal component hidhigh pesirive uerrelations with the percentages of the male workfore laving professionz1. administrarive/executive/management, oceupations; ligh negative dorrelations were associated with the percentages of thenale worhfore EETaving transport/commication and process/manual/1abouring actupations. The Education variable represented by the first prinipal component EEAd high positive correlations with the percentages of the population aged $15 *$ years who had completed a higher degree, bachlors degree, fettiary non-degree qualifications or who had completed tie final two yeart $\Longleftrightarrow f$ secondary education; high negative correlations wexassociated with the percentage of persons who had completed their seholing but had coEmapleted levels which were below the currently expected anpulsory minimal lefrel of education (level 8).

The strength and direction of the factor loadings were complotely ongruent twith the construct of Socioeconomic Status which the Ocupation and liducat - ion variables were intended to represent. Therefore these linear combintionens were accepted as more appropriate 'extended' variable for the measur ment of socioeconomic status. In the second two columis of Table 10,5 the coefficicnts and constants required to ealcuijte thefirst principal somponent scores from the percentage variables have henlisted $=$.

 therf 'revisifons', wis also refected for the study of sehool neighbourhoods hesause suitible data were not arailable for the mensurement of this i watable
$\Rightarrow \quad$ lunilish. the selection ot appopriate variables for the measurement of this ebistruct has been subjected by reseurehers to a lyely debate. Much of the controversy has followed issues assoeiated with the original disagrement between shevky and Bell as to whether the construct should be named 'Urbinization' or 'Family Status'/'Familism' (Shevky and Bell, 1955: 6\&]. In a later parer hell eqiticised shevky's selection of variables for this construet:
\therefore his |Shevky's| dosignation contains conceptual elements
iniuluuately mensured by the items comprising the index $=$ addifional marital and family characteristics probably should he ithed fo the index if a better indicator of the family Ife charieteristics of vensus tract populations is desired. (Be11, 1965:241)

Bell's eritisism miy be highlighted by-n considerition of the linkage between the Shevte and bell vilible women in the Labour foree and the construct of Fumilisme The dírection in which this variable was scored by shevky and Bell inferred that a high proportion of women in the labour force identified argas in whieh, to use Bell's description from Table io. 4 , there would be a 'lack of families': In the light of more modern attitudes towards the role of women in soelety, women's choìces of whether to work or not have become increasingly associated with motivations for gaining greater self=fulfillment and independence. The decision to work has therefore lost its validity as m indicator at the rejection of a family and motherhood oriented role. This trend has been recognized and, received growing-support by employers in many countries through the introduction of paid maternity leave from work and the srowing nvailability of creches it places of work. Further, the cconomic cost of supporitig a young family in recent times has often necessisized that women continue to work until all children have completed their educatien and have entered the workforee themselves. That is, they often continue to stay in tho labour foreo while the family is intact and living under the one roof - and then leave work when the nuelear family disintegrates as the children leave to pursue their own carcers and ife styles.

```
C
```


EJucation

Family Stability

Note: A Number of schools at 10 -year=old/14-year=0ld levels (weighted) $=$ = $271 / 256$.
b^{-}- Deximai- pronts have been omitted from, factor loadings, raw scone coefficiente and the regression constants,
 a high score on this

 situble sot of deseriptions of maxitil eharacteristics woupd provide idenfificitian of areas in which there was prosence or lack of familics. The six fersutase viriobles deseribed the percentages of ever mariod mutes or females who whe tryents of ape ar older and who were separated, divoreed, or witowed.

Thu results of the principal component analyses have been prosented in fihle lusis for this eluster of firiables the first principal component

 valus grenter than one The score cooffieients and donstants were
 hish seore on the component uspodated with the Family stability variable indicited sthool neighbourhoods with a low incidence of marital (and hence family) instability caused through separation, divoreo, or death.

The Fertility rariable employed by Shevky and Bell had close links With the sonstruct of Fumilith. This variable wis measured by ealculating

- - the ritio of the numpre of children under five yoars of age to the number of fombles aged 15 te 44 yoars = However, the use of thig variable would - have created some conceptial problems when appiod to the different age samples, for exmply, one would expect that school neighbourhoods assoc=, inted with schools it the 10 -veniocld level would have higher fertility sceres thingschools it the 14 -year-old level. This difference would be \therefore; experted hemuse finites in noighbourhoods having many io =yent-olds would be more likely to have ehildren under $\overline{5}$ years old than neighbourhoods having many $14=y e a r-i l d s$. This. difference would not necessarily indicate
, , the "proscnee or lich of families' but rather reflect th age difference in the target populaifions for ench sample.

The Fertility, viriable was therefore rejected and replaced by another viriable which was considered to hive less conceptual problems of inter-

\because llouse which was measured by the percentage of occupied dwellings which were sepirate houses: Th|s variable was selected to replace Fertility because $\therefore=$
 $191 \quad \therefore$

177 an integral fart of the vilue structure of She Australian fanily, Family. ownership of a separate house has been hoth er couraged and supported by Austidian povermments through low interest hosising loans and government 'grants' to famil Aps purchasing their first homes. The neknowledged and preferred fimily iftestye iñ hustraliahas meon ond with fomily ife in e onner-oceupied private homes which have gice funilable for girdens (kilmartin and Thorns; 197 S) .

The siugle Finily hrizing Units vitiohle emolnved hy Sherky and Bell wis neteptel with only acharige in flu wriable name *Thé Single Family Households viriable was measured by bilculating the pereentage of occupled

1 " ${ }^{4}$ -
; Ethifity The basie structure of the Shevky-Bell. Segregation lndex

 mud Negrtes, were not releveant to Australin anci were excluded. Therefore the measure of the thititz eonstruct wis limited to the percentage of the cotal population born if hon =foglish=speding Eupopean countries.

The Shevky-Bell Molel Fictorial Investigationn

The ut/lity of the Shevky Bel-i model for the stidy of residential hiffors entiation associated with school neighbourhoods depended-upen-its feapacity to dofine threedistinct dimensions, corresponding to the three shevky Beli constructs, which wôlu provide a meaningful basis for the description. and comparison of school neighbourhoods, The original fommution of the motel by Shevky and Bel! (1955) merely sugestecl that the variablos within each construct 'grouping'should be simply added topether forlowing a 'standardization' method based on score ranges. (Shevky and Bell, 1955:67-68).

Kather thin accept these simple sumation "proceduries for the construction of the Shevky=Bell dimonsions it was decidec to test the 'fit' of the pogtulated egnstructs to the school neighourhood data which were available to describe the varinbles purpoitedsto meisure these constructs; The tech =
$=$ - niques of principal compone andyyis and obliscue factorirotation were selected td provide empiridal information with cespect to the appropriate= ness of the variable 'groupings' and with respect to the meber and nature \qquad - of the dimonsions of shool neighbourhoodrosidential difforentiation

This factor analytic strategy was similar to the iine of argument presented in Bell's (iges) iñitial validatio-n study.

At the first stage of investi gation a principal coimponent añalysis was condueted ori the cortulations betweeil the six variables described in - Table 10.4: Since the Shevky-Bell - model had postulated the existence of three"dimensions, the principal co-mponent solution was constrained to extract only three components, The component loadings associated with sach age lovel have been presentodis in Table 10.6 . At the 10 -year-old and 14-year-old 1 evels the three $=o m p o n e n t s$ accounted for 87 per cent and 90 per cent of the varianco rospectively,

An inspece ion of tho component lodings in Table $10 ; 6$ showed that neithor a consìstent nor a cleare tiructure emerged neross age levels. - For example, at the 10 -yearold 1 ve, the first component appeared to

- represent a combined socioeconomic statusethnicity dimension, while at - the $14=v e a r-o l d$ level tho first component represiented an even less clear dimension which combined the socioseconomie status, ethicity and familism variables. The clearost component to emarge at. both age levels was the
 variable and telatively low loadinegs for all other variables.
" Since the Shevkymell model mizd not specify that the three constructs described orthogonal dimensions, t. t was decided to conduct an oblique rotation of the principal componemet solution in order to examine the effect -of relaxing the cotistraint of dimensionil orthogonality on the structure of
 level have been $\overline{\text { presented }} \mathrm{in}$ Tabl $=510.7,10.8$ and 10.9 .

The 'oblimin' method dovclopes by Carroil (1958) was used to conduct the factor rotation. The ganma ch-iterion was set ativiory low value of o. ol in order to place a promium $0=\bar{n}$ the clarity of the factor structure. " wíthout emphasiz zing attempty to ho-1d thé obíique solution near to añ orthogonal soluxtion. In this sens=e the derived oblique solution approx= imated the 'quartimin'. method whicoin was doveloped by Carroll (1953) as a special case of the 'oblimin' approach for the gamma criterion set at zero.

The use of oblique fnctor rot $=$ ation provided three matrices: the primary pattern matrix (which replesented the regression coefficients of the variables on the factors), the primary structure matrix (which represented the corre $\overline{\text { entations of the vari ables with the factors); and the }}$ correlation matrix for the primaty factors.

Table 10.6 Principal Component Factor Loadings for the Three Factor Solution 0btained frome the Six Shevky-Bell Variables 10-Yerr-O1d Schools and 14 -Year-01d Schools.

Note: a Number of schools at 10-yepr-old/14-year-old levels (weighted).

b Decimal points have been ornitted from factor loadings.

The key matrix for factor intexp工etation was the primary pattern 9 matrix (Rummel, 1970:401). This matr至× has been presented in Table 10.7. It is important to note that, since the primary pattern factor loadings are equivalent to the co-ordinates of the variable with respect to the primary factor axes, thabsolute valcues of primary pattern'loadings may

In comparison to tho principal component solution the pattern factor loadings at both age levels provided an extremely clear picturé öf three distinet factors which corresponded derectly with Shevky and Bell's constricts. The first factor had higla positive loadings on the Separate * House, Family Stability, and Single Pemily, Household variables, and almost zero level loadings on all othẹr varizales. This factori. was clearly represerating the 'Familim' dimension - The second factor represented the 'Socioeconomic Status' dimension becarase it had extremely high positive loadings on the Edueation and Occupats on variables, and low loadings on all othex variables, Similarly, the hird factor was clearly the 'Ethnicizt' dimension because it had high positive loading on the Europeaxi Born variable and low loadings on all other variables.

1850

194

Table 10.7 Pattem Factor Loadings Obtained Following the oblimin Rotation of the Three-Factor Solution (10-Year-01d Schools and 14 -Yeat-01d Schools)

Variable	Patteril Factor Loadings					
	10-Year-01d			14-Year-01d		
	I	${ }^{\text {I I }}$	IIII	I	II	ITT
Education	-02	98	06	-02	99	03
Occupation	03	96	-07	02	96	- $=06$
Separate House	84	-14	-05	85	-14	-16
Family Stability	94	- 04	10	96	0.2	10
Single Family Households	-86	10	-06	89	10	04
Europeart Born. .	02	00	100	03	-03	100

Note: a Number of schools at 10-year-old/14-year-old level (weighted) $=271 / 256$.
b Decimal points have been smitted from factor loadings
c Factors wore rotated by using the 'oblimin' technique with the gamma function set at 0.01 (Rumme1, 1970:415).

A striking feature of the pattern factor loadings across age levels was the similarity in magnitude and direction of the luadings. Many loadings had the same value at both age levels and, except for two loadings, the difference between particular lödings across age levels did not exceed $\pm_{0.03}$. The similarity of the loadings across age levels showed that, not only did the three Shevky=Bell constructs emerge as very clear dimensions, but also that the yariable weightings for the dimensions measured by the primary pattern factors were effectively equivalent for both age groups.

The primary factor structure matrix for each age level has been described in Table 10.8. The loadings in this matrix indicated that some : degree of factor intercorrelation was present. If the factors had been ; orthogonal then the pattern and structure matrices would have been equivalent (Rumiel, 1970:399). The most noticeable feature of the structure

- matrix at both age ${ }^{\text {slevels was the relatively high negative correlation }}$ between the European Born variable and the first oblique factor which was described above as the 'Familism' dimension. This negative correlation' suggested that, since the Ethnicity dimension was effectively only measured by the European Born variable, there would also be a negative correlation betweent the Familism and Ethnicity dimensions at both age levels.

Voriable						
	10-Year-01d			14-Year-01d		
	I	II	IIII	I	II.	ITI
Education	-07	97	-05	13.	98	-14
- Occupation	03	97	-19	20	98	-24
Separate House*.	86	-16	-32	88	02	-43
Family Stability	90	00	-22	93	16	-24
Single Fumily Households	88	09	-36	89	24.	-30.
European Born	-32	-12	- 99	-33	-20	99

Note: a Number of schools at 10 -year $=01 d / 14$-year-old lovels (weighted) $=271 / 256$.
b Decimal points have been onitted from factor loadings.
c Factors were rotated by using the 'oblimin' technique with the gamma function set at 0.01 (Runme1, $1970 ; 415$).

Similarly, the small loadings of the Education and ocupation variablen on the Familism factor af the 10 -year-old level suggested a degree of orthogonality between the Socíoeconomic Stacus factor and the Familism factor. The corresponding loadings at the 14 -year-oid level inferreda small positive correlation between these factors.

In Table 10.9 the correlations between factors, vithin and across age groups; have been presented. Within each age group the corfelations between factors have been presented in the upper left-hand matrix and the lower right-hand matrix. The factor intercorrelations support the clues; which were given by the structure loadings. At both age levels the correlation between the Familism and Ethnicity factors was a moderate negative value: -0.34 at the 10 -year-old level and $=0.36$ at the 14 -year old level. The correlation between the Socioeconomic Status and Familism factors was close to zero at the 10 -year-old level and took's small positive value of 0.16 at the $14=y$ ear $=0$ ld level. Small negative correl $=$ ations $\mathrm{ci}^{2}=0.12$ at the 10 -year-old level and -0.18 at the 14 -year-old level were obtained for the Socioeconomic Status and Ethnicity factors.

Table 10.9 : Correlations Between the Sheuky-Seli Dimenisions Developed at Each Age Level (Within and tcross 10 -Year-0ld Schools and 14 -Year=01d School5)

10-Year-01d Factors Applied to 10 -Year-01d Schools

Note: a Number of schools at 10 =year-old/14-year-old levels (weighted) $=271 / 256$.
b Decimal points have been omitted from correlation coefficients.
c The correlation coefficients, in the diagonals of the upper right hand matrix and the lower left hand matrix ranged from 0.9966 to 0.9997.

The matrices in the top right-hand corner and lower left-hand corner of Table $10.9^{\text {a }}$ have listed the correlations between the 10 -yenr-old factors and the 14 -year-old factors scored for 10 -year-old schools; and the correlations between the 14 -year=old factors and the 10 -year-old factors scored for 14 -year-old schools, respectively. The most interesting feature of these matriçs was the unities in the diagonals of these matrices. "These unities showed that, although the factors had been developed in separate analyses within age groups, they were measuring precisely the same dimensions across age groups. This finding supported the earlier discussion eoncerning the similarity in pattern loadings acrose the age levels'in Table 10.7.

Some further analyses were conducted to investigate the suitability of the construct names" attached to the three factors which had emerged at each age level. A list of varighles was prepared which provided inform..ation about sthool neighbourhoods with respect to socioeconomic, familism \therefore and ethicity characteristics. The correlations botween each of the three
factors and the variables on this list were then calculated. Only variables which hed not been used in the construction of the factors werie listed. The correlations between the factors and the list of variables at each ag. level have been presented in Table 10.10.

At both age levels the Socioeconomic Status factor showed high, posit correlations with the percentages of the ferbale workforce in professional. ; administrative/executive/managerial, and clerical occupations, This ferte also showed high positive correlations with the percentage of dwellingzs having seven or more rooms. These correlations were supportive of the n me - which had been giver to the Socioeconomic status factor because it whr expected that high scores on the factor would also identify school neiphtbourhoods with high concentrations of white collar-professional workforse members, and with high concentrations of large (and expensive) occupied private dwellings.

The correlations between the Familism factor and the variables selected to describe familism characteristics were also supportive of the name given to this factor. High positive correlations were obtained between the factor and variables describing concentration of children (age ranges of $0-4,5-9$, and $10-14$) and low to mediun positive correlations for the vari= able describing the concentration of adults in the 'child rearing' age" grotise (age range $25-44$). High negative correlations were obtained for the - variables describing concentrations of young adults (age range 20=24) and older/retired age level adults (age ranges $45-64,65+$). The age profile . reflected in the pattern of correlations showed that the Familism factor formed a dimension which separated school neighbourhoods on the basis of age cohorts which reflected the critical yenrs of family life.

These results were further supported by the corrolations between the Familism factor and the variables describing the number of inmates per dvelling. High nogative correlations were obtained for the variables which - described the concentration of dwellings having only one or twh inmates, while positive and high positive correlations were noted for three, four or five inmates. The density-of=Ating profile reflected in these correl ations showed that the Familism factor wes discriminating between living arrangements which wotyd be typical of fustralian families (two parents and one, two, or three children per dwelling), and living arrangements which would be typical of young adults, broken families, older/retired adults "(one or two" persons per dwelling).

Tuble $10.10 \quad$ Correlations Botween the Sheviy－Beli Dimensions and a \quad Subset of Fercentage Variables（ 10 －Year－old Schools and $14-$ Year－01d Schoós）

Percentage Variable	Shevky－Bell Dimension					
	Socio	conom		1 sm	Ethn	city
	10	14	10	14.	10	14
Souloeconomic Descriptors						
\％ŌCC PROF（FM）	59	66^{*}	－16	06	－31	－44
或 OCC ADM／EXEC／MAN（FM）	44	42	$=06$	$=03$	－19	$=25$
\％OCU CLERICAL（FM）	60	58	09	12	09	03
－DWEL：7＊ROOMS	49	66	－07	14	－32	$=41$
Familism Duscriptors						
－${ }^{\text {a }}$ AGE 0＝4（POP）	－13	－22	51	59	－05＊	－01
晏 AGE 5－9（POP）	－26	＝15	61	57	－ 19	－ 10
\％ AGE 10－14（POP）	－30	－05	$48=$	58	－29	$=31$
\％AGE 15－19（POP）	－12	－11	＝05	11	－04	－09
\％AGE 20－24（POP）．	－01	－14	$=47$	－64	38	39
\％AGE 25－44（POP）	14	09	35	． 17	23	40
\％AGE 45－64（POP）	13	16	－47	－ 35	－06	$\cdots=09$
\％ AGE 65\％．（POP）	18	01	－57	－42	－02	－18
$\%^{6}$ DWEL 1 INMATE	09	－05	－74	－71	04	$=01$
者 DWEL： 2 INMATES	27	07	－5	－42	－06	－20
－DWEL： 3 INMATES	13	15	16	14	18	16
＂3 DWEL行 4 INMATES	－02	20	68	60	05	18
\％DWEL̇： 5 INMATES	－10	08	66	67	$=06$	－02
Ethnicity Descriptors			＇			
产．PROTESTANT RELIG ${ }^{\text {a }}$	0.7	07	26	38	－49	－48
－CHURCH OF E RELTU	05	21	23	14	$\therefore 49$	－5 $\overline{5}$
－CATHOLIC RELIG	－17	－3．3	＝18	＝20	． 64	58

```
Note: a Number of schools at 10-year-old/14-year-old levels
                (weighted) = 271/256.
            b Decimal points have been omitted from correlation coeffieient.
            c Confidence limits for córrelatioñ coefficients based on two
        standard errops were }\pm0.07\mathrm{ for 10-year-old schools and $0.08
        for 14-year-old schools (See Table 8.5, footnote c):.
```

185

199

The Ethicity factor was piincipally dominated by a single variable, European Born; and therefore was not subject to questions of appropriate labelling as were the other two factors. Howover, follawing Jones (1969) approach, several variables associated with religions affiliation were selected as surrogaté measures of the ethnicity of school neighbourhoods: The profile"of correlations showed that the Ethnicity factor formed a dimension which separated the religious affiliation typical of many fersons of Australian/English-born origin (Church of England, Protestant) from the religious affiliation typical of many persons of European origin (Catholic).

Relationships' Between the Shevky-Bell Dimensions ind the SR(ALL) Indicator

Correlational Associations
The bivariate relationships between the SR (ALL) indicator, and the three Shevky-Boly dimensions were examined by calculating corrolation coeff= icients. These coefficients have been listed in Table 10.11. The Socion economic status dimension had high positive correlations of 0.84 and 0.75 with the indicator scores, at the 10 -year-old and 14 ,your-old levels respectively. similar medium sized negative correlations of -0.43 and -0.46 were obtained for the Ethnicity dimension at both age levels. The Familism dimension' showed considerable differences between age levels with respect to the magnitude of its correlations with the SR(ALL) indicator: at the 10 -year-old lovel the Familism dimension had a small positive correlation of 0.16 with the indicator, but at the 14 -year-old level this correlation was a substantially laiger value of 0:46.

At both age levels, the $\operatorname{SR}(A L L)$ indicator appeared to be a complex \because mixture of the three Shevky-Bell dimensions. This complex mixture was dominated by the Sociocconomic Status dimension at the 10 -year-old level. Whereas at the 14 -year-old level there were relatively more eventy distributed associations between the $S R(A L L)$ indicator and the three dimensions.

On the final, line of Table 10.11 the multiple correlation coefficients for the Shevky-Bell dimensions as predictors ef the SR(ALL) indicator have been listed. These high values, of 0.90 and 0.86 for $10=y e a r-o l d$ and $14=$. year-old schools respectively, showed that the factor assessed by the SR(ALL) indicator was almost eompletely accounted for by the three dimensions combined into a simple additive mode 1 : Therefore, before prosceding to further analyses, the capacity of these three dimensions in explaining variation in sthool mean achievement scores was compared with the SR(ALL) indicator.

bivariate relationships between the SR(ALL) indicate $=r$ and the three dimensions'. The formula required for this technique e have been described U in detail by Mayeske et al (1969).

For each dimension the total variance 'explained', represented by the squares of the bivariate correlation coofficiontres in Table 10.11, was divided into a unique component, two pair-wise components, and a three-way component. The unique component represented that part of the total 'explanatory' power of a dimension which could be attributed solely to the particular dimension. The pairwise component z represented the part which could only be attributed to two dimensions jointly and,: because of the "intercorrolation between dimensions, eacould not be 'disentangled' into separate unique component . The threse-way component similarly represented the part which could only beratitributed to the three dimensions jointly.

The results of the commonality analyses have been presented in Table 10.13. By examining each colum of the table was possible to identify the unique and common sources of the total correlational association between each dimension and the $\mathrm{SR}(\mathrm{ALL}$) indiedrar. "For example, at the 10 -year-old level, socioeconomic Status accoursted for a total of 70 per cent of the variance in the $S R$ (ALL) indicator This total of 70 per cent; derived from the square of the bivariate correlation, resulted from 63 per cent being uniquely associated with Loci \Longrightarrow economic Status and 8 per cent in common between Socioeconomic Status and Ethnicity. The components which were associated with the common contribution of Socioeconomic Status and Familim, and the common contribution of all three dimensions, were both zero.

At both. age levels the general pattern of resultars_showed that the unique contribution of Socioeconomic status was very large compared with. either the unique contributions of Familism and Ethn是百city or the pairwise and three-way contributions of the dimensions.

At the 10-year-old level the total Familism con ribution of ${ }^{*}$. z per cent was solely attributable to the common component assoc fated with Familism and Ethnicity ${ }^{*}$ This result contrasted markedly with the relatively larger unique and common components associated with Fanilisma for the 14--year-old schools: At the 14-year-old level the unique and comenmon contributions of Familism and Ethnicity dimensions were almost exactly equivalent. At both :

of both the primary factor patterns and the factor intercorrelations across age levels demonstrated the congruence of each of the three ShevkyBell dimensions for school neighbourhoods surrounding both the 10 -year-old and 14-year-oid sample schools. While these results paralleled many finding in social geography coneeming the factorial structure of $=$ residential differentiation, some cautions should be expressed with respect to the sufficiency of the Shevky-Bell model.

The very nature of the data collected by census authorities in most countries of the world has placed iimitations on the types of solutions which might omerge from factor analytic investigations of residential differentiation. The bulk of these data have ierally been collected according to content areas which can readily ; suped on the basis of inspection, and without sophisticated multivariate analyses, into the same three groupings described by the Shevky-Bell dimensions. Consequently, the consistent emergence of the three Shevky=Bell dimensions in a range of social settings may well reflect the nature of available data.

It was therefore possible to postulate, but not check empi*ically, that the Shevky-Bell model provided three necessary but not sufficient dimensions with which residential differentiation among Australian school neighbourhoods could be described. Evaltation of this postulate would necessitate the collection of larger and more wide-ranging bodies of census data - an action which governments would be unlikely to support merely in order to satisfy the curiosities of social geographers.

The second stage of the analyses examined the associations between the Shevky-Bell dimensions and the SR(ALL) :indicator of educational disadvantage. "These añlyses were conducted iñ order to provide-a more parsimonious and more readily interpretable description of the 'meaning' of the indicator scores in terms of the social characteristics of sehool neighbourhoods described by the Shevky-Bell dimensions than could be ascertained by simple inspection of the indicator's component parts or census correlates.

The restults of the second stage of the analyses demonstrated that the SR(ALL) indicator exhibited a complex overlapping pattern of assoc= iations with respect to three dimensions of school neighbourhood residential differentiation: Socioeconomic Status, Familism, Ethnicity. This pattern tended to be dominated by the Socioeconomic Status dimension -
but not to the extent that it was possible to ignore both the familism and Ethnicity dimensions by labelling the SR(ALL) indicator as a measure of socioeconomie status', Rather, the scores denived from the "SR (ALL) indicator appeared to represent a summary measure of anetwork of inter= related social features which closely covaried in geographieal space with school mean achievement levels. This network presented a picture of the 'social landscape' surrounding the educationaliy disadvantaged schōol as one in which there were:

- high concentrations of persons in the economicaliy and socialiy vulnerable position of having kow levels of educationdl attain= ment and low levels of occupational skill,
- low concentrations of persons living according to a popular 'model̄' of Australíañ fanily life characterized by single family households, stable families/marriages, and separate dwellings,
- high concentrations of persons likely to have English language communication difficưties because they were born in non=Englishspeaking European countries.

The interpretation of the results of the second stago analyses must be approached with caution in order to avoid the possibility of involve= ment with 'ecological fallacies' (Alker, 1969). The 'social landscape' described above emerged from the correlational result that the dimensions of Soeloéconomic Status, Familism, and Ethnicity displayed the property of covarying in geographical space with scores derived from the sR(ALL) indicator: This property enabled a parsimonious description to be made of the 'meaning' of the SR(ALL) indicator scores in terms of the dimensions $=-$ of residential differentiation among sinool neighbourhoods. There has been no attempt to discuss these relationships at the individual student level nor to imply that causal connections might exist between the many vaíiables which have been included individually and as composites in these analyses. Consequently, the 'social landscape' described above should not be treated as being either necessarily characteristic of the particular home environments of students who atteñd educationally disadvantaged schoōs; ōr being necessarily a set of causal envirommental condítons which cause educational disadvantage.
192.

CHAPTER 11

CONCLUSION

An Outinne of the Study

The main ain of this study was to develop, validate, and describe the properties of a nationai indicator; based on census descriptions of school neighbourhoods, which could be used to guide policies desigñé to aliocate supplementary resources to educationally disadvantaged sehools.

As the first stage of this study a detailed review was undertaken in order to examine resource allocation responses which have been made to the changing concept of equality of educationai opportunity; As part of this review, a description was presented of the structure of indicators which have formed integral parts of these resource allocation responses in Australia, United States, and United Kingdom. This first stage was followed by the development of a theoretical model that examined the influence of using indicators to identify educationally, disadvantaged schools on the accuracy. with which resources could be delivered to those students who were iñ need of assistance.

A program of reséarch, based upon the results of these initial analyses, was designed to develop several indicators of educational disadvantage which would atoid the inadequacies of manj of the currently available indicators. These indicators were based on census descriptions of school neighbourhoods and they were prepared so as to optimize the correlations between the indicators and school mean scores on a test of Word Knowledge.

The performance of these indicators was then compared with respect. to their capacity to (1) predict school mean achievement scores; (2) prediet the incidence of social and learning handicaps within schools, (3) maintain predictive power with respect to school mean achievement scores when applied to different samples of schools and students, (4) apply to schools in general Without the need for supplementary information describing school location and school system, and (5) display high levels of accuracy associnted with the identification of students whe were in need of assistance.

The indicator with the best overall performance was exanined with respect to the dimensions of residential differentiation associated with
the Shevky-Be model. Those analyses were designed to establish whether the information obtained from this indicator was amenable to a more readily interpretable description than would be ascertained by simple inspection of the indicator's component parts or census correlates. It was demon= strated that neighbourhoods associated with educationally disadvantaged schools were characterized by an overlapping network of social features associated with the socioeconomic status, ethnicity, and family living arrangements of the community.

The Policy Contributions of the Study

1 The Nature of Student Variation Within and Between Schools and its

 Influence on the use of Indicators of Educational Disadvantage.This study has shown that resource allocation programs, designed to assist educationally disadvantaged students, which employ schools as the units of identification and funding must take into account the nature of the . variation in student characteristics within and between schools.

It was demonstrated that if the distribution of the criterion measure of educational disadvantage was mostly associated with variation between schools then the majority of educationally disadvantaged students would be located in schools with low mean eriterion scores. In this situation, resource allocation based on the selection of schools with low mean scores would result in an accurate delivery of resources to those students who were in need of assistance. Conversely, if the distribution of the eriterion measure was mostly associated with variation between students within schools then all schools would contain similar proportions of educationally disadvantaged students $=$ with the result that resource allocation to schools with low mean scores would be very inaccurate.

The nature of student variation in Aüstralian schools-was-found-to be more similar to the second of these two extremes when a test of Word Knowledge was used as the criterion measure. For example, estimates derived from the theoretical model described in Chapter 3 suggested that. the lowest 10 per cent of Australian schools would have 33 per cent of their students below the loth percentile for students, and 20 per cent above the 50th percentile for students:

When compared with a range of developed countries these figures suggested that, when a test of Word Knowledge was used as the criterion
measure, Australin was a relatively less appropriate setting for resource allocation programs which employed schools as the units of identification and Eunding.

This result did not automatically imply that students would be the most suitable uñits of identification and funding in Australīa because the 'gains' associated with inereased accuracy in tine delivery of resources to students who were in need of assistance might be nore than offset by the 'losses' associated with; for example, pedagogical probleris of 'streaming' which could result from assisting subgroups of students within schools. However, this result did indicate that policy makers should be aware that the pathway to accuracy in resource allocation was concermed"; not only with the use of appropriate indicators but also with the nature of the variation of student characteristics within and between schools. 2 The Development and Evaluation of an Indicator for the Ifentification of Educationaliy Disadvantaged Schools in Australia.

This study has shown that it was possible to construct an indicator of educational disadvantage, based on census descriptions of school neighbourhooes, that had a range of properties which were superior to indicators currently being used by Australian school systems: This indicator was constructed by using stepvise regression analysis in which variables describing aspects of both the social and buil environments of school neighbourhoods were candidates for inclusion in the indicator.

The use of this indicator to guide the allocation of resources to educationally disadvantaged schōols iñ Australia would be associated with a number of important benefits.
(a) The Construct of 'Disadvantaged': The indicator was designed to be in close agreement with the definition of 'disadvantaged' employed by the Australian schools Comission to identify schools for participatíon in the Disadvantaged Schools Program (Karmel, 1975:92). In accordance with this definition the indicator (1) was constructed solely from inforimation describing school neighbourhoods, and (2) employed a suitable criterion measure to ensure that this information described school neighbourhood characteristics, associated with a low capacity to take advantage of educational facilities.
(b) Statistical Properties. The analyses which were employed during the indicator development and valídation phases of the study revealed that the indicator possessed a number of important statistical properties.
(i) Tho predictive power of the indicator with respect to selool mean achievement scores on a test of word knowledge was shown to be at least equivalent to an achievement-scaled indicator developed from a detailed evaluation of the home environments of students who attend Australiañ schools.
(ii) The indicator was exanined in terns of its capacity to identify students who were in most need of assistance in the basic skills of literacy and Numeracy. In particular; quantitative descriptions weré - prepared which summarized the accuracy with which the indicator could be used to identify the percentages of students below the 10th and 20th percentiles for students on tests of Literacy and Numerncy who were âttending schools below the 10 th and 20 th percentiles for schools on the indicator scores.

For example, at the secondary school level, the lowest 10 per cent of schools on the indicator contained 34 per cent of students who were below, the loth percentile for students on the test of Literacy and 17 per cent who were above the national median on the test of Literacy. These two percentages compared favourably with the 'optimal' estimates of 36 per cent and 17 per cent, respectively; which had been obtained from the theoretical model.
fisi) The development of the indicator was accompanied by a detailed examination of important correlational properties of the indicator scores. For example, data wore presented to show that the indicator (i) was highly correlated with school mean achievement scores on tests of Word Knowledge, Literacy, and Numeracy, (2) was significantly correlated with measures which described the incidence of social and learning handicaps within schools; (3) was high1y correlated with a range of censur-based descriptions of school neighbourhoods which have commonly been seen as being syinonymous with disadvantage, deprivation, or poverty; and (4) had relatively invarianc correlational associations with school mean achievement scopres when supple= mentary inforination describing Type of School (Government, Catholic; Independent) añ School Locatión (Metropolitani, Non-Metropolitan) was added to the indicator
(c) Administrative Properties: The indicator was construeted from census data and was based on national samples of Austrailan schools. These : procedures gave the indicator several important characteristics which would encourage its acceptance as a national indicator of educational disadvantage.
(i) The indieator scores were prepared from-simple weighted combin= ations of variables constructed from widely available census data, Consequently, the construction of an indicator score for a particnlar scheni would be well with脌 the capabilities of the staff and parents assuciated with Australian schools. This simplicity of construction was extremely important because it would minimize the errors, effort, and resources required to prepare indicator scores, and also would enable a wider range of people to discuss and debate the suitability of the indicator for the identification of disadvantaged schools.
(ii) The indicator scores were Frepared from census data without requit ${ }^{\circ} \mathrm{rg}$ g the use of personal information which describel individual students or their families. This characteristic was considered to be highiy desirable because of the recent concerns being expressed in Australia :

* about the potential threat to personal privacy which has energed with the growing use of computer-stored data banks.
(iiii) The construction of the indicator scores for all Australian schools would require substantially less time, resources, and expertise in comparison with indicators developed by gathering detailed intormation about students from every school. The main task involved in preparing the indicator scores would be the linking of school eatchment areas to the appropriate census Collector's Districts. However, for the majority of schools, this linking operation could be readjiy carried out by using recoids available at the head offices, of the various school systems.
(iv) The indicator was prepared from national samples of schools in order to facilitate the identification of the most educationaliy disadvantaged primary and secondary schools across Australia. This property was constistent with the aim of the federal program which my intended to provide assistance to Australia's most disadvantaged schools irrespective of their location or the school system to which they belonged.

The Theoretical Contributions of the Study

1. The Accuracy Coefficient and the Leakage Coefficient

The Accuracy coefficient and the=Leakage coefficient were developed in order to make objective assessments of the accuracy associated with the delivery of supplementary educational resources to those students who were in most need of assistance. For the purposes of comparing the performance of the indicators of educational disadvantage prepared for this study,
the phrase 'those students who were in most need of assistance' was interpreted to mean 'those students having low scores on tests of basic Numeracy and Literacy skills'. However, the application of the concepts of Azcuracy and Leakage could be extended to other interpretations provided that suitable data were available. Some examples of alternative interpretations might be 'those students having parents with low incomes'; 'those students from single parent families', or 'those students living in geographically isolated environments '.

In Australia all of the above examples have at some time received high priority ${ }^{i}$ in the development of indicators of educational disadvantage. In future perhaps a completely new set of interpretations wii be selected. Nevertheless; the importance of the Accuracy and Leakage coefficients remains that, once consensus has been reached on a specific set of interpretations, the indicators may be compared objectively in terns of the nature of the students who are receiving the benefits of supplementary resources. These two statistics therefore offer an important avenue for avoiding the dangers of ecological or individualistic fallacies (Dagan and Rokkan, 1969) which have been inherent in approaches to indictor construction based on appeals to the face validity of component variables that have been aggregated to the school level or above.

2 . The Dimensions of Residential Differentiation Among Australian

School Neighbourhoods \square
\qquad
One of thenost is portant findings arising from this study was that it was possible to iss information which described the neighbourhoods from -which Australian schools obtained their students to predict school mean achievemont scores with approximately the same level of precision as may be obtained by using detailed information which described the home environments of students wee attend these schools. In both cases the percentage of variance explained in school mean achievement scores was around fifty per cent.

This finding was based on correlational associations at the between= school level of analysis. Suitable data were not available which would permit statements to be made as to whether aspects of the social structure of school neighbourhoods would provide independent contributions to the :explanation of variation in educational achievement at the between-student level of analysis.

Herbert's detailed review of the literature in this area concluded that 'the concept of a neighbourhood effect was intact as a contribution of some significance towards the understanding of differential educational performance' (Herbert, $1976: 15 \overline{3}$). However, he also emphasized that a great deal of the research into the educational signifficance of a 'neighbourhood effect' should be resarded as incomplete because mary studias liacked rigour in their approach to the development and measurement of the dimensions of residential differentiation,

In this study a detailed investigation was carioied out to determine whether Shovky and Bell's three dinensional model of residential differ= entiation would contribute to an understanding of the nature of residential differentiation among Australian school neighbourhoods. It was noted that certain aspects of the theoretical foundations of this model had received considerable criticism. In particular, some sociologists have questioned the validity of the model's implied causal link between societal scale and residential differentiation. At the same tine there has been substantial research support for the generality of Shevky and Bell's three dimensions: Socioeconomic Status, Familism; and Ethnicity,

The majority of this research support has been drawn from studies carried out in urban setinge by using census-defined geographic areas as units of analysis. Priō to the investigation carried out iñ this study there would appear to be no published researeh that has tested the applic= ability of the three dimensions when applied to school neighbourhoods which were spread across a whole nation.

The results of this investigation demonstrated that the three Shevky= Bell dimensions emerged as distinct factors of residential differentiation among school neighbourhoods. In addition; the meaningtulness of the names that Shevky and Bell had associated with these dineñsions was established by comparison with an independent set of variables which described aspects of the social structure of school neighbourhoods.

It must be conceded that these results did not suggest that the Shevky-Bell dimensions represented a sufficient solution for explaining residential differentiation among school neighbourhoods = An evaluation of the sufficiency of these dimensions would require the collection as more wide-ranging bodies of data than are currentiy collected by census authoritles. However, the clear emergence of the three Shevky=Bell
dimensions in this study provided an extremely valuable framework for examining the 'social landscape' of neighbourhoods surrounding educationally disadvanraged schools.

In recont years Australian fducation systems have encouraged local community involvement in decisions concerning the mañagement and curriculum of schools: These initiatives will inevitably lead to a growing conles cence between each school's educational program and the needs and aspirations of its surrounding neighbourhood. Consequently, the methodology and results of the investigation of the dimensions of school neighbourhood residential differentiotion which have been reported in this study should prove to be of consíderable importance to future research aimed at understanding the processes and products of Australinan schools.

A Conciuding Comment

The allocation of supplenentary resources in prograns designed to alleviate the educatioñin consequences of poverty, ieprivation, or disadvantage has requised an anmul multionilion dollai investment in education by govern=. ments in the minted States, the United kingdom, and Austrailia: The ínplementativn of these programs has been accompanied by debate concerning two main issues: the magnitude of the effects of the programs on part= icipating studeñes, and the construction of indicators which would assist with decision concerning the delivery of supplementary rosources to those students whom the programs wero intonded to assist,

The tirst issue has been subjected to a considerable amount of research in the United States. The results of this researeh have not been conclusive because several of the key evaluation studies have received substantial methodological eriticisms with respect to the appropriateness of their criterion measures and the validity of their research designs when applied to experiments conducted in naturalistic settings. It seems that a clear judgement coricerning the magnitude of the effects of these programs will need to await the results of carefully planed iongitudinal studies.

In contrast the second issue has received relntively little research attention= The majority of the work in this area has been confined to reports which document procedures for the construction of indicators for specific programs: These feports have rarely included detailed infomation which describes either the relationships between the indicators and other suitable criterion variables; or the characteristics of studentis who

2 童

receive bencfits from these programs. The rationales which have been presented in support of indicator construction procedures have therefore often been restricted to arguments that have concentrazed on the face validity of the variables used in their construction. Since the indicators have generally been constructed from highly aggregated data, and have been employed to select groups of students rather than individual students, these arguments must be viewed with extreme caution in order to avoid the dongers of ecological or individualistic fallacies.

This study has contributed to the debate on the second issue by emphasizing several important points whìch should be acknowledged during the construction of indicators for programs designed to assist students who attend educationally disadvantaged sehools:

- That the selection of schools rather than individual students for participation in these programs places upper limits on the performance of indicatorg in terms of their capacity to deliver resources to those students who arg in most need of assistance.

That the upper limits of indicator perfornance in these programs are a function of the variation in student characteristics within and between schools.
. That indicator performance in these programs may be compared objectively by using the Accuracy and Leakage coéfficients to assess the characteristics of participating students.

These three points formed an integral part of the methodology that was adopted in this sțudy for the development of an indicator of educational disadvantage which would be suitable for Australian schools. In : addition, analyses were presented which focused on these three points in order to demonstrate that there would be considerable differences between ten developed countries in the performance of this type of indicator. The diffeiences were shown to originate from differences between the countries with respect to the variation of student characteristics within and between sehools.

In recent years the economic circumstances of many countries have resulted in widespread public demands for accountability in government expenditure. These demands will inevitably challenge the future survival - of educational programs lesigned to assist special subgroups of students unless it can be denonstrated that resources have been allocated in an a

```
% 201 215
```

accurate fashion to the appropiriate schools and students. This study has described the constrmetion of an indicator that could be used to guide decisions concerning resource allocation in Australia - however many aspecs of the methodology which were employed to develop this indicator shouid prove to be useful for similar programs in other countries.

REFERENCES

heland, H. What is a bad school? New Society, 9 September 1971, pp. 450:453.
 (Eds.). Quantitative ecological analysis in the soeial sciences. Cambridge, Mass.; Massachusetts Institute of Technology, Press, 1969.

Alien, M.J., and len; W.M: Introduction to measurement theory. Monterey; Calif. : Brooks/Cole; 1979 .
 Pardon u, but what was that question again? A response to the crivique of the Follow Through evaluation. Harvard Educational : Review, $1978,48,161-170$.

Anderson, T.R, and Bean, L.L. The Shevky-Bell social areas: Confirmation of results and a reinterpretation. Social Fovess, 1961, 40, $119=124$.

Anderson, T.R., and Egeland, J.A. Spatial aspects of social area analysis. Anerican Sociological Review, 1961, 26, 392-398.
 Mass : Lexington Books, 1976.

- Australia. Commonwealth Bureau of Census and Statistics (CBCS). Magnetic tape summari : of collector's district data: Technical specifications: Canberra: CBCS, 1971.

Australia. Commonwealth Bureau of Census and Statistics. (CBCS) . Decode notes: Level of schooling, Paper issued by CBCS, Canberra, n. \mathbf{d}. ($\overline{\text { a }}$

Australia. Commonwealth Bureau of Census and Statistics (CBCS) D Decode notes: Occupation. Paper issued by CBCS, Canberra, $\bar{n} . d$. (b)

Australia. Schools Commissioni. Report for the triennium $1976=78$.

Australia. Schools Commission, Interim Committee, Schoolsin Austrainas: Report of the Interim Cominttee for the Australian Schools. Commission: (Chaiman: P.H. Karmel), Canberia: 1973.

Austraiia, Schools Commission. Report; Roliing triennium 1977-79.
(Chairman: K, R. Mckinnon) Canberia: 1976 .
Australia. Schools. Commission. Analysis of the $19 \overline{7} 1$ Census data. Analysis for the Interim Schools Commission (ISC). Paper distributed to the Schools Commission Working Party on Disadvantaged Schools, Melbourne, Mărch 1980. (a)

Australia. Schools Commssion. Report of the Working Party to Review the Index of Disadvantage for the Disadvantaged Schools Program. Canberra: 1980 . (b)

Australian Bureau of Statistics (ABS). Classification of characteristics.

 Canberra: ABS, 1980.

Australian Council for Educational Research (ACER). Dovelopment of the roading tests. Hawthorn, Vic: : ACER, 1976 . (a)
Australian Council for Educational Research (ACER). Develcpment of the numeration tests. Hawthorn, Vic.: ACER, 1976. (b)

Averch, H.A., Carroll, S.J., Donaldson, T.S., Kiesling; H.J., and Pincus, J. How effective is schooling? A critical review and synthesis öf research findings: Santa Monica, Calif.: Rand Corporation,

Barnes, J.H., and Lucas, H. positive discrimination in educ̣ation, individuals, groups, and institutions: In T. Leggatt (Ed.); Social theory and survey research. London: Sage; 1974.

Beaton, A.E. Some mathematical and empirical properties of criterion'scaled variables, In G.W. Mayeske et al., A study of our nation's schools. (Appendix I).. Washington, D.C.: US Department of Health, Education, and Welfare, 1969.

Bell, D. On meritocracy and equality. In J. Karabel and A.H. Halsey (Eds.), Power and ideology in education. New York: Oxford University Press, 1977.

Beli, W. The social areas of the San Francisco Bay Region. American Sociological Review, 1953, 18, 59-47.

Beli, W, Economic, family, and ethnie status: An empirical'test. American Sociological Review; 1955, 20, 45-52.

Bell, $\mathrm{N}^{\text {: }}$ Urban neighbourhoods and individual behaviour, In M. Sherif", and C.W. Sherif (Edss), Problems of youth: Transition to adulthood in a changimg world. Chicago: Aldine, 1965°

Be11, W., and Moskos, C.C. A comment on Udry's 'Increasing scale and spatial differentiation'. Social Ferces, 1964 , 42, 414-417. ${ }^{\prime}$,

Benson, C.S:; Golđfinger;; P.M.; Hoàchlander; E.G., and Pers, J.S. plamiog: for educational reform: Financial ard social alternatives: - New York: Dodd ह Mead, 1974.

Berry, B. J L L Internal structure of the city, Law and Contemporary Problems, $1965,30,111-119$.

Blackburn, J. Title I funds allocation. Paper prepared for the Schools Comission Working Party on Disadvantaged Schools, Melbourne, October 1979: (a)

Blackburn, J. Selection of schools for participation in the Disadvantaged Schools Program: Some general issues. Paper presented to the Schools Comission Working Party ón Disadvantaged Schools, Melbourne, October 1979. (b)

Block，J，ll．（id．）．Mustery learn ning Theort and practice．New York： llolt，Rinehart é Wins ton， 1971.
－Broom，L．，Duncan－Jones，P．，Joness ，Fil，anc McDonneíl，$\overline{\mathrm{F}}$ ，Investigating social mobility：D D Partnental monograph No．1）Canberrá Australian National Dinivesty，Department of Sociology，1977．

Broom，L．，Jones，F．L．，and Zubrzmecki，J．A＝a occupational classification of the Austrilian wo kforce．A 3 stral in and New Zealand

Burgess，fili，The growth of the esity，In $\mathrm{R}=\mathrm{E}$ ．Park，E．W．Burgess，and R．D．Mckenzie（Eds．）\rightarrow Theity．Chicago Chicago University Press， 1925.

Burgèss，fik．Natural area．In \quad Gould an wi．Kolb（Eds．）A dictionary of the social seiencests．New Yo＝k：UNESCO，1964．

Carrọll，d，An analytical solumion for ap moximating simple structure in＊ factor analysis：psychotrika $=195 \overline{3}, 18,23=38$ ．
 in factor＂analysis，一是958．（Mim』o）

Cattell，i，B．Factor analysis：An introduc ion and manual for the psycho＝ logist and social sc lentist：N WW York：Harper g Row， 1952 ．

Ciark，C ．The conditions of econeamicjrogre $=$（2nd ed．）．New Yonk； St Martins Press， 19 홍．
Coleman；J．S．；Campbelí，E．Q．；Ho＝Son C．J．F Mcpartland，J．，Mood；A．M．， －Weinfeld，F．D．，and Yotk，R，Equality of educational opportunity，Washinzsston，DC：\quad 号 epartment of Health；Education， and Welfare，1966．（三事）
Coleman，J．s．Equal schools on extuil studen ts？Publíc Interest，1966， 1 ； $70-75=$（b）
 Educational Review； $1968,38,7-22$ ．
 Stockholm：Almquist k Wineli／N－Ev Tork：Wiley，1973．

Commonweilth Bureau of Census and．Stitistics（CBCS）．．．See Austrialia． Commonwealth Bureau of ofisus and Statistics．

Crittenden，B，Equality and edués ation，In－J．V．D！Cruz and P．J．Sheehan

 Austraian Counci for ducatio naal Research；1978：（a）

219

Crittenden, B. Arguments and assumptions of the harmel Reporet: A crítique. In J.V. D'Gruz and $\overline{\mathrm{F}} \cdot \boldsymbol{\mathrm { J }}$, Sheehan (hid.), The renew wion of Australian schools: A changing perplective in educational planníng: ${ }^{-}$Hawthōn; Vic.: Australial Council fom E Eucational Research, 1978 : (b)
de Silva; C. Non-government programs: Procedure for the inentification of schōols to be declared. Paper prosented to Fe Schools Comiajsion Working Party on Disadvantaged School s; Melbourne, : March 1980.

Dogañ; M, and Rokkan; S. Quantitative ecological analysis in \quad in social sciences. Cambridge, Masss: Massidusetts Insti- tuté of Technology Press, 1969.

Dyer, H.S. The measurement of educational opportunity. In F= Mosteller and D. $\overline{\mathrm{F}} . \mathrm{Moynihan} \mathrm{(E} \mathrm{\bar{s}}$) ; On equality of educati onal opportunity. New York: Random House, $19 \overline{72}$.

Emrick, J.A. Technical issues: Suitability, fesibility, mied cost implications of the use of performance oriteria. In S tanford Research Institute, The use of performance criteria to ail locate compensatory education funds. Menlo Park, Calif. Stamenford Research Institute, 1974

Feldmesser, R.A. The use of test scores as a basis for aliodeating educational resources: A synthesis and interprefation-s of knowledge and experience Princeton, NJ: Educational Tes ting Service, 1975.
a \qquad
Fortune, J. Data analysis of the $1969=70$ survey of compensat ory education (Title I): Washington, DC: US Offiee of Educati on, 1971.

Frankel, M. R. Inference from survey samples M empiricai i nvestigation. Ann Arbor; Mich;: Univergity of Michigan, instit ute for Social Research, 1971.

Glass, G.V. Data añalysis of the $1968-69$ survey of compensat ory education (Title I). Boulder, Colo: Univerity of Colofa-do, 1970 .

Gorcoñ, $E \cdot W$. Toward defining equality of educational opportunnity. In = F. Mostelíer and $\bar{D}=\mathrm{F}$. Moynihan (Edsi), on equali ty of educationaiopportunity: New York : Random House, $1 \overline{97} \bar{z}$.

Great Britain. Department of Education and Science. Ehildreman and their primary schools: Report of the Central Advisory Council for Education (England). Volume I: The report. (Ch-airman: Lady B. P1owdeñ). London: HMSO, 1967.
Guiford; J.P., and Fruchter, B. Fundamental stitisties in p . sychology and education: (5th ed.) Tokyo Mchaw-Hil1, 1973- $=$

Halsey, A.H. (Ed.). Educational priority, Volume I:EPA prob Iems and policies. London: HMSO, 1972.

Harris, C, D, and ilman, E. L. The nature of cites. Annateof the American A udemy of Political and Socini Science, $1945,242,7-1=2$

Hawl ey, A.ll., and Duncan, $0 . \bar{D}$. Social area anafysis: A critical aperaisal Land Economics; 1957 , $33,337=345$.
 R.J. Johnston (EdB.) , Social areas in cities, Volume II D Spatial perspectives on problems and policies. New Yoreme Wilev; 1976

Hodees, W. L . The worth of the Fol low Through experience, Harvard E-3ucational Review, 1978, 48; 186=192.
House, E.R., Glass, G. V., McLean, L. \bar{D}, , and Walkex, D.F. No simple dinswer: Coitique of Follow Through evaluaton liarvard Eucational Review, 1978, 48, 128-160.
lloyt, Il. The strueture and growth of residential neighbourhoods in American cities. Washington, DC: Foderal housing Aáninistration $=1939$.

HusEn, T. (Ed.) ; International study of achievement in mathematics: A comparisoñ of twelve countries. (2 vols.). Stockholm: Almquist E Wiksell/New York: Wiley, 1967.

Husen, T , Social background and educational career, Paris: oECD, Eenter for Educational Research and Innovation, $\overline{1} 972$.

Husbi, T: Talent, equality and meritocracy, Den Hag: Martinus Nij hoff, 1974, ©

 implementation: Ann Arbor, Mich. University of Michicgañ, ISR; 1973.

International Association for the Evaluation of Educational Achieveraent (íEA).
Betweon schools regressions: Population II. Computer Printouts prepared by $\overline{1} \bar{E} A$; Stockholm, Novenber 1972.
 and Michelson, S, Inequality: A reassessment of the e fect of fumíy and schōoling in America. New York Basic Book Bes, 1972 .

Johnston, RiJ. Urbañ residential patterns: Lonaon: Belis ig71:
Johriston; R.J. Residential area characteristics Research methods Cor
identifying urban sub=areas $=$ social area analysis and factorial identifying urban sub-areas = social area analysis and factorial
ecologies : In D. A . Herbert and R. in-cities, Volume-1-spatial processes and form: New Erork:
$=\quad=\quad$ Wiley, 1976.
Jones, F. L . Dimensions of urban social structure: The social areas of Melbourne, Australia, Canberra; Australiar National University Press, 1969.

Karmel, P.H. (Chairman) : See Austraiia. Schools Comnission. Interim Comittee.
Keeves, $J . \bar{P}$. Variation in mathematics education in Australia. Hawe horn, Vic: Australian Council for Educational Research; 1968.

207 - 221

Keeves, J. J^{\prime}. Children in special schools and special classes. In S. $\overline{\mathrm{F}}$. Bourke and $J . \Gamma=k e e v e s ~(E d s$,), Australian studies in school performance; Volume III: The mastery of literacy and numeracy: Canberra; AGPS, 1977,

Keeves, J. P. Approaches to the goal of educational equality: In J. V. D'Crus. and P.J. Sheehan (ifds:), The renewal of Australian schools: A changing perspective in educational planning: Hawthorm, Vic.: Australiañ Council for Educatioñal Research; 1978 .

Little, A, , and Stuith, G. Strategies of compensation: A review of educational projects for the disadvantaged in the United States. Paris: OECD; Center for Educational Research and Innovation, 1971.

Logañ, M.I., Maher, C.A., Mckay, J.; and Humphreys, J.S. Urban and regional Australia: Analysis and policy issues. Melbourne: Sorrett, 1975.

Mekimnon, K,R: (Chairman): See Australia. Schools Commission.
MeNenaŕ, Q. Psychological statistics. (4th ed.). New York: Willey, 1969.
Mayeske, 'G.W., Wisler, C.E., Beaton, A.E., Weinfeld, F.D.; Cohen, W.M., okada; T, Proshek, J. M. and Tabler, K.A. A study of our nation's schools. Washington, DC: US Department of Health, Education, and Welfare; 1969.

Meyer, J.K., and Levine, D.U. Identification of neighbourhood type and its utility in prediction of achievement. Kansas City, Missouri: University of Missouri, Center for the Study of Metropolitan Problems in Education, 1976.

Meyer, J.K. and Levine, D.U. Concentrated poverty and reading achievement ${ }^{-}$ in five big cities. Paper presented at the annual meeting of the American Educational Research Association, New York City, Apri1-1977.

Moi, H. Religion in Australia. Melbourne: Nelson, 1971.
Mood, A.M. Partítioning variance in multiple regression analyses as a tool for developing learning models. American Educational Research Journal; 1971, 8 , 191-202.

Mosteller, $F_{:}$, and Moynihan; D.P. (Eds.) On equality of educational. opportunity, New York: Random House, 1972.
Mosteller, F., and Tukey, W. © Data analysis including statistics. ${ }^{\text {E }}$ In G. Lindzey and E it Aronson (Eds.), The handbook of social psychology. (2nd ed.). Reading, Mass, Addison*Wesley, 1968 .
Mosteller, $F_{;}$, and Tukey; J. W, Data analysis and regression: A second course in statistics: Reading, Mass, : Addison-Wesley, 1977.

Murdie, R.A. Spatial forn in the residential mosaic. In D.T. Herbert and R.J. Johnston (Eds.), Social areas in cities, Volume I: Spatial processes and form. New York; Wiley, 1976.

Nadel, S:F. The foundations of social anthropology. London: Cohen \& West, 1953.

Neave, \dot{G}. Trends in research on the equality of educational opportunity. In M.D. Carelli and J.G. Morris (Eds.), Equality of opportunity reconsidered: Values in education for tomorrow: Proceedings of the Third European Colloquy for Directors of National Research Institutions in Education, Hamburg; September 1978. Hamburg: UNESCO/Swets \& Zeitiñger, 1979.

209

New South Wales, Dopartment of Education. Untitled paper presented to the Schools Commission Working Party. on Disadvantaged Schools, Melbourne, March 1980.
Nunnally, J.C. Psychometric theory. New York: McGraw-Hill, 1967.
Organisation for Economic Cooperation and bevelopment (OECD). Review of educational policy in the United States of Anerica: Examiners report and questions. (Restricted). Paris: OECD, 1979.

Orshansky, M. Counting the poor: Another look at the Poverty Profile. Social Security Bulletin, 1965, 28, 3-29.

Peaker, G.F. The presentation and analysis of the IEA evidence, IEA/B/57. Paper issued by the intemational Association for the Evaluation of Educational Achievement, Stockholm, 1968.

Peaker, G.F. Personal communication to J.P. Keeves, IEA/TR/123, 1973.
Peaker, G.F. An empirical study of education in twentysone countries: A technical report - Stockholn Almquist \& Wikseli/New York: Wiley, 1975 .

Plowden, Lady B. (Chairman) See Great Britain. Department of Education and Science.

Quenouille, M.J. Notes on bias in estimation. Biometrika, 1956, 43, 353-360.

Queensland. Department of Education. Methods of identification of special program schools in Queensland. Paper presented to the Schools Conmission Working Party on Disadvantaged Schools, Melbourne, October 1979.

Quie, A.H. Defining educational policy. In R.A. Feldmesser (Ed.), Speaking out: Law, education and politics: Proceedings of the Invitational Conference on Educational Assessment and Educational Policy, Princeton, March 1974 . Princeton, NJt Educational Testing Service, 1974.

Radford, W.C. Curriculum survey: Summary report to the Directors of Education. Melbourne: Australian Council for Educational Besearch; 1950.

Rees, P. H. :" Problems of classifying subareas within cities.- In B.J.L. Berry (Ed.), Gity classífication handbook - Methods and applications. New York :Wiley, 1972.

Robinson, C. The process of identification of disadvantaged schools 1981. Paper, issued by the Education Department, Victoria., Supplementary Grants Program, April 1981.

Robinson, W.S. Ecological correlations and the behaviour of individuals. American Sociological Review, 1950, 15, 351-357.

Robson, B.T. Urban analysis. Cambridge: Cambridge University Press, 1969.
Rosier, M.J. Variation between Australian States in science achievenent. - (IEA (Australia) Report 1973:5). Hawthorn, Vic.: Australian Council for Educational Researeh, 1973 .

Rosier, M.J, and Williams, W.H. The sampling and administration of the IEA Science Project in Australia 1970: A technical report (IEA (Australia) Report $1973: 8$) Hawthom, Vic: : Australian Council. for Educational Research, 1973,

Ross, K.N. Searching for uncertainty: An empirical investigation of sampling errors in educational survey research Hawthorn, Vic.: Australian Council for Educational Research, 1976.

Ross, K.N. Some demographic influences on variation between schools. In S.F. Bourke and J.P. Keeves (Eds.), Australian studies in school performance, Volume III: The mastery of literacy and numexacy. Canberra: AGPS, 1977.

Ross, K.N. Sample design for educational survey research. Evaluation in "Education: Inter itional Progress, 1978, 2, 105-195.

Ross, K.N. The construction of the School Priority Index (SP1) for Victorian government schools. Paper issued by the Australian Council for Educational Research, Hawthorn, Vic., July 1979. (a)

Ross; K.N.-An empirical-investigation-of-sampling errors in educational survey research. Journal of Educational Statistics, 1979, 4, $24=40$. (b)

Ross, K.N. The identification of disadvantaged schools in Australia; A review of techniques. Paper issued by the Australian Council for Educational Research, Hawthorn, Vic., January 1980,

Rumel, R.J. Applied factor analysis: Evanston; Ill.: Northwestern University Press, 1970.

Schmid, C.F., and Tagashira, K. Ecological and demógraphic indices: A methodological analysis: Demography; 1964; $1,194-211$.

Schrag, $\overrightarrow{\mathbf{P}}$. End of the impossible dream. Saturday Review, 19 September:1970, pp. 68-96.

Shevky, \bar{E}, and Williams, M, The social areas of Los Angeles: Analysis and typology. Los Angeles: University of California Press; 1949.

Shevky, R., and Bell, W. Social area analysis: Theory, illustrative applications and computationaĭ procedure. Stanford, Calif.: Stanford-University, 1955.

South Australia. Education Department. Method of selection of disadvantaged schools in the South Australian state system. South Nustralian Education Gazette, 1979, 7, 359-362.

Stebbins; L.B., St. Pierre, R.G., Proper, E.C., Anderson, R.B., and Cerva, T.R. Education as experimentation: A planned variation model, Volume IV-A: An evaluation of Follow Through. Cambridge, Mass: Abt, Associates, 1977,

Sweetser, F. L. "Factorial ecology: Helsinki, 1960. Demography, 1965, $\frac{2}{2}$, 372-385.
-
Tasmania. Education Department. Research Branch. Indices of disadvantage. Paper presented to the Schools Commission Working Party on Disadvantaged Schools, Melbourne, October 1979.
Tatsuoka, M.M. Discriminant analysis: The study of group differences.: Champaign, ill.: Instrute for Personality and Ability Testing, 1970.

Thorndike, R.L. Reading comprehension education in fifteen countries: An empirical study Stockholm: Almavist E Wikseli/New York: Wiley, 1973.

Thorndike, R.L.; and Hagen, F. Measurement and evaiuation in psychology and education, (4th ed.). New York Wiley, 1977.
:
Thorndike, R.M. Correlational procedures for research. New York: Gardner, 1978.

Timms, D. The urban mosaic: Towards a theory of residential differentiation. Cambridge: Cambridge University press, 1971.

Tryon, ,. C . Identification of sociai areas by cluster analysis: A general method with an application to the San Francisco Bay area. Los Angeles: University of Califomia-Press, 1955 .

Tukey, J.W: Bias and confidence in not-quite large samples: Abstract. Annals of Mathénatical Statistics, 1958, 29; 614.

Udry, J. R . Increasing scale and spatial differentiation: New tests of two theories from Shevky and Bell. Social Forces, 1964; , 42, 403-413.

United States, Department of Health, Education, and Welfare. The measure of poverty. Washington, DC: Department of Health, Education, and Welfare, 1976.

United States. House of Representatives. Education amendments of 1978: Conference report. (95 th Congress, 2 nd session, Report No. " $\overline{95-1753 \text {). . Washington, } D C: ~ U S ~ G o v e r n m e n t ~ P r i n t i n g ~ O f f i c e, ~} 1978$.

Van Arsdol, M. Di, Camilleri, S.F., Sehmid, C:F. The generality of urban social area indexes: American Sociological Review, 1958, 23, 277-284. (a)

Van Arsdol, M.D.; Camilleri, S. F.; Schmid, C. F. An application of the Shevky social area indexes to a model of urban society. Social Forces, 1958, 37, 26-32: (b)

Western Australia. Education Department. Identification of schools for the - Priority Schools Programme. Paper presented to the Schools Commission Working Party on Dísadvantaged Schools, Melbourne, October 1979.

212
220

Wilson, G., and Wilson, M. The analysis of social change. London: Cambridge University Press, 1945.
Wirth, L. Urbanisin as a way of life. American Journal of Sociology, 1938, 44, 1-24.

Wisler, C.E., Burns, G.P., and Iwamoto, D, Follow Through redux: A response to the critique by House, Glass, Mclean, and Walker. Harvard Educationa1 Review, 1978, 48, 171-185.

